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Abstract
In the realm of multiprocessor systems, the evaluation of interconnection network 
reliability holds utmost significance, both in terms of design and maintenance. The 
intricate nature of these systems calls for a systematic assessment of reliability met-
rics, among which, two metrics emerge as vital: connectivity and diagnosability. 
The Rg-conditional connectivity is the minimum number of processors whose dele-
tion will disconnect the multiprocessor system and every processor has at least g 
fault-free neighbors. The Rg-conditional diagnosability is a novel generalized con-
ditional diagnosability, which is the maximum number of faulty processors that can 
be identified under the condition that every processor has no less than g fault-free 
neighbors. In this paper, we first investigate the Rg-conditional connectivity of gen-
eralized exchanged X-cubes GEX(s, t) and present the lower (upper) bounds of the Rg

-conditional diagnosability of GEX(s, t) under the PMC model. Applying our results, 
the Rg-conditional connectivity and the lower (upper) bounds of Rg-conditional 
diagnosability of generalized exchanged hypercubes, generalized exchanged crossed 
cubes, and locally generalized exchanged twisted cubes under the PMC model are 
determined. Our comparative analysis highlights the superiority of Rg-conditional 
diagnosability, showcasing its effectiveness in guiding reliability studies across a 
diverse set of networks.

Keywords  Reliability · Rg-conditional restriction · PMC model · Fault tolerance · 
Generalized exchanged X-cubes

1  Introduction

Increasingly, the complex functionalities of emerging real-time applications, such as 
in automotive, industrial automation, and robotics domains, require multiprocessor 
systems (MPS for short) to be implemented. Compared to the uniprocessor, multi-
processor systems provide a multitude of advantages, such as superior performance 
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and reliability, enhanced reconfigurability, and scalability. With advancements in 
very large-scale integration (VLSI for short) and software technologies, multipro-
cessor systems may incorporate tens of thousands of processors. However, as mul-
tiprocessor systems scale up, the likelihood of processor failures doubles or even 
grows geometrically. Once the processor fails, it may significantly compromise the 
reliability of the system, such as data transmission failure, packet loss, and increased 
latency. It is important to quantify the effect of the faults so that fault-tolerant 
designs can be pursued. One fundamental criterion in the design of MPS is reli-
ability [1]. However, the accurate identification and replacement of faulty processors 
remain a key challenge in maintaining the system’s reliability.

As we all know, connectivity refers to the ability of the interconnection network 
to establish and maintain communication between processors when failures occur, 
which is an important metric to assess the fault tolerance of MPS. In general, con-
nectivity is denoted by �(G) , which is the minimum number of processors that make 
the system disconnected. However, the traditional connectivity in actual network 
applications has been subject to significant limitations. Specifically, it overlooks the 
practical possibility of all adjacent processors to a processor malfunctioning simul-
taneously [2]. To overcome this drawback, Esfahanian and Hakimi [3] introduced a 
novel measure known as the restricted connectivity, which restricts the simultaneous 
failure of adjacent processors of arbitrary one processor. Subsequently, Latifi et al. 
[4] proposed a generalized restricted connectivity notion, the g-restricted connec-
tivity (i.e., Rg-conditional connectivity), which mandates that each processor should 
have at least g fault-free neighbors in the system. The Rg-conditional connectivity 
offers a more refined and comprehensive means of evaluating the resilience and 
robustness of a multiprocessor system against failures.

In addition, system-level diagnostics is a crucial technique to diagnose a system, 
as it enables the identification of all faulty processors within the system. Such a fault 
location method, based on test outcomes, possesses the potential for real-time diag-
nostics and can be automated. The diagnosability of a system is a pivotal metric 
in assessing its reliability, which refers to the maximum number of faulty proces-
sors that the system can self-identify. A system is said to be t-diagnosable when 
all faulty processors can be accurately detected, provided that the number of faulty 
processors does not exceed t [5]. The PMC model, proposed by Preparata et al. [5], 
is utilized to identify the faulty processors. To execute fault diagnosis in a system, 
this model assumes that a processor, acting as a tester u, sends a test message to its 
neighbor, acting as a testee v, where the ordered pair ⟨u, v⟩ represents the test. When 
u is fault-free, the outcome of ⟨u, v⟩ can be used to deduce the state of v. Specifi-
cally, if the outcome of ⟨u, v⟩ is 1 (resp. 0), then v is faulty (resp. fault-free). How-
ever, if u is faulty, then the outcome of ⟨u, v⟩ becomes unreliable, rendering the state 
of v unreliable as well. Meanwhile, Maeng and Malek [6] proposed a comparison-
based model, the MM model, for diagnosing a system. In this model, a processor 
w called comparator, sends the same test to its neighbors u, v and then compares 
their responses. Assume that such a comparison is denoted by (u, v)w . Specifically, 
(u, v)w = 0 (resp. (u, v)w = 1 ) indicates that the test outcomes for u and v are iden-
tical (resp. distinct). For a fault-free comparator w, (u, v)w = 0 implies that both u 
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and v are fault-free, whereas (u, v)w = 1 reveals that there exists at least one faulty 
processor between u and v. If the comparator w is faulty, then the result of (u, v)w is 
unreliable. Based on the MM model, Sengupta et al. [7] introduced the MM* model 
as a special case of the MM model, in which each processor must test any pair of 
adjacent processors. In this paper, we focus on the PMC model for diagnosing faulty 
processors in a system.

The distribution pattern of faulty processors has a significant impact on the diag-
nosability of a system. However, the classical diagnosability of a system is often 
limited due to the lack of restrictions on the distribution pattern of faulty processors. 
To address this limitation, Lai et al. [8] introduced the concept of conditional diag-
nosability, which imposes a restriction on the system such that all the neighbors of 
any processor cannot be faulty at the same time. Peng et al. [9] further extended this 
concept by proposing the g-good-neighbor conditional diagnosability, which aims 
to identify the maximum number of faulty processors under the condition that every 
fault-free processor has at least g fault-free neighbors. Over the years, researchers 
have conducted extensive studies on the conditional diagnosability and g-good-
neighbor conditional diagnosability of various interconnection networks, such as 
star graph, alternating group networks, BC networks, dual cubes, and so on [4, 
10–17]. In particular, Guo et  al. [18] proposed a novel generalized system-level 
diagnosis measure called Rg-conditional diagnosability, which assumes that every 
processor has at least g good neighbors. This measure builds upon the concept of 
g-good-neighbor conditional diagnosability and extends it to cover a broader range 
of scenarios. Guo et al. also conducted a study of the Rg-conditional diagnosability 
of hypercubes under the PMC model. That is, the Rg-conditional diagnosability of 
n-dimensional hypercubes under the PMC model is s2g(n − 2g) + 22g−1 − 1 . Later, 
Wang et al. [19] proposed that the lower bound of Rg-conditional diagnosability of 
n-dimensional hypercubes is 22g−2(2n − 22g + 1) + (n − g)2g−1 − 1 under the PMC 
model when g ≥ 1 and 22g ≤ n − 1 . Yuan et al. [20] studied the relationships between 
the Rg-conditional connectivity �g(G) and the Rg-conditional diagnosability tRg

(G) 
under the PMC model and MM* model and showed that tRg

(G) = �2g+1(G) + g 
under some reasonable conditions, except tR1

(G) under the MM* model. They also 
investigated the Rg-conditional diagnosability of star graphs and bubble-sort graphs 
under the PMC model and MM* model. In addition, Yuan et al. [21] also investi-
gated the Rg-conditional diagnosability of general networks, such as hypercubes and 
exchanged hypercubes under the PMC model, and presented the lower and upper 
bounds of Rg-conditional diagnosability of networks under some reasonable 
conditions.

The study of fault tolerance in interconnection networks is of great importance 
for improving the reliability and stability of computer systems. Recently, Li et  al. 
[22] proposed a new framework, called the generalized exchanged X-cubes GEX(s, t) , 
which enables the construction of network architectures using various connecting 
rules. The g-good-neighbor conditional diagnosability of the generalized exchanged 
X-cubes framework was also determined under the PMC model and MM* model. 
Generalized exchanged X-cubes possess several excellent properties, including 
small diameter, fewer edges, low cost, and low latency. These properties indicate 
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that the framework offers a well-balanced consideration of the network’s hardware 
and communication costs. In addition, the generalized exchanged X-cube GEX(s, t) 
is designed around the BC network, comprising three principal interconnection net-
work types: generalized exchanged hypercubes [23], generalized exchanged crossed 
cubes and locally generalized exchanged twisted cubes (the detailed definitions are 
provided in Sect.  5). As shown in Fig.  1, the dual-cube-like network is a special 
case of generalized exchanged hypercubes, which has attracted several researchers 
to study its properties [24]. Also, the locally exchanged twisted cube [25] is a novel 
interconnection that scales upward with lower edge costs than the locally twisted 
cube and provides more interconnection flexibility. Observably, the generalized 
exchanged X-cube framework integrates numerous established, contemporary, and 
extensively embraced interconnection networks. This emphasizes the need for a 
thorough investigation into the reliability of GEX(s, t) , which stands as a universal 
approach for analyzing reliability across diverse networks.

To further enhance the reliability index of generalized exchanged X-cubes, this 
paper investigates the Rg-conditional connectivity and establishes the lower and 
upper bounds of Rg-conditional diagnosability under the PMC model. Overall, our 
study demonstrates the usefulness and applicability of the Rg-conditional diagnos-
ability measure for evaluating the reliability of various interconnection networks. 
The major contributions of our work are as follows.

•	 We investigate the Rg-conditional connectivity of BC networks and generalized 
exchanged X-cubes GEX(s, t).

•	 We establish the lower and upper bounds of Rg-conditional diagnosability of 
GEX(s, t) under the PMC model.

•	 As applications, we determine the Rg-conditional connectivity, and the lower and 
upper bounds of Rg-conditional diagnosability of generalized exchanged hyper-
cubes, generalized exchanged crossed cubes, and locally generalized exchanged 
twisted cubes under the PMC model.

•	 We compare the Rg-conditional connectivity (resp. diagnosability) with the tradi-
tional connectivity (resp. diagnosability) and g-good-neighbor conditional con-

Fig. 1   The generalized exchanged X-cubes structure contains various popular networks
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nectivity (resp. diagnosability) in GEX(s, t) . Moreover, for generalized exchanged 
hypercubes, the most typical case of GEX(s, t) , we conduct comprehensive com-
parisons involving Rg-conditional diagnosability, g-component diagnosability, 
and g-extra diagnosability in GEH(s, t) , along with evaluating Rg-conditional con-
nectivity against a spectrum of novel connectivity.

•	 The comparative findings highlight the notable reliability of GEX(s, t) under the 
Rg restriction, surpassing the performance of a majority of established connectiv-
ity and diagnosability.

Organization. The rest of this paper is organized as follows. Basic notations and 
definitions for generalized exchanged X-cubes, Rg-conditional diagnosability, and 
other terms are provided in Sect. 2. Section 3 demonstrates the Rg-conditional con-
nectivity of generalized exchanged X-cubes. Section 4 shows the lower and upper 
bounds of Rg-conditional diagnosability of generalized exchanged X-cubes. Sec-
tion 5 gives some applications based on the results regarding the Rg-conditional con-
nectivity and the Rg-conditional diagnosability. Moreover, we draw some compari-
sons in Sect. 6. Finally, we offer some concluding remarks in the last section.

2 � Preliminaries

2.1 � Terminologies and notations

In this subsection, we provide Table 1 that describes some of the important nota-
tions used in this paper. It is a standard method to regard the multiprocessor sys-
tem as a simple undirected graph G = (V(G),E(G)) . For any node u ∈ V(G) , we 
define the neighborhood NG(u) of u in G to be the set of nodes adjacent to u. Also, 

Table 1   Notations Symbol Meaning

[n, m] The set of integers {n, n + 1,… ,m} where n < m

V(G) The node set of a graph G
E(G) The edge set of a graph G
(u, v) An edge with two ends u and v
dG(v) The degree of the node v in G (or simply d(v))
G − U The graph obtained from G by removing U ⊆ V(G)

G ≅ H Two graphs G and H are isomorphic
G[U] The subgraph of G induced by a subset U ⊆ V(G)

�(G) The minimum degree of G
Δ(G) The maximum degree of G
Kn The complete graph with n nodes
F
1

△ F
2

The symmetric difference of F
1

 and F
2
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we set NG(R) = {v ∈ V(G) ⧵ R|(u, v) ∈ E(G) and u ∈ R} =
⋃

u∈R NG(u)⧵R and 
NG[R] = NG(R) ∪ R with R ⊆ V(G) . For neighborhoods, we always omit the subscript 
for the graph when no confusion arises. A graph G is called n-regular if degG(u) = n 
for any node u ∈ V(G) . G − R is denoted as G[V(G)�R] , where R is called a node cut 
if G − R is disconnected. Two binary strings u = u1u0 and v = v1v0 are pair related, 
denoted by u ∼ v , if and only if u, v ∈ {(00, 00), (01, 11), (10, 10), (11, 01)} . The case 
that u and v are not pair related is denoted by u ≁ v . A component is defined as a 
maximally connected subgraph of a graph. A matching M in G is a set of pairwise 
nonadjacent edges. M is a perfect matching of G if each node in V(G) is incident 
with an edge in M. Given two sets F1,F2 ⊂ V(G) , the symmetric difference of F1 and 
F2 is denoted by F1 △ F2 = (F1⧵F2) ∪ (F2⧵F1).

2.2 � Generalized exchanged X‑cubes

In this subsection, we review the definition and properties of generalized exchanged 
X-cubes. Since generalized exchanged X-cubes are derived by bijective connection 
networks (BC networks for short), we first review the definition and properties of the 
BC networks. Specifically, BC networks are a class of cube-based graphs including 
several well-known interconnection graphs such as hypercubes [9], M ̈obius cubes 
[26], crossed cubes [27], and locally twisted cubes [28]. An n-dimensional BC net-
work, denoted by Xn , is an n-regular graph with 2n nodes and n × 2n−1 edges. The set 
of all the n-dimensional BC networks is called the family of the n-dimensional BC 
networks, denoted by �n . Xn and �n can be recursively defined as follows.

Definition 1  (See [29]). The one-dimensional BC network X1 contains only two 
nodes that form an edge. The family of the one-dimensional BC network is defined 
as �1 = {X1} . A graph G belongs to the family of n-dimensional BC networks �n if 
and only if there exist V0,V1 ⊂ V(G) such that the following two conditions hold: 

(1)	 V(G) = V0 ∪ V1 , V0 ≠ ∅ , V1 ≠ ∅ , V0 ∩ V1 = � , and G[V0],G[V1] ∈ �n−1 ; and
(2)	 E(V0,V1) = {(u, v)|u ∈ V0, v ∈ V1, (u, v) ∈ E(G)} is a perfect matching M of G.

We illustrate two three-dimensional BC networks in Fig. 2. In addition, for any 
Xn ∈ �n , there exist V0,V1 and M satisfying the above two conditions by Defini-
tion 1. It is clear that G[V0] and G[V1] are both (n − 1)-dimensional BC networks, 
as well as E(G[V0]) , E(G[V1]) and M are a decomposition of E(Xn) . Thus, we use 
X0
n−1

 (resp. X1
n−1

 ) to denote the induced subgraph G[V0] (resp. G[V1] ) and define the 
decomposition as Xn = G(X0

n−1
,X1

n−1
;M).

Lemma 1  (See [30]). Suppose that 0 ≤ g ≤ n and Y ⊂ V(Xn) . If �(Xn[Y]) ≥ g , then 
|Y| ≥ 2g.

Lemma 2  (See [31]). If S is a subgraph of Xn with |V(S)| = g + 1 for 0 ≤ g ≤ n , then 
|NXn

(V(S))| ≥ (g + 1)n −
g(g−1)

2
− 2 g.
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Lemma 3  (See [32]). Suppose that 0 ≤ g ≤ n , n ≥ 1 and Y ⊂ V(Xn) . If �(Xn[Y]) = g , 
then |NXn

[Y]| ≥ (n − g + 1)2g.

Next, we introduce the definition and properties of generalized exchanged 
X-cubes.

Definition 2  (See [22]). The (s,  t)-dimensional generalized exchanged X-cube is 
defined as a graph GEX(s, t) = (V(GEX(s, t)) , E(GEX(s, t))) with s, t ≥ 1 . GEX(s, t) con-
sists of two disjoint subgraphs L̃ and R̃ , where L̃ consists of 2t subgraphs, denoted by 
L̃i for i ∈ [1, 2t] . Similarly, R̃ consists of 2s subgraphs, denoted by R̃j for j ∈ [1, 2s] . 
Moreover, GEX(s, t) satisfies the following conditions: 

(1)	 For any 1 ≤ i ≤ 2t and 1 ≤ j ≤ 2s , L̃i ≅ Xs and R̃j ≅ Xt . Further, |V(L̃i)| = 2s and 
|V(R̃j)| = 2t;

(2)	 Each node in V(L̃) has a unique neighbor in V(R̃) and vice versa. In addition, for 
distinct nodes in each L̃i , their neighbors locate in different R̃j;

(3)	 For any two different subgraphs L̃i and L̃i′ with i ≠ i′ , there exists no edge 
between them. Similar for R̃j and R̃j′ with j ≠ j′.

According to Definition 2, we can deduce that |V(GEX(s, t))| = 2s+t+1 . Let each 
L̃i and R̃j be a cluster of GEX(s, t) . Obviously, GEX(s, t) consists of 2t + 2s clus-
ters. If we contract each cluster into a node, then GEX(s, t) can be abstracted as a 
complete bipartite graph K2t ,2s (see Fig. 3). The edges that connect different clus-
ters are called cross edges. In the following discussion, we consider s ≤ t . Thus, 
�(GEX(s, t)) = s + 1 and Δ(GEX(s, t)) = t + 1.

Fig. 2   Two three-dimensional BC networks
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Lemma 4  (See [22]). For any integers 3 ≤ s ≤ t and 1 ≤ g ≤ s − 2 , 
tg(GEX(s, t)) = (s − g + 2)2g − 1 under the PMC model.

2.3 � The Rg‑conditional diagnosability

Guo et al. [18] proposed a novel conditional diagnosability named Rg-conditional 
diagnosability, which requires every processor to have at least g good neighbors. 
In what follows, some concepts and results on Rg-conditional diagnosability of a 
system are listed.

Suppose that G is an n-regular graph and a set of faulty nodes is called 
a faulty set. Given a node u ∈ V(G) , Au is called a forbidden faulty set 
of u if and only if Au ⊂ N(u) and |Au| ≥ n − g when 0 < g ≤ n [33]. Let 
Rg = {Y ⊂ V(G)|Au ⊄ Y ,Au is a forbidden faulty set of u, for any u ∈ V(G)} . Thus, 
if F ∈ Rg , then every node, including fault-free and faulty nodes, has at least g 
good neighbors (i.e., fault-free nodes). A faulty set F is called an Rg-conditional 
faulty set if F ∈ Rg . A node cut R is called an Rg-cut of G if R ∈ Rg.

Definition 3  (See [4]). A system G is Rg-connected if G has an Rg-cut. The Rg-con-
ditional connectivity of G, denoted by �g(G) , is the minimum cardinality of all Rg

-cuts in G.

Definition 4  (See [18]). A system G is Rg-conditionally t-diagnosable if an arbitrary 
pair of distinct Rg-conditional faulty sets (F1,F2) is distinguishable with 

Fig. 3   a The partition of GEX(s, t) , where the rectangle boxes indicate the clusters; b The contraction of 
GEX(s, t) , where each cluster is represented as a node
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|F1|, |F2| ≤ t . The Rg-conditional diagnosability of G, denoted by tRg
(G) , is the max-

imum t such that G is Rg-conditionally t-diagnosable.

Lemma 5  (See [18]). For any two distinct indistinguishable Rg-conditional faulty 
sets F1 and F2 of G = (V(G),E(G)) , the following conditions are satisfied: 

(1)	 Each component U of F1 △ F2 has �(U) ≥ 2g ; and
(2)	 Each component C of V(G)⧵(F1 ∪ F2) has �(C) ≥ g.

In addition, we give a sufficient and necessary condition for two distinct subsets 
F̂1 and F̂2 to be a distinguishable pair under the PMC model.

Lemma 6  (See [34]). For any two distinct subsets F̂1 and F̂2 in a system 
G = (V(G),E(G)) , the sets F̂1 and F̂2 are distinguishable under the PMC model if 
and only if there exists at least one edge from V(G) ⧵ (F̂1 ∪ F̂2) to F̂1 △ F̂2.

3 � The Rg‑conditional connectivity of GEX(s, t)

In this section, we will investigate the Rg-conditional connectivity of GEX(s, t) . 
Before that, we first discuss the Rg-conditional connectivity of BC networks Xn and 
propose Lemma 7 as follows.

Lemma 7  For BC networks Xn with n ≥ 3 and 0 ≤ g ≤

⌊
n

2

⌋
 , the Rg-conditional con-

nectivity of Xn is �g(Xn) = (n − g)2g.

Proof  At first, we prove that �g(Xn) ≤ (n − g)2g . Let F be a set of all neighbors of 
V(Xg) , that is F = {NXn

(u)⧵V(Xg) for u ∈ V(Xg)} . Since Xn is an n-regular graph 
with 2n nodes, we can deduce that Xn − F is disconnected and |F| = (n − g)2g . Then, 
we now verify that F ∈ Rg . Obviously, every node in Xg has at least g good neigh-
bors. According to the structural properties of Xn , F is composed of n − g disjoint 
subgraphs Xg . Hence, each node in F has at most g neighbors u with u ∈ V(F) and 
has at least n − g neighbors in Xn − F . Further, since g ≤

⌊
n

2

⌋
 and n − g ≥ g , it is 

clear that every node in F has at least g good neighbors. Also, each node in 
Xn − F − Xg has at most n − g neighbors in F and n − g ≥ g , thus any node in 
Xn − F − Xg has at least g neighbors in Xn − F . This proves that such an F belongs 
to Rg.

Next, we prove �g(Xn) ≥ (n − g)2g by induction on g. Assume that S is a mini-
mum Rg-cut of Xn , Y is the node set of a minimum connected component of Xn − S , 
and the node set Z = V(Xn − S − Y) . Let Si = S ∩ V(Xi

n−1
) , Yi = Y ∩ V(Xi

n−1
) and 

Zi = Y ∩ V(Xi
n−1

) for i ∈ {0, 1} . It is obvious that the result is true for g = 0 . We 
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assume that the result is true for g − 1 with g ≥ 1 . The following two cases are 
considered.

Case 1: Y0 = � or Y1 = �.
Without loss of generality, suppose that Y1=� , that is Y ⊆ V(X0

n−1
) . By Lemma 3 

and Xn = G(X0
n−1

,X1
n−1

;M) , we can deduce that 
|NXn

(Y)| = |NX0
n−1
(Y)| + |NX1

n−1
(Y)| = |NX0

n−1
[Y]| ≥ ((n − 1) − g + 1)2g = (n − g)2g   . 

Since S is an Rg-cut, it shows that NXn
(Y) ⊆ S . Thus, |S| ≥ |NXn

(Y)| ≥ (n − g)2g.
Case 2: Y0 ≠ ∅ and Y1 ≠ ∅.
Subcase 2.1: Z0 ≠ ∅ and Z1 ≠ ∅.
As S is an Rg-cut of Xn , for each i ∈ {0, 1} , every node v ∈ Yi ∪ Zi has at least 

g neighbors in Xn − S , as well as every node u ∈ Si has at least g neighbors in 
Xn − S . If a node v has at most one neighbor in X0

n−1
− S (resp. X1

n−1
− S ), then 

v has at least g − 1 neighbors in X1
n−1

− S (resp. X0
n−1

− S ). Moreover, a node 
u ∈ S has at least g − 1 neighbors in X0

n−1
− S (resp. X1

n−1
− S ), which implies 

that S0 (resp. S1 ) is an Rg−1-cut of X0
n−1

 (resp. X1
n−1

 ). By the induction hypoth-
esis, |S0| ≥ [(n − 1) − (g − 1)]2g−1 = (n − g)2g−1 and |S1| ≥ 2g−1(n − g) . Hence, 
|S| = |S0 ∪ S1| ≥ (n − g)2g.

Subcase 2.2: Z0 = � or Z1 = �.
Without loss of generality, suppose that Z0 ≠ ∅ and Z1 = � . As dis-

cussed in Subcase 2.1, S0 is an Rg−1-cut of X1
n−1

 and |S0| ≥ (n − g)2g−1 . 
Then, |S0| = |X0

n−1
| − |Y0| − |Z0| and |S1| = |X1

n−1
| − |Y1| . If |S1| < |S0| , then 

|Z| < |Y0| + |Z| < |Y1| , which is a contradiction. Therefore, |S1| ≥ |S0| and 
|S| ≥ 2|S0| ≥ (n − g)2g.

By the above discussion, we can conclude the Rg-conditional connectivity of Xn is 
�g(Xn) = (n − g)2g . 	�  ◻

Lemma 8  For GEX(s, t) with 3 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

2

⌋
 , the Rg-conditional connec-

tivity of GEX(s, t) is �g(GEX(s, t)) ≤ (s − g + 1)2g.

Proof  By Definition  2, it shows that GEX(s, t) is composed of two disjoint sub-
graphs L̃ and R̃ , where L̃ (resp. R̃ ) can be partitioned into 2t (resp. 2s ) subgraphs 
(clusters). Without loss of generality, suppose that there exists A ⊆ V(�L1) such that 
GEX(s, t)[A] ≅ Xg . By Definitions  1 and  2, we can get that |A| = 2g , L̃1 ≅ Xs and 
|N

L̃1
(A)| = (s − g)2g . Moreover, each node in V(L̃) has an unique neighbor in V(R̃) 

by Definition 2. For distinct nodes in each L̃i , their neighbors of R̃ locate in different 
R̃j , where i ∈ [1, 2t] and j ∈ [1, 2s] . In addition, for any two different subgraphs L̃i 
and L̃i′ with i ≠ i′ , the edge between them does not exist, so each node in L̃1 has only 
one neighbor in GEX(s, t) − L̃1 . Then, we can deduce that |N

GEX(s,t)−L̃1
(A)| = |A| = 2g . 

Thus, we have

|NGEX(s,t)(A)| = |N
L̃1
(A)| + |N

GEX(s,t)−L̃1
(A)|

= (s − g)2g + 2g

= (s − g + 1)2g.
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Since |NGEX(s,t)[A]| = (s − g + 1)2g + 2g = (s − g + 2)2g and |V(GEX(s, t))| =
2s+t+1 > (s − g + 2)2g , we can infer that GEX(s, t) − NGEX(s,t)(A) is disconnected and 
NGEX(s,t)(A) is a node cut of GEX(s, t) . It shows that GEX(s, t)[A] ≅ Xg , and thus 

�(GEX(s, t)[A]) = g . By Lemma 7, N
L̃1
(A) is an Rg-cut of L̃1 with 1 ≤ g ≤

⌊
s

2

⌋
 , thus 

�(L̃1 − N
L̃1
[A]) ≥ g . From �(GEX(s, t)) = s + 1 ( s ≤ t ) and Definition  2, we can 

deduce that 𝛿(GEX(s, t) − �L1 − N
GEX(s,t)−�L1

(A)) ≥ s + 1 − 1 > g for any node in 
GEX(s, t) − L̃1 − N

GEX(s,t)−L̃1
(A) . Based on the above discussion, we have 

�(GEX(s, t) − NGEX(s,t)(A)) ≥ g . By Definition  2, for distinct nodes in each L̃1 , their 
neighbors of R̃ locate in different R̃j . For any two different subgraphs R̃j and R̃j′ with 
j ≠ j′ , there exists no edge between them. Hence, it shows that any node in 
N
GEX(s,t)−L̃1

(A) does not have neighbors in N
GEX(s,t)−L̃1

(A) , but has at least s neighbors 
in GEX(s, t) − NGEX(s,t)(A) . Since N

L̃1
(A) is an Rg-cut of L̃1 , each node in N

L̃1
(A) has at 

least g neighbors in L̃1 − N
L̃1
(A) and NGEX(s,t)(A) is an Rg-cut of GEX(s, t) . Hence, 

�g(GEX(s, t)) ≤ (s − g + 1)2g with 1 ≤ g ≤

⌊
s

2

⌋
 and 3 ≤ s ≤ t , the lemma holds. 	�  ◻

Lemma 9  For GEX(s, t) with 3 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

2

⌋
 , the Rg-conditional connec-

tivity of GEX(s, t) is �g(GEX(s, t)) ≥ (s − g + 1)2g.

Proof  Assume that I is a minimum Rg-cut of GEX(s, t) . Let I
L̃i
= I ∩ V(L̃i) and 

I
R̃j
= I ∩ V(R̃j) for each 1 ≤ i ≤ 2t and 1 ≤ j ≤ 2s . Then, we will prove that 

�g(GEX(s, t)) = |I| ≥ (s − g + 1)2g with 1 ≤ g ≤

⌊
s

2

⌋
 and s ≥ 3 by the following three 

cases.
Case 1: L̃i − I

L̃i
 and R̃j − I

R̃j
 are connected for each i and j.

We prove this case by contradiction. Suppose that |I| ≤ (s − g + 1)2g − 1 . 
Since I is a minimum Rg-cut of GEX(s, t) , it is no doubt that GEX(s, t) − I is dis-
connected. Clearly, a component C necessarily traverses r clusters (i.e., subgraph 
L̃i or R̃j ), r ≥ 1 , say B1,B2,… ,Br . Let I� = B� ∩ I with � ∈ [1, r] . Accordingly, 
C =

⋃r

�=1(B� − I�) . By Definition  2(2) and (3), we can deduce that at most r − 1 
cross edges between B� − I� and B�⧵{�} exist, where � = {1, 2,… , r} . Moreover, 
there are at least 2s − |I�| − (r − 1) cross edges between B� − I� and W , where 
W = GEX(s, t) −

⋃r

�=1 B� and s ≤ t . Let M = I ⧵
⋃r

�=1 I� . Since there is no edge 
between B� − I� and W −M , �M� ≥ ∑r

�=1[2
s − �I�� − (r − 1)] . Then, we have

Let the function f (r) = r(2s − r + 1) with r ≥ 1 . We can obtain that 
𝜕f (r)

𝜕r
= 2s − 2r + 1 > 0 and f(r) is an increasing function. Thus, f (r) ≥ f (1) = 2s and 

|I| ≥ f (r) ≥ 2s . Similarly, we suppose that f (g) = 2s − [(s − g + 1)2g − 1] with 

�I� = �I1� + �I2� +⋯ + �Ir� + �M�
≥ �I1� + �I2� +⋯ + �Ir� +

∑r

�=1[2
s − �I�� − (r − 1)]

= r(2s − r + 1).
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1 ≤ g ≤

⌊
s

2

⌋
 . We can calculate that 𝜕f (g)

𝜕g
= 2g[g ln 2 + 1 − (s + 1) ln 2] < 0 , which 

implies that f(g) is a decreasing function and f (g) ≥ f (
⌊
s

2

⌋
) > 0 . Clearly, 

|I| ≥ 2s > (s − g + 1)2g − 1 , which violates the assumption that 
|I| ≤ (s − g + 1)2g − 1.

Case 2: Only one of L̃i − I
L̃i

 and R̃j − I
R̃j

 is disconnected.
Similarly, we also prove this case by contradiction. Suppose that 

|I| ≤ (s − g + 1)2g − 1 . Without loss of generality, we assume that L̃1 − I
L̃1

 is dis-
connected. Since I is an Rg-cut of GEX(s, t) , �(L̃1 − I

L̃1
) ≥ g − 1 and I

L̃1
 is an Rg−1

-cut of L̃1 . By Lemma 7, it shows that |I
L̃1
| ≥ [s − (g − 1)]2g−1 = (s − g + 1)2g−1 . Let 

I1 = I
L̃1

 and P = I⧵I1 . Then, we can deduce that |P| ≤ (s − g + 1)2g−1 − 1.
Moreover, we assume that GEX(s, t) − L̃1 − P is disconnected. At this time, a com-

ponent C must traverse r clusters with r ≥ 1 , that is, B2,B3,… ,Br+1 . Let I� = B� ∩ I 
with � ∈ [2, r + 1] . Accordingly, C =

⋃r+1

�=2(B� − I�) . By Definition  2(2) and (3), 
we can deduce that at most r cross edges between B� − I� and B�⧵{�} exist, where 
� = {1, 2,… , r + 1} . Meanwhile, there are at least 2s − |I�| − r cross edges between 
B� − I� and W , where W = GEX(s, t) −

⋃r+1

�=1 B� and B1 ≅ L̃1 . Let M = I ⧵
⋃r+1

�=1 I� . 
Since there is no edge between B� − I� and W −M , �M� ≥ ∑r+1

�=2[2
s − �I�� − r] . 

Figure 4 shows an illustration of this case. Then, we have

 
Let f (r) = r(2s − r) with r ≥ 1 . We can obtain that 𝜕f (r)

𝜕r
= 2s − 2r > 0 and f(r) is 

an increasing function. Hence, f (r) ≥ f (1) = 2s − 1 and |P| ≥ f (r) ≥ 2s − 1 . Simi-
larly, we define the function f (g) = 2s − 1 − [(s − g + 1)2g−1 − 1] with 1 ≤ g ≤

⌊
s

2

⌋
 

and s ≥ 3 . It shows that 𝜕f (g)
𝜕g

= 2g−1[g ln 2 + 1 − (s + 1) ln 2] < 0 . Thus, f(g) is a 

decreasing function and f (g) ≥ f (
⌊
s

2

⌋
) > 0 . Then, || ≥ 2s − 1 > (s − g + 1)2g−1 − 1 , 

which results in a contradiction with |P| ≤ (s − g + 1)2g−1 − 1 . Therefore, 
GEX(s, t) − L̃1 − P is connected.

Since L̃1 − I1 is disconnected, there must be a component U in L̃1 − I1 such that 
no edge between U and GEX(s, t) − L̃1 − P exists. Then, |P| ≥ |V(U)| . Obviously, 

�P� = �I2� +⋯ + �Ir+1� + �M�

≥ �I2� +⋯ + �Ir+1� +
r+1∑
�=2

[2s − �I�� − r]

= r(2s − r).

Fig. 4   An illustration of the 
proof of Case 2 in Lemma 9
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N�L1
(U) ⊆ I1 , which means that |I| = |I1| + |P| ≥ |N

L̃1
(U)| + |V(U)| = |N

L̃1
[U]| . 

Considering that I is an Rg-cut of GEX(s, t) , �(U) ≥ g . By Lemma  3 and 
L̃1 ≅ Xs , we deduce that |I| = |N

L̃1
[U]| ≥ (s − g + 1)2g , which contradicts with 

|I| ≤ (s − g + 1)2g − 1.
Case 3: At least two of L̃i − I

L̃i
 and R̃j − I

R̃j
 are disconnected.

Without loss of generality, suppose that L̃1 − I
L̃1

 and L̃2 − I
L̃2

 are discon-
nected. Since I is an Rg-cut of GEX(s, t) , we have that �(L̃1 − I

L̃1
) ≥ g − 1 and 

�(L̃2 − I
L̃2
) ≥ g − 1 by Definition  2. In addition, it is clear that every node in L̃1 

(resp. L̃2 ) has at least g − 1 neighbors in L̃1 − I
L̃1

 (resp. L̃2 − I
L̃2
) . Thus, I

L̃1
 (resp. 

I
L̃2

 ) is an Rg−1-cut of L̃1 (resp. L̃2 ). By Lemma  7, |I
L̃1
| ≥ (s − g + 1)2g−1 and 

|I
L̃2
| ≥ (s − g + 1)2g−1 . Then,

As a result, based on the above discussion, we can conclude that 
�g(GEX(s, t)) = |I| ≥ (s − g + 1)2g . 	� ◻

Thus, we combine Lemmas 8 and 9, and the following theorem holds.

Theorem 10  For GEX(s, t) with 3 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

2

⌋
 , the Rg-conditional con-

nectivity of GEX(s, t) is �g(GEX(s, t)) = (s − g + 1)2g.

4 � The Rg‑conditional diagnosability of GEX(s, t) under the PMC model

In this section, we will establish the upper and lower bounds of Rg-conditional 
diagnosability of GEX(s, t).

Lemma 11  If H is a subgraph of GEX(s, t) with |V(H)| = g + 1 for 0 ≤ g ≤ s − 1 , 
s ≥ 2 , then |NGEX(s,t)(V(H))| ≥ (g + 1)s −

g(g+1)

2
+ 1.

Proof  We shall prove the lemma by induction on |V(H)| . By Definition  2, it is 
clear that the result holds for |V(H)| = 1 . Suppose that the conclusion holds for 
all H with |V(H)| ≤ g , where g ≥ 1 . Then, we show the results are true for H with 
|V(H)| = g + 1 ≥ 2 by the following two cases.

Case 1: V(H) is distributed in exactly one cluster.
Without loss of generality, we let H ⊂ B𝛼 , where B� ≅ Xs and a certain � ∈ [1, 2s + 2t] . 

By Lemma  2, it is easy to deduce that |NB�
(V(H))| ≥ (g + 1)s −

g(g−1)

2
− 2 g . 

Since each node in B� has only one neighbor in V(GEX(s, t) − B�) , 
|NGEX(s,t)(V(H))| ≥ (g + 1)s −

g(g−1)

2
− 2 g + (g + 1) = (g + 1)s −

g(g+1)

2
+ 1.

|I| ≥ |I
L̃1
| + |I

L̃2
|

≥ (s − g + 1)2g−1 + (s − g + 1)2g−1

= (s − g + 1)2g.
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Case 2: V(H) is distributed in at least two different clusters.
Suppose that H0 = H ∩ B� and H1 = H ∩ (GEX(s, t) − B�) , where |V(H0)| = x , 

|V(H1)| = g + 1 − x and 1 ≤ x ≤ g . By Lemma 2 and the induction hypothesis, we 
have

and

Since each node in V(H1) has at most one neighbor in B� , |NB�
(V(H1))| ≤ g + 1 − x . 

Then,

Hence, we have

Further, we deduce

Therefore, |NGEX(s,t)(V(H))| ≥ (g + 1)s −
g(g+1)

2
+ 1 . 	�  ◻

Lemma 12  Suppose that H is a subgraph of GEX(s, t) with �(H) ≥ g for 1 ≤ s ≤ t and 
1 ≤ g ≤ s , it shows that |V(H)| ≥ 2g.

Proof  We prove this lemma through the following two cases.
Case 1: V(H) is distributed in exactly one cluster.
At this time, it is easy to deduce that |V(H)| ≥ 2g by Lemma 1.
Case 2: V(H) is distributed at least two different clusters.
We suppose that each B� represents a cluster of GEX(s, t) for � ∈ [1, 2s + 2t] . 

Let H = {H1,H2,… ,Hm} with m ≥ 2 , where Hd = H ∩ B� for d ∈ [1,m] and 
some � ∈ [1, 2s + 2t] . By Definition  2, we can deduce that �(Hd) ≥ g − 1 . 

|NB�
(V(H0))| ≥ xs −

(x−1)(x−2)

2
− 2(x − 1)

= xs −
x(x+1)

2
+ 1,

|NGEX(s,t)(V(H1))| ≥ (g + 1 − x)s −
(g+1−x)(g−x)

2
+ 1.

|NGEX(s,t)−B�
(V(H1))| = |NGEX(s,t)(V(H1))| − |NB�

(V(H1))|
≥ [(g + 1 − x)s −

(g+1−x)(g−x)

2
+ 1] − (g + 1 − x).

|NGEX(s,t)(V(H))| ≥ |NB�
(V(H0))| + |NGEX(s,t)−B�

(V(H1))|
≥ xs −

x(x+1)

2
+ 1 + [(g + 1 − x)s −

(g+1−x)(g−x)

2
+ 1]

−(g + 1 − x)

= (g + 1)s −
x(x+1)

2
−

(g−x)(g−x+3)

2
+ 1.

|NGEX(s,t)(V(H))| − [(g + 1)s−
g(g+1)

2
+ 1]

≥ (g + 1)s −
x(x+1)

2
−

(g−x)(g−x+3)

2

+1 − [(g + 1)s −
g(g+1)

2
+ 1]

= (g − x)(x − 1)

≥ 0.
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Thus, it is obvious that |V(Hd)| ≥ 2g−1 by Lemma  1. Then, we can conclude that 
�V(H)� = ⋃m

d=1
�V(Hd)� ≥ 2g because m ≥ 2 . Hence, this lemma holds. 	�  ◻

Theorem  13  For g ≥ 1 and 22 g ≤ s ≤ t , tRg
(GEX(s, t)) ≥ (2 s − 2

2 g + 3)22 g−2

+(s − g + 1)2g−1 under the PMC model.

Proof  At first, we define the function f (g) = (2s − 22g + 3)22g−2 + (s − g + 1)2g−1 . 
Let F1 and F2 be two distinct Rg-conditional faulty sets with 
max{|F1|, |F2|} ≤ f (g) . We prove this theorem by contradiction. Suppose that 
F1 and F2 are indistinguishable under the PMC model. We can deduce that 
|V(GEX(s, t))| = 2s+t+1 > 2f (g) ≥ |F1 ∪ F2| , thus |V(GEX(s, t)) ⧵ F1 ∪ F2| ≥ 1 . 
Since F1 and F2 are indistinguishable, and F1 ≠ F2 , F1 ∩ F2 is an Rg-condi-
tional faulty node cut set and NGEX(s,t)(F1 △ F2) ⊆ F1 ∩ F2 . By Theorem  10, 
|F1 ∩ F2| ≥ �g(GEX(s, t)) = (s − g + 1)2g . By Lemma  5 and Lemma  12, we have 
|F1 △ F2| ≥ 22 g.

Let Q be a component of F1 △ F2 with |V(Q)| = 22 g , and H be a subset of |F1 ∩ F2| 
with |H| = (s − g + 1)2g . By Lemma  11, |NGEX(s,t)(V(Q))| ≥ 22 gs −

22 g(22 g−1)

2
+ 1 . 

Thus, |V(Q) ∪ NGEX(s,t)(V(Q))| ≥ (s + 1)22 g −
22 g(22 g−1)

2
+ 1 . Since V(Q) ∪ NGEX(s,t)

⊆ F
1

∪ F
2

 and H ⊆ F1 ∩ F2 , we have

Hence,

This is a contradiction, which implies that F1 and F2 are distinguishable. Thus, 
tRg

(GEX(s, t)) ≥ (2 s − 22 g + 3)22 g−2 + (s − g + 1)2g−1 . 	�  ◻

Theorem  14  For 4 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

3

⌋
 , tRg

(GEX(s, t)) ≤ 2

2 g−1 + 2

2 g(s + t

+1 − 2 g) − 1 under the PMC model.

|F1 ∪ F2 ⧵ H| = |F1 ∪ F2| − |H|
≥ |V(Q) ∪ NGEX(s,t)(V(Q))| − |H|
≥ (s + 1)22g −

22g(22g−1)

2
+ 1 − (s − g + 1)2g

= (s + 1)22g −
22g(22g−1)

2
− (s − g + 1)2g + 1

= (2s − 22g + 3)22g−1 − 2g(s − g + 1) + 1.

max{|F1|, |F2|} ≥
|F1∪F2|+|F1∩F2|

2

≥
|F1∪F2|+|H|

2

=
|F1∪F2⧵H|

2
+ |H|

≥ (2s − 22g + 3)22g−2 − (s − g + 1)2g−1 +
1

2
+ (s − g + 1)2g

= (2s − 22g + 3)22g−2 + (s − g + 1)2g−1 +
1

2

= f (g) +
1

2

> f (g).
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Proof  By Definition 4, if there are two distinct and indistinguishable Rg-conditional 
faulty sets F1 and F2 , where |F1|, |F2| ≤ 22 g−1 + 22 g(s + t + 1 − 2 g) , then GEX(s, t) 
is not Rg-conditionally 22g−1 + 22g(s + t + 1 − 2g)-diagnosable with 
tRg

(GEX(s, t)) ≤ 22g−1 + 22g(s + t + 1 − 2g) − 1 . As shown in Fig. 5, we have

Each node in F1 △ F2 has g neighbors in F1⧵F2 and F2⧵F1 , respectively. In addi-
tion, each node in F1 ∩ F2 has at least s − 2g neighbors in V(GEX(s, t))⧵(F1 ∪ F2) . 
Since 1 ≤ g ≤

⌊
s

3

⌋
 , we have s − 2 g ≥ g . Each node in V(GEX(s, t)) ⧵ (F1 ∪ F2) has at 

least 2g neighbors in V(GEX(s, t)) ⧵ (F1 ∪ F2) . At this time, there is no edge between 
F1 △ F2 and V(GEX(s, t)) ⧵ (F1 ∪ F2) . Hence, F1 and F2 are two distinct and indis-
tinguishable Rg-conditional faulty sets.

F1 ⧵ F2 = {xs+t+1xs+t ⋯ xs+t+1−g+1 0⋯ 0
⏟⏟⏟
s+t+1−2g

xg ⋯ x1|xs+t+1xs+t ⋯ xs+t+1−g+1

have an even number of “0”s, xi ∈ {0, 1}},

F2 ⧵ F1 = {xs+t+1xs+t ⋯ xs+t+1−g+1 0⋯ 0
⏟⏟⏟
s+t+1−2g

xg ⋯ x1|xs+t+1xs+t ⋯ xs+t+1−g+1

have an odd number of “0”s, xi ∈ {0, 1}},

F1 ∩ F2 = {xs+t+1xs+t ⋯ xs+t+1−g+1xs+t+1−g ⋯ xg+1 ⋯ x1|xs+t+1−g ⋯ xg+1
have exactly one “1”, xi ∈ {0, 1}}, and

V(GEX(s, t)) ⧵ (F1 ∪ F2) = {xs+t+1xs+t ⋯ xs+t+1−g+1xs+t+1−g ⋯ xg+1xg ⋯ x1
|xs+t+1−g ⋯ xg+1 have at least two “1”s, xi ∈ {0, 1}}.

Fig. 5   An illustration of F
1

 and F
2
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Since |F2⧵F1| = |F1⧵F2| = 22 g−1 and |F1 ∩ F2| = 22 g(s + t + 1 − 2 g) , we have 
that |F1| = |F1⧵F2| + |F1 ∩ F2| = 22 g−1 + 22 g(s + t + 1 − 2 g) and 
|F2| = |F2⧵F1| + |F2 ∩ F1| = 22 g−1 + 22 g(s + t + 1 − 2 g) . Thus, F1 and F2 are two 
distinct and indistinguishable Rg-conditional faulty sets of GEX(s, t) , where 
|F1| ≤ 22g−1 + 22g(s + t + 1 − 2g) and |F2| ≤ 22g−1 + 22g(s + t + 1 − 2g) . By Defini-
tion  4, GEX(s, t) is not Rg-conditionally 22g−1 + 22g(s + t + 1 − 2g)-diagnosable. 
Therefore, the upper bound of tRg

(GEX(s, t)) is 22g−1 + 22g(s + t + 1 − 2g) − 1 . 	�  ◻

5 � Applications to a family of famous networks

Based on Sects. 3 and 4, we obtain the Rg-conditional connectivity of GEX(s, t) 
and determine the lower and upper bounds of Rg-conditional diagnosability of 
GEX(s, t) under the PMC model. Applying the theorems of Sects. 3 and 4, we can 
directly establish the Rg-conditional connectivity and lower and upper bounds of 
Rg-conditional diagnosability of some generalized exchanged X-cubes, including 
generalized exchanged hypercubes, generalized exchanged crossed cubes, and 
locally generalized exchanged twisted cubes under the PMC model. In this sec-
tion, we will give the applications to these networks.

5.1 � The generalized exchanged hypercube

The exchanged hypercube EH(s, t) was proposed by Loh et  al. [35], which is a 
variant of hypercube obtained by removing some edges from a hypercube Qs+t+1 . 
We denote �n = {1, 2,⋯ , n} , where n is a given position integer. The definition of 
exchanged hypercubes is presented as follows.

Definition 5  (See [35]). For s, t ≥ 1 , the exchanged hyper-
cube EH(s, t) = (V ,E) is an undirected graph with the node set 
V = {us+t ⋯ ut+1ut ⋯ u1u0|ui ∈ {0, 1} for i ∈ {0} ∪ �s+t} , two nodes 
u = us+t ⋯ ut+1ut ⋯ u1u0 and v = vs+t ⋯ vt+1vt ⋯ v1v0 are linked by an edge, called 
an r-dimensional edge, if and only if the following conditions are satisfied: 

(1)	 u and v differ exactly in the r-th bit for r ∈ [0, s + t],
(2)	 if r ∈ �t , then u0 = v0 = 1,
(3)	 if r ∈ �s+t⧵�t , then u0 = v0 = 0.

Later, Cheng et  al. [23] further introduced the generalized exchange hyper-
cube. The following is the formal definition of the generalized exchange hypercube 
GEH(s, t, f ).

Definition 6  (See [23]). For s, t ≥ 1 , GEH(s, t, f ) consists of two disjoint subgraphs L′ 
and R′ , where L′ contains 2t subgraphs, denoted by the Class-0 clusters L′

i
 (i ∈ [1, 2t]) 
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and R′ contains 2s subgraphs, denoted by the Class-1 clusters R′
j
 (j ∈ [1, 2s]) . Class-0 

and Class-1 clusters will be referred to as clusters of opposite classes of each other, 
same class otherwise, and collectively as clusters. In addition, GEH(s, t, f ) fulfills the 
following conditions:

(1)	 for any i ∈ [1, 2t] and j ∈ [1, 2s] , L�
i
≅ Qs and R�

j
≅ Qt;

(2)	 the function f is a bijection between nodes of Class-0 clusters and those of 
Class-1 clusters. If two nodes u and v are in the same cluster, then f(u) and f(v) 
belong to two different clusters, where the edge (u, f(u)) is called a cross edge.

Furthermore, the bijection function f ensures the existence of perfect match-
ing between nodes of Class-0 clusters and those in the Class-1 clusters but ignores 
the specifics of the perfect matching. For convenient, we simplify GEH(s, t, f ) as 
GEH(s, t) . According to the definition of generalized exchanged X-cubes GEX(s, t) 
and the properties of generalized exchanged hypercube GEH(s, t) , we can deduce 
that GEH(s, t) is a member of generalized exchanged X-cubes, where the X-cube is a 
hypercube. Figure 6 illustrates GEH(1, 1) and GEH(1, 2).

In particular, the dual-cube Dn is a special case of the exchanged hyper-
cube EH(s, t) when s = t , that is, EH(n, n) ≅ Dn , which was proposed by Li and 
Peng [36]. The dual-cube-like network DCn is a generalization of dual cubes and 
DCn ≅ EH(n − 1, n − 1) [24]. Clearly, DCn is a special case of GEH(n − 1, n − 1) . 
Then, the following theorems hold obviously.

Theorem 15  The Rg-conditional connectivity of GEH(s, t) and DCn are as follows:

(1) For any integers 3 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

2

⌋
 , �g(GEH(s, t)) = (s − g + 1)2g;

Fig. 6   a GEH(1, 1) ; b GEH(1, 2)
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(2) For any integers n ≥ 4 and 1 ≤ g ≤

⌊
n

2

⌋
 , �g(DCn) = (n − g)2g.

Theorem  16  The lower and upper bounds of Rg-conditional diagnosability of 
GEH(s, t) under the PMC model are as follows:

(1) For any integers g ≥ 1 and 22 g ≤ s ≤ t , tRg
(GEH(s, t)) ≥ (2 s − 2

2 g + 3)22 g−2

+(s − g + 1)2g−1;

(2) For any integers 4 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

3

⌋
 , tRg

(GEH(s, t)) ≤ 2

2g−1 + 2

2g(s + t+

1 − 2g) − 1.

Theorem 17  The lower and upper bounds of Rg-conditional diagnosability of DCn 
under the PMC model are as follows:

(1) For any integers g ≥ 1 and 22 g ≤ n − 1 , tRg
(DCn) ≥ (2n − 2

2g + 1)22g−2

+(n − g)2g−1;

(2) For any integers n ≥ 5 and 1 ≤ g ≤

⌊
n−1

3

⌋
 , tRg

(DCn) ≤ 2

2 g−1 + 2

2 g

(2n − 2 g + 1) − 1
.

5.2 � The generalized exchanged crossed cube

Li et  al. [37] proposed the exchanged crossed cube ECQ(s, t) , which is obtained 
by removing edges from a crossed cube CQs+t+1 . In what follows, we review the 
definition of exchanged crossed cubes.

Definition 7  (See [37]). The (s,  t)-dimensional exchanged crossed cube is defined 
as a graph ECQ(s, t)=G(V ,E) with s, t ≥ 1 , where the node set V = {as−1 ⋯ a0 
bt−1 ⋯ b0c|ai, bj, c ∈ {0, 1}, i ∈ [0, s − 1], j ∈ [0, t − 1]} and the edge set 
E = {(u, v)|(u, v) ∈ V × V} . Especially, E is composed of three disjoint sets E1 , E2 , 
and E3 , as shown below: 

(1)	 E1 ∶ u[0] ≠ v[0], u⊕ v = 1 , where ⊕ is the exclusive-OR operator;
(2)	 E2 ∶ u[0] = v[0] = 1, u[s + t ∶ t + 1] = v[s + t ∶ t + 1] , where �[x ∶ y] denotes 

the bit pattern of the node � between dimensions y and x inclusive. Thus, u[t : 1] 
is denoted by b = bt−1 ⋯ b0 and v[t : 1] is denoted by b� = b�

t−1
⋯ b�

0
 , where u 

and v are adjacent by the following rule: for any t ≥ 1 , if and only if there is an 
� (1 ≤ � ≤ t) such that bt−1 ⋯ b𝓁 = b�

t−1
⋯ b�

𝓁
 and b�−1 ≠ b�

�−1
, b�−2 = b�

�−2
 if � 

is even, as well as b2i+1b2i ∼ b�
2i+1

b�
2i

 with 0 ≤ i < ⌊(� − 1)∕2⌋;
(3)	 E3 ∶ u[0] = v[0] = 0, u[t ∶ 1] = v[t ∶ 1] , and u[s + t ∶ t + 1] and v[s + t ∶ t + 1] 

are denoted by a = as−1 ⋯ a0 and a� = a�
t−1

⋯ a�
0
 , respectively. Then, u and v 

are adjacent by the following rule: for all s ≥ 1 , if and only if there exits an � 



11420	 W. Lin et al.

1 3

(1 ≤ � ≤ s) such that as−1 ⋯ a𝓁 = a�
s−1

⋯ a�
𝓁
 and a�−1 ≠ a�

�−1
, a�−2 = a�

�−2
 if � 

is even, as well as a2i+1a2i ∼ a�
2i+1

a�
2i

 for 0 ≤ i < ⌊(� − 1)∕2⌋.

The generalized exchanged crossed cube, denoted as GECQ(s, t, f ) with s, t ≥ 1 , 
comprises two distinct classes of crossed cubes, known as the Class-0 clusters and the 
Class-1 clusters, respectively. The former contains 2t CQs ’s and the latter encompasses 2s 
CQt’s. Class-0 clusters and Class-1 clusters are referred to as clusters of opposite classes 
of each other. The function f establishes a bijective relationship between the nodes of 
Class-0 clusters and Class-1 clusters. This bijection ensures that for any two nodes u and 
v within the same cluster, their corresponding values f(u) and f(v) reside in distinct clus-
ters, with the edge (u, f(u)) (resp. (v, f(v))) representing a cross edge. The purpose of the 
bijection f is to ensure the existence of perfect matching between two nodes in different 
clusters, although the specific arrangement of this matching is not specified.

For the sake of convenience, the notation GECQ(s, t, f ) is often abbreviated as 
GECQ(s, t) . Based on the definition of generalized exchanged X-cubes and the 
properties of generalized exchanged crossed cube, it can be inferred that the gen-
eralized exchanged crossed cube GECQ(s, t) belongs to the family of generalized 
exchanged X-cubes, where the X-cube specifically represents a crossed cube (see 
GECQ(1, 3) in Fig. 7). Then, the following theorems hold obviously.

Theorem 18  For any integers s ≥ 3 and 1 ≤ g ≤

⌊
s

2

⌋
 , �g(GECQ(s, t)) = (s − g + 1)2g.

Theorem  19  The lower and upper bounds of Rg-conditional diagnosability of 
GECQ(s, t) under the PMC model are as follows:

(1) For any integers g ≥ 1 and 22 g ≤ s ≤ t , tRg
(GECQ(s, t)) ≥ (2 s − 2

2 g + 3)22 g−2

+(s − g + 1)2g−1;

Fig. 7   An exchanged crossed 
cube GECQ(1, 3)
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(2) For any integers 4 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

3

⌋
 , tRg

(GECQ(s, t)) ≤ 2

2 g−1 + 2

2 g

(s + t + 1 − 2 g) − 1.

5.3 � The locally generalized exchanged twisted cube

The locally exchanged twisted cube LETQ(s, t) was proposed by Chang et al. [25], 
which is obtained by removing edges from a locally twisted cube LTQs+t+1 . The defi-
nition of the locally exchanged twisted cube is introduced as follows.

Definition 8  (See [25]). The (s,  t)-dimensional locally exchanged twisted cube 
LETQ(s, t) = (V ,E) with s, t ≥ 1 , where the node set V = {xt+s ⋯ xt+1xt ⋯ x1 
x0|xi ∈ {0, 1}, i ∈ [0, s + t]} and E is the edge set consisting of the following three 
types of disjoint sets E1 , E2 , and E3 . 

(1)	 E1 = {(x, y) ∈ V × V ∶ x⊕ y = 20},
(2)	 E2 = {(x, y) ∈ V × V ∶ x0 = y0 = 1, x1 = y1 = 0  a n d  x⊕ y = 2k  f o r 

k ∈ [3, t]} ∪ {(x, y) ∈ V × V ∶ x0 = y0 = x1 = y1 = 1 and x⊕ y = 2k + 2k−1 for 
k ∈ [3, t]} ∪ {(x, y) ∈ V × V ∶ x0 = y0 = 1 and x⊕ y ∈ {21, 22}},

(3)	 E3 = {(x, y) ∈ V × V ∶ x0 = y0 = xt+1 = yt+1 = 0  a n d  x⊕ y = 2k  f o r 
k ∈ [t + 3, t + s]} ∪ {(x, y) ∈ V × V ∶ x0 = y0 = 0, xt+1 = yt+1 = 1  a n d 
x⊕ y = 2k + 2k−1 for k ∈ [t + 3, t + s]} ∪ {(x, y) ∈ V × V ∶ x0 = y0 = 0 and 
x⊕ y ∈ {2t+1, 2t+2}}.

Fig. 8   A locally exchanged twisted cube LGETQ(1, 3)
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Let s, t ≥ 1 , there are two classes of locally twisted cubes in the locally gener-
alized exchanged twisted cube LGETQ(s, t, f ) : one class, referred to as the Class-0 
clusters, contains 2t LTQs’s; and the other, referred to as the Class-1 clusters, con-
tains 2s LTQt’s. They will be referred to as clusters of opposite classes of each 
other, same class otherwise. There exists a bijection function f between nodes 
of Class-0 clusters and those of Class-1 clusters. For two nodes u, v in the same 
cluster, f(u) and f(v) belong to two different ones, and the edge (u, f(u)) is a cross 
edge. The bijection f ensures the existence of perfect matching between nodes 
of Class-0 clusters and those in the Class-1 clusters, but the specifics of the per-
fect matching can be ignored. For convenient, GEH(s, t, f ) is denoted by GEH(s, t) . 
According to the definition of generalized exchanged X-cubes and the properties 
of locally generalized exchanged twisted cube, we can deduce that the locally 
generalized exchanged twisted cube LGETQ(s, t) is a member of generalized 
exchanged X-cubes, where the X-cube is a locally twisted cube (see LGETQ(1, 3) 
in Fig. 8). Then, the following theorems hold obviously.

Theorem 20  For any integers s ≥ 3 and 1 ≤ g ≤

⌊
s

2

⌋
 , �g(LGETQ(s, t)) = (s − g + 1)2g.

Theorem  21  The lower and upper bounds of Rg-conditional diagnosability of 
LGETQ(s, t) under the PMC model are as follows:

(1) For any integers g ≥ 1 and 22 g ≤ s ≤ t , tRg
(LGETQ(s, t)) ≥ (2s − 2

2g + 3)22g−2

+(s − g + 1)2g−1;

(2) For any integers 4 ≤ s ≤ t and 1 ≤ g ≤

⌊
s

3

⌋
 , tRg

(LGETQ(s, t)) ≤ 2

2g−1

+22g(s + t + 1 − 2g) − 1.

6 � Comparison results

In this section, we will demonstrate the superiority of our method by providing 
some comparative analysis with existing results. First, we focus on conducting com-
parisons and analyses pertaining to connectivity in Sect.  6.1. Following this, our 
emphasis will transition to conducting diagnosability analyses under the PMC and 
MM* models in Sect. 6.2.

6.1 � Connectivity

In the following, we compare our results to the traditional connectivity, g-good-
neighbor conditional connectivity, component connectivity, extra connectivity, and 
cyclic connectivity. We provide the definitions of these indicators as follows.
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•	 The traditional connectivity of a graph G, denoted by �(G) , is defined as the 
cardinality of a minimum node set F whose removal results in a disconnected or 
trivial graph.

•	 A node set F of a graph G is a g-good-neighbor node cut if and only if G − F 
is disconnected and each remaining component has minimum degree at least 
g. The g-good-neighbor conditional connectivity of G, denoted by 𝜅̂g(G) , is 
defined as the cardinality of a minimum g-good-neighbor node cut of G. Clearly, 
𝜅̂0(G) = 𝜅(G).

•	 A node set F of a graph G is a g-component node cut if and only if G − F is dis-
connected and has at least g components. The g-component connectivity of G, 
denoted by 𝜅̄g(G) , is defined as the cardinality of a minimum g-component node 
cut of G. Clearly, 𝜅̄2(G) = 𝜅(G).

•	 A node set F of a graph G is a g-extra node cut if and only if G − F is discon-
nected and every component of G − F has at least g nodes. The g-extra connec-
tivity of G, denoted by 𝜅̃g(G) , is defined as the cardinality of a minimum g-extra 
node cut of G. Obviously, 𝜅̃1(G) = 𝜅(G).

Fig. 9   The comparisons among traditional connectivity, g-good-neighbor conditional connectivity and Rg

-conditional connectivity in GEX(s, t)

Table 2   A brief summary of known results related to connectivity for GEH(s, t)

�g(GEH(s, t)) 𝜅̄g(GEH(s, t)) 𝜅̃g(GEH(s, t)) ��(GEH(s, t))

Reference Theorem 15 [38] [39] [38]
Value (s − g + 1)2g s(g − 1) −

(g−1)(g−2)

2

+ 1

g(2s−g+1)

2

+ 1
4s − 4
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•	 A node set F of a graph G is a cyclic node cut if and only if G − F is discon-
nected and at least two components in G − F contain a cycle. The cyclic connec-
tivity of G, denoted by ��(G) , is defined as the cardinality of a minimum cyclic 
node cut of G.

From Theorem  10, we have that the Rg-conditional connectivity of 
GEX(s, t) is �g = (s − g + 1)2g . It is clear that �(GEX(s, t)) = s + 1 and 
𝜅̂g(GEX(s, t)) = (s − g + 1)2g [22]. As shown in Fig.  9, we can observe that the 
traditional connectivity significantly lags behind both Rg-conditional connectiv-
ity and g-good-neighbor conditional connectivity. Notably, the fault tolerance 
values for Rg-conditional connectivity and g-good-neighbor conditional connec-
tivity remain identical. This uniformity stems from the sole distinction between 
the two being the constraints imposed on the faulty processor, a factor that does 
not impact the determination of connectivity.

As a subclass of GEX(s, t) , the generalized exchanged hypercube GEH(s, t) has 
been the subject of extensive research, with Table 2 presenting a detailed compi-
lation of the current results on the connectivity of GEH(s, t).

For GEH(s, t) , we compare our method with g-component connectivity, g-extra 
connectivity, and cyclic connectivity in Fig. 10. It is evident that each of these 
connectivity is monotonically increasing on s. Moreover, with a fixed value of s, 
the Rg-conditional connectivity asserts its dominance, exhibiting a significantly 
higher level than the other three connectivity. Figure 10b further illustrates that 
the parameter g exerts a more substantial influence on the Rg-conditional con-
nectivity, in contrast to its negligible impact on the cyclic connectivity.

Fig. 10   The comparisons among Rg-conditional connectivity, g-component connectivity, g-extra connec-
tivity and cyclic connectivity in GEH(s, t)
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6.2 � Diagnosability

In this subsection, we compare our results to the traditional diagnosability, g-good-
neighbor conditional diagnosability, component diagnosability, and extra diagnos-
ability under the PMC model or MM* model. Then, the definitions and results of 
these indicators are listed as follows.

•	 The traditional diagnosability of a graph G, denoted by t(G), is the maximum 
number of faulty processors that can be accurately identified.

•	 The g-good-neighbor conditional diagnosability of a graph G, denoted by t̂g(G) , 
is the maximum number of faulty processors that can be identified under the 
condition that every fault-free processor has at least g fault-free neighbors. In 
particular, t̂0(G) = t(G).

Table 3   A brief summary of known results related to diagnosability for GEX(s, t) and GEH(s, t)

t(GEX(s, t)) t̂g(GEX(s, t)) tRg
(GEX(s, t)) ≥

Reference [22] [22] Theorem 13
PMC model s + 1 (s − g + 2)2g − 1 (2s − 2

2g + 3)22g−2 + (s − g + 1)2g−1

MM* model s + 1 (s − g + 2)2g − 1 —

tRg
(GEH(s, t)) ≥ t̄g(GEH(s, t)) t̃g(GEH(s, t))

Reference Theorem 16 [40] [39]
PMC model (2s − 2

2g + 3)22g−2 + (s − g + 1)2g−1 gs −
g(g−1)

2

+ 1

g[2(s+1)−g+1]

2

MM* model — gs −
g(g−1)

2

+ 1

g[2(s+1)−g+1]

2

Fig. 11   The comparisons among traditional diagnosability, g-good-neighbor diagnosability and Rg-con-
ditional diagnosability in GEX(s, t) under the PMC model
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•	 The g-component diagnosability of a graph G, denoted by t̄g(G) , is the maximum 
number of faulty processors that can be identified under the condition that the 
number of components in G − F is at least g. Clearly, t̄2(G) = t(G).

•	 The g-extra diagnosability of a graph G, denoted by t̃g(G) , is the maximum num-
ber of faulty processors that can be identified under the condition that each com-
ponent in G − F has at least g nodes. Obviously, t̃1(G) = t(G).

By Lemma  4, the g-good-neighbor conditional diagnosability of GEX(s, t) is 
t̂g(GEX(s, t)) = (s − g + 2)2g − 1 under the PMC model with s ≥ 3 and 1 ≤ g ≤ s − 2 
(resp. under the MM* model with s ≥ 4 and 1 ≤ g ≤ s − 2 ). Thus, we can deduce 
that t(GEX(s, t)) = s + 1 under the PMC model and MM* model. Furthermore, 
the lower (resp. upper) bound of Rg-conditional diagnosability of GEX(s, t) is 
(2s − 22g + 3)22g−2 + (s − g + 1)2g−1 (resp. 22g−1 + 22g(s + t + 1 − 2g) − 1 ). It is evi-
dent that the upper bound of Rg-conditional diagnosability of GEX(s, t) is larger than 
its lower bound by (2s + 4t + 4 − 8g + 22g−1)22g−2 + (s − g + 1)2g−1 − 1 through 
calculation. Therefore, we compare the lower bound of Rg-conditional diagnos-
ability of GEX(s, t) with these other diagnosabilities. In Table 3, we show some out-
comes based on these indicators and our methods for GEX(s, t) and GEH(s, t) . We can 
observe that the traditional diagnosability (or g-good-neighbor conditional diagnos-
ability) remains consistent, whether under the PMC model or the MM* model.

As shown in Fig. 11a, we can observe that each diagnosability of these increases 
with the value of s when g is fixed. This is not difficult to understand because when s 
increases, the size of GEX(s, t) increases as well. Obviously, the Rg-conditional diag-
nosability of GEX(s, t) is greater than its g-good-neighbor conditional diagnosabil-
ity and traditional diagnosability under the PMC model. At the same time, Fig. 11b 
shows that if s is the same, as g increases, the value of the traditional diagnosability 

Fig. 12   The comparisons among Rg-conditional diagnosability, g-component diagnosability and g-extra 
diagnosability in GEH(s, t) under the PMC model
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remains unchanged, but the rate of increase of the Rg-conditional diagnosability 
of GEX(s, t) is much higher than that g-good-neighbor conditional diagnosability 
of GEX(s, t) under the PMC model. Thus, Rg-conditional diagnosability can better 
improve the reliability of the interconnection network.

Meanwhile, we delve into diagnosability results for GEH(s, t) under the PMC 
model and MM* model, as detailed in Table 3. It is evident that for GEH(s, t) , g-com-
ponent diagnosability ( resp. g-extra diagnosability) remains identical whether under 
the PMC model or the MM* model. Additionally, Fig.  12 reveals that, under the 
PMC model, the disparities between the values of g-component diagnosability and 
g-extra diagnosability are minimal. However, the reliability of GEH(s, t) under the Rg 
constraint consistently surpasses g-component diagnosability and g-extra diagnos-
ability. Interestingly, when s = 6 , the Rg-conditional diagnosability is lower than the 
corresponding g-component diagnosability and g-extra diagnosability, highlighting 
the efficacy of Rg-conditional diagnosability in large-scale networks.

7 � Conclusion

The concepts of Rg-conditional connectivity and diagnosability hold immense 
importance in enhancing the reliability of multiprocessor systems. These properties 
help ensure seamless communication and connectivity within the system, minimiz-
ing potential failures and enhancing performance. Generalized exchanged X-cube 
is a promising solution for improving the performance of multiprocessor systems. 
These structures not only leverage the benefits of traditional X-cubes but also offer a 
reduction in interconnection complexity. This reduction allows for simpler and more 
efficient communication between nodes, thereby increasing the overall speed and 
reliability of the system.

In this paper, we first determine the Rg-conditional connectivity of generalized 
exchanged X-cubes. Further, we study the lower and upper bounds of Rg-conditional 
diagnosability of generalized exchanged X-cubes under the PMC model. As applica-
tions, the lower and upper bounds of Rg-conditional diagnosability of generalized 
exchanged hypercubes, generalized exchanged crossed cubes, and locally exchanged 
twisted cubes are established directly under the PMC model. The research results 
indicate that compared to the other existing results in terms of connectivity or diag-
nosability, GEX(s, t) has showcased remarkable reliability under the Rg-conditional 
restriction. This significantly advances the exploration of network reliability, such 
as generalized exchanged hypercubes, generalized exchanged crossed cubes, and 
locally generalized exchanged twisted cubes.

Finally, we conclude this paper by proposing some directions worth exploring in 
future research: 

1.	 We will attempt to study the Rg-conditional diagnosability of GEX(s, t) under the 
MM* model.

2.	 We may extend the Rg-conditional restriction to edge faults, and study Rg-condi-
tional edge connectivity/diagnosability.
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3.	 We will try to apply Rg-conditional connectivity/diagnosability to real-world sys-
tems (e.g., data center networks and autonomous robots systems [41]) such that 
the systems can tolerate a range of node failures to keep operation effective.
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