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Abstract
Indoor positioning is crucial for everyday life, and received signal strength-based 
fingerprint localization is the most effective method. However, updating the finger-
print database is laborious, as changes in indoor layout would render the initial radio 
map outdated. To address this issue, we propose a precise radio map construction 
method by clustering and interpolating virtual fingerprints. The affinity propagation 
clustering algorithm and Voronoi diagram are used to group fingerprints with simi-
lar characteristics, mitigating the negative effects of multipath fading and shadowing 
caused by changes in the indoor layout. After generating synthetic reference points 
using the gradient extrapolation method to expand the convex hull, natural neighbor 
interpolation can construct accurate virtual fingerprints. Experimental results show 
that our proposed method outperformed both inverse distance weighting and Krig-
ing interpolation by up to 33% in localization accuracy across diverse environments. 
This approach enables efficient radio map generation with comparable localization 
accuracy to the original radio map without extensive site surveys.

Keywords  Natural neighbor interpolation · Affinity propagation clustering · Voronoi 
diagram · Radio map construction · Indoor positioning · Convex hull

1  Introduction

The rapid development of wireless communication technology in the 5G era has 
driven the demand for sophisticated location-based services (LBS). In recent years, 
indoor LBS has been widely employed for object tracking and indoor navigation in 
hospitals, airports, malls, and other indoor environments. According to Diffey [1], 
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many people spend a substantial amount of their time indoors, resulting in a need for 
precise and reliable indoor positioning systems.

Although the global positioning system (GPS) is extensively utilized for accu-
rate outdoor localization, its effectiveness diminishes in indoor environments due 
to signal attenuation and multipath effects [2]. The signal strength of satellite sig-
nals weakens as they penetrate building materials, resulting in unreliable reception 
within indoor environments. There have been a variety of technologies proposed for 
indoor positioning, including Bluetooth Low Energy (BLE) [3, 4], ultra-wideband 
(UWB) [5], magnetic field [6, 7], pedestrian dead reckoning (PDR) [8], radio-fre-
quency identification (RFID) [9], and inertial sensors [10]. Among these methods, 
the BLE, also known as Bluetooth Smart [11], is favored for indoor positioning due 
to its ease of deployment, low power consumption, low cost, broad coverage, and 
long battery life. As a result of these unique features, BLE beacons are commonly 
used to construct Bluetooth fingerprints, i.e., the received signal strength (RSS) 
readings at known locations, for precise indoor positioning.

An indoor positioning system (IPS) is a system that determines the physical 
location of an object (target) in an indoor environment. Fingerprinting technique 
is one of the commonly recommended methods for indoor positioning because of 
its simplicity, inexpensiveness, high precision, and reliability in indoor environ-
ments, compared to other existing techniques such as angle of arrival (AOA), time 
of arrival (TOA), and time difference of arrival (TDOA) [12]. AOA is disadvanta-
geous in indoor environments due to its susceptibility to multipath interference and 
signal reflections, affecting the accuracy of angle measurements. On the other hand, 
TOA and TDOA systems require synchronized hardware and have limitations in dis-
tance estimation accuracy [13]. In contrast, the fingerprinting method can provide an 
accurate estimate of the user’s location by finding the closest match of the reference 
points (RPs) to the real-time RSS values without knowing the position of the BLE 
beacon and the line of sight (LOS) propagation. This paper uses the term RP to refer 
to the BLE fingerprints collected at a specific location from BLE beacons.

Generally, the RSS-based fingerprinting technique consists of two phases: the 
offline phase (radio map construction) and the online phase (localization). The 
offline phase involves site surveys to collect the RSS at every RP from differ-
ent locations to build a fingerprint database or radio map. In the online phase, the 
real-time RSS of a user is measured using a mobile positioning device and com-
pared to the pre-stored fingerprints in the database via a positioning algorithm to 
estimate the user’s location. Despite its numerous benefits, this well-known finger-
printing approach has certain drawbacks. Creating radio maps for IPSs is a resource-
intensive process, requiring extensive manual surveys that are both laborious and 
time-consuming. Furthermore, these systems are highly susceptible to environmen-
tal dynamics. Obstacles within indoor environments often lead to multipath fading 
and signal shadowing, which introduce signal fluctuations. Such fluctuations can 
severely distort the matching process of the fingerprinting technique, resulting in 
significant performance degradation in localization systems.

Due to the indoor layout change, the initial fingerprint database might be out-
dated and deemed unusable. Bluetooth channels used to collect the BLE-based 
fingerprints may experience different multipath fading and shadowing effects 
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caused by obstacles or partitions after the layout change. To address these chal-
lenges, this paper proposes a radio map construction method that adapts to envi-
ronment layout modifications by efficiently selecting a limited number of RPs 
from specific locations, clustering them using the affinity propagation cluster-
ing (APC) algorithm based on their similar RSS characteristics and partition the 
regions using Voronoi diagram. The APC algorithm is employed in this work 
because it is an efficient and robust algorithm [14] that automatically determines 
the optimal number of clusters based on the fingerprint data, unlike other cluster-
ing techniques, such as K-means clustering, which requires the number of clusters 
to be pre-defined. Given the absence of prior knowledge regarding potential lay-
out changes, the APC algorithm is a well-suited technique for grouping finger-
prints based on RSS similarity.

Based on the clustering outcome, the Voronoi diagram is utilized to partition 
the area of interest into multiple zones that are adapted to the environment after the 
layout change. The Voronoi diagram can adapt to the environment after the layout 
change, ensuring that the regions accurately reflect the current state of the indoor 
space. This approach can improve the accuracy of fingerprint-based localization, as 
it helps to mitigate the negative effects of multipath fading and shadowing caused 
by changes in the indoor layout. Additionally, using the Voronoi diagram allows for 
more efficient localization by reducing the number of fingerprints that need to be 
compared in a given area, since the regions can be used to determine the most likely 
location of a mobile device based on the signal strength of nearby fingerprints.

After adapting the area of interest to the new layout, the irregularly distributed 
RPs require a suitable technique for reconstructing a surface. Natural neighbor inter-
polation (NNI) is the preferred method as it can generate a continuous surface from 
irregularly distributed sample points. NNI determines the value of a new point by 
considering the values of its neighboring points with the weights of the neighbors 
proportional to their areas of influence. The technique uses Delaunay triangulation 
to define the neighborhoods, enabling it to adapt to the varying density and shape 
of the region, resulting in a smooth and accurate surface. However, NNI faces the 
convex hull issue, which limits efficient fingerprint construction. To overcome this 
challenge, we use the gradient extrapolation method (GEM) to generate synthetic 
RPs for convex hull expansion, ensuring accurate virtual fingerprint construction.

In short, the proposed Clustering-based Voronoi Natural Neighbor Interpola-
tion (C-VoNNI) offers a robust and efficient solution to reconstruct a new radio 
map in the face of dynamic indoor environments subject to different layout 
change, significantly improving the localization performance. The main contribu-
tions of this paper are summarized as follows: 

1.	 We utilized the APC technique to group a small number of selected RPs with 
similar RSS characteristics. Subsequently, a Voronoi diagram is employed to 
partition the area of interest into multiple zones, which are adapted to the environ-
ment after the layout change. Virtual fingerprints are generated for each zone from 
their respective RPs, effectively reducing interpolation errors commonly induced 
by multipath fading and signal shadowing due to the dynamic layout change;
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2.	 To enhance the accuracy of indoor positioning, we constructed a precise radio 
map using the NNI technique based on chosen RPs. This method allows the 
virtual generation of fingerprints that accurately capture spatial signal strength 
variations, thereby enabling more precise localization of mobile devices within 
the indoor environment;

3.	 Addressing the limitation of NNI, which requires interpolated points (IPs) to be 
within the convex hull, we employed the GEM to generate synthetic RPs, referred 
to as ‘super points’ (SPs) in this paper. This approach effectively expands the 
convex hull, allowing for interpolation even when existing RPs fall outside of 
it, thus enabling the generation of higher-quality fingerprints and enhancing the 
overall quality of the radio map.

The performance of the proposed C-VoNNI is evaluated using two different envi-
ronmental testbeds and compared with two baseline experiments. First, we collect 
data from the environment without the partitions. This dataset is then utilized for 
training and testing the model. Subsequently, to simulate layout changes, additional 
data are collected from the environment by erecting multiple partitions that affect 
the collected RSSI values. The testbeds are then used to evaluate the performance 
of the newly interpolated radio map. The performance of the proposed technique is 
compared to the inverse distance weighting (IDW) and Kriging interpolators, and 
the evaluation is based on the root mean-squared error (RMSE) and the positioning 
error.

The remainder of this paper is organized as follows. In section 2, we review the 
related work corresponding to various approaches for radio map construction. Sec-
tion 3 describes the proposed method in detail, including the theory and algorithm 
on which it is based for radio map construction. The experimental setup, results, and 
discussion are shown in Sect. 4. Finally, the conclusion and direction of future work 
are presented in Sect. 5.

2 � Related work

Collecting RSS samples during offline site surveys is a major challenge as it requires 
a significant amount of effort, particularly for large areas [15]. At present, research-
ers focused on improving positioning accuracy and reducing human effort in fin-
gerprint collection, such as using crowdsourcing [16–18] to collect constant feed-
back from volunteer mobile users to update the radio map, interpolation techniques 
[19–21], and estimating RSS values using path loss model (PLM) [22, 23] to densify 
the initial incomplete radio map. The main concerns with crowdsourced data col-
lection are the reliability of the position information provided by the mobile user, as 
well as the users’ involvement and willingness to participate in the crowdsourcing-
based activity.

Radio map construction utilizing PLM is a popular method for reducing the 
database establishment effort. The log-distance PLM employs actual RP measure-
ments collected from offline site surveys to train the parameters of the PLM and 
subsequently estimate the RSS values at various locations. The downside of this 
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technique is that the propagation model cannot precisely predict the multipath fad-
ing and shadowing effects in complex indoor environments, which often leads to 
poor localization accuracy. In 2019, Bi et al. [22] presented a method for construct-
ing radio maps that integrates PLM, crowdsourcing, and interpolation techniques. 
The authors utilized the least square algorithm to estimate the optimal parameters 
of PLM and adaptively construct the propagation model. While this approach can 
achieve comparable positioning accuracy to a manually constructed radio map with 
a 1.2 m interval when the interval of sparse RPs was set to 9.6 m, it does not account 
for factors such as multipath interference and diffraction. These oversights result in 
less precise interpolated fingerprints, resulting in decreased localization accuracy.

To improve the accuracy of fingerprints generation, Moghtadaiee et  al. [24]
(2019) introduced a zone-based weighted ring-based (WRB) interpolation technique 
in which the RPs and IPs are assigned to rings depending on their spatial location, 
and the RSS of the IPs is estimated using the mean of the RPs inside the ring. Exper-
iments show that the proposed technique improves the localization accuracy by up 
to 40% while decreasing average error by 26% compared to conventional PLM. 
In 2020, Xia et al. [25] constructed an efficient radio map using an adaptive ordi-
nary Kriging Interpolation technique and APC algorithm. The experimental results 
showed that the proposed method has a lower mean square error than IDW interpo-
lation. Yong et al. [26] (2022) further this research by proposing a fingerprint clus-
tering method based on RSS difference and the Voronoi diagram, enhancing posi-
tioning accuracy by 14%. Most recently, Wang et al. [27] (2023) introduced a novel 
approach using the bidirectional encoder representation from transformers (BERT) 
model, commonly applied in natural language processing, to fill in missing signal 
data in radio maps. By redefining the BERT model’s structure and loss function to 
suit wireless signal patterns, this method has proven to expedite the radio map con-
struction process significantly and outperformed traditional methods such as linear 
interpolation, compressed sensing algorithms, and matrix completion. The BERT-
based approach has demonstrated remarkable performance, with an error probability 
within 2 m of approximately 94%, according to their experimental results.

Radio map interpolation is another popular approach for database enhancement. 
The most commonly used spatial interpolation techniques which predict attribute 
values at unsampled locations based on observations at nearby sampled locations 
are the Kriging [28, 29], IDW [30, 31], and natural neighbor [32, 33] interpolators. 
Although Kriging interpolation is known as the optimal linear unbiased predictor 
for delivering robust estimation with low error variance, it can only provide accu-
rate performance when the correlation structure of the data is known. Having only 
a small number of sample points can lead to unreliable results and a lack of robust-
ness. While IDW interpolation has the advantage of fast construction, its main draw-
backs are that it is sensitive to outlier measurements and there is no indication of 
error [34].

NNI is a robust and reliable smoothing technique that provides relatively small 
interpolation errors [35] based on Voronoi tessellation of a discrete set of spatial 
points. In the case of fingerprints collected at various locations, the RPs are likely 
to be irregularly spaced. NNI is well-suited for handling such irregularities [36] and 
adapting to the dataset. Additionally, NNI technique emphasizes using nearby data 
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points to estimate RSS values at unobserved locations, making it particularly rel-
evant for RSS fingerprints. This is because signal strength can be greatly impacted 
by local factors, such as walls and furniture. By focusing on neighboring data points, 
NNI effectively captures local variations in signal strength, providing a more accu-
rate representation of the underlying spatial patterns. As such, the NNI technique is 
a viable method to generate IPs at the desired locations for a region partitioned into 
multiple zones with different channel characteristics. However, the main disadvan-
tage of this technique is that the IPs must be in the convex hull of RPs for interpola-
tion. However, in many scenarios, the IPs would be scattered out of the convex hull, 
forbidding the interpolation using the natural neighbor approach. As a result, we 
proposed using GEM [37] to generate the synthetic RPs, i.e., SPs, to expand the con-
vex hull area. With this expansion, all the IPs are relocated into the convex hull so 
that the NNI technique can generate virtual fingerprints for radio map construction. 
To the best of our knowledge, this is the first work that combines GEM and NNI for 
interpolation to solve the layout change problem for updating the radio map.

As we all know, wireless signals are highly vulnerable in complex indoor envi-
ronments. Changes in building structure and obstructions can cause RSS variations, 
resulting in significant localization errors. To address this issue, Tao and Zhao [38] 
proposed an automatic fingerprint map construction technique based on the Digital 
navigation center IPS that is robust to environmental changes. The proposed method 
collects RSS at fixed points and updates the radio map using Gaussian process 
regression model and a fireworks algorithm. In addition, Lee et al. [39] presented 
an automatic self-reconstruction (ASR) model for radio maps that combines radio 
encoding-based deep fingerprint positioning (RE-DFP) and radio anomaly detect-
ing (RAD) networks, aiming to provide seamless Wi-Fi fingerprinting-based indoor 
positioning even in the presence of environmental changes. The authors utilized the 
RE-DFP network to improve positioning accuracy and data efficiency and a RAD 
network to analyze environmental dynamics according to access points. The experi-
mental results show an improvement in average positioning accuracy by 0.5 m using 
RE-DFP and detection accuracy of 81.1% for access point abnormality with the 
RAD network. To the best of our knowledge, no prior work attempts to construct the 
fingerprint database without employing automated update capabilities to solve the 
indoor environment layout change issue for IPS.

3 � Proposed method

Radio maps, which consist of RSS readings collected at known locations, are essen-
tial for fingerprinting localization systems. However, the dynamic nature of indoor 
environments poses a significant challenge to the efficacy of these systems. After 
changes to the layout, such as the addition or removal of obstacles, the Bluetooth 
channels used for collecting BLE RSS data can exhibit altered multipath fading and 
shadowing effects. These changes can drastically affect the accuracy of the locali-
zation due to the complexity of the environment and the potential obsolescence of 
the existing radio map. Hence, in this work, we propose an efficient method to con-
struct a precise radio map using a minimal number of RPs collected after the layout 



10673

1 3

C‑VoNNI: a precise fingerprint construction for indoor…

change by considering the indoor area’s interior architecture and environmental 
effects. The goal is to minimize the degradation in localization accuracy accompa-
nying such environmental changes. For the offline phase, 28 RPs are selected from 
the dataset to interpolate the remaining 90 fingerprints using the C-VoNNI method 
to build a complete radio map. For each RP, there are 30 RSS samples collected at 
multiple user orientations (typically four directions), with users facing north, south, 
east, and west to avoid noise effects and signal fluctuations. However, some RPs 
have extremely weak signal strength (with RSS values less than −100 dBm), or no 
RSS measurements were obtained during the data collection. To address this issue, 
we set the RSS values to −110 dBm [15].

The proposed radio map construction technique consists of four steps: APC 
method to group the collected RPs based on RSS similarity, region partition using 
Voronoi diagram, GEM to produce SPs to expand the area of the convex hull, and 
generate virtual fingerprints using NNI. Figure  1 depicts the overall processing 
flow of our proposed fingerprint interpolation technique for constructing virtual 

Fig. 1   An overall processing flow for the proposed fingerprint interpolation technique for radio map con-
struction and online positioning



10674	 Y. F. Yong et al.

1 3

fingerprints based on a limited number of RPs collected in the test area, and the 
algorithm is outlined in Algorithm 1.

The algorithm for creating new interpolated fingerprints consists of four major 
steps, which are listed below. 

1.	 An initial radio map is created by collecting fingerprints from the test area. The 
collected fingerprints, known as the RPs, are then clustered based on the RSS 
similarity using the APC algorithm.

2.	 Next, the Voronoi diagram is drawn based on the centroids of each cluster to 
partition the regions after the layout change. This process is repeated for all the 
AP.

3.	 Following that, the GEM is employed to generate the synthetic RPs to expand the 
convex hull area.

4.	 Finally, the NNI algorithm is used to generate the virtual fingerprints based on 
regions to construct a complete radio map.

For each RP, the fingerprint contains the RSS vector and its corresponding location 
coordinates in the form of

where L is an index of the RP in radio map, T is the total number of RPs, (x, y) is the 
coordinates of the RP, and RSSn,m is the mean of RSS samples collected at the mth 
RPs from the nth fixed BLE beacons. In this work, since there are 30 RSS readings 
collected at each RP, RSSn,m is computed as shown in Eq. (2), and this process is 
then repeated for all the BLE beacons.

3.1 � Affinity propagation clustering (APC) algorithm

The APC algorithm is one of the most widely used clustering techniques in finger-
printing localization systems based on a measure of similarity between data points. 
The algorithm relies on message passing [40] to compute the exemplars and group 
the data points with the same exemplar into a cluster. APC algorithm is utilized for 
clustering processing in this work because it does not require specifying the num-
ber of clusters beforehand, which is suited to our experiment scenario without prior 
information on the layout changes. All RPs are considered potential exemplars clus-
tered using APC algorithm based on RSS values.

APC algorithm required two pieces of information: First is the similarity between 
RPs, i.e., s(i, k), which indicates how well the RPk is suited to be the exemplar for 
RPi . Let s be a similarity function of two RPs, ji and jk . The similarity s(i, k) can 
be found by computing the negative squared distance of these two points, which is 
denoted by

(1)fRP(L) = [(x, y), RSSn,m], L = 1, 2, 3,… , T

(2)RSSn,m = Mean[RSSn,m(1), RSSn,m(2),… , RSSn,m(30)]
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The similarity values for pairs of RPs form a T × T  matrix: [s(i, k)]T×T , where T is 
the total number of RPs. This similarity matrix will then be fed into the APC algo-
rithm for clustering processing.

The second information that APC algorithm requires is the preference, i.e., 
s(k, k), which is the diagonal of the similarity that controls the number of clus-
ters. Typically, the preference value is set to the median similarity of all pairs of 
RPs.

APC algorithm recursively transfers two types of messages between the RPs, 
named responsibility r(i, k) and availability a(i, k), until a good set of exemplars 
and clusters emerges. At the beginning of the procedure, both responsibility and 
availability are initially set to zero. The algorithm starts by distributing respon-
sibility messages to gather evidence on how well-suited RPk is to serve as the 
exemplar for RP

i
 compared to other candidate exemplars of RPi . The responsibil-

ity is updated by

The availability, a(i, k), which indicates how appropriate it is for RPi to choose RPk 
as its exemplar, is then updated using Eq. (5).

The self-availability a(k, k) is updated differently as

To prevent numerical oscillations during the message updating procedure, we use 
the default damping value, � of 0.5, as suggested by Fred and Dueck [40], in all our 
experiments. The responsibility and availability messages are updated as follows.

The responsibility and availability can be combined at any stage during the clus-
tering process to identify the exemplars. For RPi , the value of k that maximizes 
rnew(i, k) + anew(i, k) either identifies RPi as an exemplar itself if k ≠ i , or identifies 
RPk as an exemplar of RPi if, according to Eq. (9).

(3)s(i, k) = −||ji − jk||2

(4)r(i, k) = s(i, k) −max
k�≠k

{a(i, k�) + s(i, k�)}

(5)a(i, k) = min

{
0, r(k, k) +

∑

i�∉{i,k}

max{0, r(i�, k)}

}
for i ≠ k

(6)a(k, k) =
∑

i�≠k

max{0, r(i�, k)}

(7)rnew(i, k) = � ⋅ rold + (1 − �) ⋅ rnew(i, k)

(8)anew(i, k) = � ⋅ aold + (1 − �) ⋅ anew(i, k)

(9)max
k

{rnew(i, k) + anew(i, k)}
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After identifying a collection of exemplars, clusters can be formed by grouping the 
RP with the same exemplar. The algorithm could terminate after a certain number of 
iterations or when the message changes fall below a threshold.
Algorithm 1   Interpolated radio map algorithm

3.2 � Voronoi diagram for clusters partitioning

Voronoi diagrams, also known as Dirichlet tessellation or Thiessen polygons, are 
useful for space partitioning [41]. Given a set of points { P1 , P2,..., Pn } in a plane, 
where these points are called Voronoi sites, the Voronoi diagram divides the plane 
into A Voronoi regions. Each site lies in precisely one region called a Voronoi cell. 
The Voronoi diagram of two sites, P1 and P2 , is constructed by drawing the perpen-
dicular bisector of the line segment. This line segment will form the boundaries of 
Voronoi cells called the Voronoi edges. The Delaunay triangulation is the dual graph 
of the Voronoi diagram, in which two Voronoi sites are connected and bounded by a 
common Voronoi edge.

The procedure for constructing a Voronoi diagram for each AP is as follows: 
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1.	 Let centroids of i cluster, C = {c1, c2,… , ci} as the Voronoi sites. Using Eq. (10), 
compute the location of a centroid in cluster j, cj , which consists of L RPs with 
coordinates {(x1, y1), (x2, y2),… , (xL, yL)} by finding the mean vector of coordi-
nates of all RPs within the same cluster. 

2.	 For c1, c2 ∈ C , draw the perpendicular bisector of two Voronoi sites, c1 and c2 , 
following the steps below: 

	 (i)	 Find the midpoint of two sites c1 = (x1, y1) and c2 = (x2, y2) using 

	 (ii)	 Find the negative reciprocal of the gradient of the two sites c1 and c2 , mc1c2
 

given by 

	 iii)	 Find y-intercept, b of the perpendicular bisector using one of the sites, 
c1(x1, y1) or c2(x2, y2) , denoted by 

	 (iv)	 Form an equation of the perpendicular bisector in the form of 

Due to page limit, we only present the results for BLE10 from layout 1. Fig-
ure 2 depicts the clustering results for BLE10 using APC algorithm. As shown 
in Fig. 2, the RPs are grouped into four clusters based on RSS similarity, as indi-
cated by different colors and shapes. The clustering is performed by first finding 
the centroid of each cluster, which is represented by the star symbol based on 
the shapes’ color as shown in Fig. 3, and then partitioning the regions by draw-
ing perpendicular bisectors to construct the Voronoi diagrams. From Fig. 3, the 

(10)cj = (xj, yj) = mean vector [(x1, y1), (x2, y2),… , (xL, yL)]

(
x1 + x2

2
,
y1 + y2

2

)

mc1c2
= −

(
y2 − y1

x2 − x1

)−1

b = y2 − (x2)

[

−
(

y2 − y1
x2 − x1

)−1
]

or b = y1 − (x1)

[

−
(

y2 − y1
x2 − x1

)−1
]

y = mc1c2
⋅ x + b

Fig. 2   Clustering results for BLE10 using APC algorithm
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clustering techniques that produced four Voronoi cells are identical to the actual 
case in which the testbed is divided by three partition walls.

3.3 � Gradient extrapolation method (GEM)

The main disadvantage of the NNI technique is that it cannot generate virtual fin-
gerprints outside of the convex hull because the algorithm requires the IPs to be 
within the convex hull. To overcome this issue, we proposed employing GEM [37] 
to expand the surface area outside the convex hull, allowing NNI to generate virtual 
fingerprints for developing a complete radio map.

GEM is used to estimate the extrapolated RSS of an SP outside the convex hull. 
The fingerprint of an RP, fRP , is recorded in the form shown in Eq. (1). Let the fin-
gerprint of an SP, fSP = [(xSP, ySP), RSSSP] , and the fingerprint of a collected RP, 
fRP = [(xRP, yRP), RSSRP] . The gradient at an RP on the surface edge is defined as 
▽RSSSP = (�x,�y) , where �x and �y are gradient component values in the x and y 
axes, respectively.

The procedure for estimating the RSS of an SP, RSSSP is as follows: 

1.	 Using x- and y-component gradients, calculate the approximated RSS value of 
SP based on the nearest RP. 

2.	 Compute the RSS value of the extrapolated SP by averaging the x- and y-compo-
nent RSS estimates from Eq. (11), which is denoted by 

(11)
{

RSSx = �x(xSP − xRP) + RSSRP
RSSy = �y(ySP − yRP) + RSSRP

(12)RSSSP =
1

2
{RSSx + RSSy}

Fig. 3   Voronoi diagrams for BLE10
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3.4 � Natural neighbor interpolation (NNI)

The NNI technique was first introduced by Sibson [42]. It is a spatial interpolation 
technique based on Voronoi tessellation of a set of RSS sample points, and it can 
provide smoother approximation compared to simpler methods [43, 44]. The NNI 
estimates the RSS value of an IP, RSSIP by computing the weighted average of its B 
natural neighbors using Eq. (13).

where RSSIP is the estimated RSS of the IP and RSSi is the RSS of the IP’s natural 
neighbors.

The weight of each neighboring point of the IP, wi , is calculated as follows:

where A(xi) denotes the overlapping area between Voronoi cell V1 and the new Voro-
noi cell, VIP , and A(VIP) represents the total area of the new Voronoi cell, VIP , which 
are highlighted in blue and yellow in Fig. 4, respectively.

The main challenge of NNI is that it requires the interpolated points to be in the 
convex hull of measurement locations, as only the natural neighbors of the IP are 
considered in the interpolation process. As such, the GEM technique is proposed to 
generate the extrapolated points to broaden the convex hull coverage for each region 
before adopting the NNI technique to generate the virtual fingerprints to construct a 
complete radio map.

(13)RSSIP =

B∑

i=1

wiRSSi

(14)wi =
A(xi)

A(VIP)

Fig. 4   Natural neighbor interpolation
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4 � Experimental setup, results and discussion

4.1 � Experimental setup

This work simulated a complex indoor environment by including three partition 
walls of size 1.5 m × 1.8 m with a thickness of 0.0127 m in the testbed [15]. 
Figure 5 depicts the two experiment testbed layouts, each, with 144 data points 
distributed across the testbed and split into the test, reference, and interpolation 
points. The testbed is a rectangle area with dimensions 51.5 m × 2.7 m, and 14 
SENSORO SmartBeacon-4AA Pro BLE beacons are pre-installed on the corridor 
wall at 1.7 m from the ground to reduce pedestrian disruption. The position of 
the AP is chosen in such a way as to maximize the signal coverage, ensuring that 
BLE signals cover the corridor entirely.

As shown in Fig. 5, our work includes 28 RPs in the training dataset, 26 test 
points (TPs) in the testing dataset, and 90 IPs. The training and testing datasets 
consist of 17 attributes, including the RSS measurements collected from 14 BLE 
beacons, location labels, and corresponding coordinates. To evaluate the position-
ing performance of the proposed technique, the TPs are chosen to be evenly dis-
tributed around the testbed area. First, we use APC algorithm to cluster the RPs 
based on their similarity. The Voronoi diagram is then used to draw the cluster 
boundaries, and SPs are generated using a GEM method to expand each cluster’s 
convex hull. Finally, the virtual fingerprints based on RPs in each cluster are gen-
erated using the NNI algorithm. These interpolated fingerprints are then added to 
the training dataset, fed into the KNN algorithm, and evaluated using test data.

Fig. 5   The layouts of the experimental testbed, where the solid blue, red, and black circle symbols refer 
to the RP, TP, and IP, respectively
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4.2 � Evaluation metrics

The root mean-squared error (RMSE) measures the accuracy of the estimated 
data obtained by the KNN regression. It reflects the closeness of the estimated 
and actual values. RMSE is calculated by taking the square root of the average 
square difference between the actual and corresponding estimated points over the 
sample, as given by

where N denotes the total number of samples, (xM , yM) is the Mth coordinate of 
the actual point, and ( ̂xM , ̂yM) is the Mth coordinate of the corresponding estimated 
point.

4.3 � Results and discussion

4.3.1 � Number of training data for radio map construction

In this paper, the impact of the number of RPs on the localization performance by 
calculating the RMSE for different sets of RPs is investigated. The experiments were 
conducted 3000 times for each set of RPs to ensure the reliability of the results. 
Among the different sets tested, which included 20, 24, 28, 32, and 36 RPs, as shown 
in Fig. 6, the set of 28 RPs was consistently found to yield the most accurate virtual 
fingerprints with the lowest RMSE. The results suggest that employing more RPs 
for interpolation does not necessarily lead to optimal quality. One possible reason 

(15)RMSE =

∑N

M=1

√
(x

M
− ̂x

M
)2 + (y

M
− ̂y

M
)2

N

Fig. 6   RMSE of interpolated radio map using a different number of RPs
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for this observation is the presence of erroneous RPs caused by multipath fading and 
signal shadowing during data collection. Moreover, as the number of RPs increases, 
the likelihood of interference between neighboring RPs rises, introducing additional 
noise and variability into the measurements, thereby affecting interpolation accu-
racy and resulting in a higher RMSE. Additionally, the density of RPs per square 
area may contribute to these findings, as uneven distribution and sparse placement 
of RPs across the entire area can lead to interpolation errors in regions with fewer 
RPs. Such uneven coverage hinders the accurate estimation of signal characteristics 
in those areas. Based on these results, 28 RPs are used for radio map construction in 
this work.

4.3.2 � Impact of number of access points on localization accuracy

To the impact of AP density on localization accuracy, simulations were conducted 
across two distinct layouts, as illustrated in Fig. 5. The simulations involved system-
atically varying the number of APs within the testbed, with configurations includ-
ing 4, 6, 8, 10, 12, and the complete set of 14 APs. This method facilitated a thor-
ough analysis of the performance trade-offs associated with varying the number of 
deployed APs.

Figure 7 presents the relationship between the number of APs and localization 
performance. The results reveal that Layout 1 and Layout 2 consistently demon-
strated a direct correlation between the number of APs and the RMSE of the locali-
zation system. An increase in the number of APs within the testbed corresponded 
with a reduction in RMSE, signifying an improvement in localization accuracy. The 

Fig. 7   Localization Performance in Layout 1 and Layout 2 Using Different Numbers of APs
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results indicate that employing 14 APs yields the lowest localization errors because 
a higher number of APs provides a denser and more informative signal landscape, 
which enhances the system’s ability to estimate positions accurately. Employing 
more APs ensures comprehensive signal coverage, reducing the likelihood of signal 
dead zones and improving the triangulation process. Therefore, this work utilizes 14 
APs to ensure optimal localization precision.

4.3.3 � The efficiency of C‑VoNNI

To evaluate the effectiveness of the C-VoNNI, baseline experiments were conducted 
under two distinct layout conditions within our experimental testbed, as depicted in 
Fig. 5. These conditions, with and without partition walls, serve as benchmarks to 
assess the performance of our proposed interpolation method in constructing the 
radio map.

The localization accuracy of the baseline experiments was evaluated under two 
defined scenarios: 

1.	 Scenario 1 (best-case) In this scenario, the environment includes three partition 
walls, as illustrated in Fig. 5. RPs were collected from the complex indoor envi-
ronment to both train and test the system. This scenario is considered ’best-case’ 
as it reflects a stable environment where the RPs are consistent with the test 
conditions.

2.	 Scenario 2 (worst-case) Contrasting the first, this scenario involves training the 
system with RPs from an indoor environment without partitions. The performance 
is then evaluated against data collected from an environment with partitions. This 
scenario is considered ’worst-case’ due to the discrepancy between training and 
testing conditions, highlighting the challenges of dynamic environments where 
layout changes can significantly impact signal propagation.

The RMSEs obtained for these two baseline experiments are shown in Table  1, 
which highlights the significant impact of layout changes on localization accuracy, 
with positioning accuracy degrading by up to 250%. Such changes in real-world sce-
narios, such as adding or removing partition walls and furniture, can lead to signal 
attenuation and shadowing effects. These, in turn, can cause substantial localization 
errors if the fingerprints used for localization become outdated.

Table 1   Localization accuracy 
of baseline experiments

Layout Experiment RMSE

1 Scenario 1 (best-case) 1.98
1 Scenario 2 (worst-case) 6.92
2 Scenario 1 (best-case) 2.33
2 Scenario 2 (worst-case) 6.20
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Fig. 8   Comparison of localization errors computed by C-VoNNI to two baseline experiments



10685

1 3

C‑VoNNI: a precise fingerprint construction for indoor…

Figure  8a, b illustrates the cumulative distribution function (CDF) for Layouts 
1 and 2, respectively, comparing the performance of the proposed C-VoNNI inter-
polation method against the baseline experiments. The CDFs provide a clear visual 
representation of the distribution of localization errors for all test cases. In these 
figures, the blue dotted line indicates the CDF for the best-case scenario, while the 
black dotted line represents the worst-case scenario. The 90th percentile error dis-
tance for the proposed C-VoNNI method and the best-case and worst-case scenarios 
are 4.28 m, 4.30 m, and 15.10 m, respectively. These results demonstrate that the 
C-VoNNI method closely approximates the best-case scenario’s performance, sug-
gesting that the interpolated RSS samples generated by our method are of a quality 
comparable to those collected through extensive site surveys. This outcome dem-
onstrates the robustness of the C-VoNNI method in maintaining high localization 
accuracy despite environmental changes.

The APC algorithm plays a crucial role in achieving this robustness. By cluster-
ing RPs based on similar RSS characteristics, the APC algorithm effectively reduces 
the impact of signal shadowing and multipath fading, which are exacerbated by lay-
out changes. The subsequent application of the NNI technique leverages these accu-
rately clustered RPs to generate virtual fingerprints that are highly representative 
of the actual signal distribution in the environment. This approach ensures that the 
constructed radio map remains precise and adaptable, reducing the need for frequent 
and labor-intensive site surveys.

4.3.4 � Localization performance of C‑VoNNI

In this work, the APC algorithm is utilized to cluster the RPs in the testbed before 
generating IPs with GEM and NNI techniques. The KNN algorithm was then used to 
calculate the RMSE errors for these IPs, with parameter K set to 5 for all our experi-
ments. To provide a comprehensive evaluation of the proposed C-VoNNI method, 
our comparison includes both conventional IDW and the more complex Kriging 
interpolations. IDW is a deterministic method for multivariate interpolation with a 
known scattered set of points [45]. Its simplicity is advantageous for quick predic-
tions, and it is often used as a benchmark in spatial analysis due to its straightfor-
ward implementation and the intuitive nature of its assumptions. By comparing our 
results with IDW, we establish a baseline for performance against a commonly used 
interpolation method. On the other hand, Kriging interpolation is a well-established 
technique in spatial analysis known for its ability to capture spatial variability and 
provide accurate predictions based on spatial correlation. Work [46] demonstrated 
the relevance of Kriging interpolation in fingerprint update techniques, showcasing 
its efficacy in adapting algorithms to environmental changes and enhancing localiza-
tion performance.

Figure 9 presents heatmaps before and after applying C-VoNNI, IDW, and Krig-
ing interpolation, offering a visual comparison of signal strength distribution across 
two different layouts: AP2 for layout 1 and AP25 for layout 2. The figure reveals 
that signal strength exhibits fluctuations between nearby RPs prior to interpolation 
due to the sparsity of data points. Post-interpolation, however, the heatmaps show 
a smoother transition across areas of varying signal strengths, indicating a more 
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uniform signal distribution. Additionally, the regions of extreme signal strength 
appear expanded or shifted, illustrating how the interpolation algorithms estimate 
values for the spaces between RPs. A comparative analysis of the post-interpolation 
results, as depicted in parts (ii), (iii), and (iv) of Fig. 9a, b, reveals that C-VoNNI 
interpolation produces heatmaps with a smoother signal strength transition com-
pared to IDW and Kriging.

Figure 10 illustrates the RMSE comparison among our proposed technique, IDW, 
and Kriging interpolation, while Fig. 11 displays the CDF for all three approaches. 
The results indicate that our proposed method outperforms radio map construction 
using both IDW and Kriging interpolation by up to 33% in terms of RMSE. This 

Fig. 9   Heatmaps illustrating signal strength for (i) before interpolation, (ii) after C-VoNNI interpolation, 
(iii) after IDW interpolation, and (iv) after Kriging interpolation
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Fig. 10   Comparison of RMSE with the number of interpolated data generated based on 28 RPs using 
C-VoNNI (red line), Kriging interpolation [47, 48] (black line), and IDW [49](blue line) (color figure 
online)
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Fig. 11   Cumulative distribution function of localization errors computed using C-VoNNI (red line), 
Kriging interpolation [47, 48] (black line), and IDW [49] (blue line) (color figure online)
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significant improvement was observed when utilizing 72 or more IPs in Layout 1. 
The superior performance can be attributed to the limitations of Kriging interpola-
tion, particularly when using a limited number of RPs in the fingerprint interpola-
tion process, leading to poor Kriging interpolation localization accuracy. Moreover, 
the performance improvement for C-VoNNI exhibits a clear trend as the number of 
IPs increases. This is because the coverage and density of the IPs become higher, 
allowing for a more precise estimation of the signal characteristics and spatial varia-
tions in the environment. This additional information leads to a better representation 
of the radio map, reducing the discrepancy between the estimated and actual posi-
tions and ultimately resulting in a lower RMSE. Grouping the RPs closely related 
to each other is critical in radio map construction to improve localization accuracy. 
According to Fig. 10, the RMSE of the interpolated radio map obtained using our 
proposed method decreases as the number of IPs increases. These results show 
that our C-VoNNI has superior indoor positioning capability in complex indoor 
environments. 

4.4 � Computational complexity and scalability of the C‑VoNNI

The computational complexity and scalability of the proposed C-VoNNI interpola-
tion method are critical factors determining its practicality for deployment in large-
scale real-world applications. The C-VoNNI method integrates the APC algorithm, 
Voronoi diagrams, and NNI to construct an accurate radio map for indoor localiza-
tion. Table 2 compares the computational complexities of the proposed method with 
IDW and Kriging interpolation techniques.

The computational complexity of the C-VoNNI method is determined by the 
complexities of the APC, Voronoi diagram construction, and NNI components. The 
APC has a complexity of O(g2 ⋅ t) , where g is the number of collected RPs to be 
clustered, and t is the number of iterations the algorithm undergoes before converg-
ing to a stable set of clusters [50]. The construction of the Voronoi diagram, which 
also uses these RPs, has a computational complexity of O(g log g) [51]. Mean-
while, the complexity of NNI can vary from O(d) to O(d log d) , depending on the 
data structures and search algorithms employed, where d refers to the number of 
data points involved in the interpolation process [52]. Since these components are 
applied sequentially, the overall complexity of the C-VoNNI method is dominated 
by the most computationally intensive step, typically the APC, due to its quadratic 
term.

Table 2   Computational 
complexity comparison

Interpolation method Complexity

C-VoNNI O(g2 ⋅ t) + O(g ⋅ log g) + O(d ⋅ log d)

Kriging O(d3)

IDW O(d ⋅ z)
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Kriging interpolation has a computational complexity of O(d3) because it 
involves solving a system of linear equations, which typically requires matrix inver-
sions [53]. This cubic complexity arises from the matrix operations necessary to 
solve the Kriging equations and can become computationally intensive as the dataset 
size increases. On the other hand, IDW calculates the interpolated value at a predic-
tion point based on the weighted average of values from nearby known points. IDW 
has a complexity of O(d ⋅ z) , where z is the number of prediction points [54]. While 
linear with respect to z , IDW still requires computations involving all known points 
for each prediction.

The proposed C-VoNNI method offers a balanced trade-off between accuracy and 
computational efficiency, avoiding the cubic complexity of Kriging and reducing the 
computational load compared to IDW. However, the scalability to larger environ-
ments remains a challenge due to the quadratic complexity of the APC component. 
To address these scalability concerns, future work could explore optimization tech-
niques for APC, such as reducing the number of iterations t through better initializa-
tion strategies. Furthermore, leveraging parallel processing and distributed comput-
ing could significantly decrease the time required for computations, thus enhancing 
the method’s scalability. These improvements could enable the C-VoNNI method 
to maintain high localization accuracy without prohibitive computational costs in 
large-scale applications.

5 � Conclusion and future work

As the indoor layout changes, the initial fingerprint database may become outdated 
due to various environmental factors, including multipath fading and shadowing. 
These factors introduce signal fluctuations and distortion-matching issues, leading 
to significant performance degradation in localization systems. Hence, this paper 
proposes a new fingerprint method based on clustering, extrapolation, and interpola-
tion techniques for constructing a precise radio map that can adapt to environment 
layout changes while reducing the human effort, cost, and time required for offline 
site surveys. By clustering RSS samples with similar characteristics, more accurate 
virtual fingerprints can be generated because RPs in the same region typically expe-
rience similar multipath fading and signal shadowing effects. GEM is proposed to 
estimate the synthetic RP to expand the area of the convex hull in order to generate 
IPs using the NNI technique. By reducing the collection effort by 76% of the ini-
tial fingerprints, the C-VoNNI outperforms the Kriging interpolation and improves 
the localization accuracy by up to 33%. However, the limitations of the proposed 
method become apparent in highly dynamic environments where the initial cluster-
ing may not fully capture the rapid signal variability, leading to potential inaccura-
cies in the radio map. Furthermore, the computational complexity, particularly of 
the APC algorithm, may pose scalability challenges for larger datasets, impacting 
the method’s practicality for real-time applications.

In future, we plan to extend our work to include a broader range of testbeds with 
various layout changes and environmental dynamics. This expansion will provide 



10691

1 3

C‑VoNNI: a precise fingerprint construction for indoor…

a more comprehensive understanding of our proposed method’s performance and 
robustness across different scenarios. Additionally, we will refine our radio map 
construction process by eliminating heterogeneous RPs during interpolation, aiming 
to enhance localization precision further. We are also considering the integration of 
Wi-Fi with BLE technologies to improve the accuracy of IPS.
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