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Abstract
In order to meet ever-increasing demands for reliable parallel and distributed sys-
tems, it is crucial to evaluate the reliability and fault tolerance of their underlying 
interconnection networks. Such an interconnection network is usually modeled as 
a connected graph G, where the vertex set and edge set represent the processors 
and links between processors in the network, respectively. In this paper, we com-
bine Fàbrega’s idea about h-extra edge-connectivity and Sampathkumar’s concept 
about r-component edge-connectivity to introduce a more refined parameter for 
characterizing fault tolerance of interconnection networks, named as h-extra r-com-
ponent edge-connectivity. Given a connected graph G, for two integers h ≥ 1 and 
r ≥ 2 , the h-extra r-component edge-connectivity of G, denoted as c�h

r
(G) , is the 

minimum cardinality among all edge subsets F ⊂ E(G) , if any, such that G − F has 
at least r components, and each component has at least h vertices. As an enhance-
ment on hypercube, the n-dimensional augmented cube AQ

n
 , introduced by Chou-

dum and Sunitha in 2002, reserves several excellent topological properties. As 
|V(AQ

n
)| = 2n , the h-extra three-component edge-connectivity of AQ

n
 is well-

defined for each integer h with 1 ≤ h ≤ ⌊2n∕3⌋ . In this paper, a generalization of 
Xu et al.’s conclusion is obtained that finds an upper bound for the exact value of 
general h-extra three-component edge-connectivity of AQ

n
 and shows that it is 

sharp for 1 ≤ h ≤ 2⌊
n

2
⌋−1 and h = 2c where 1 ≤ c ≤ n − 2 . Let h =

∑s

i=0
2ti be a 

positive integer with t0 > t1 > ⋯ > t
s
≥ 0 . Let � = 0 if h is even and � = 1 if h is 

odd. Specifically, c�h
3
(AQ

n
) = (4n − 4)h − 2

∑s

i=0
(2t

i
− 1)2ti − 2

∑s

i=0
4i ⋅ 2ti − � for 

n ≥ 4, h ≤ 2⌊
n

2
⌋−1 , and c�2c

3
(AQ

n
) = (2n − 2c − 1)2c+1 for n ≥ 4 and 1 ≤ c ≤ n − 2.
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1 Introduction

An interconnection network is a network composed of switching elements in a cer-
tain topology and control mode to achieve interconnection between multiple pro-
cessors or functional components within a computer system. As the brain of inter-
connection networks, data centers have developed vigorously in recent years. With 
the increase in the number of processors in the interconnection networks, there will 
exist several almost inevitable errors that may result in communication interruption 
between some processors in the interconnection networks, and then lead to the com-
munication delay of the whole network or even network paralysis. As a faulty pro-
cessor will lose communication with other processors, these faulty links that discon-
nect the interconnection network are modeled as an edge-cut in the corresponding 
graph. Given a connected graph G, an edge subset F ⊂ E(G) is called an edge-cut 
of G if its deletion disconnects G. We call the numbers of vertices and edges in G 
as the order and size of G, respectively. The classical Menger’s edge-connectivity 
is the minimum cardinality of all edge-cuts of G, denoted as �(G) [17]. In other 
words, edge-connectivity is the minimum number of faulty links that disconnect the 
network.

In a specific interconnection network, the processors and links that do not fail are 
called fault-free vertices and fault-free edges of the corresponding graph, respec-
tively, which are collectively referred to as the fault-free set. Due to the different 
demands of fault-free sets in distinct connected graph G such as the number of 
components and the order of each component, we need to evaluate the reliability 
and fault tolerance of large-scale parallel and distributed systems using multiple 
parameters. Since the classical edge-connectivity does not exert any restriction on 
its surviving components, Harary proposed conditional edge-connectivity as a gen-
eralization of the classical edge-connectivity in 1983, denoted as �(G,P) , where 
P is the given properties of fault-free set in graph G [12]. There are two typical 
examples of conditional edge-connectivity, one is h-extra edge-connectivity and the 
other is r-component  edge-connectivity. An edge subset of G, if any, is called an 
h-extra edge-cut if its deletion disconnects G, and each remaining component has at 
least h vertices. In 1996, Fàbrega and Fiol introduced h-extra edge-connectivity of 
the connected graph G which denoted as �h(G) , is the minimum cardinality of any 
h-extra edge-cut of G [8]. Another well-known conditional edge-connectivity was 
introduced by Sampathkumar [19] in 1984 called r-component edge-connectivity. 
For a given positive integer r, an r-component  edge-cut of a connected graph G, 
if any, is defined as an edge subset F of graph G, whose deletion yields a discon-
nected graph with at least r components. The r-component edge-connectivity of a 
connected graph G, denoted by c�r(G) , is the minimum cardinality taken over all 
r-component edge-cuts of G. Some researches have obtained the r-component edge-
connectivity of many special graphs with small r [4, 5]. In addition, let F be a mini-
mum r-component edge-cut of connected graph G, then the extremal structure of 
G − F is usually composed of r − 1 isolated vertices and a giant component [11]. For 
some other researches on a variety of networks about conditional edge-connectivity, 
see [3, 7, 9, 10, 20, 21, 25, 27–30].
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For an interconnection network with some faulty edges, in order to restrict the 
number of connected components and ensure the scale of normal working processors 
in each component, more recently, Li et al. [15] gave the definition of h-extra r-com-
ponent connectivity by combining h-extra connectivity and r-component connectiv-
ity in 2021. In details, the h-extra r-component connectivity of connected graph G 
is the minimum cardinality of any vertex subset of G, whose removal disconnects 
G and then results in at least r components, and each component contains at least h 
vertices, denoted as c�h

r
(G) [15]. In addition, they determined the h-extra r-compo-

nent connectivity of n-dimensional hypercube Qn that c�2
r
(Qn) = 2(r − 1)(n − r + 1) 

for r ∈ {2, 3, 4}.
Motivated by the ideas of Fàbrega and Sampathkumar, as a generalization of 

[15], we consider the edge version of h-extra r-component connectivity to char-
acterize the fault tolerance of interconnection networks and give the definition of 
h-extra r-component edge-connectivity as follows:

Definition 1 Given a connected graph G = (V ,E) , for two integers h ≥ 1 and r ≥ 2 , 
a subset F ⊂ E is called an h-extra r-component edge-cut of G, if any, if there are at 
least r components in G − F , and each component has at least h vertices. The h-extra 
r-component edge-connectivity of G, denoted as c�h

r
(G) , is the minimum cardinality 

of any h-extra r-component edge-cut of G.

Lemma 1 If F is a minimum h-extra r-component edge-cut of G, then G − F has 
exactly r components.

Proof Suppose to the contrary that G − F has exactly p components as G1,G2,… ,Gp 
with p > r and |V(Gi)| ≥ h , 1 ≤ i ≤ p . Since G is connected, then there exists an 
edge xy that x ∈ V(Gi) and y ∈ V(Gj) for some i, j ∈ {1, 2,… , p} and i ≠ j . Let 
F1 = F⧵{xy} . Note that G[V(Gi) ∪ V(Gj)] is connected with at least 2h > h vertices, 
then G − F1 has p − 1 ≥ r components, and each component has at least h vertices. 
In other words, F1 is an h-extra r-component edge-cut of G with |F1| < |F| , which 
contradicts the minimality of F. Hence, G − F has exactly r components.   ◻

For the given connected graph G, let V1,V2,… ,Vt be a partition of V(G). That 
is, Vi ⊂ V(G) for 1 ≤ i ≤ t , ∪t

k=1
Vk = V(G) , and Vi ∩ Vj = � for 1 ≤ i < j ≤ t . 

Let [Vi,Vj] be the edges with one end-vertex in Vi and the other in Vj and 
[V1,V2,… ,Vk] = ∪1≤i<j≤k[Vi,Vj] . Define the function �m(G) be the minimum car-
dinality of any edge-cut F of G such that G − F has one component with exactly 
m vertices [23, 24]. In other words, 𝜉m(G) = min{|[V0,V0]| ∶ V0 ⊂ V(G),G[V0] is 
connected, |V0| = m} . In addition, we say that G is �h-optimal if �h(G) = �h(G) . As a 
generalization of �m(G) denotes the minimum cardinality of any edge-cut F of con-
nected graph G such that G − F has exactly r + 1 components with r components 
which have exactly m vertices as �m,r+1(G) . Let V1,V2,… ,Vr+1 be a partition of 
V(G). In detail, �m,r+1(G) = min{�[V1,V2,… ,Vr+1]� ∶ �Vi� = m ≤ ⌊�V(G)�∕(r + 1)⌋ 
for 1 ≤ i ≤ r , each G[Vj] is connected for 1 ≤ j ≤ r + 1} . Therefore, 
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�h(G) = min{�m,2(G) ∶ h ≤ m ≤ ⌊�V(G)�∕2⌋} by the definition of �h(G) . Further-
more, if c�h

r
(G) = �h,r(G) , we say that G is c�h

r
-optimal; otherwise, G is not c�h

r
-opti-

mal. Motivated by the idea of introducing �m,2(G) to solve �h(G) , �m,r(G) can be used 
to solve c�h

r
(G) , and whether G is c�h

r
-optimal or not similarly.

From the definition, it can be immediately obtained that the 1-extra 2-com-
ponent edge-connectivity of G equals to the edge-connectivity of G as 
c�1

2
(G) = �(G) , the 1-extra r-component edge-connectivity of G equals to 

the r-component edge-connectivity of G as c�1
r
(G) = c�r(G) , and the h-extra 

2-component edge-connectivity of G equals to the h-extra edge-connec-
tivity of G as c�h

2
(G) = �h(G) . In addition, let m be a positive integer, and 

exm(G) = max{d(G[X]) ∶ X ⊂ V(G), |X| = m} be the maximum sum of the 
degrees of the subgraph induced by a vertex set with the given cardinality m in G, 
i.e., exm(G)∕2 is the maximum possible sizes of the subgraph induced by m verti-
ces in G. If G is d-regular, then �m,2(G) = dm − exm(G).

As an enhancement on hypercube, the augmented cube, introduced by Choudum 
and Sunitha in 2002 [6], not only reserves several of the advantages of the hyper-
cube such as strong connectivity, small diameter, symmetry, recursive construction, 
relatively small degree, and regularity [1, 14], but also carries some embedding 
properties that the hypercube does not have [13, 18]. Due to its excellent topological 
properties, the augmented cube is often used for the underlying topological structure 
of parallel and distributed systems [26].

Definition 2 ([6]) Let n ≥ 1 be an integer. The n-dimensional augmented cube, 
denoted by AQn , is a vertex transitive and (2n − 1)-regular graph with 2n vertices, 
each labeled by an n-bit binary string xnxn−1 ⋯ x2x1 where xi ∈ {0, 1}, 1 ≤ i ≤ n . 
Write V(AQn) as XnXn−1 ⋯X2X1 = {xnxn−1 ⋯ x2x1 ∶ xi ∈ {0, 1}, 1 ≤ i ≤ n} . 
Define AQ1 be the complete graph K2 with two vertices labeled by 0 and 1, 
respectively. As for n ≥ 2 , AQn has recursive structure. That is, AQn consists 
of two copies of (n − 1)-dimensional augmented cubes, denoted by 0AQn−1 
and 1AQn−1 that V(0AQn−1) = 0Xn−1 ⋯X2X1 and V

(
1AQn−1

)
= 1Xn−1 ⋯X2X1 , 

and adding 2n edges (two perfect matchings of AQn) between 0AQn−1 and 
1AQn−1 . The vertex a = 0an−1 ⋯ a2a1 ∈ V(0AQn−1) is joined to the vertex 
b = 1bn−1 ⋯ b2b1 ∈ V(1AQn−1) if and only if, 

 (i) ai = bi for 1 ≤ i ≤ n − 1 ; or
 (ii) ai = 1 − bi for 1 ≤ i ≤ n − 1.

From the definition, each vertex in V(0AQn−1) has two neighbors in V(1AQn−1) 
and vice versa. Hence, AQn can be written as 0AQn−1 ⊕ 1AQn−1 and E(AQn) can be 
partitioned into three disjoint edge subsets of AQn for n ≥ 2 . Let u = unun−1 ⋯ u2u1 
and v = vnvn−1 ⋯ v2v1 be any two adjacent vertices in AQn . If uv ∈ E(0AQn−1) or 
uv ∈ E(1AQn−1) , then uv is called an original edge (O-edge for short). Otherwise, 
uv is called a hypercube edge (H-edge for short) or a complement edge (C-edge for 
short) if uv satisfies the case (i) or the case (ii) in Definition 2, respectively. In detail, 



11708 Y. Zhang et al.

1 3

uv is an O-edge in AQn if and only if there exists an integer k with 1 ≤ k < n such 
that, 

(i)  ui = vi for k + 1 ≤ i ≤ n and uj = 1 − vj for 1 ≤ j ≤ k ; or
(ii)  ui = vi for i ≠ k and uk = 1 − vk.

 In other case, uv is an H-edge in AQn if and only if un = 1 − vn and ui = vi for 
1 ≤ i ≤ n − 1 . Furthermore, uv is a C-edge in AQn if and only if ui = 1 − vi for 
1 ≤ i ≤ n . The n-dimensional augmented cubes for n = 1, 2, 3 are illustrated in 
Fig.  1. In addition, for n = 2, 3 , the O-edges, H-edges, and C-edges in AQn are 
marked in black, blue (dark gray in print), and red (light gray in print), respectively.

Let Xn and xn denote XnXn−1 ⋯X2X1 and xnxn−1 ⋯ x2x1 , respectively. Denote 
the vertex set {znzn−1 ⋯ zk+1xkxk−1 ⋯ x1 ∶ xi ∈ {0, 1}, 1 ≤ i ≤ k, zj is fixed, 
k + 1 ≤ j ≤ n} as znzn−1 ⋯ zk+1X

k . It is obvious that AQn[znzn−1 ⋯ zk+1X
k] is a 

k-dimensional augmented subcube in AQn . By this way, 0AQn−1 = AQn[0X
n−1] and 

Fig. 1  Illustration of AQ
n

Fig. 2  AQ4[0X
3] = 0AQ3 and AQ4[1X

3] = 1AQ3
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1AQn−1 = AQn[1X
n−1] . We use znzn−1 ⋯ zk+1X

k to represent AQn[znzn−1 ⋯ zk+1X
k] , 

if no confusion arises (Fig. 2).
Let m and Sm be a positive integer with m ≤ 2n and the set {0, 1, 2,… ,m − 1} , 

respectively. Denote the corresponding set of Sm that is represented by 
n-binary strings as Ln

m
 . Let m =

∑s

i=0
2ti be the decomposition of m where 

t0 = ⌊log2 m⌋, ti = ⌊log2(m −
∑i−1

k=0
2tk )⌋ for i ≥ 1 . In 2014, Chien et  al. showed 

that exm
�
AQn

�
=
∑s

i=0
(2ti − 1)2ti +

∑s

i=0
4i ⋅ 2ti [2], but this result is not true for 

m is odd. In 2021, Zhang et  al. fixed it and obtained the value of exm(AQn) that 
exm

�
AQn

�
=
∑s

i=0

�
2ti − 1

�
2ti +

∑s

i=0
4i ⋅ 2ti + � where if m is even, then � = 0 ; 

if m is odd, then � = 1 [26]. It is noteworthy that they gave a lower bound of 
exm(AQn) by showing that the vertex subset Ln

m
 in V(AQn) satisfies |Ln

m
| = m and 

�E(AQn[L
n
m
])� = 1

2
(
∑s

i=0

�
2ti − 1

�
2ti +

∑s

i=0
4i ⋅ 2ti + �).

For the given m =
∑s

i=0
2ti , take s + 1 ti-dimensional augmented subcubes in an 

n-dimensional augmented cube for i = 0, 1,… , s as follows:
A0
m
∶ 0… 0Xt0

…X1

⏟⏞⏟⏞⏟

t0

(t0-dimensional augmented cube)
A1
m
∶ 0… 01 0… 0Xt1

…X1

⏟⏞⏟⏞⏟

t1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

t0

(take a t1-dimensional augmented cube from 0… 01Xt0
…X1)

A2
m
∶ 0… 010… 01 0… 0Xt2

…X1

⏟⏞⏟⏞⏟

t2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

t1

(take a t2-dimensional augmented cube from 0… 010… 01Xt1
…X1)

…

As
m
∶ 0… 010…… 01 0… 0Xts

…X1

⏟⏞⏟⏞⏟

ts
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

ts−1

(take a ts-dimensional augmented cube from 0… 010…… 01Xts−1
…X1)

Note that Ln
m
= V(A0

m
) ∪⋯ ∪ V(As

m
) and A0

m
 is fixed, Ai

m
 is taken from a ti−1

-dimensional augmented subcube which is obtained from Ai−1
m

 by changing the 0 
of ( ti−1 + 1)th-coordinate of Ai−1

m
 to 1 for i = 1,… , s . Hence, V(Ai

m
) ∩ V(A

j
m) = � 

for i ≠ j , i, j ∈ {0,… , s} and �V(A0
m
) ∪⋯ ∪ V(As

m
)� = ∑s

i=0
2ti = �Ln

m
� = m . In [26], 

AQn − AQn[L
n
m
] is connected and �E(AQn[L

n
m
])� = ∑s−1

i=0

�
2ti − 1

�
2ti−1 +

∑s

i=0
2i ⋅ 2ti 

when ts > 0 ; �E(AQn[L
n
m
])� = ∑s

i=0

�
2ti − 1

�
2ti−1 +

∑s

i=0
2i ⋅ 2ti when ts = 0 thus 

�E(AQn[L
n
m
])� = 1

2
(
∑s

i=0
(2ti − 1)2ti +

∑s

i=0
4i ⋅ 2ti + �) . The AQ4[L

4
7
] and AQ4[L

4
14
] 

are illustrated in Fig. 3.
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In 2021, Zhang et al. [26] showed that AQn is �h-optimal for n ≥ 2 and h ≤ 2⌊
n

2
⌋ . 

In this paper, we determine the exact value of h-extra 3-component edge-con-
nectivity of AQn and show that AQn is c�h

3
-optimal for n ≥ 4, h ≤ 2⌊

n

2
⌋−1 and 

c�2
c

3
(AQn) = �2c,3(AQn) = (2n − 2c − 1)2c+1 for n ≥ 4 and 1 ≤ c ≤ n − 2 as the fol-

lowing theorems.

Theorem 1 For n ≥ 4 and 1 ≤ h ≤ 2⌊
n

2
⌋−1 , c�h

3
(AQ

n
) = �

h,3(AQn
) =(4n − 4)h − 2ex

h

(AQ
n
) + � where � = 0 if h is even, and � = 1 if h is odd.

Theorem  2 Given a positive integer n ≥ 4 , then c�
2c

3
(AQ

n
) = �2c,3(AQn

) =

= (2n − 2c − 1)2c+1 for 1 ≤ c ≤ n − 2.

The rest of this paper is organized as follows. In Sect. 2, we introduce some use-
ful properties of AQn . In Sect. 3, the proofs of Theorem 1 and Theorem 2 will be 
provided. In Sect. 4, we conclude this paper and propose some prospects.

2  Some properties and lemmas about AQ
n

As AQn is a (2n − 1)-regular connected graph, then �
m,2(AQn

) = (2n − 1)

m − ex
m
(AQ

n
) and �h(AQn) = min{�m,2(AQn) ∶ h ≤ m ≤ 2n−1} by the definition 

of �h(AQn) . Basis on this, Zhang et al. [26] determined the exact value of �h(AQn) 
by showing that �h(AQn) = �h,2(AQn) for n ≥ 2 and h ≤ 2⌊

n

2
⌋ in 2021. Motivated 

by the above, we can use �h,3(AQn) to determine the exact value of c�h
3
(AQn) , and 

whether AQn is c�h
3
-optimal or not. Let F be a minimum h-extra 3-component 

edge-cut of AQn . Actually, |F| = c�h
3
(AQn) and AQn − F have exactly three com-

ponents. In Sect.  3, we will prove that two of the three components have exactly 

Fig. 3  The induced graphs AQ4[L
4
7
] and AQ4[L

4
14
]
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h vertices for n ≥ 4 and 1 ≤ h ≤ 2⌊
n

2
⌋−1 by the following lemmas. In other words, 

c�h
3
(AQn) = �h,3(AQn) , i.e., AQn is c�h

3
-optimal for n ≥ 4 and 1 ≤ h ≤ 2⌊

n

2
⌋−1.

Lemma 2 ([26]) For two integers m1 , m2 with m1 ≤ m2 and m1 + m2 > 2 , 
exm1+m2

(AQn) ≥ exm1
(AQn) + exm2

(AQn) + 4m1.

Lemma 3 ([26]) For n ≥ 4 and 1 ≤ h ≤ 2⌊
n

2
⌋ − 1 , �

h
(AQ

n
) = �

h,2(AQn
) = (2n − 1)

h − ex
h
(AQ

n
) and �h,2(AQn) ≤ �h+1,2(AQn).

Lemma 4 ([26]) For any three positive integers m, n, and b with 1 ≤ 2b ≤ m ≤ 2n−1 , 
�m,2(AQn) ≥ �2b,2(AQn).

Lemma 5 AQn[L
n
2m
] contains two disjoint subgraphs that are both isomorphic to 

AQn[L
n
m
] for n ≥ 2 and 1 ≤ m ≤ 2n−1.

Proof Note that m ≤ 2n−1 , then any vertex u ∈ Ln
m
 can be written as follows: 

u = 0un−1un−2 ⋯ u1 . Define two bijections �1 : 0un−1un−2 ⋯ u1 → un−1un−2 ⋯ u1u1 
and �2 : 0un−1un−2 ⋯ u1 → un−1un−2 ⋯ u1u1 where u1 = 1 − u1 . For any 
t ∈ Sm = {0, 1,⋯ ,m − 1} , let 0tn−1tn−2 ⋯ t1 ∈ Ln

m
 be the n-binary string correspond-

ing to t. Denote �1(t) and �2(t) be the decimal representation of tn−1tn−2 ⋯ t1t1 and 
tn−1tn−2 ⋯ t1t1 , respectively. If t1 = 0 , then �1(t) = 2t , �2(t) = 2t + 1 , and if t1 = 1 , 
then �1(t) = 2t + 1 , �2(t) = 2t . Hence, �i(t) ≤ 2m − 1 and �i(0tn−1tn−2 ⋯ t1) ∈ Ln

2m
 , 

i = 1, 2 . Denote Tn
m
= {�1(u) ∶ u ∈ Ln

m
} and Hn

m
= {�2(u) ∶ u ∈ Ln

m
} . Therefore, 

Tn
m
⊂ Ln

2m
 and Hn

m
⊂ Ln

2m
 . Due to |Tn

m
| = |Hn

m
| = m and Tn

m
∩ Hn

m
= � , Ln

2m
 can be par-

titioned into Tn
m
 and Hn

m
.

For any two vertices p = pnpn−1 ⋯ p2p1 and q = qnqn−1 ⋯ q2q1 with 
pn = qn = 0 in Ln

m
 , we prove that AQn[T

n
m
] is isomorphic to AQn[L

n
m
] by show-

ing that pq ∈ E(AQn[L
n
m
]) if and only if �1(p)�1(q) ∈ E(AQn[T

n
m
]) . Suppose that 

pq ∈ E(AQn[L
n
m
]) , then pq is an O-edge in AQn . Therefore, there exists an integer k 

with 1 ≤ k < n satisfying one of the following two cases.
Case 1. pi = qi for k + 1 ≤ i ≤ n and pj = 1 − qj for 1 ≤ j ≤ k.
In this case, if k = n − 1 , then pi = 1 − qi for 1 ≤ i ≤ n − 1 . Note that 

�1(p) = pn−1pn−2 ⋯ p1p1 and �1(q) = qn−1qn−2 ⋯ q1q1 = pn−1 pn−2 ⋯ p1 p1 , 
�1(p)�1(q) is a C-edge in AQn . Otherwise, 1 ≤ k ≤ n − 2 . Considering pi = qi for 
i = n − 1, n − 2,⋯ , k + 1 and pj = 1 − pj for j = k, k − 1,⋯ , 1 , �1(p)�1(q) is an 
O-edge in AQn.

Case 2. pi = qi for i ≠ k and pk = 1 − qk.
In this case, if k = n − 1 , then pn−1 = 1 − qn−1 and pi = qi for 1 ≤ i ≤ n − 2 . 

Hence, �1(p)�1(q) is an H-edge in AQn . Otherwise, 1 ≤ k ≤ n − 2 . Considering 
pi = qi for i = n − 1, n − 2,⋯ , k + 1, k − 1,⋯ , 1 and pk = 1 − qk , �1(p)�1(q) is an 
O-edge in AQn.

In a nutshell, if pq ∈ E(AQn[L
n
m
]) , then �1(p)�1(q) ∈ E(AQn) and 

�1(p)�1(q) ∈ E(AQn[T
n
m
]) naturally. Conversely, let �1(p)�1(q) ∈ E(AQn[T

n
m
]) . If 

�1(p)�1(q) is an O-edge in AQn , then there exists an integer k with 1 ≤ k < n − 1 



11712 Y. Zhang et al.

1 3

satisfying pi = qi for i = n − 1, n − 2,⋯ , k + 1 , pj = 1 − qj for j = k, k − 1,⋯ , 2, 1 , 
or pi = qi for i = n − 1, n − 2,⋯ , k + 1, k − 1,⋯ , 1 , pk = qk , respectively. Note that 
p = pnpn−1 ⋯ p2p1 and q = qnqn−1 ⋯ q2q1 with pn = qn = 0 , pq is an O-edge in AQn . 
In other case, if �1(p)�1(q) is an H-edge in AQn , then pn−1 = 1 − qn−1 and pi = qi 
for 1 ≤ i ≤ n − 2 . Let k1 = n − 1 . Since pi = qi for i ≠ k1 and pk1 = 1 − qk1 , pq is 
an O-edge in AQn . In addition, if �1(p)�1(q) is a C-edge in AQn , then pi = 1 − qi 
for 1 ≤ i ≤ n − 1 . Let k2 = n − 1 . Since pi = qi for k2 + 1 ≤ i ≤ n and pj = 1 − qj 
for 1 ≤ j ≤ k2 , pq is an O-edge in AQn . Briefly, if �1(p)�1(q) ∈ E(AQn[T

n
m
]) , then 

pq ∈ E(AQn) and pq ∈ E(AQn[L
n
m
]) naturally. Summarize the above in one sen-

tence, pq ∈ E(AQn[L
n
m
]) if and only if �1(p)�1(q) ∈ E(AQn[T

n
m
]) . Hence, AQn[T

n
m
] 

is isomorphic to AQn[L
n
m
] . Similarly, we can prove that AQn[H

n
m
] is isomorphic to 

AQn[L
n
m
] by showing that pq ∈ E(AQn[L

n
m
]) if and only if �2(p)�2(q) ∈ E(AQn[H

n
m
]) . 

Thus, this lemma holds.   ◻

Incidentally, since ex2m(AQn) = 2exm(AQn) + 4m − 2� , there are 2m − � edges 
between AQn[T

n
m
] and AQn[H

n
m
] where � = 0 if m is even, � = 1 if m is odd. In Fig. 4, 

AQ4[L
4
14
] contains two disjoint connected subgraphs AQ4[T

4
7
] (marked in red, light 

gray in print) and AQn[H
4
7
] (marked in blue, dark gray in print).

Lemma 6 For n ≥ 2 and 1 ≤ m < 2n−1 , �m,3(AQn) = (4n − 4)m − 2exm(AQn) + � 
where � = 0 if m is even, and � = 1 if m is odd.

Proof We prove this lemma by giving an edge-cut F of AQn of size 
(4n − 4)m − 2exm(AQn) + � such that G − F has exactly three compo-
nents with two components which have exactly m vertices and showing that 
(4n − 4)m − 2exm(AQn) + � is the lower bound of �m,3(AQn).

As for �m,3(AQn) ≤ (4n − 4)m − 2exm(AQn) + � , given n ≥ 2 and 1 ≤ m < 2n−1 , 
by Lemma 5, AQn[L

n
2m
] contains two disjoint connected subgraphs with order m 

and size 1
2
exm(AQn) as M1 = AQn[T

n
m
] and M2 = AQn[H

n
m
] . Let M3 = AQn[L

n
2m
] . 

Note that M1 , M2 , and M3 are all connected and |Tn
m
| = |Hn

m
| = m , then 

�
m,3(AQn

) ≤ |[Tn

m
,Hn

m
,Ln

2m
]| = |[Tn

m
,Hn

m
]| + |[Ln

2m
,Ln

2m
]| = 2m − � + �2m,2(AQn

)

= 2m(2n − 1) − (2ex
m
(AQ

n
) + 4m − 2�) + 2m − � = (4n − 4)m − 2ex

m
(AQ

n
) + �.

Let F be any edge-cut of AQn that AQn − F has exactly three connected compo-
nents A1 , A2 , and A3 with |V(A1)| = |V(A2)| = m . Note that

Fig. 4  AQ4[T
4
7
] and AQ4[H

4
7
] are both isomorphic to AQ4[L

4
7
] and |[T4

7
,H4

7
]| = 2 × 7 − 1
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Since ex2m(AQn) = 2exm(AQn) + 4m − 2� , we have |F| ≥ (4n − 4)m − 2ex
m
(AQ

n
) + � . 

By the generality of F, �m,3(AQn) ≥ (4n − 4)m − 2exm(AQn) + � , this lemma holds.  
 ◻

3  The main proof of our results about h‑extra r‑component 
edge‑connectivity of AQ

n

The proof of Theorem 1 for c�h
3
(AQn) = �h,3(AQn) for n ≥ 4 and 1 ≤ h ≤ 2⌊

n

2
⌋−1

Proof For n ≥ 4 and 1 ≤ h ≤ 2⌊
n

2
⌋−1

< ⌊ 2n

3
⌋ , considering an upper bound for the 

exact value of general h-extra 3-component edge-connectivity of AQn is offered by 
Lemma 6 that c�h

3
(AQn) ≤ �h,3 = (4n − 4)h − 2exh(AQn) + � , we prove Theorem 1 

by showing that (4n − 4)h − 2exh(AQn) + � is the lower bound of c�h
3
(AQn).

Let F be a minimum h-extra 3-component edge-cut of AQn . By Lemma 
1, AQn − F has exactly three components, denoted as C1,C2,C3 with 
|V(C1)| ≤ |V(C2)| ≤ |V(C3)| . As a general rule, two of the three components have 
small scales, and the other is a giant component as Fig. 5.

Let hi = |V(Ci)| for i ∈ {1, 2, 3} . Note that h ≤ h1 ≤ ⌊ 2n

3
⌋ and 

⌈
2n−h1

2

⌉
≤ h3 ≤ 2n − 2h1 , then 2 h ≤ 2h1 ≤ h1 + h2 ≤ 2n −

⌈
2n−h1

2

⌉
 . For any 1 ≤ i ≤ 3 , we 

have |[V(Ci),V(Ci)]| = (2n − 1)hi − 2|E(Ci)| ≥ �hi,2
(AQn) = (2n − 1)hi − exhi (AQn) . 

By Lemma 2, it follows that

2|F| = 2|[V(A1),V(A2),V(A3)]|
= 2(|[V(A1),V(A2)]| + |[V(A2),V(A3)]| + |[V(A1),V(A3)]|)
≥ �m,2(AQn) + �m,2(AQn) + �2n−2m,2(AQn)

= 2�m,2(AQn) + �2m,2(AQn)

= 2(2n − 1)m − 2exm(AQn) + (2n − 1)2m − ex2m(AQn).

Fig. 5  Illustration of AQ
n
− F
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Case 1. 2h ≤ h1 + h2 ≤ 2⌊
n

2
⌋.

By Lemma 3, we have (2n − 1)
(
h1 + h2

)
− ex

h1+h2

(
AQ

n

)
+ 2h1 = �

h1+h2,2

(
AQ

n

)

+2h1 ≥ �2 h,2

(
AQ

n

)
+ 2h1 = (4n − 2)h − ex2 h(AQn

) + 2h1 . Therefore, 
|F| ≥ (4n − 2)h − ex2 h

(
AQn

)
+ 2 h for 1 ≤ h ≤ 2⌊

n

2
⌋−1 and n ≥ 4.

Case 2. 2⌊
n

2
⌋
≤ h1 + h2 ≤ 2n−1.

By Lemma 4, we have (2n − 1)
(
h1 + h2

)
− ex

h1+h2
(AQ

n
) + 2h1 = �

h1+h2,2

(
AQ

n

)

+2h1 ≥ �
2⌊ n

2⌋,2(AQn
) + 2h1 . By Lemma 3, �F� ≥ �

2⌊ n

2⌋,2(AQn
) + 2h1 ≥ �2 h,2

�
AQ

n

�

+2h1 = (4n − 2)h − ex2 h

(
AQ

n

)
+ 2h1 ≥ (4n − 2)h − ex2 h

(
AQ

n

)
+ 2 h for 

1 ≤ h ≤ 2⌊
n

2
⌋−1 and n ≥ 4.

Case 3. 2n−1 ≤ h1 + h2 ≤ 2n −
⌈
2n−h1

2

⌉
.

In this case, 
⌈
2n−h1

2

⌉
≤ 2n −

(
h1 + h2

)
≤ 2n−1 . Note that �2n−(h1+h2),2

(
AQ

n

)
= �

h1+h2,2

(
AQ

n

)
= (2n − 1)

(
h1 + h2

)
− ex

h1+h2

(
AQ

n

)
 and 

�
2n−h1

2

�
> 2⌊

n

2
⌋ for any 

1 ≤ h ≤ 2⌊
n

2
⌋−1 and h ≤ h1 ≤

⌊
2n

3

⌋
 . By Lemma 3 and Lemma 4, 

|F| ≥ (2n − 1)
(
h1 + h2

)
− ex

h1+h2

(
AQ

n

)
+ 2h1 = 𝜉

h1+h2,2

(
AQ

n

)
+ 2h1 >

�
2
⌊ n
2
⌋
,2

�
AQ

n

�
+ 2h1 ≥ �2 h,2

�
AQ

n

�
+ 2h1 ≥ 2nh − ex2 h

�
AQ

n

�
+ 2 h for 1 ≤ h ≤ 2⌊

n

2
⌋−1 and 

n ≥ 4.

Thus, we have c�h
3
(AQ

n
) ≥ (4n − 2)h − ex2 h

(
AQ

n

)
+ 2 h = (4n − 2)h − (2ex

h
(AQ

n
)

+4 h − 2�) + 2 h ≥ (4n − 4)h − 2ex
h
(AQ

n
) + �. Combining with 

c�h
3
(AQn) ≤ �h,3(AQn) = (4n − 4)h − 2exh(AQn) + � , we can obtain that 

c�h
3
(AQn) = �h,3(AQn) = (4n − 4)h − 2exh(AQn) + � for n ≥ 4 and 1 ≤ h ≤ 2⌊

n

2
⌋−1 .   ◻

The proof of Theorem 2 for c�2c
3
(AQn) = �2c,3(AQn) for n ≥ 4 and 1 ≤ c ≤ n − 2

Proof It is sufficient to show that c�2c
3
(AQn) ≤ (2n − 2c − 1)2c+1 by construct-

ing a 2c-extra 3-component edge-cut of cardinality (2n − 2c − 1)2c+1 . For any 
1 ≤ c ≤ n − 2, n ≥ 4 , note that AQn[L

n

2c+1
] can be divided into two c-dimensional aug-

mented cubes as N1 = AQn[T
n
2c
] and N2 = AQn[H

n
2c
] . Let N3 = AQn − AQn[L

n

2c+1
] . 

Since N1 , N2 , and N3 are both connected and |V(N3)| = 2n − 2c+1 ≥ 2c , 
F = [V(N1),V(N2),V(N3)] is a 2c-extra 3-component edge-cut of AQn.Hence, 
c�

2c

3
(AQ

n
) ≤ |F| = 2�2c ,2(AQn

) − 2c+1 = (4n − 2)2c − (4c − 2)2c − 2c+1 = (2n − 2c − 1)2c+1.

|F| = |[V(C1),V(C1)]| + |[V(C2),V(C2)]| − |[V(C1),V(C2)]|
= (2n − 1)(h1 + h2) − 2|E(C1)| − 2|E(C2)| − (|E(C1 ∪ C2)| − |E(C1)| − |E(C2)|)

≥ (2n − 1)
(
h1 + h2

)
−

1

2
exh1 (AQn) −

1

2
exh2 (AQn) −

1

2
exh1+h2 (AQn)

≥ (2n − 1)
(
h1 + h2

)
− exh1+h2

(
AQn

)
+ 2h1.
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As for c�2
c

3
(AQn) ≥ (2n − 2c − 1)2c+1 , let F be a minimum 2c

-extra 3-component edge-cut of AQn. By Lemma 1, AQn − F 
has exactly three components, denoted as W1,W2,W3.  Let 
2c ≤ |V(W1)| ≤ |V(W2)| ≤ |V(W3)| and |V(Wi)| = hi for 1 ≤ i ≤ 3 . Note that 
�2c,2(AQn) = (2n − 1)2c − ex2c (AQn) = (2n − 1)2c − (2c − 1)2c = (2n − 2c)2c , then

Case 1. 1 ≤ c ≤ ⌊ n

2
⌋ − 1.

By Theorem  1, we have |F| ≥ (4n − 2)2c − 2ex2c(AQn
) − 2c+1 =

(4n − 2)2c − (2c − 1)2c+1 − 2c+1 = (2n − 2c − 1)2c+1.

Case 2. ⌊ n

2
⌋ ≤ c ≤ n − 3.

If 2c ≤ h1 ≤ h2 ≤ h3 ≤ 2c+1 ≤ 2n−2 , then h1 + h2 + h3 ≤ 3 ⋅ 2n−2 < 2n ,  
a contradiction. Hence, h3 > 2c+1. Since 2|F| = |[V

(
W1

)
,V

(
W1

)
]| + |[V

(
W2

)
,

V
(
W2

)
]| + |[V

(
W3

)
,V

(
W3

)
]| ≥ �

h1,2
(AQ

n
) + �

h2,2
(AQ

n
) + �

h3,2
(AQ

n
) , by Lemma 

4, there is
    Subcase 1. 2c+1 < h3 ≤ 2n−1.

    Subcase 2. h3 > 2n−1.

    As 2c+1 ≤ h1 + h2 ≤ 2n−1 , we have

Case 3. c = n − 2.

In this case, there is 2n−2 = 2c ≤ h1 ≤ h2 ≤ h3 and then h1 + h2 ≥ 2n−1, h3 ≤ 2n−1,

According to the discussion above, we have |F| ≥ (2n − 2c − 1) ⋅ 2c+1 . 
Similar to the proof of Theorem  1, it can be obtained that 
c�2

c

3
(AQn) = �2c,3(AQn) = (2n − 2c − 1)2c+1 for 1 ≤ c ≤ n − 2 . The proof is com-

pleted.   ◻

2|F| ≥ �h1,2
(AQn) + �h2,2

(AQn) + �h3,2
(AQn)

≥ �2c,2(AQn) + �2c,2(AQn) + �2c+1,2(AQn)

= 2 ⋅ (2n − 2c) ⋅ 2c + (2n − 2c − 2) ⋅ 2c+1

= (4n − 4c − 2) ⋅ 2c+1.

2|F| ≥ �h1,2
(AQn) + �h2,2

(AQn) + �h3,2
(AQn)

= �h1,2
(AQn) + �h2,2

(AQn) + �h1+h2,2
(AQn)

≥ �2c,2(AQn) + �2c,2(AQn) + �2c+1,2(AQn)

= 2 ⋅ (2n − 2c) ⋅ 2c + (2n − 2c − 2) ⋅ 2c+1

= (4n − 4c − 2) ⋅ 2c+1.

2|F| ≥ �h1,2
(AQn) + �h2,2

(AQn) + �h3,2
(AQn)

≥ 3 ⋅ �2c,2(AQn)

= 3 ⋅ (2n − 2c) ⋅ 2c

= 3 ⋅ (n − c) ⋅ 2c+1

= (4n − 4c − 2) ⋅ 2c+1.
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4  Conclusions

In this paper, we combine Fàbrega and Sampathkumar’s concepts about the param-
eters of network fault tolerance as h-extra edge-connectivity and r-component 
edge-connectivity to introduce a more refined parameter for characterizing fault 
tolerance of interconnection networks as h-extra r-component edge-connectiv-
ity. Inspired by introducing �m,2(G) to solve the exact value of �h(G) and whether 
G is �h-optimal or not, we introduce the concept of c�h

r
-optimal and define the 

function �m,r(G) to solve the exact value of c�h
r
(G) and whether G is c�h

r
-optimal 

or not. Basis on this, we determine the h-extra 3-component edge-connectivity 
of AQn and show that AQn is c�h

3
-optimal for n ≥ 4 and 1 ≤ h ≤ 2⌊

n

2
⌋−1 , that is, 

c�h
3
(AQn) = �h,3(AQn) = (4n − 4)h − 2exh(AQn) + � . In addition, AQn is c�2c

3
-opti-

mal for n ≥ 4 and 1 ≤ c ≤ n − 2 , that is, c�2c
3
(AQn) = �2c,3(AQn) = (2n − 2c − 1)2c+1 . 

In the future work, we would like to consider a more general case and get more 
results about c�h

r
(AQn) and �h,r(AQn) to discuss the c�h

r
-optimality of AQn for 

r = 3, 2⌊
n

2
⌋−1

< h ≤ ⌊2n∕3⌋ and r ≥ 4 , respectively.
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