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Abstract
To address the current challenge of smart devices in healthcare Internet of things 
(IoT) struggling to efficiently process intensive applications in real-time, a collabo-
rative cloud-edge offloading model tailored for ultra-dense edge computing (UDEC) 
networks is developed. While numerous studies have delved into the optimization 
of offloading in mobile edge computing (MEC), it is imperative to consider non-
orthogonal multiple access (NOMA) as a physical technology when addressing 
the offloading optimization process in MEC. The multiuser sharing of spectrum 
resources in NOMA can enhance the network spectrum utilization and reduce the 
computational delay when users transmit computing tasks. Consequently, a model 
for NOMA-assisted UDEC systems is proposed. The model takes into account 
joint offloading decisions, computational resources, and sub-channel resources and 
is modeled as a complex nonlinear mixed-integer programming problem. The aim 
is to decrease the task execution delay and energy consumption of smart devices 
while ensuring that users’ maximum acceptable delay for processing medical com-
putational tasks is met efficiently and in a timely manner. Deep deterministic policy 
gradient (DDPG), a deep reinforcement learning method, is employed to solve the 
joint optimization problem. The final simulation results show that the algorithm 
converges well. The proposed offloading scheme can reduce the system cost by 54.5 
and 69.9% in comparison with scenarios where users solely perform local compu-
tations and offload their tasks to the base station (BS). The application of NOMA 
communication in our offloading scheme boosts network spectrum utilization and 
trims down the system cost by 87.09% when contrasted with orthogonal multiple 
access (OMA).

Keywords Mobile edge computing · Ultra-dense network · Offloading · Non-
orthogonal multiple access · Deep reinforcement learning
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1 Introduction

With the rise of cutting-edge technologies like artificial intelligence [1], Internet 
of things (IoT), and sensors, we are seeing a proliferation of smart IoT devices 
that are becoming increasingly common in the medical field. These devices are 
poised to revolutionize healthcare services, taking them in a direction that is 
more intelligent and precise, thereby expanding the possibilities for human health 
improvement. For instance, we have wearable electrocardiogram detectors, wear-
able blood pressure detectors, and wearable blood glucose detectors. They are 
connected to mobile devices (MDs) and can monitor physiological parameters 
such as electrocardiogram signals, blood pressure changes, and patients’ blood 
glucose levels in real-time and accurately [2, 3]. By thoroughly analyzing this 
data, doctors can gain a better understanding of their patients’ health status and 
promptly identify potential health risks. This, in turn, enables them to offer tai-
lor-made medical care and treatment plans. However, MDs have their limitations 
when it comes to battery life and processing power. Power-hungry applications 
like sleep analysis, motion tracking, epilepsy detection, and blood pressure moni-
toring can drain MDs quickly. Some applications, like epilepsy detection warn-
ings and tracking blood pressure fluctuations, are time sensitive. Due to insuffi-
cient computing resources, computing in MDs will consume a lot of time. Mobile 
edge computing (MEC) can move computationally intensive applications from 
MDs to edge servers (ESs), effectively relieving computational pressure and 
energy consumption on MDs [4, 5].

MEC represents a cutting-edge computing architecture with the goal of shift-
ing data processing and storage capabilities away from conventional centralized 
data centers to edge devices or nodes situated closer to the data source. Offload-
ing computing tasks from MDs to nearby base stations (BSs) equipped with ESs 
reduces data transmission latency and network congestion. It meets user demand 
for services such as low latency and high bandwidth [6]. However, a single MEC 
server typically has certain limitations in terms of computing power. It can only 
fulfill the computing requirements of a limited number of MDs. Ultra-dense net-
work (UDN), on the other hand, brings about an efficient and flexible large-scale 
wireless connectivity solution by deploying numerous small BSs to cater to the 
demands of a multitude of MDs accessing the network. This is particularly vital 
in densely populated settings like schools, hospitals, and residential areas with 
abundant greenery. To address these challenges, this paper introduces a fusion of 
UDN and MEC, referred to as ultra-dense edge computing (UDEC), within the 
5 G architecture. In this framework, mobile network operators deploy numerous 
micro-BSs, each equipped with an ES. It can reuse the spectrum resources of the 
macro-BSs [7, 8]. In this way, the surge in demand for computational and spectral 
resources by MDs can be addressed, and the latency and energy consumption of 
task offloading can be reduced [9].

In a UDN collaborative network, MDs in a healthcare system can be more flex-
ible in choosing their offloading methods, and tasks based on different types of 
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computation can be processed on local devices, micro-BSs, or a macro-BS [10, 
11]. The literature on computational offloading [12–14] reduces the total cost of 
the system by optimizing offloading and computational resource allocation. There 
is also some literature on optimizing the performance of MEC networks through 
advanced network access techniques. Liu and Yang [15] used orthogonal fre-
quency division multiple access (OFDMA) architecture to access the unmanned 
aerial vehicle (UAV) cloud network, ensuring latency awareness in UAV-assisted 
MEC systems. Xing et al. [16] used time division multiple access (TDMA) trans-
port protocols during user offloading of tasks to minimize the computational 
latency of tasks by optimizing the time, rate, resultant download of user task 
assignment, and computational offloading. However, this literature needs to pay 
more attention to the application of non-orthogonal multiple access (NOMA) 
technology in UDEC. It can make multiuser access in wireless communication 
systems. It is a promising multi-access technology for next-generation wire-
less networks [17, 18]. NOMA allows multiple users to transmit over the same 
time and frequency resources, enhancing spectral efficiency and system capac-
ity. Consequently, it effectively boosts wireless network capacity and coverage. 
Moreover, NOMA proves advantageous in managing high-density user scenarios 
and enhancing system energy efficiency [19]. NOMA protocols, as a promising 
radio access technology, have been employed in [20] to enhance the efficiency of 
MEC offloading. In our pursuit of intelligently managing computational tasks in 
a healthcare system, we have merged UDN and NOMA to provide users with a 
more efficient and comprehensive service. The key contributions are summarized 
below: 

1. In the system model of the NOMA-based UDN, each micro-BS deploys an MEC 
server and employs NOMA technology to cater to its associated users. Subse-
quently, the paper introduces an optimization problem that addresses joint deci-
sions on offloading, computational resources, and sub-channel allocation. This 
optimization problem aims to minimize the weighted sum of energy consumption 
and computational task latency for all users, all while ensuring that the maximum 
tolerated user latency is met.

2. The objective problem involves mixed-integer nonlinear programming, a type 
of problem that is (non-deterministic polynomial) NP-hard and cannot be opti-
mally solved in polynomial time. To tackle the original mixed problem, the neu-
ral network within deep deterministic policy gradient (DDPG) is employed to 
approximate the policy function. This approach utilizes empirical replay to train 
the neural networks, resulting in improved training outcomes.

3. The scheme we put forth is evaluated through simulation experiments, compar-
ing it with various offloading methods and orthogonal multiple access (OMA) 
techniques. The results from the simulations indicate that our proposed scheme 
exhibits a quicker convergence when compared to other offloading methods. Fur-
thermore, the utilization of NOMA techniques, as presented in this paper, results 
in a lower overall system cost in contrast to OMA.
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The rest of this article is arranged as follows. Section 2 introduces the research status 
of UDEC and NOMA technology, and the significance of the combination of UDEC 
and NOMA. Section 3 describes the intelligent medical system model and objective 
optimization. In Sect. 4, a Markov decision process (MDP) decision-making process 
is constructed by deep reinforcement learning (DRL). In Sect. 5, the advantages and 
disadvantages of each unloading strategy are analyzed by comparing the system cost 
and algorithm convergence performance. Finally, in Sect.  6 to the full text of the 
summary. Table 1 contains the list of acronyms used in the research.

2  Related work

Numerous scholars have conducted extensive research on the computational offload-
ing challenge within MEC. Their primary focus is on reducing energy consumption 
delays and enhancing quality of service (QoS) for users by jointly optimizing off-
loading, transmission power, and resource allocation. In [21], research explores how, 
within MEC, mobile network operators address the challenge of accommodating a 
large number of users accessing the network while dealing with increasing response 
times. They achieve this by deploying numerous edge-side micro-BSs and a cloud-
side macro-BS equipped with ample computational resources to enhance network 
coverage. This strategic deployment reduces transmission delays by diverting users’ 
computational tasks to the densely positioned edge-side micro-BSs or the cloud-side 
BS. Gao et  al. [9] introduced the deployment of multiple edge-side macro-BSs in 

Table 1  List of acronyms Abbreviation Definition

IoT Internet of things
MDs Mobile devices
MEC Mobile edge computing
ESs Edge servers
BSs Base stations
UDN Ultra-dense network
UDEC Ultra-dense edge computing
OFDMA Orthogonal frequency division multiple access
UAV Unmanned aerial vehicle
TDMA Time division multiple access
NOMA Non-orthogonal multiple access
DDPG Deep deterministic policy gradient
OMA Orthogonal multiple access
MDP Markov decision process
DRL Deep reinforcement learning
QoS Quality of service
DQN Deep Q-leaning network
FDMA Frequency division multiple access
RL Reinforcement learning
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UDN. These macro-BSs are supported by MEC servers, facilitating the transfer of 
user computational tasks to ESs located in closer proximity. This approach effec-
tively reduces transmission delays and lowers energy consumption, thereby mini-
mizing system overhead. Lu et al. [22] demonstrated that in the context of UDEC, 
system delay and energy consumption can be significantly reduced through coor-
dinated resource scheduling, task offloading, and BS selection. Lin et al. [23] and 
Ahmed and Elmokashfi [24] delved into the development of a model-free offload-
ing mechanism within the framework of MEC-supported UDN. This mechanism 
efficiently minimizes the computational latency of user tasks while meeting energy 
consumption requirements.

Various communication methods, such as TDMA and frequency division multiple 
access (FDMA), have seen extensive use in resource allocation within MEC. These 
methods effectively address the issue of transmission delays during the offload-
ing of MEC computing tasks. Utilizing NOMA technology in UDN proves highly 
effective in reducing both system energy consumption and the latency of computa-
tional tasks [25]. Sun et al. [26] and Gupta et al. [27] applied NOMA technology to 
the uplink and downlink of MEC networks and confirmed that the introduction of 
NOMA technology can effectively reduce the latency and energy consumption dur-
ing user offloading. In [28], the research delves into the MEC-NOMA system within 
an UDN. In this setup, all users of each micro-BS service are organized into separate 
clusters, with these users communicating with micro-BSs through NOMA technol-
ogy. The study introduces a comprehensive iterative optimization algorithm aimed 
at minimizing the overall system cost. This algorithm achieves its goal by combin-
ing aspects such as user clustering, power allocation, and computational resource 
allocation.

In MEC environments, complex joint optimization challenges arise, encom-
passing offloading decisions, resource allocation, and energy management. These 
complexities emerge from the collaborative efforts involving multiple MDs, ESs, 
and central cloud resources. To tackle this issue, some researchers have turned to 
DRL algorithms for solving intricate joint optimization problems within MEC. 
In [29], the authors introduced a DRL algorithm based on Asynchronous Advan-
tage Actor–Critic, tailored for addressing the two-layer architecture outlined in 
this paper. This algorithm demonstrates strong performance in managing expan-
sive decision spaces, demands fewer computational resources, and achieves 
quicker convergence compared to strategies based on deep Q-leaning network 
(DQN). Wang et  al. [30] presented an algorithm grounded in DDPG to handle 
high-dimensional state spaces and the non-convex nature of sequential actions, 
which characterize the problem in UAV-assisted MEC. The algorithm effectively 
reduces task processing latency by determining the optimal task offloading deci-
sions. In [31], researchers focus on the challenge of joint computational offloading 
and resource scheduling, considering that user computational tasks are randomly 
generated and the environment is dynamically changing. Given the multiple opti-
mization goals involved, the authors propose a double DQN approach based on 
reinforcement learning (RL) to tackle this issue. Jiang et al. [32] delved into the 
matter of ES placement within a dynamic MEC setup, where it is crucial to meet 
user computational task requirements. Since the network exhibits time-varying 
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characteristics, ES placement requires dynamic adjustments. The researchers pro-
pose a proximal policy optimization algorithm to enable a limited number of ESs 
to efficiently serve all BSs, with results indicating a noticeable reduction in sys-
tem costs. While these studies showcase the applicability of DRL for offloading 
optimization and resource scheduling, they primarily introduce improved algo-
rithms for specific environments and lack generalizability. Therefore, this article 
adopts a DDPG algorithm to more accurately model and optimize the system’s 
processing latency and energy consumption, aiming for more efficient task pro-
cessing and resource utilization.

These works ignore the scenario of collaborative computing at the micro-BS, 
where computing tasks for users are transferred to other micro-BSs for collabora-
tive execution. Collaborative execution among BSs enhances resource utilization 
and evens out the load on BSs across various regions, ensuring they remain in a 
relatively stable state. This, in turn, enables efficient processing of each user’s 
computing tasks within a reasonable time frame. While some researches have 
explored task offloading in UDN and MEC settings, the majority has overlooked 
the influence of communication methods between mobile users and BSs. With the 
widespread implementation of UDN and the evolution of IoT devices, conven-
tional communication methods are insufficient for managing the extensive con-
nectivity of devices and data transmission within hospitals. Consequently, we will 
explore a UDEC network based on NOMA, constructing a novel offloading model 
to strike a harmonious equilibrium between energy consumption and latency.

3  System model

A UDEC system model based on NOMA is illustrated in Fig.  1. The model 
include multiple micro-BSs, and assuming that each BS is outfitted with a ES 
to provide computing services to its associated users and one macro-BS (assum-
ing that the macro-BS is a remote cloud). It is assumed that users that are in the 
coverage area of BS are associated with only one, where the ESs can be either 
physical servers with computational power or virtual machines. As in [33], we 
assume that the macro-BS acts as the central controller responsible for collecting 
information about the tasks of the mobile users, information about the comput-
ing resources of the BS, and information about the network status. Assume that 
the system has S BSs and K sub-channels, denoted by the sets S = {1, 2,… , S} 
and K = {1, 2,… ,K} , respectively, where the set of users covered by each BS 
is denoted by Ns = {1, 2,… ,N} . We assume that user n in BS s generates one 
computation request �n,s at a time as denoted by the < Dn,s, Tn,s,Cn,s > , where 
Dn,s denotes the size of the task data requested by the user for computation, Tn,s 
denotes the maximum tolerable delay of the task, and Cn,s denotes the computa-
tional resources required to complete the request. These data assume that each 
user’s task cannot be further divided into sub-tasks and that the user will offload 
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the task based on an offload decision. xk
n,s

 is an offload decision variable, which 
indicates whether or not user n offloads a task to its covered BS s.

3.1  Communication model

MDs incur a certain communication cost (i.e., bandwidth) when generating com-
putational tasks to offload to the edge server, so the communication scenario 
for user task offloading is shown in Fig.  2. In scenario (a), user n1 transmits 
its computation task to its associated MEC server s1 using NOMA technology. 

(1)xk
n,s

=

{
1, if �n,s is offloaded from user n to MEC,

0, otherwise.

Fig. 1  IoT-enabled healthcare system model diagram
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In scenario (b), when MEC server s1 cannot provide the required service to its 
associated user n2, the computation task is transmitted to the neighboring MEC 
server s2 via the x2 link. In scenario (c), if the ESs cannot provide the service to 
user n3, the user’s computation task will be transmitted to the edge cloud for pro-
cessing via the fiber link. The computational task transfer delay is calculated as 
follows in different scenarios.

Scenario (a): assuming that NOMA technology is used in BS s ∈ S to sup-
port different users n ∈ Ns occupying the same channel, mobile users in the same 
area sacrifice interference to transmit data to the BS at the same time, and dif-
ferent BSs can multiplex the same channel. The sub-channel occupied by the BS 
define as ck

s
 . When ck

s
= 1 , it means that the BS occupies sub-channel k, otherwise 

ck
s
= 0 . In this case, interference between users may cause a degradation of the 

uplink transmission rate, so the maximum number of BSs connected to a sub-
channel is Mmax . On sub-channel k, for the set of users Ns served by BS s, the 
channel gain is assumed to follow the order of gk

1 s
≥ gk

2 s
≥ … ≥ gk

ns
 . Thus, the 

signal-to-interference-noise ratio (SINR) of the n-th user in BS s on sub-channel 
k is expressed as follows:

where pk
n,s

 denotes the transmit power of the n-th user in BS s on sub-channel k, 
Ik
n,s

=
∑N

i=n+1
xs
i
pk
n,s
gk
n,s

 denotes the interference between users within the BS, 

Ik
s,s�

=
∑

r∈S

�
ck
r

∑
n∈Ur

xr
n
pk
n,r
gk
n,s

�
 denotes the interference between BSs, �2 denotes 

the power of Gaussian white noise, and B denotes the bandwidth of the uplink sys-
tem. The data rate of the transmission of user n on sub-channel k is calculated 
according to Shannon’s formula as follows:

(2)�k
n,s

=
pk
n,s
gk
n,s

Ik
n,s

+ Ik
s,s�

+ �2
,

Fig. 2  Offloading decisions for mobile devices
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Therefore, the transmission time for the user device task to offload to BS s on sub-
channel k is:

Scenario (b): Assume that when BS s receives a user request from within its area, 
but its computational resources are insufficient to process it, it can forward the asso-
ciated request via the X2 link to another BS s′ for processing. We use the binary 
variable ys→s

′

n,s
 to indicate whether the user’s computational task �n,s is offloaded at its 

associated BS s:

Therefore, the offload delay from BS s to BS s′ is:

Scenario (c): when other BSs around BS s also have no remaining computing 
resources, the user’s tasks will be offloaded to macro-BS via a wired backhaul link. 
ys→c
n,s

 is a decision variable to indicate that the user’s computational task is offloaded 
to macro-BS by BS s:

Therefore, the offload delay from the BS s to macro-BS is:

3.2  Computation offloading model

3.2.1  Local execution

When user’s task �n,s is executed locally, computing delay T loc
n,s

 and local power con-
sumption Eloc

n,s
 of the MD can be expressed as follows:

(3)Rk
n,s

= Blog2

(
1 + �k

n,s

)
,

(4)ttran
n,s

=
xk
n,s
Dn,s

Rk
n,s

, ∀n ∈ Ns.

(5)ys→s�

n,s
=

⎧
⎪⎨⎪⎩

1, if �n,s of user n is offloaded

from BS s to a neighbor BS s
�

,

0, otherwise.

(6)ttran
s,s�

=

∑
n∈Ns

ys→s�

n,ss
Dn,s

Γs�

s

, ∀s, s� ∈ S.

(7)ys→c
n,s

=

⎧⎪⎨⎪⎩

1, if �n,s is offloaded from BS s

to macro-BS,

0, otherwise.

(8)ttran
s,c

=

∑
n∈Ns

ys→c
n,s

�n,s

Ωc
s

, ∀s ∈ S.
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where f l
n,s

 represents the CPU frequency of user n in BS s, the size of � is deter-
mined by the chip structure of the MD [13, 34].

3.2.2  Edge execution

In our model, if BS s associated with the user has enough resources, it must perform 
the user’s task �n,s . In this paper, we define a decision variable ys

n,s
∈ {0, 1} to indicate 

whether BS s calculates the user’s unloaded task.

The execution delay of task �n,s on BS s is:

Similar to other studies [31, 35], the transmission delay of BS s sending the calcula-
tion results back to the MD is ignored because the size of the output data is much 
smaller than that of the input data. Therefore, the total execution time of the tasks 
uninstalled by user n on BS s is:

The energy consumed by transmitting the data of user computing task �n,s to its 
associated BS s can be calculated as:

When BS s associated with the user does not have enough computing resources to 
meet the user’s computing requirements, BS s needs to unload the task to any BS s′ 
that has enough computing resources to meet the user’s requirements. The comput-
ing delay of the task on BS s′ is expressed as:

Therefore, the total execution time of user n unloading to BS s′ is:

(9)T loc
n,s

=
Cn,s

f l
n,s

,

(10)Eloc
n,s

=� ⋅

(
f l
n,s

)2

⋅ T loc
n,s
.

(11)ys
n,s

=

⎧
⎪⎨⎪⎩

1, if �n,s offloaded by user n

is computed at BS s,

0, otherwise.

(12)tcomp
n,s

=
Cn,s

fmec
n,s

,

(13)Tmec
n,s

= ttran
n,s

+ tcomp
n,s

,

(14)Etran
n,s

= pn,st
tran
n,s

.

(15)t
comp

n,s�
=

Cn,s

fmec
n,s�

,
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3.2.3  Cloud execution

When no other BS is available, the user’s computing tasks will be executed at 
macro-BS, where the computing delay is expressed as:

In summary, the total latency of user’s tasks �n,s calculation is:

The energy consumed by the user to complete the task �n,s is:

To ensure that the user’s computing tasks are performed in only one location, namely 
on the user’s device, BS, or macro-BS, the following constraints are imposed:

3.3  Problem formation

The optimization problem is expressed as the following (“CORS” means computa-
tional offloading and resource scheduling) 

(16)Tmec
s,s�

= ttran
n,s

+ ttran
s,s�

+ t
comp

n,s�
.

(17)Tc
n
= ttran

n,s
+ ttran

s,c
+

Cn,s

f c
n

,

(18)
T total
n,s

=
(
1 − xk

n,s

)
T loc
n,s

+ xk
n,s

(
ys
n,s
Tmec
n,s

+
∑
n∈Ns

ys→s�

n,s
Tmec
s,s�

+ ys→c
n,s

Tc
n
),

(19)
Etotal
n,s

=
(
1 − xk

n,s

)
Eloc
n,s

+ xk
n,s

(
ys
n,s

+
∑
n∈Ns

ys→s�

n,s

+ ys→c
n,s

)
Etran
n,s

.

(20)
(
1 − xk

n,s

)
+ xk

n,s

(
ys
n,s

+
∑
n∈Ns

ys→s
�

n,s
+ ys→c

n,s

)
= 1,

(21)max
{
ys
n,s
, ys→s

�

n,s
, ys→c

n,s
,∀n

}
≤ xk

n,s
, ∀n ∈ Ns.

(22a)CORS ∶ min
∑
s∈S

∑
n∈Ns

(
�T total

n,s
+ (1 − �)Etotal

n,s

)

(22b)s.t. T total
n,s

⩽ Tn,s, s ∈ S, n ∈ Ns,
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 where � is the weight of energy consumption and calculation delay. Constraint (22b) 
ensures that the computing task delay of the user’s MD cannot exceed the maximum 
delay. Constraint (22c) is the energy consumption for users. Constraint (22d) is the 
power constraint for all unloading users. Constraint (22e) ensures that sub-channel 
allocation is a binary decision variable, and constraint (22f) ensures each BS multi-
plexes at most one sub-channel, and constraint (22g) ensures each sub-channel can 
only be multiplexed by M BSs. Constraints (22h) and (22i) ensure that the user’s 
computing tasks can only be performed in one location. Table 2 lists the important 
symbols used in the text.

4  Algorithm for solving problem

RL can make optimal decisions in a specific environment through self-study. It mod-
els all realistic problems as an interaction between an agent and its environment. In 
every period of interaction, the agent can receive the state of the environment and 
choose appropriate actions according to the state. Agents can obtain a reward value 
and a new state based on the feedback of the environment [31, 36]. Although RL has 
a lot of strengths, it is not scalable and the problems it deals with are limited to low-
dimensional state space [37].

Different from RL, DRL involves the perceptual capabilities of RL and the deci-
sion-making capabilities of RL to solve environmental problems with high-dimen-
sional state space and action space [38]. In this section, the MDP model of this 
paper is built in actual MEC scenario. In system, the current state of the BS is only 

(22c)Etotal
n,s

⩽ Emax, ∀s ∈ S, n ∈ Ns,

(22d)0 ⩽ xk
n,s
pk
n,s

⩽ Pk
n,s
,

(22e)
∑
k∈K

ck
s
⩽ 1, ∀s ∈ S,

(22f)
∑
s∈S

ck
s
⩽ M, ∀k ∈ K,

(22g)ck
s
∈ {0, 1}, ∀s ∈ S, k ∈ K,

(22h)
(
1 − xk

n,s

)
+ xk

n,s

(
ys
n,s

+
∑
n∈Ns

ys→s
�

n,s
+ ys→c

n,s

)
= 1,

(22i)max
{
ys
n,s
, ys→s

�

n,s
, ys→c

n,s
,∀n

}
≤ xk

n,s
, ∀n ∈ Ns.
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related to the state and actions of the previous moment (for example, whether the 
remaining resources of the BS are available, whether the user’s tasks are offloaded 
to the BS). The DDPG algorithm is improved to solve the unloading and resource 
scheduling problems of computing tasks for mobile users. Although the number of 
MDs and ESs will constantly change, the process of task processing will not change. 
Computing tasks are randomly generated at the mobile user end, some of which are 
processed locally on the MD, and the other part is unloaded to the BS associated 
with the user for processing through policy. Finally, the result is returned to the MD.

4.1  Problem formulation based on DDPG

MDP [29] is a mathematical framework describing the discrete time stochastic con-
trol process. Part of the results generated by it is random and controlled by an agent 
or decision maker. It is usually made up of five tuples (S,A, p(., .),R, �) [39, 40], 
where S denotes a finite set of states, A represents the finite action set, and is the 

Table 2  Symbolic representation and description

Notion Description

�n,s Computing tasks for devices
Dn,s Data size of the device computing task
Tn,s The maximum delay of the device
Cn,s CPU cycles required by the device
S The number of BS
Ns The number of users within the range of BS
K The number of sub-channels in the system
Mmax The maximum number of BSs occupying sub-channel
ck
s

ck
s
= 1 if BS occupies sub-channel k. Otherwise, ck

s
= 0

ys
n,s

ys
n,s

= 1 if BS computes the user’s computing tasks. Otherwise, ys
n,s

= 0

ys→s
′

n,s
ys→s

�

n,s
= 1 if the user offloads the computing task from its associated BS to other 

nearby BSs. Otherwise, ys→s
�

n,s
= 0

ys→c
n,s

ys→c
n,s

= 1 if the user’s computing tasks are offloaded to macro-BS. Otherwise, ys→c
n,s

= 0

B The bandwidth of the uplink system channel
�2 Gaussian white noise

gk
n,s

Channel gain

Pk
n,s

The maximum transmission power of the user device

Γs
�

s
The X2 link between BS s and BS s′

Ωc
s

Link capacity between BS s and macro-BS
� Effective switching capacity of the user’s mobile device
f l
n,s

Computing power on mobile devices
fmec

n,s
The computing power of BS s

f c
n

Computing power of macro-BS
� Weight between energy consumption and processing delay in system cost
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description of the behavior of the agent. p
(
si+1 ∣ si, ai

)
 denotes the transitional prob-

abilities of the system state from state si ∈ S to state si+1 ∈ S after the execution of 
action ai ∈ A , where R ∶ S ×A → R is the instantaneous reward function, and � 
represents the discount factor used to calculate the cumulative income of the whole 
process. When the agent interacts with the environment, the cumulative return at 
state st ∈ S is:

To evaluate the value of state s and the optimal strategy, the state value function is 
introduced v�(s) and state-behavior value function Q�(s, a) . In practical application, 
the Behrman equation is adopted:

State space: we use state St =
(
Dn,s, Tn,s,Cn,s,�,U1,U2,…U2+s

)
 to characterize the 

tasks generated by users in slot t and the computational resources available to the 
ES. Where Dn,s represents the size of the data amount requested by the MD; Tn,s 
represents the maximum tolerated delay of computing tasks on the user’s MD; Cn,s 
indicates the computing resources required by the MD to complete the requested 
computing task; �i represents the remaining available computing resources on the 
ES; Among them � =

(
�1,�2,… ,�i,… ,�s

)
 , �i = fmec

n,s
−
∑S

i=1
xk
n,i
fmec

n,s
 . Ui indicates 

whether the I-th computing device in time slot t is used. Meanwhile, to ensure that 
the tasks of MDs can only be computed locally or offloaded, only 2 + s computing 
devices, including a macro-BS, a user equipment, and s BSs, need to be considered 
for computing tasks generated by MDs.

Action space: to unload computing tasks of MDs onto appropriate computing 
devices, the action space set in DRL is corresponding to the collection of available 
computing devices. (0∕1)j

i
 is used to indicate whether the computing tasks of user i 

are unloaded on device j. So it has an action space of A =
(
a1, a2,… , a2+s

)
 . 

(23)Gt = Rt+1 + �Rt+2 + �2Rt+3 +⋯ =

n∑
k=0

�kRt+k+1,

(24)v�(s) =E�

(
Rt+1 + �v�St+1 ∣ St = s

)
,

(25)Q�(s, a) =E�

[
Rt+1 + �Q

(
St+1, At+1

)
∣ St = s, At = a

]
,
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Reward: after one step, the agent will receive the corresponding reward R after 
executing action A. In general, the reward function and the objective function are 
positively correlated. However, since the objective of this paper is to minimize the 
cost of the system, the target value can be defined as, 
R = −

(
�T total

n,s
+ (1 − �)Etotal

n,s

)
= Z.

4.2  Computational offloading and resource scheduling algorithm based on DDPG

The DDPG algorithm consists of a learning strategy function (Actor) and a learn-
ing action value function (Critic). The actor network defines a parameterized 
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strategy according to the observed environment state and generates an action, 
while the critic is responsible for evaluating the rewards obtained through the 
current strategies [30, 41]. The critic network in DDPG uses experiential play-
back technology which uses 

{
st, at, rt, st+1

}
 tuple to save its track as a record and 

uses a small number of tuples to update network parameters. To minimize the 
loss function, the critic network calculates the Q value of the current network and 
the Q value of the target network based on the current state and action. Next, the 
policy function is updated through the current network using the policy gradient. 
Then, update the target network parameters. The present action at can be calcu-
lated using the following formula

Then, the target Q value is given by

The loss function in the evaluation process is calculated as follows:

Next, the actor updates the current policy using policy gradient with the help of �Q 
and sample tuples.

In contrast to DQN, DDPG increases the stability of learning by using soft updates 
to refresh the parameters. The process of updating target Q network parameter �Q′ 
in the actor network and target Q network parameter ��′ in the critic network can be 
represented as

This section presents a collaborative computing offloading algorithm that leverages 
DRL techniques to facilitate efficient offloading. The proposed algorithm, CORS-
DDPG, aims to identify an optimal offloading destination for users, determining 
whether to process tasks locally or offload them to an ES or a macro-BS. CORS-
DDPG stores previous experiences in an experience replay buffer, allowing the 
mechanism to learn from past decisions and make appropriate offloading choices 
tailored to the computational requirements of different users. The goal is to strike a 
balance between energy consumption and processing latency. The step-by-step oper-
ation of the CORS-DDPG algorithm is as follows: 

(26)at = �
(
st ∣ �

�
)
+Nt,

(27)yi = ri + �Q�
(
si+1,�

�
(
si+1 ∣ �

��)
∣ �Q

�)
,

(28)L =
1

N

∑
i

(
yi − Q

(
si, ai ∣ �

Q
))2

,

(29)∇��J|si ≈
1

N

∑
i

∇aQ
(
s, a|�Q

)
∣s=si,a=�(si)∇���

(
s|��

)
∣si ,

(30)�Q
�

← ��Q + (1 − �)�Q
�

,

(31)��
�

← ��� + (1 − �)��
�

.
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1. The agent acquires actions based on the current state of the environment using 
the policy.

2. For each step of the episode, MDs within the coverage area of the micro-BS first 
perform NOMA channel occupancy based on cooperative offloading and resource 
allocation policies to accomplish data transmission and task execution.

3. Next, energy consumption and transmission delay are calculated based on the 
current action and state. Based on these calculations, the reward for the step is 
obtained, and the environment state is updated.

4. Store the reward and the next state in the experience pool. Periodically, a por-
tion of the samples from the experience pool is used to train the actor and critic 
networks.

5. When the execution step satisfies the policy update condition, specific equation 
(28) and equation (29) are used to update the current critic network and current 
actor network.

5  Performance evaluation

First of all, the simulation parameter setting and different experimental methods are 
recommended. Then, the effects of different parameter settings on the algorithm 
convergence performance are compared. Lastly, the scheme’s feasibility is demon-
strated by a comparison with the benchmark offloading method and the communica-
tion method.

5.1  Simulation setup

In this section, we verify the performance of the proposed joint optimization algo-
rithm and the advantages of the NOMA communication method through simulation 
experiments. In simulation, we use Python to set the coverage area of the macro-BS 
based on our system model, which is designated as an area with a radius of 1000 m. 
Micro-BSs are randomly placed in this area. Based on Wang et al. [30], the number 
of micro-BSs is from 4 to 8. Each NOMA cluster contains two MDs. The number 
of MDs is 8 to 16, and sub-channels are 4. The size of the user task is between 600 
and 1000 Kbits. The rest of the parameters for the experiments are shown in Table 3.

5.2  Contrast experiment

5.2.1  Comparison of offloading methods

To compare the impact of the unload methods in this article with the total cost of 
the system, we compare them with other offloading methods, all three of which are 
described in detail below. 

1. Local-Execution-only: the user’s computational tasks are all processed locally 
without requesting a computational offload to the MEC server.
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2. Edge-Execution-only: User-generated computing tasks are executed only on the 
ES associated with them.

3. The scheme proposed in this paper (CORS-DDPG): the user’s computing tasks 
can be processed locally, and offloaded to BS associated with it or to macro-BS 
for processing.

5.2.2  Comparison of communication methods

To compare the impact of the communication approaches presented in this article on 
overall system cost, we compare OMA communication methods, and the compari-
son method is described in detail below. 

1. Local-Execution-only: the user’s computational tasks are all processed locally 
without requesting a computational offload to BS.

2. Edge-Execution-only: all users’ computing assignments are unloaded to BS for 
execution. (communication method using NOMA).

3. The scheme proposed in this paper (CORS-DDPG): all user’s task can be executed 
locally, offloaded to its associated BS, or offloaded to macro-BS, where the com-
munication method uses NOMA and orthogonal multiple access (OMA), respec-
tively (CORS-DDPG-NOMA) (CORS-DDPG-OMA).

Next simulation in this paper, according to the number of iterations, evaluates dif-
ferent offloading approaches based on DDPG convergence performance. The metric 
used in the article is system cost which is the sum of the completion latency and user 
energy consumption.

Table 3  Simulation parameter setting

Parameter Value

The number of Micro-BS [4, 8]

The number of MDs {8, 10, 12, 14, 16}

Number of sub-channels 4
The data size of task 600–1000 Kbits
Computing resources required by user tasks 1000–2000 MHZ
Maximum tolerated latency of a user computing task 0.5-−0.75 s
Computing power of MDs 1–300 Kbits/s
Macro-BS computing power 5 Mbits/s
Channel bandwidth 20 MHz
Bandwidth between BS 20–25 MHz
Bandwidth between BS and macro-BS 50–120 Mbps
Noise power −100 dBm
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5.3  Algorithm performance analysis

In Fig. 3, we illustrate the impact of various network hyperparameters on the algo-
rithm’s convergence performance. We assess these hyperparameters based on the 
system cost. Precisely, at the instance where �Actor = 0.01, �Critic = 0.02 , the algo-
rithm fails to converge within a specific time frame. This failure can be attrib-
uted to the neural network’s large update step and the high learning rate of both 
the behavioral and critic networks, making it impossible to decide the behavior 
that minimizes the system cost. Upon resetting �Actor = 0.0001, �Critic = 0.0002 , 
the algorithm still does not converge. The absence of convergence results from the 
reduced learning parameter, which decelerates the network updates, thereby requir-
ing an increased number of iterations to attain convergence. This process demands 
additional computational resources, escalating the system’s cost. Then, we reset 
�Actor = 0.001, �Critic = 0.002 , which allows the algorithm to converge within a spe-
cific time interval, reducing system cost.

As shown in Fig.  4, we explore the impact of different discount rate factors � 
on the algorithm’s performance. We use the system cost as an evaluation metric to 
determine the optimal discount rate setting. The system cost reaches its lowest point 
when � = 0.95 . The computational offloading strategy is optimized at this point, and 
the best offloading decision can be found within a time interval. However, in the 
other two sets of experiments, the set � values do not converge quickly and are inef-
fective in reducing the system cost. When larger or smaller values of � are employed, 
the algorithm treats the data gathered in the current period as having a prolonged 
influence on the entire training process. This results in time intervals that are either 
excessively extended or too brief, subsequently impacting the generalization effect. 

Fig. 3  Convergence performance of CORS-DDPG algorithm at different learning rates
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Fig. 4  Effect of different discount factors on the performance of CORS-DDPG algorithm

Fig. 5  Convergence performance of the CORS-DDPG algorithm
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Consequently, the algorithm fails to reduce the system cost-effectively. To improve 
the training strategy, we will set � = 0.95 in the next experiments.

As shown in Fig. 5, CORS-DDPG and Local-Execution-only can converge over 
time, the other offloading methods have large fluctuations, but Local-Execution-only 
does not lead to a minimization of the total cost of the system and it can be seen that 
the CORS-DDPG offloading method is better.

5.4  Performance Comparison

Figure 6 shows the system cost obtained through different offloading methods. It can 
be found that the system cost increases with the number of BSs. As shown in Fig. 6, 
CORS-DDPG method obtains lower system cost than the other two baseline meth-
ods (Edge-Execution-only, Local-Execution-only), this is because these two meth-
ods cannot handle the dynamic environmental changes.

Figure  7 displays the quantitative relationship established between the system 
cost and BS when the number of sub-channels varies. Therefore, the sub-channels 
are different. In Fig. 7, the system cost is gradually increasing. As the number of 
sub-channels decreases the system cost is increases, this is because when there are 
fewer sub-channels in the system the quantity of BSs occupying the same channel 
increases, which leads to severe BS interference and in turn increases the overall 
cost of the user offloading process.

Figure 8 shows the system cost with the amount of users under the CORS-DDPG 
algorithm. From Fig 8, the total system cost is gradually growing as the amount of 

Fig. 6  Total system reward in relation to the number of BSs
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users increases, but the proposed CORS-DDPG scheme allows for a lower system 
cost than other offloading schemes.

Figure 9 displays the correlation between the system cost and the size of the input 
data for user computing tasks. In Fig. 9, the total system cost increases with the vol-
ume of data increases, this is because a larger user computing task load will lead to 

Fig. 7  Total system reward in relation to the number of BSs

Fig. 8  Total system reward in relation to the number of users
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a significant increase in the cost of local computing and also, more users will choose 
offload their tasks to BS.

In Fig. 10, the impact of two different communication approaches is compared 
on the system cost. The total system cost of CORS-DDPG-NOMA is lower than 
the other solutions, which shows the effectiveness of the communication method we 
have applied.

Fig. 9  Total system reward in relation to task size

Fig. 10  Total system reward in relation to the number of BSs
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6  Conclusion

In this paper, we propose an offloading model for cloud-edge-end cooperative off-
loading by combining UDEC and NOMA to achieve a balance between energy 
consumption and latency of MDs in the offloading process of computing tasks. The 
model has important applications in the field of medical IoT, which can provide 
energy-efficient and low-latency services according to the different medical needs of 
patients. The study takes into account energy consumption, latency, and QoS, aim-
ing to minimize the total cost incurred during user offloading tasks by means of joint 
offloading decisions, computational resources, and sub-channel allocation. Despite 
the objective problem being non-convex, this paper proposes a DRL cooperative off-
loading algorithm to determine the optimal offloading strategy for users. Simulation 
results show that the proposed offloading scheme achieves lower total system cost 
compared to schemes that process only locally or offload only to ESs. In addition, 
MOMA can lead to a near-optimal system performance compared to OMA.

However, the research in this paper has some shortcomings and needs to be con-
sidered. For example, ESs cannot handle the offloading of users’ computing tasks in 
a dynamic environment in real-time. In future research, the mobility of users will be 
considered, such as the sudden movement of a user from the coverage area of micro-
BS to that of another.
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