
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:10275–10300
https://doi.org/10.1007/s11227-023-05816-w

1 3

Computing offloading and resource scheduling based
on DDPG in ultra‑dense edge computing networks

Ruizhong Du1,2 · Jingya Wang1,2 · Yan Gao3

Accepted: 11 November 2023 / Published online: 21 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
To address the current challenge of smart devices in healthcare Internet of things
(IoT) struggling to efficiently process intensive applications in real-time, a collabo-
rative cloud-edge offloading model tailored for ultra-dense edge computing (UDEC)
networks is developed. While numerous studies have delved into the optimization
of offloading in mobile edge computing (MEC), it is imperative to consider non-
orthogonal multiple access (NOMA) as a physical technology when addressing
the offloading optimization process in MEC. The multiuser sharing of spectrum
resources in NOMA can enhance the network spectrum utilization and reduce the
computational delay when users transmit computing tasks. Consequently, a model
for NOMA-assisted UDEC systems is proposed. The model takes into account
joint offloading decisions, computational resources, and sub-channel resources and
is modeled as a complex nonlinear mixed-integer programming problem. The aim
is to decrease the task execution delay and energy consumption of smart devices
while ensuring that users’ maximum acceptable delay for processing medical com-
putational tasks is met efficiently and in a timely manner. Deep deterministic policy
gradient (DDPG), a deep reinforcement learning method, is employed to solve the
joint optimization problem. The final simulation results show that the algorithm
converges well. The proposed offloading scheme can reduce the system cost by 54.5
and 69.9% in comparison with scenarios where users solely perform local compu-
tations and offload their tasks to the base station (BS). The application of NOMA
communication in our offloading scheme boosts network spectrum utilization and
trims down the system cost by 87.09% when contrasted with orthogonal multiple
access (OMA).

Keywords Mobile edge computing · Ultra-dense network · Offloading · Non-
orthogonal multiple access · Deep reinforcement learning

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05816-w&domain=pdf

10276 R. Du et al.

1 3

1 Introduction

With the rise of cutting-edge technologies like artificial intelligence [1], Internet
of things (IoT), and sensors, we are seeing a proliferation of smart IoT devices
that are becoming increasingly common in the medical field. These devices are
poised to revolutionize healthcare services, taking them in a direction that is
more intelligent and precise, thereby expanding the possibilities for human health
improvement. For instance, we have wearable electrocardiogram detectors, wear-
able blood pressure detectors, and wearable blood glucose detectors. They are
connected to mobile devices (MDs) and can monitor physiological parameters
such as electrocardiogram signals, blood pressure changes, and patients’ blood
glucose levels in real-time and accurately [2, 3]. By thoroughly analyzing this
data, doctors can gain a better understanding of their patients’ health status and
promptly identify potential health risks. This, in turn, enables them to offer tai-
lor-made medical care and treatment plans. However, MDs have their limitations
when it comes to battery life and processing power. Power-hungry applications
like sleep analysis, motion tracking, epilepsy detection, and blood pressure moni-
toring can drain MDs quickly. Some applications, like epilepsy detection warn-
ings and tracking blood pressure fluctuations, are time sensitive. Due to insuffi-
cient computing resources, computing in MDs will consume a lot of time. Mobile
edge computing (MEC) can move computationally intensive applications from
MDs to edge servers (ESs), effectively relieving computational pressure and
energy consumption on MDs [4, 5].

MEC represents a cutting-edge computing architecture with the goal of shift-
ing data processing and storage capabilities away from conventional centralized
data centers to edge devices or nodes situated closer to the data source. Offload-
ing computing tasks from MDs to nearby base stations (BSs) equipped with ESs
reduces data transmission latency and network congestion. It meets user demand
for services such as low latency and high bandwidth [6]. However, a single MEC
server typically has certain limitations in terms of computing power. It can only
fulfill the computing requirements of a limited number of MDs. Ultra-dense net-
work (UDN), on the other hand, brings about an efficient and flexible large-scale
wireless connectivity solution by deploying numerous small BSs to cater to the
demands of a multitude of MDs accessing the network. This is particularly vital
in densely populated settings like schools, hospitals, and residential areas with
abundant greenery. To address these challenges, this paper introduces a fusion of
UDN and MEC, referred to as ultra-dense edge computing (UDEC), within the
5 G architecture. In this framework, mobile network operators deploy numerous
micro-BSs, each equipped with an ES. It can reuse the spectrum resources of the
macro-BSs [7, 8]. In this way, the surge in demand for computational and spectral
resources by MDs can be addressed, and the latency and energy consumption of
task offloading can be reduced [9].

In a UDN collaborative network, MDs in a healthcare system can be more flex-
ible in choosing their offloading methods, and tasks based on different types of

10277

1 3

Computing offloading and resource scheduling based on DDPG…

computation can be processed on local devices, micro-BSs, or a macro-BS [10,
11]. The literature on computational offloading [12–14] reduces the total cost of
the system by optimizing offloading and computational resource allocation. There
is also some literature on optimizing the performance of MEC networks through
advanced network access techniques. Liu and Yang [15] used orthogonal fre-
quency division multiple access (OFDMA) architecture to access the unmanned
aerial vehicle (UAV) cloud network, ensuring latency awareness in UAV-assisted
MEC systems. Xing et al. [16] used time division multiple access (TDMA) trans-
port protocols during user offloading of tasks to minimize the computational
latency of tasks by optimizing the time, rate, resultant download of user task
assignment, and computational offloading. However, this literature needs to pay
more attention to the application of non-orthogonal multiple access (NOMA)
technology in UDEC. It can make multiuser access in wireless communication
systems. It is a promising multi-access technology for next-generation wire-
less networks [17, 18]. NOMA allows multiple users to transmit over the same
time and frequency resources, enhancing spectral efficiency and system capac-
ity. Consequently, it effectively boosts wireless network capacity and coverage.
Moreover, NOMA proves advantageous in managing high-density user scenarios
and enhancing system energy efficiency [19]. NOMA protocols, as a promising
radio access technology, have been employed in [20] to enhance the efficiency of
MEC offloading. In our pursuit of intelligently managing computational tasks in
a healthcare system, we have merged UDN and NOMA to provide users with a
more efficient and comprehensive service. The key contributions are summarized
below:

1. In the system model of the NOMA-based UDN, each micro-BS deploys an MEC
server and employs NOMA technology to cater to its associated users. Subse-
quently, the paper introduces an optimization problem that addresses joint deci-
sions on offloading, computational resources, and sub-channel allocation. This
optimization problem aims to minimize the weighted sum of energy consumption
and computational task latency for all users, all while ensuring that the maximum
tolerated user latency is met.

2. The objective problem involves mixed-integer nonlinear programming, a type
of problem that is (non-deterministic polynomial) NP-hard and cannot be opti-
mally solved in polynomial time. To tackle the original mixed problem, the neu-
ral network within deep deterministic policy gradient (DDPG) is employed to
approximate the policy function. This approach utilizes empirical replay to train
the neural networks, resulting in improved training outcomes.

3. The scheme we put forth is evaluated through simulation experiments, compar-
ing it with various offloading methods and orthogonal multiple access (OMA)
techniques. The results from the simulations indicate that our proposed scheme
exhibits a quicker convergence when compared to other offloading methods. Fur-
thermore, the utilization of NOMA techniques, as presented in this paper, results
in a lower overall system cost in contrast to OMA.

10278 R. Du et al.

1 3

The rest of this article is arranged as follows. Section 2 introduces the research status
of UDEC and NOMA technology, and the significance of the combination of UDEC
and NOMA. Section 3 describes the intelligent medical system model and objective
optimization. In Sect. 4, a Markov decision process (MDP) decision-making process
is constructed by deep reinforcement learning (DRL). In Sect. 5, the advantages and
disadvantages of each unloading strategy are analyzed by comparing the system cost
and algorithm convergence performance. Finally, in Sect. 6 to the full text of the
summary. Table 1 contains the list of acronyms used in the research.

2 Related work

Numerous scholars have conducted extensive research on the computational offload-
ing challenge within MEC. Their primary focus is on reducing energy consumption
delays and enhancing quality of service (QoS) for users by jointly optimizing off-
loading, transmission power, and resource allocation. In [21], research explores how,
within MEC, mobile network operators address the challenge of accommodating a
large number of users accessing the network while dealing with increasing response
times. They achieve this by deploying numerous edge-side micro-BSs and a cloud-
side macro-BS equipped with ample computational resources to enhance network
coverage. This strategic deployment reduces transmission delays by diverting users’
computational tasks to the densely positioned edge-side micro-BSs or the cloud-side
BS. Gao et al. [9] introduced the deployment of multiple edge-side macro-BSs in

Table 1 List of acronyms Abbreviation Definition

IoT Internet of things
MDs Mobile devices
MEC Mobile edge computing
ESs Edge servers
BSs Base stations
UDN Ultra-dense network
UDEC Ultra-dense edge computing
OFDMA Orthogonal frequency division multiple access
UAV Unmanned aerial vehicle
TDMA Time division multiple access
NOMA Non-orthogonal multiple access
DDPG Deep deterministic policy gradient
OMA Orthogonal multiple access
MDP Markov decision process
DRL Deep reinforcement learning
QoS Quality of service
DQN Deep Q-leaning network
FDMA Frequency division multiple access
RL Reinforcement learning

10279

1 3

Computing offloading and resource scheduling based on DDPG…

UDN. These macro-BSs are supported by MEC servers, facilitating the transfer of
user computational tasks to ESs located in closer proximity. This approach effec-
tively reduces transmission delays and lowers energy consumption, thereby mini-
mizing system overhead. Lu et al. [22] demonstrated that in the context of UDEC,
system delay and energy consumption can be significantly reduced through coor-
dinated resource scheduling, task offloading, and BS selection. Lin et al. [23] and
Ahmed and Elmokashfi [24] delved into the development of a model-free offload-
ing mechanism within the framework of MEC-supported UDN. This mechanism
efficiently minimizes the computational latency of user tasks while meeting energy
consumption requirements.

Various communication methods, such as TDMA and frequency division multiple
access (FDMA), have seen extensive use in resource allocation within MEC. These
methods effectively address the issue of transmission delays during the offload-
ing of MEC computing tasks. Utilizing NOMA technology in UDN proves highly
effective in reducing both system energy consumption and the latency of computa-
tional tasks [25]. Sun et al. [26] and Gupta et al. [27] applied NOMA technology to
the uplink and downlink of MEC networks and confirmed that the introduction of
NOMA technology can effectively reduce the latency and energy consumption dur-
ing user offloading. In [28], the research delves into the MEC-NOMA system within
an UDN. In this setup, all users of each micro-BS service are organized into separate
clusters, with these users communicating with micro-BSs through NOMA technol-
ogy. The study introduces a comprehensive iterative optimization algorithm aimed
at minimizing the overall system cost. This algorithm achieves its goal by combin-
ing aspects such as user clustering, power allocation, and computational resource
allocation.

In MEC environments, complex joint optimization challenges arise, encom-
passing offloading decisions, resource allocation, and energy management. These
complexities emerge from the collaborative efforts involving multiple MDs, ESs,
and central cloud resources. To tackle this issue, some researchers have turned to
DRL algorithms for solving intricate joint optimization problems within MEC.
In [29], the authors introduced a DRL algorithm based on Asynchronous Advan-
tage Actor–Critic, tailored for addressing the two-layer architecture outlined in
this paper. This algorithm demonstrates strong performance in managing expan-
sive decision spaces, demands fewer computational resources, and achieves
quicker convergence compared to strategies based on deep Q-leaning network
(DQN). Wang et al. [30] presented an algorithm grounded in DDPG to handle
high-dimensional state spaces and the non-convex nature of sequential actions,
which characterize the problem in UAV-assisted MEC. The algorithm effectively
reduces task processing latency by determining the optimal task offloading deci-
sions. In [31], researchers focus on the challenge of joint computational offloading
and resource scheduling, considering that user computational tasks are randomly
generated and the environment is dynamically changing. Given the multiple opti-
mization goals involved, the authors propose a double DQN approach based on
reinforcement learning (RL) to tackle this issue. Jiang et al. [32] delved into the
matter of ES placement within a dynamic MEC setup, where it is crucial to meet
user computational task requirements. Since the network exhibits time-varying

10280 R. Du et al.

1 3

characteristics, ES placement requires dynamic adjustments. The researchers pro-
pose a proximal policy optimization algorithm to enable a limited number of ESs
to efficiently serve all BSs, with results indicating a noticeable reduction in sys-
tem costs. While these studies showcase the applicability of DRL for offloading
optimization and resource scheduling, they primarily introduce improved algo-
rithms for specific environments and lack generalizability. Therefore, this article
adopts a DDPG algorithm to more accurately model and optimize the system’s
processing latency and energy consumption, aiming for more efficient task pro-
cessing and resource utilization.

These works ignore the scenario of collaborative computing at the micro-BS,
where computing tasks for users are transferred to other micro-BSs for collabora-
tive execution. Collaborative execution among BSs enhances resource utilization
and evens out the load on BSs across various regions, ensuring they remain in a
relatively stable state. This, in turn, enables efficient processing of each user’s
computing tasks within a reasonable time frame. While some researches have
explored task offloading in UDN and MEC settings, the majority has overlooked
the influence of communication methods between mobile users and BSs. With the
widespread implementation of UDN and the evolution of IoT devices, conven-
tional communication methods are insufficient for managing the extensive con-
nectivity of devices and data transmission within hospitals. Consequently, we will
explore a UDEC network based on NOMA, constructing a novel offloading model
to strike a harmonious equilibrium between energy consumption and latency.

3 System model

A UDEC system model based on NOMA is illustrated in Fig. 1. The model
include multiple micro-BSs, and assuming that each BS is outfitted with a ES
to provide computing services to its associated users and one macro-BS (assum-
ing that the macro-BS is a remote cloud). It is assumed that users that are in the
coverage area of BS are associated with only one, where the ESs can be either
physical servers with computational power or virtual machines. As in [33], we
assume that the macro-BS acts as the central controller responsible for collecting
information about the tasks of the mobile users, information about the comput-
ing resources of the BS, and information about the network status. Assume that
the system has S BSs and K sub-channels, denoted by the sets S = {1, 2,… , S}
and K = {1, 2,… ,K} , respectively, where the set of users covered by each BS
is denoted by Ns = {1, 2,… ,N} . We assume that user n in BS s generates one
computation request �n,s at a time as denoted by the < Dn,s, Tn,s,Cn,s > , where
Dn,s denotes the size of the task data requested by the user for computation, Tn,s
denotes the maximum tolerable delay of the task, and Cn,s denotes the computa-
tional resources required to complete the request. These data assume that each
user’s task cannot be further divided into sub-tasks and that the user will offload

10281

1 3

Computing offloading and resource scheduling based on DDPG…

the task based on an offload decision. xk
n,s

 is an offload decision variable, which
indicates whether or not user n offloads a task to its covered BS s.

3.1 Communication model

MDs incur a certain communication cost (i.e., bandwidth) when generating com-
putational tasks to offload to the edge server, so the communication scenario
for user task offloading is shown in Fig. 2. In scenario (a), user n1 transmits
its computation task to its associated MEC server s1 using NOMA technology.

(1)xk
n,s

=

{
1, if �n,s is offloaded from user n to MEC,

0, otherwise.

Fig. 1 IoT-enabled healthcare system model diagram

10282 R. Du et al.

1 3

In scenario (b), when MEC server s1 cannot provide the required service to its
associated user n2, the computation task is transmitted to the neighboring MEC
server s2 via the x2 link. In scenario (c), if the ESs cannot provide the service to
user n3, the user’s computation task will be transmitted to the edge cloud for pro-
cessing via the fiber link. The computational task transfer delay is calculated as
follows in different scenarios.

Scenario (a): assuming that NOMA technology is used in BS s ∈ S to sup-
port different users n ∈ Ns occupying the same channel, mobile users in the same
area sacrifice interference to transmit data to the BS at the same time, and dif-
ferent BSs can multiplex the same channel. The sub-channel occupied by the BS
define as ck

s
 . When ck

s
= 1 , it means that the BS occupies sub-channel k, otherwise

ck
s
= 0 . In this case, interference between users may cause a degradation of the

uplink transmission rate, so the maximum number of BSs connected to a sub-
channel is Mmax . On sub-channel k, for the set of users Ns served by BS s, the
channel gain is assumed to follow the order of gk

1 s
≥ gk

2 s
≥ … ≥ gk

ns
 . Thus, the

signal-to-interference-noise ratio (SINR) of the n-th user in BS s on sub-channel
k is expressed as follows:

where pk
n,s

 denotes the transmit power of the n-th user in BS s on sub-channel k,
Ik
n,s

=
∑N

i=n+1
xs
i
pk
n,s
gk
n,s

 denotes the interference between users within the BS,

Ik
s,s�

=
∑

r∈S

�
ck
r

∑
n∈Ur

xr
n
pk
n,r
gk
n,s

�
 denotes the interference between BSs, �2 denotes

the power of Gaussian white noise, and B denotes the bandwidth of the uplink sys-
tem. The data rate of the transmission of user n on sub-channel k is calculated
according to Shannon’s formula as follows:

(2)�k
n,s

=
pk
n,s
gk
n,s

Ik
n,s

+ Ik
s,s�

+ �2
,

Fig. 2 Offloading decisions for mobile devices

10283

1 3

Computing offloading and resource scheduling based on DDPG…

Therefore, the transmission time for the user device task to offload to BS s on sub-
channel k is:

Scenario (b): Assume that when BS s receives a user request from within its area,
but its computational resources are insufficient to process it, it can forward the asso-
ciated request via the X2 link to another BS s′ for processing. We use the binary
variable ys→s

′

n,s
 to indicate whether the user’s computational task �n,s is offloaded at its

associated BS s:

Therefore, the offload delay from BS s to BS s′ is:

Scenario (c): when other BSs around BS s also have no remaining computing
resources, the user’s tasks will be offloaded to macro-BS via a wired backhaul link.
ys→c
n,s

 is a decision variable to indicate that the user’s computational task is offloaded
to macro-BS by BS s:

Therefore, the offload delay from the BS s to macro-BS is:

3.2 Computation offloading model

3.2.1 Local execution

When user’s task �n,s is executed locally, computing delay T loc
n,s

 and local power con-
sumption Eloc

n,s
 of the MD can be expressed as follows:

(3)Rk
n,s

= Blog2

(
1 + �k

n,s

)
,

(4)ttran
n,s

=
xk
n,s
Dn,s

Rk
n,s

, ∀n ∈ Ns.

(5)ys→s�

n,s
=

⎧
⎪⎨⎪⎩

1, if �n,s of user n is offloaded

from BS s to a neighbor BS s
�

,

0, otherwise.

(6)ttran
s,s�

=

∑
n∈Ns

ys→s�

n,ss
Dn,s

Γs�

s

, ∀s, s� ∈ S.

(7)ys→c
n,s

=

⎧⎪⎨⎪⎩

1, if �n,s is offloaded from BS s

to macro-BS,

0, otherwise.

(8)ttran
s,c

=

∑
n∈Ns

ys→c
n,s

�n,s

Ωc
s

, ∀s ∈ S.

10284 R. Du et al.

1 3

where f l
n,s

 represents the CPU frequency of user n in BS s, the size of � is deter-
mined by the chip structure of the MD [13, 34].

3.2.2 Edge execution

In our model, if BS s associated with the user has enough resources, it must perform
the user’s task �n,s . In this paper, we define a decision variable ys

n,s
∈ {0, 1} to indicate

whether BS s calculates the user’s unloaded task.

The execution delay of task �n,s on BS s is:

Similar to other studies [31, 35], the transmission delay of BS s sending the calcula-
tion results back to the MD is ignored because the size of the output data is much
smaller than that of the input data. Therefore, the total execution time of the tasks
uninstalled by user n on BS s is:

The energy consumed by transmitting the data of user computing task �n,s to its
associated BS s can be calculated as:

When BS s associated with the user does not have enough computing resources to
meet the user’s computing requirements, BS s needs to unload the task to any BS s′
that has enough computing resources to meet the user’s requirements. The comput-
ing delay of the task on BS s′ is expressed as:

Therefore, the total execution time of user n unloading to BS s′ is:

(9)T loc
n,s

=
Cn,s

f l
n,s

,

(10)Eloc
n,s

=� ⋅

(
f l
n,s

)2

⋅ T loc
n,s
.

(11)ys
n,s

=

⎧
⎪⎨⎪⎩

1, if �n,s offloaded by user n

is computed at BS s,

0, otherwise.

(12)tcomp
n,s

=
Cn,s

fmec
n,s

,

(13)Tmec
n,s

= ttran
n,s

+ tcomp
n,s

,

(14)Etran
n,s

= pn,st
tran
n,s

.

(15)t
comp

n,s�
=

Cn,s

fmec
n,s�

,

10285

1 3

Computing offloading and resource scheduling based on DDPG…

3.2.3 Cloud execution

When no other BS is available, the user’s computing tasks will be executed at
macro-BS, where the computing delay is expressed as:

In summary, the total latency of user’s tasks �n,s calculation is:

The energy consumed by the user to complete the task �n,s is:

To ensure that the user’s computing tasks are performed in only one location, namely
on the user’s device, BS, or macro-BS, the following constraints are imposed:

3.3 Problem formation

The optimization problem is expressed as the following (“CORS” means computa-
tional offloading and resource scheduling)

(16)Tmec
s,s�

= ttran
n,s

+ ttran
s,s�

+ t
comp

n,s�
.

(17)Tc
n
= ttran

n,s
+ ttran

s,c
+

Cn,s

f c
n

,

(18)
T total
n,s

=
(
1 − xk

n,s

)
T loc
n,s

+ xk
n,s

(
ys
n,s
Tmec
n,s

+
∑
n∈Ns

ys→s�

n,s
Tmec
s,s�

+ ys→c
n,s

Tc
n
),

(19)
Etotal
n,s

=
(
1 − xk

n,s

)
Eloc
n,s

+ xk
n,s

(
ys
n,s

+
∑
n∈Ns

ys→s�

n,s

+ ys→c
n,s

)
Etran
n,s

.

(20)
(
1 − xk

n,s

)
+ xk

n,s

(
ys
n,s

+
∑
n∈Ns

ys→s
�

n,s
+ ys→c

n,s

)
= 1,

(21)max
{
ys
n,s
, ys→s

�

n,s
, ys→c

n,s
,∀n

}
≤ xk

n,s
, ∀n ∈ Ns.

(22a)CORS ∶ min
∑
s∈S

∑
n∈Ns

(
�T total

n,s
+ (1 − �)Etotal

n,s

)

(22b)s.t. T total
n,s

⩽ Tn,s, s ∈ S, n ∈ Ns,

10286 R. Du et al.

1 3

 where � is the weight of energy consumption and calculation delay. Constraint (22b)
ensures that the computing task delay of the user’s MD cannot exceed the maximum
delay. Constraint (22c) is the energy consumption for users. Constraint (22d) is the
power constraint for all unloading users. Constraint (22e) ensures that sub-channel
allocation is a binary decision variable, and constraint (22f) ensures each BS multi-
plexes at most one sub-channel, and constraint (22g) ensures each sub-channel can
only be multiplexed by M BSs. Constraints (22h) and (22i) ensure that the user’s
computing tasks can only be performed in one location. Table 2 lists the important
symbols used in the text.

4 Algorithm for solving problem

RL can make optimal decisions in a specific environment through self-study. It mod-
els all realistic problems as an interaction between an agent and its environment. In
every period of interaction, the agent can receive the state of the environment and
choose appropriate actions according to the state. Agents can obtain a reward value
and a new state based on the feedback of the environment [31, 36]. Although RL has
a lot of strengths, it is not scalable and the problems it deals with are limited to low-
dimensional state space [37].

Different from RL, DRL involves the perceptual capabilities of RL and the deci-
sion-making capabilities of RL to solve environmental problems with high-dimen-
sional state space and action space [38]. In this section, the MDP model of this
paper is built in actual MEC scenario. In system, the current state of the BS is only

(22c)Etotal
n,s

⩽ Emax, ∀s ∈ S, n ∈ Ns,

(22d)0 ⩽ xk
n,s
pk
n,s

⩽ Pk
n,s
,

(22e)
∑
k∈K

ck
s
⩽ 1, ∀s ∈ S,

(22f)
∑
s∈S

ck
s
⩽ M, ∀k ∈ K,

(22g)ck
s
∈ {0, 1}, ∀s ∈ S, k ∈ K,

(22h)
(
1 − xk

n,s

)
+ xk

n,s

(
ys
n,s

+
∑
n∈Ns

ys→s
�

n,s
+ ys→c

n,s

)
= 1,

(22i)max
{
ys
n,s
, ys→s

�

n,s
, ys→c

n,s
,∀n

}
≤ xk

n,s
, ∀n ∈ Ns.

10287

1 3

Computing offloading and resource scheduling based on DDPG…

related to the state and actions of the previous moment (for example, whether the
remaining resources of the BS are available, whether the user’s tasks are offloaded
to the BS). The DDPG algorithm is improved to solve the unloading and resource
scheduling problems of computing tasks for mobile users. Although the number of
MDs and ESs will constantly change, the process of task processing will not change.
Computing tasks are randomly generated at the mobile user end, some of which are
processed locally on the MD, and the other part is unloaded to the BS associated
with the user for processing through policy. Finally, the result is returned to the MD.

4.1 Problem formulation based on DDPG

MDP [29] is a mathematical framework describing the discrete time stochastic con-
trol process. Part of the results generated by it is random and controlled by an agent
or decision maker. It is usually made up of five tuples (S,A, p(., .),R, �) [39, 40],
where S denotes a finite set of states, A represents the finite action set, and is the

Table 2 Symbolic representation and description

Notion Description

�n,s Computing tasks for devices
Dn,s Data size of the device computing task
Tn,s The maximum delay of the device
Cn,s CPU cycles required by the device
S The number of BS
Ns The number of users within the range of BS
K The number of sub-channels in the system
Mmax The maximum number of BSs occupying sub-channel
ck
s

ck
s
= 1 if BS occupies sub-channel k. Otherwise, ck

s
= 0

ys
n,s

ys
n,s

= 1 if BS computes the user’s computing tasks. Otherwise, ys
n,s

= 0

ys→s
′

n,s
ys→s

�

n,s
= 1 if the user offloads the computing task from its associated BS to other

nearby BSs. Otherwise, ys→s
�

n,s
= 0

ys→c
n,s

ys→c
n,s

= 1 if the user’s computing tasks are offloaded to macro-BS. Otherwise, ys→c
n,s

= 0

B The bandwidth of the uplink system channel
�2 Gaussian white noise

gk
n,s

Channel gain

Pk
n,s

The maximum transmission power of the user device

Γs
�

s
The X2 link between BS s and BS s′

Ωc
s

Link capacity between BS s and macro-BS
� Effective switching capacity of the user’s mobile device
f l
n,s

Computing power on mobile devices
fmec

n,s
The computing power of BS s

f c
n

Computing power of macro-BS
� Weight between energy consumption and processing delay in system cost

10288 R. Du et al.

1 3

description of the behavior of the agent. p
(
si+1 ∣ si, ai

)
 denotes the transitional prob-

abilities of the system state from state si ∈ S to state si+1 ∈ S after the execution of
action ai ∈ A , where R ∶ S ×A → R is the instantaneous reward function, and �
represents the discount factor used to calculate the cumulative income of the whole
process. When the agent interacts with the environment, the cumulative return at
state st ∈ S is:

To evaluate the value of state s and the optimal strategy, the state value function is
introduced v�(s) and state-behavior value function Q�(s, a) . In practical application,
the Behrman equation is adopted:

State space: we use state St =
(
Dn,s, Tn,s,Cn,s,�,U1,U2,…U2+s

)
 to characterize the

tasks generated by users in slot t and the computational resources available to the
ES. Where Dn,s represents the size of the data amount requested by the MD; Tn,s
represents the maximum tolerated delay of computing tasks on the user’s MD; Cn,s
indicates the computing resources required by the MD to complete the requested
computing task; �i represents the remaining available computing resources on the
ES; Among them � =

(
�1,�2,… ,�i,… ,�s

)
 , �i = fmec

n,s
−
∑S

i=1
xk
n,i
fmec

n,s
 . Ui indicates

whether the I-th computing device in time slot t is used. Meanwhile, to ensure that
the tasks of MDs can only be computed locally or offloaded, only 2 + s computing
devices, including a macro-BS, a user equipment, and s BSs, need to be considered
for computing tasks generated by MDs.

Action space: to unload computing tasks of MDs onto appropriate computing
devices, the action space set in DRL is corresponding to the collection of available
computing devices. (0∕1)j

i
 is used to indicate whether the computing tasks of user i

are unloaded on device j. So it has an action space of A =
(
a1, a2,… , a2+s

)
 .

(23)Gt = Rt+1 + �Rt+2 + �2Rt+3 +⋯ =

n∑
k=0

�kRt+k+1,

(24)v�(s) =E�

(
Rt+1 + �v�St+1 ∣ St = s

)
,

(25)Q�(s, a) =E�

[
Rt+1 + �Q

(
St+1, At+1

)
∣ St = s, At = a

]
,

10289

1 3

Computing offloading and resource scheduling based on DDPG…

Reward: after one step, the agent will receive the corresponding reward R after
executing action A. In general, the reward function and the objective function are
positively correlated. However, since the objective of this paper is to minimize the
cost of the system, the target value can be defined as,
R = −

(
�T total

n,s
+ (1 − �)Etotal

n,s

)
= Z.

4.2 Computational offloading and resource scheduling algorithm based on DDPG

The DDPG algorithm consists of a learning strategy function (Actor) and a learn-
ing action value function (Critic). The actor network defines a parameterized

10290 R. Du et al.

1 3

strategy according to the observed environment state and generates an action,
while the critic is responsible for evaluating the rewards obtained through the
current strategies [30, 41]. The critic network in DDPG uses experiential play-
back technology which uses

{
st, at, rt, st+1

}
 tuple to save its track as a record and

uses a small number of tuples to update network parameters. To minimize the
loss function, the critic network calculates the Q value of the current network and
the Q value of the target network based on the current state and action. Next, the
policy function is updated through the current network using the policy gradient.
Then, update the target network parameters. The present action at can be calcu-
lated using the following formula

Then, the target Q value is given by

The loss function in the evaluation process is calculated as follows:

Next, the actor updates the current policy using policy gradient with the help of �Q
and sample tuples.

In contrast to DQN, DDPG increases the stability of learning by using soft updates
to refresh the parameters. The process of updating target Q network parameter �Q′
in the actor network and target Q network parameter ��′ in the critic network can be
represented as

This section presents a collaborative computing offloading algorithm that leverages
DRL techniques to facilitate efficient offloading. The proposed algorithm, CORS-
DDPG, aims to identify an optimal offloading destination for users, determining
whether to process tasks locally or offload them to an ES or a macro-BS. CORS-
DDPG stores previous experiences in an experience replay buffer, allowing the
mechanism to learn from past decisions and make appropriate offloading choices
tailored to the computational requirements of different users. The goal is to strike a
balance between energy consumption and processing latency. The step-by-step oper-
ation of the CORS-DDPG algorithm is as follows:

(26)at = �
(
st ∣ �

�
)
+Nt,

(27)yi = ri + �Q�
(
si+1,�

�
(
si+1 ∣ �

��)
∣ �Q

�)
,

(28)L =
1

N

∑
i

(
yi − Q

(
si, ai ∣ �

Q
))2

,

(29)∇��J|si ≈
1

N

∑
i

∇aQ
(
s, a|�Q

)
∣s=si,a=�(si)∇���

(
s|��

)
∣si ,

(30)�Q
�

← ��Q + (1 − �)�Q
�

,

(31)��
�

← ��� + (1 − �)��
�

.

10291

1 3

Computing offloading and resource scheduling based on DDPG…

1. The agent acquires actions based on the current state of the environment using
the policy.

2. For each step of the episode, MDs within the coverage area of the micro-BS first
perform NOMA channel occupancy based on cooperative offloading and resource
allocation policies to accomplish data transmission and task execution.

3. Next, energy consumption and transmission delay are calculated based on the
current action and state. Based on these calculations, the reward for the step is
obtained, and the environment state is updated.

4. Store the reward and the next state in the experience pool. Periodically, a por-
tion of the samples from the experience pool is used to train the actor and critic
networks.

5. When the execution step satisfies the policy update condition, specific equation
(28) and equation (29) are used to update the current critic network and current
actor network.

5 Performance evaluation

First of all, the simulation parameter setting and different experimental methods are
recommended. Then, the effects of different parameter settings on the algorithm
convergence performance are compared. Lastly, the scheme’s feasibility is demon-
strated by a comparison with the benchmark offloading method and the communica-
tion method.

5.1 Simulation setup

In this section, we verify the performance of the proposed joint optimization algo-
rithm and the advantages of the NOMA communication method through simulation
experiments. In simulation, we use Python to set the coverage area of the macro-BS
based on our system model, which is designated as an area with a radius of 1000 m.
Micro-BSs are randomly placed in this area. Based on Wang et al. [30], the number
of micro-BSs is from 4 to 8. Each NOMA cluster contains two MDs. The number
of MDs is 8 to 16, and sub-channels are 4. The size of the user task is between 600
and 1000 Kbits. The rest of the parameters for the experiments are shown in Table 3.

5.2 Contrast experiment

5.2.1 Comparison of offloading methods

To compare the impact of the unload methods in this article with the total cost of
the system, we compare them with other offloading methods, all three of which are
described in detail below.

1. Local-Execution-only: the user’s computational tasks are all processed locally
without requesting a computational offload to the MEC server.

10292 R. Du et al.

1 3

2. Edge-Execution-only: User-generated computing tasks are executed only on the
ES associated with them.

3. The scheme proposed in this paper (CORS-DDPG): the user’s computing tasks
can be processed locally, and offloaded to BS associated with it or to macro-BS
for processing.

5.2.2 Comparison of communication methods

To compare the impact of the communication approaches presented in this article on
overall system cost, we compare OMA communication methods, and the compari-
son method is described in detail below.

1. Local-Execution-only: the user’s computational tasks are all processed locally
without requesting a computational offload to BS.

2. Edge-Execution-only: all users’ computing assignments are unloaded to BS for
execution. (communication method using NOMA).

3. The scheme proposed in this paper (CORS-DDPG): all user’s task can be executed
locally, offloaded to its associated BS, or offloaded to macro-BS, where the com-
munication method uses NOMA and orthogonal multiple access (OMA), respec-
tively (CORS-DDPG-NOMA) (CORS-DDPG-OMA).

Next simulation in this paper, according to the number of iterations, evaluates dif-
ferent offloading approaches based on DDPG convergence performance. The metric
used in the article is system cost which is the sum of the completion latency and user
energy consumption.

Table 3 Simulation parameter setting

Parameter Value

The number of Micro-BS [4, 8]

The number of MDs {8, 10, 12, 14, 16}

Number of sub-channels 4
The data size of task 600–1000 Kbits
Computing resources required by user tasks 1000–2000 MHZ
Maximum tolerated latency of a user computing task 0.5-−0.75 s
Computing power of MDs 1–300 Kbits/s
Macro-BS computing power 5 Mbits/s
Channel bandwidth 20 MHz
Bandwidth between BS 20–25 MHz
Bandwidth between BS and macro-BS 50–120 Mbps
Noise power −100 dBm

10293

1 3

Computing offloading and resource scheduling based on DDPG…

5.3 Algorithm performance analysis

In Fig. 3, we illustrate the impact of various network hyperparameters on the algo-
rithm’s convergence performance. We assess these hyperparameters based on the
system cost. Precisely, at the instance where �Actor = 0.01, �Critic = 0.02 , the algo-
rithm fails to converge within a specific time frame. This failure can be attrib-
uted to the neural network’s large update step and the high learning rate of both
the behavioral and critic networks, making it impossible to decide the behavior
that minimizes the system cost. Upon resetting �Actor = 0.0001, �Critic = 0.0002 ,
the algorithm still does not converge. The absence of convergence results from the
reduced learning parameter, which decelerates the network updates, thereby requir-
ing an increased number of iterations to attain convergence. This process demands
additional computational resources, escalating the system’s cost. Then, we reset
�Actor = 0.001, �Critic = 0.002 , which allows the algorithm to converge within a spe-
cific time interval, reducing system cost.

As shown in Fig. 4, we explore the impact of different discount rate factors �
on the algorithm’s performance. We use the system cost as an evaluation metric to
determine the optimal discount rate setting. The system cost reaches its lowest point
when � = 0.95 . The computational offloading strategy is optimized at this point, and
the best offloading decision can be found within a time interval. However, in the
other two sets of experiments, the set � values do not converge quickly and are inef-
fective in reducing the system cost. When larger or smaller values of � are employed,
the algorithm treats the data gathered in the current period as having a prolonged
influence on the entire training process. This results in time intervals that are either
excessively extended or too brief, subsequently impacting the generalization effect.

Fig. 3 Convergence performance of CORS-DDPG algorithm at different learning rates

10294 R. Du et al.

1 3

Fig. 4 Effect of different discount factors on the performance of CORS-DDPG algorithm

Fig. 5 Convergence performance of the CORS-DDPG algorithm

10295

1 3

Computing offloading and resource scheduling based on DDPG…

Consequently, the algorithm fails to reduce the system cost-effectively. To improve
the training strategy, we will set � = 0.95 in the next experiments.

As shown in Fig. 5, CORS-DDPG and Local-Execution-only can converge over
time, the other offloading methods have large fluctuations, but Local-Execution-only
does not lead to a minimization of the total cost of the system and it can be seen that
the CORS-DDPG offloading method is better.

5.4 Performance Comparison

Figure 6 shows the system cost obtained through different offloading methods. It can
be found that the system cost increases with the number of BSs. As shown in Fig. 6,
CORS-DDPG method obtains lower system cost than the other two baseline meth-
ods (Edge-Execution-only, Local-Execution-only), this is because these two meth-
ods cannot handle the dynamic environmental changes.

Figure 7 displays the quantitative relationship established between the system
cost and BS when the number of sub-channels varies. Therefore, the sub-channels
are different. In Fig. 7, the system cost is gradually increasing. As the number of
sub-channels decreases the system cost is increases, this is because when there are
fewer sub-channels in the system the quantity of BSs occupying the same channel
increases, which leads to severe BS interference and in turn increases the overall
cost of the user offloading process.

Figure 8 shows the system cost with the amount of users under the CORS-DDPG
algorithm. From Fig 8, the total system cost is gradually growing as the amount of

Fig. 6 Total system reward in relation to the number of BSs

10296 R. Du et al.

1 3

users increases, but the proposed CORS-DDPG scheme allows for a lower system
cost than other offloading schemes.

Figure 9 displays the correlation between the system cost and the size of the input
data for user computing tasks. In Fig. 9, the total system cost increases with the vol-
ume of data increases, this is because a larger user computing task load will lead to

Fig. 7 Total system reward in relation to the number of BSs

Fig. 8 Total system reward in relation to the number of users

10297

1 3

Computing offloading and resource scheduling based on DDPG…

a significant increase in the cost of local computing and also, more users will choose
offload their tasks to BS.

In Fig. 10, the impact of two different communication approaches is compared
on the system cost. The total system cost of CORS-DDPG-NOMA is lower than
the other solutions, which shows the effectiveness of the communication method we
have applied.

Fig. 9 Total system reward in relation to task size

Fig. 10 Total system reward in relation to the number of BSs

10298 R. Du et al.

1 3

6 Conclusion

In this paper, we propose an offloading model for cloud-edge-end cooperative off-
loading by combining UDEC and NOMA to achieve a balance between energy
consumption and latency of MDs in the offloading process of computing tasks. The
model has important applications in the field of medical IoT, which can provide
energy-efficient and low-latency services according to the different medical needs of
patients. The study takes into account energy consumption, latency, and QoS, aim-
ing to minimize the total cost incurred during user offloading tasks by means of joint
offloading decisions, computational resources, and sub-channel allocation. Despite
the objective problem being non-convex, this paper proposes a DRL cooperative off-
loading algorithm to determine the optimal offloading strategy for users. Simulation
results show that the proposed offloading scheme achieves lower total system cost
compared to schemes that process only locally or offload only to ESs. In addition,
MOMA can lead to a near-optimal system performance compared to OMA.

However, the research in this paper has some shortcomings and needs to be con-
sidered. For example, ESs cannot handle the offloading of users’ computing tasks in
a dynamic environment in real-time. In future research, the mobility of users will be
considered, such as the sudden movement of a user from the coverage area of micro-
BS to that of another.

Author contributions The authors contributed equally to this work.

Funding The authors did not receive support from any organization for the submitted work.

Availability of data and materials The raw/processed data required to reproduce these findings cannot be
shared at this time as the data also forms part of an ongoing study.

Declarations

Conflict of interest The authors declare that they have no competing interests to this work.

Ethical approval Not applicable.

References

 1. Shukla PP, Pandey S (2023) Maa: multi-objective artificial algae algorithm for workflow
scheduling in heterogeneous fog-cloud environment. J Supercomput. https:// doi. org/ 10. 1007/
s11227- 023- 05110-9

 2. Rao AR, Clarke DJB (2020) Perspectives on emerging directions in using IoT devices in blockchain
applications. Internet Things 10:100079

 3. Chen X, Xie H, Li Z, Cheng G, Leng M, Wang FL (2023) Information fusion and artificial intel-
ligence for smart healthcare: a bibliometric study. Inf Process Manag 60:103113

 4. Wan Z, Dong X (2022) Computation power maximization for mobile edge computing enabled dense
network. Comput Netw 220:109458

 5. Yang S (2020) A joint optimization scheme for task offloading and resource allocation based on
edge computing in 5g communication networks. Comput Commun 160:759–768

https://doi.org/10.1007/s11227-023-05110-9
https://doi.org/10.1007/s11227-023-05110-9

10299

1 3

Computing offloading and resource scheduling based on DDPG…

 6. Liao L, Lai Y, Yang F, Zeng W (2022) Online computation offloading with double reinforcement
learning algorithm in mobile edge computing. J Parallel Distrib Comput 171:28–39

 7. Ding Z, Fan P, Poor HV (2018) Impact of non-orthogonal multiple access on the offloading of
mobile edge computing. IEEE Trans Commun 67:375–390

 8. Feng S, Zhang R, Xu W, Hanzo LH (2019) Multiple access design for ultra-dense VLC networks:
orthogonal vs non-orthogonal. IEEE Trans Commun 67:2218–2232

 9. Gao Y, Zhang H, Yu F, Xia Y, Shi Y (2022) Joint computation offloading and resource allocation for
mobile-edge computing assisted ultra-dense networks. J Commun Inf Netw 7:96–106

 10. Du R, Liu C, Gao Y, Hao P, Wang Z (2022) Collaborative cloud-edge-end task offloading in noma-
enabled mobile edge computing using deep learning. J Grid Comput. https:// doi. org/ 10. 1007/
s10723- 022- 09605-2

 11. Shukla PP, Pandey S, Hatwar P, Pant A (2023) Fat-eto: fuzzy-ahp-topsis-based efficient task offload-
ing algorithm for scientific workflows in heterogeneous fog-cloud environment. Proc Natl Acad Sci,
India, Sect A 93:339–353

 12. Nath S, Li Y, Wu J, Fan P (2020) Multi-user multi-channel computation offloading and resource
allocation for mobile edge computing. In: ICC 2020—2020 IEEE International Conference on Com-
munications (ICC), pp 1–6

 13. Liu J, Guo S, Wang Q, Pan C, Yang L (2022) Optimal multi-user offloading with resources alloca-
tion in mobile edge cloud computing. Comput Netw 221:109522

 14. Qi J, Liu Y, Ling Y, Xu B, Dong Z, Sun Y (2022) Research on an intelligent computing off-
loading model for the internet of vehicles based on blockchain. IEEE Trans Netw Serv Manage
19:3908–3918

 15. Liu S, Yang T (2020) Delay aware scheduling in UAV-enabled OFDMA mobile edge computing
system. IET Commun 14:3203–3211

 16. Xing H, Liu L, Xu J, Nallanathan A (2019) Joint task assignment and resource allocation for d2d-
enabled mobile-edge computing. IEEE Trans Commun 67:4193–4207

 17. Khan MJ, Chauhan RCS, Singh I (2022) Energy-efficient multiple cooperative moving relay selec-
tion for heterogeneous nonorthogonal-multiple access systems. Int J Commun Syst. https:// doi. org/
10. 1002/ dac. 5408

 18. Khan MJ, Chauhan RCS, Singh I (2022) Outage probability and throughput of cooperative non-
orthogonal multiple access with moving relay in heterogeneous network. Trans Emerging Telecom-
mun Technol. https:// doi. org/ 10. 1002/ ett. 4616

 19. Ke F, Lin Y, Liu Y, Zhou H, Wen M, Zhang Q (2023) Task offloading, caching and matching in
ultra-dense relay networks. IEEE Trans Veh Technol 72:4010–4025

 20. Long K, Leung VCM, Zhang H, Feng Z, Li Y, Zhang Z (2017) 5g for future wireless networks. In:
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering

 21. Hu S, Li G (2020) Dynamic request scheduling optimization in mobile edge computing for IoT
applications. IEEE Internet Things J 7:1426–1437

 22. Lu Y, Chen X, Zhang Y, Chen Y (2022) Cost-efficient resources scheduling for mobile edge com-
puting in ultra-dense networks. IEEE Trans Netw Serv Manage 19:3163–3173

 23. Lin Z-H, Gu B, Zhang X, Yi D, Han Y (2022) Online task offloading in UDN: a deep reinforcement
learning approach with incomplete information. In: 2022 IEEE Wireless Communications and Net-
working Conference (WCNC), pp 1236–1241

 24. Ahmed AH, Elmokashfi AM (2022) Icran: intelligent control for self-driving ran based on deep
reinforcement learning. IEEE Trans Netw Serv Manage 19:2751–2766

 25. Sowjanya K, Porwal A, Pandey S, Mishra PK (2022) Tlbo-based resource allocation scheme in 5g
h-CRAN. In: 2022 14th International Conference on Communication Systems and Networks (COM-
SNETS), pp 646–651

 26. Sun W, Zhang H, Wang R, Zhang Y (2020) Reducing offloading latency for digital twin edge net-
works in 6g. IEEE Trans Veh Technol 69:12240–12251

 27. Gupta S, Rajan D, Camp JD (2022) Noma-enabled computation and communication resource trad-
ing for a multi-user MEC system. IEEE Trans Veh Technol 71:7532–7547

 28. Li L, Cheng Q, Tang X, Bai T, Chen W, Ding Z, Han Z (2021) Resource allocation for NOMA-
MEC systems in ultra-dense networks: a learning aided mean-field game approach. IEEE Trans
Wirel Commun 20:1487–1500

 29. Zou J, Hao T, Yu C, Jin H (2021) A3c-do: a regional resource scheduling framework based on deep
reinforcement learning in edge scenario. IEEE Trans Comput 70:228–239

https://doi.org/10.1007/s10723-022-09605-2
https://doi.org/10.1007/s10723-022-09605-2
https://doi.org/10.1002/dac.5408
https://doi.org/10.1002/dac.5408
https://doi.org/10.1002/ett.4616

10300 R. Du et al.

1 3

 30. Wang Y, Fang W, Ding Y, Xiong NN (2021) Computation offloading optimization for UAV-assisted
mobile edge computing: a deep deterministic policy gradient approach. Wirel Netw 27:2991–3006

 31. Liu T, Zhang Y, Zhu Y, Tong W, Yang Y (2021) Online computation offloading and resource sched-
uling in mobile-edge computing. IEEE Internet Things J 8:6649–6664

 32. Jiang X, Hou P, Zhu H, Li B, Wang Z, Ding H (2023) Dynamic and intelligent edge server place-
ment based on deep reinforcement learning in mobile edge computing. Ad Hoc Netw 145:103172

 33. Yu B, Pu L, Xie Q, Xu J (2018) Energy efficient scheduling for IoT applications with offloading,
user association and bs sleeping in ultra dense networks. In: 2018 16th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp 1–6

 34. Wen Y, Zhang W, Luo H (2012) Energy-optimal mobile application execution: taming resource-
poor mobile devices with cloud clones. In: 2012 Proceedings IEEE INFOCOM, pp 2716–2720

 35. Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) Optimized computation offloading perfor-
mance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J
6:4005–4018

 36. Sun J, Lu Y, Cui L, Fu Q, Wu H, Chen J (2022) A method of optimizing weight allocation in data
integration based on q-learning for drug-target interaction prediction. Front Cell Dev Biol. https://
doi. org/ 10. 3389/ fcell. 2022. 794413

 37. Chen L, Gong G, Jiang K, Zhou H, Chen R (2022) Ddpg-based computation offloading and service
caching in mobile edge computing. In: IEEE INFOCOM 2022—IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp 1–6

 38. Ale L, King SA, Zhang N, Sattar AR, Skandaraniyam J (2021) D3pg: Dirichlet DDPG for task
partitioning and offloading with constrained hybrid action space in mobile-edge computing. IEEE
Internet Things J 9:19260–19272

 39. Sadiki A, Bentahar J, Dssouli R, En-Nouaary A, Otrok H (2021) Deep reinforcement learning for
the computation offloading in mimo-based edge computing. Ad Hoc Netw 141:103080

 40. Zhang Y, Zhang Z, Chen L, Wang X (2021) Reinforcement learning-based opportunistic routing
protocol for underwater acoustic sensor networks. IEEE Trans Veh Technol 70:2756–2770

 41. He J (2023) 5g communication resource allocation strategy for mobile edge computing based on
deep deterministic policy gradient. J Eng. https:// doi. org/ 10. 1049/ tje2. 12250

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Ruizhong Du1,2 · Jingya Wang1,2 · Yan Gao3

 * Jingya Wang
 wjy1583616@163.com

 Ruizhong Du
 durz@hbu.edu.cn

 Yan Gao
 gymorsiback@gmail.com

1 School of Cyber Security and Computer, Hebei University, Baoding 071000, Hebei, China
2 Hebei Province Key Laboratory of High Confidence Information System, Hebei University,

Baoding 071000, Hebei, China
3 School of New Media and Communication, Tianjin University, Tianjin 300000, China

https://doi.org/10.3389/fcell.2022.794413
https://doi.org/10.3389/fcell.2022.794413
https://doi.org/10.1049/tje2.12250

	Computing offloading and resource scheduling based on DDPG in ultra-dense edge computing networks
	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Communication model
	3.2 Computation offloading model
	3.2.1 Local execution
	3.2.2 Edge execution
	3.2.3 Cloud execution

	3.3 Problem formation

	4 Algorithm for solving problem
	4.1 Problem formulation based on DDPG
	4.2 Computational offloading and resource scheduling algorithm based on DDPG

	5 Performance evaluation
	5.1 Simulation setup
	5.2 Contrast experiment
	5.2.1 Comparison of offloading methods
	5.2.2 Comparison of communication methods

	5.3 Algorithm performance analysis
	5.4 Performance Comparison

	6 Conclusion
	References

