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Abstract
A new four-dimensional chaotic system with high complexity is proposed, and the 
analysis of its dynamics reveals that the system shows a rare topological attrac-
tor structure symmetry phenomenon. The phenomenon of inverse multiplicative 
bifurcation and multistability, which changes from a quadruple period to a double 
period and then to a single period, are found. A complex oscillatory transforma-
tion between chaos and period can be observed, highlighting the complexity of the 
system. The transient hyperchaos and burst oscillations are found in the time series 
and Lyapunov exponential spectra of the system, and the rich dynamical behavior 
of the system is verified by the 0–1 test and complexity spectral entropy test. The 
analog circuitry of the system is simulated based on Multisim, and the actual digital 
circuitry of the system is implemented through a Field Programmable Gate Array. 
The experimental results and the numerical simulation results agree and prove the 
feasibility of the constructed system. An image encryption algorithm is designed 
by combining the disruption-diffusion algorithm with the DNA encoding algorithm, 
and the system is analyzed and verified to be highly sensitive to the chaotic sequence 
key and initial value. Moreover, the key space of the algorithm is large and the infor-
mation entropy is close to the ideal value, so the new system proposed can contrib-
ute to play a role in the field of secure communication.
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1  Introduction

Chaos is a form of motion unique to nonlinear dynamical systems, which is 
widely found in nature and many scientific fields, such as biology, physics, chem-
istry, geology, and so on. Chaos reveals the complexity that exists universally in 
nature and human society: the unity of order and disorder, the unity of certainty 
and probability, which opens up people’s horizons and deepens their understand-
ing of the objective world. Chaos is the inherent randomness of determinism, a 
world in which determinism and probability are dialectically unified. Chaotic 
motion is one of the most fundamental forms of motion in nature. Meteorologist 
Lorenz first discovered chaos in the 1960s while studying the atmosphere, and 
this chaos is what we know as the "butterfly effect." The 1970s was a glorious era 
in the history of the development of chaos science, in which chaos formally began 
to appear as a new independent discipline, and since then chaos science has ush-
ered in a research boom and became a research hotspot [1–4], accompanied by 
the rapid development of the Internet, and chaotic systems have been widely used 
in pattern recognition, biomedicine, neural networks, secure communications and 
image encryption  [5–9].

Image encryption is the application of encryption algorithms to clutter the tar-
get image so that the encrypted image cannot be recognized directly. In 1998, an 
image encryption scheme based on a chaotic mapping "disorder and diffusion" 
system [10, 11] was proposed by Fridrich. Image encryption based on chaotic 
mapping should have the operation of disorder and diffusion processing. In the 
process of disruption, only the position information of the pixel is changed with-
out changing the size of the pixel, thus changing the correlation between neigh-
boring pixels in the image, and in the process of diffusion, the operation is just 
the opposite. Liu  [10] et  al. proposed an image encryption algorithm based 
on segmented linear chaotic system encryption. M. Gao et  al.  [11] proposed a 
chaos-based permutation-diffusion image encryption algorithm, and P. Fang  [12] 
et al. proposed a grouped image encryption algorithm based on an improved two-
dimensional logistic chaotic mapping combined with DNA sequence operations 
[13].

Existing chaotic systems, with relatively simple structures and low complexity, 
use encryption methods that can achieve the purpose of image encryption, but 
they are single encryption. Moreover, most of them use low-dimensional chaotic 
systems, which are applied in image encryption, have the disadvantages of lim-
ited key space, low sensitivity, and undesirable information entropy, and are less 
secure in image encryption applications  [14–17, 35, 36].

In order to improve the complexity of chaotic systems and security in image 
encryption, a new four-dimensional chaotic system is proposed. The system has a 
symmetric topology, which not only reduces the complexity of the system of dif-
ferential equations and provides a way to simplify the problem, but also provides 
a better understanding of the behavior of the system by analyzing the symme-
try of the system and the effect of symmetry transformations to infer the stabil-
ity characteristics of the system.The system is found to have special dynamical 
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properties not found in other systems. The system has excellent properties such 
as inverse multiplicative periodic bifurcation, transient hyperchaos phenomenon, 
sudden oscillation phenomenon, and coexisting attractor symmetry, and the sys-
tem is more complex and can be applied to image encryption with higher secu-
rity. Meanwhile, the comparison between the proposed system and the system 
shown in Table 1 also demonstrates the rich dynamic characteristics of the sys-
tem. Compared with the chaotic systems in the literature  [16, 17], the transient 
hyperchaos phenomenon demonstrates more diverse and rich dynamic behaviors 
of chaotic systems, and the complexity of the hyperchaos phenomenon makes it 
possible to be applied to data encryption and confidential transmission to pro-
vide higher security for information transmission.Bursty oscillations provide 
the system with different states and behavioral modes, expanding the variability 
and adaptability of the system to a wider range of conditions and environments. 
Coexisting attractor symmetries can be used to enhance the robustness of the sys-
tem. Different attractors represent different signals or behavioral patterns, and by 
selecting specific attractors to suppress or filter noise components, the robustness 
of the system to noise interference can be improved. In this paper, the Longe-
Kuta algorithm is used in analog circuit simulation, the Euler algorithm is used 
in FPGA, and in image encryption it is a combination of Arnold disruption and 
DNA dynamic encryption coding to design a new image encryption algorithm.

Section  2 presents a novel four-dimensional hyperchaotic system and analyzes 
the phase diagram of the system. Sections 3 and 4 analyze the bifurcation diagram, 
Lyapunov exponential spectrum, complexity, and coexisting attractors, and find that 
the system has special dynamical properties not found in other systems. The system 
has excellent properties such as inverse multiplicative periodic bifurcation, transient 
hyperchaos phenomenon, sudden oscillation phenomenon, and coexisting attractor 
symmetry. The design and simulation of the analog circuit is carried out in Sect. 5. 
The chaotic circuit is constructed and simulated using Multisim circuit simulation 
software and the simulation results are consistent with the system phase diagram.
Sect. 6 designs and implements the chaotic circuit using Field Programmable Gate 
Array (FPGA). Section 7 performs the image encryption analysis the new system is 
very sensitive to the image key and the information entropy and correlation are close 
to ideal values. Section 8 concludes that the new system has high complexity and 
excellent security performance in image encryption applications.

2 � Chaotic system construction

The Lorenz system is a nonlinear dynamical model proposed by American mete-
orologist Edward Lorenz in 1963 to describe fluid motion in the atmosphere. It is 
a simplified three-dimensional dynamical system represented by three variables: 
x, y, and z. The Lorenz system has chaotic behavior, i.e., small changes to the ini-
tial conditions may cause the system to evolve completely different trajectories. 
The equations of the Lorenz system are expressed as:
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We propose to introduce a nonlinear term and a sinusoidal function to present a 
new four-dimensional hyperchaotic system that consists of five parameters and four 
variables as follows:

where, x,y,z,u are the state variables of the system and a = 3.04, b = 1.02, c = 9.02, 
d = 1, e = 2.02 are the system parameters. When the system parameters are a = 3.04, 
b = 1.02, c = 9.02, d = 1, e = 2.02 when the initial value is (1,1,0,0), the system will 
have a complex chaos phenomenon, and at this time, the Lyapunov exponent is 
LE1 = 0.0552 LE2 = 0.0114 LE3 = -0.415 LE4 = -10.67, respectively. Simulation was 
carried out using Matlab keeping the parameters as a = 3.04, b = 1.02, c = 9.02, d = 1, 
e = 2.02 constant. The initial values are for are (1,1,0,0) Relative error tolerance and 
absolute error tolerance are set to le−7 after iteration 1000 times to get the 2D map-
ping of the system in four planes (x,y), (x,z), (x,u) and (y,z) as shown in Fig. 1a, b, c, 
and d. It can be observed that has a complex stretching and twisting structure, and 
from the overall view, the system is again very stable. The orbits in the figure have 
complex paths of vortices and the trajectories are very rich and dense with a rela-
tively regular and simple form.

3 � Analysis of the dynamics of the system

3.1 � Equilibrium point

Find the equilibrium point of the system so that the right-hand side of the system 
equation is equal to zero. When the parameters a = 3.04, b = 1.02, c = 9.02, d = 1, 
e = 2.02, the equilibrium point of the system is (0,0,0,0). The Jacobi matrix obtained 
by linearizing the system:

Let det(J − λ I) = 0, where I is the unit matrix, and find the eigenvalues 
λ1 =  −9.0200, λ2 =  −3.1807, λ3 = 0.5803 + 1.1199i, λ4 = 0.5803–1.1199i, at the 

(1)
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⎦
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equilibrium point S1(0,0,0,0). Eigenvalue analysis shows that the system has two 
positive eigenvalues and two negative eigenvalues, which means that the equilib-
rium point S1(0,0,0,0) is an unstable saddle focus.

3.2 � Dissipative nature of the system

The dispersion of the system is derived from the system equation:

Substituting a = 3.04, b = 1.02, and c = 9.02, gives ∇V = −11.04, so the system 
scatter is less than 0. The system is dissipative and converges according to the expo-
nential form dv/dx = e−11.02t. As t → ∞ there is a trajectory of the system that will 

(4)∇V =
𝜕ẋ

𝜕x
+

𝜕ẏ

𝜕y
+

𝜕ż

𝜕z
+

𝜕u̇

𝜕u
= −a + b − c

Fig. 1   Phase diagram of the system in each direction: a the x–y plane b the x–z plane c the x–u plane d 
the y–z plane
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finally be restricted to a volume of zero limit point set and its dynamical behavior 
will be fixed on an attractor, which is sufficient evidence for the existence of the 
attractor.

3.3 � Lyapunov exponential spectrum and dimensionality

The Lyapunov exponent can quantitatively characterize the state of motion of a sys-
tem and graphically describe the degree of mutual attraction and repulsion between 
neighboring trajectories of the system, which is one of the most important physical 
quantities to characterize chaotic systems. Therefore, using the Lyapunov exponen-
tial spectrum, it can be observed when the parameters of the system change, the 
motion state of the system changes accordingly can be observed. The bifurcation 
is that when the initial values of the variables of the state or the parameters of the 
system change, the dynamic state of the system changes as well. The system is a 
four-dimensional chaotic system. The curves shown in Fig. 2 are represented as LE1, 
LE2, LE3, and LE4 in order from top to bottom. When the parameters of the system 
are set to a = 3.04, b = 1.02, c = 9.02, d = 1, and e = 2.02, the Lyapunov exponents 
of the system are calculated as LE1 = 3.26986, LE2 = 2.27603, LE3 = 0.277269 and 
LE4 = −11.0299, and it can be clearly observed that the system is in a state of hyper-
chaos. The Lyapunov dimension of the new system is:

The maximum Lyapunov exponent of the four-dimensional hyperchaotic system 
is calculated. Since the system is four-dimensional, j = 3, the maximum Lyapunov 
exponent is obtained as greater than 0 and the order is not an integer, indicating that 
the system is chaotic. The curve of this chaotic system as the parameter changes for 
a =  [0, 5] can be seen in Fig. 6a. Observing the curves, it can be seen that when a ∈  
[0.72,0.78],  [1.2,1.26],  [2.85,3.1], it can be observed that there exist two Lyapunov 
exponents greater than zero and the system is in a hyperchaotic state. When a = 3.02, 

(5)DL = j +
1

|||�Lj +1
|||

j∑

i=1

�Li = 3 +
�L1 + �L2 + �L3

||�L4||
= 3.5279

Fig. 2   Lyapunov exponent chart
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it is in a hyperchaotic state. The super-mixing state has randomness and high unpre-
dictability, making its encryption more effective and secure. There is a positive LE 
index maintained in the interval of variation of a. Chaotic attractors exist and are 
always in complex chaotic systems.

3.4 � Poincaré cross section, power spectrum, 0–1 tests analysis

3.4.1 � Poincaré cross section

The acyclic properties of chaotic systems can be well described by the Poincaré 
cross section. This observation highlights the disorderly and unpredictable behav-
ior of the system. It is very effective for analyzing multivariate systems, where the 
motion is periodic when there is only one immobile point or few discrete points on 
the Poincaré cross section. When the Poincaré cross-section is a closed continuous 
curve, the motion is quasi-periodic. When the Poincaré section is a continuous curve 
or a patchwork of dense points, the motion is chaotic. The 2-dimensional Poincaré 
cross-sections in phase space are made as in (a), (b), and c in Fig. 3 to obtain in the 
x-u, x–y, and y-u planes, respectively. By looking at the cross-sectional view of the 
system, it can be found that the system is chaotic. It can also be observed that Fig. 3a 
and c are symmetric about the u-plane and Fig. 3b is symmetric about the origin. 
The symmetry of the Poincaré cross-section diagram allows a simpler understanding 
and analysis of the dynamical behavior of the system.

3.4.2 � 0–1 tests analysis

The basic idea of the "0–1 test"  [18, 19] is to create a stochastic dynamic process for 
the data and then study how the size of the stochastic process varies over time. The 
system is observed to show an unconstrained trajectory in the (p, s) plane similar to 
Brownian motion, and an algorithm is used to test whether the output is close to 1 to 
distinguish the creation of chaos. The system is proved to be chaotic by calculating 
the final value of K (K = 0.9798), and the trajectory maps are drawn with p(n) and 

(a) (b) (c)

Fig. 3   Cross-section of Poincaré in different directions: a x-u direction with z = 0 b x–y direction with 
z = 0 c y-u direction with z = 0
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s(n) as the horizontal and vertical axes, respectively, and the steps of the algorithm 
whose maps produce the Brownian specific algorithm are as follows.

Define the following two equations:

When �(j) = jc +
∑j

i=1
�(j), j = 1, 2...

The diffusion behavior of p(n) and s(n) can be analyzed by calculating the dis-
placement mean square error M(n), which is calculated as follows.

The convergence of M(n) can be used to measure the convergence of p(n) and 
s(n). If the discrete time series is ordered, M(n) is a bounded quantity, however, if 
the time series is chaotic, M(n) grows linearly in n. The convergence of M(n) is a 
measure of the convergence of p(n) and s(n).

Finally, the linear growth rate K, the linear regression coefficient of M(n) with n, 
is calculated. The asynchronous growth rate is:

By analysis, Fig. 4b shows that the motion of the system in the (p, s) plane exhib-
its an unbounded trajectory similar to Brownian motion, which proves that the sys-
tem is a chaotic dynamical system.For example, Fig.  4a is the 0–1 test plot with 

(6)p(n) =

n∑

j=1

�(j) cos(�(j)), n = 1, 2...

(7)s(n) =

n∑

j=1

�(j)sin(�(j)), n = 1, 2...

(8)M(n) = lim
N→+∞

1

N

N∑

j=1

[
p(j + n) − p(j)

]2
, n = 1, 2...

(9)K = lim
n→+∞

lgM(n)

lg n

Fig. 4   Different initial values: a Initial values of (x1, y1, z1, u1) = (0, 1, 0, 0), b Initial values of (x2, y2, z2, 
u2) = (1, 1, 0, 0)
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initial values of (x1, y1, z1, u1) = (0, 1, 0, 0), and Fig. 4b is the 0–1 test plot with ini-
tial values of (x2, y2, z2, u2) = (1, 1, 0, 0), and the comparison between the two plots 
shows that (1, 1, 0, 0) is more suitable to be the initial value of this system.

3.4.3 � Power spectrum

The power spectrum is a common method to analyze the chaotic behavior of a sys-
tem, because chaotic systems produce chaotic signals that are non-periodic, so the 
power spectrum is also continuous. Figure 5 is obtained with initial values of (1, 1, 
0, 0) parameters a = 3.04, b = 1.02, c = 9.02, d = 1, e = 2.02. From Fig. 5, it can be 
seen that the power spectrum is continuous, which indicates that the system is non-
periodic, and therefore the system is chaotic.

4 � Dynamical behavior of chaotic systems with changing parameters

4.1 � Bifurcation diagram and Lyapunov exponential spectrum with parameters

Put an as a variable, and with initial values of (1,1,0,0) and step size of 0.01, only 
the parameter a is changed, and the rest is kept constant to observe the change 
of the system state. For parameters a ∈  [0,5], keeping b = 1.02, c = 9.02, d = 1, 
and e = 2.02, the Lyapunov exponential spectrum and bifurcation diagram of the 
system are shown in Fig.  6a and b. When the parameter a is changed, periodic 
and chaotic regions are evident in the system. When a ∈  [0, 0.66], the system 
is in a periodic state, at a ∈  [0.7, 1.48], the system is chaotic, at a ∈  [1.5, 2.35], 
the system appears again in a periodic state, when the parameter a ∈  [2.4, 4], 
the system appears in a chaotic state, there are alternating chaotic and periodic 
changes, making its system more complex. When the parameter a ∈  [4.2,5], the 
system state changes as shown in Fig. 6, it is obvious that the bifurcation diagram 
of the system undergoes a bifurcation where the quadruple period becomes a dou-
ble period and then a bifurcation where the double period becomes a period. The 
emergence of multiplicative bifurcation is an important phenomenon of chaotic 

Fig. 5   Power spectrum of the system
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systems, and the appearance of multiplicative bifurcation will enrich the dynami-
cal behavior of chaotic systems and make them more diverse and complex.

For parameter c, take the parameter c ∈  [0, 10] and set a = 3.04, b = 1.02, d = 1, 
e = 2.02, and the initial values of (x0,y0,z0,u0) = (1,1,0,0), the bifurcation dia-
gram and Lyapunov exponential spectrum of the system is shown in Fig. 7a and 
b. When c ∈  [2.4,4.2], the system maintains a chaotic state accompanied by a 
transient hyperchaotic state, and when the parameter c = 9.02, the system has two 
Lyapunov exponents greater than 0, which is also hyperchaotic at this moment. 
The hyperchaotic state is more complex than the chaotic state, with better encryp-
tion performance and higher security. In the corresponding bifurcation diagram, 
in which chaos and cycles alternate with each other, the chaotic state of the sys-
tem is distributed in a larger parameter space, from which it can be concluded 
that the system has strong randomness and a larger key space, which should be 
better for image encryption.

Fig. 6   Lyapunov index spectrum and bifurcation diagram: a The Lyapunov index spectrum for parameter 
a b Bifurcation diagram for parameter a 

Fig. 7   Lyapunov index spectrum and bifurcation diagram: a The Lyapunov index spectrum for parameter 
c b Bifurcation diagram for parameter c 
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4.2 � Burst oscillations and intermittent chaos

Keeping b = 1.02, c = 9.02, d = 1, e = 2.02, when a = 1.22, the timing waveform is 
obtained for the selected time  [250,500]s as shown in Fig. 8c. In Fig. 8, we can 
find that the attractor appears to burst oscillation, which is not easy to appear in 
chaotic systems. The burst oscillation can change the flatness and monotony of 
the timing diagram and make it more vivid and complex. Figure 8a and b show 
the phase diagrams when changing the time diagrams, and it can be seen that 
the phase diagrams change from periodic to chaotic with rich dynamical behav-
ior. The Lyapunov exponents at this point in Fig. 8a are LE1 = 0, LE2 = −0.0143, 
LE3 = −0.3313, LE4 = −8.5195, and in Fig.  8b the Lyapunov exponents at this 
point in time are LE1 = 0.081, LE2 = 0.0599, LE3 = -0.2723, LE4 = −9.0780, 
respectively. Figure 9c shows the timing diagram for selected times  [500,1000]
s for a = 3.3. It can be observed that the timing diagram changes from periodic 
to chaotic and back to periodic, with periodic and chaotic states alternating with 
intermittent chaotic states. Figure 9a and b show the phase diagrams that change 
from periodic to chaotic. The Lyapunov exponents of Fig. 9a are LE1 = −0.1363, 
LE2 = 0, LE3 = −0.2617, LE4 = −9.9137. The Lyapunov exponents of Fig. 9b are 

(a) (b)

(c)

Fig. 8   Outbreak: a Attractor diagram of the cycle b Attractor diagram of the chaos c Timing waveform at 
parameter a = 1.22
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LE1 = 0.0781, LE2 = 0.0206, LE3 = −0.4490, LE4 = -10.9200. It is thus observed 
that the phase and timing diagrams of the system are very sensitive to the param-
eters. As the parameter changes, the topology of the attractor also changes, mak-
ing the system more secure for application in image encryption.

The motion state of a system can change from one stable state to another, 
from an immobile point to a periodic state, and from a periodic state to a cha-
otic state. Keep the parameters b = 1.02, c = 9.02, d = 1, and e = 2.02, so that 
the parameter changes within (0, 5). When a ∈  [0.391,0.410], the system is in 
the motionless point state; when a ∈  [0.569,0.571], the system changes from an 
immobile point state to a periodic state; when a ∈  [0.689,0. 692], the system 
changes from a periodic state to a chaotic state. When a ∈  [2.429,2.433], the 
system changes from a chaotic state to a hyperchaotic state. The system exists 
in the form of jumps between immobile points, cycles, non-cycles, chaos, and 
hyperchaos, and has a rich dynamical behavior. As shown in Fig. 10a, b, c, and d 
are the phase diagrams of the different states of the system when the parameter a 
is varied.As shown in Fig. 10a, b, c and d the Liapunov exponents for the states 
are shown in Table 2.

(a) (b)

(c)

Fig. 9   Intermittent oscillation: a Attractor diagram of the cycle b Attractor diagram of the chaos c Tim-
ing waveform at parameter a = 3.3
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4.3 � Sensitivity to initial conditions

Initial value sensitivity means that a relatively small change in the initial state of the 
system can lead to a large difference in the trajectory of the system. As shown in 
Fig. 11, the solid blue line has an initial value of  [1,1,0,0] for time-series, and the 
solid purple line has an initial value of  [1,1,0,1] for the time-series. It can be seen 

Fig. 10   Phase diagram of the system in different states: a y–z plane at a = 0.4 b y–z plane at a = 0.57 c 
y–z plane at a = 0.69 d y–z plane at a = 2.43

Table 2   Lyapunov index in different states

Phase portrait Lyapunov exponent Current state

Figure 10a LE1 = −0.0215, LE2 = −0.0711,
LE3 = −1.2860, LE4 = −7.0200

Immobile point state

Figure 10b LE1 = 0, LE2 = −0.2451,
LE3 = −0.4673,LE4 = −7.7970

Periodic state

Figure 10c LE1 = 0.0426, LE2 = −0.1949,
LE3 = −0.7447, LE4 = −8.1500

Chaotic state

Figure 10d LE1 = 0.0536, LE2 = 0.0270,
LE3 = −0.2910,LE4 = −10.1900

Hyperchaotic state
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that the system has a high sensitivity to initial values, and this excellent feature can 
be applied to confidential communications, such as image encryption.

4.4 � System coexistence attractor analysis

Chaotic systems are sensitive to changes in initial values, keeping the parameters 
of the system unchanged. Changing the initial values of the system will cause the 
system trajectories to change, with some trajectories eventually converging on the 
same attractor and some trajectories clustering on other attractors. These attractors 
are called coexisting attractors. To better analyze the state of the hyperchaotic sys-
tem, the existence of multiple coexisting attractors of the system can be found by 
changing the initial state of the system with well-defined system parameters. When 
the initial parameters a = 3.04, b = 1.02, c = 9.02, d = 1, and e = 2.02, Fig. 12a, b, c, d 
show the attractor coexistence diagram in the x–y plane, the x–z plane, the u-z plane, 
and the y–z plane, respectively. When they change their initial value, their behavior 
changes. The initial value of the yellow track line is (-1,-1,0,0), the initial value of 
the red track line is (5,5,0,0), the initial value of the green track line is (0.1,0.1,0,0), 
and the initial value of the blue track line is (10,10,0,0). The bifurcation diagrams 
of the system for initial values (5,5,0,0) and (10,10,0,0) are shown in Fig. 12 in e 
and f, respectively, and the computation results of the coexisting attractors show that 
the phase diagrams and the Liapunov exponential spectra remain consistent when 
the initial values are changed. The initial values are the same as in the bifurcation 
diagram.

(a) (b)

(c) (d)

Fig. 11   Time-series of state variables with different initial values: a Time-series of x1 b Time-series of x2 
c Time-series of x3 d Time-series of x4
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4.5 � Complexity analysis

The complexity of chaotic systems is an important part of the analysis of the dynam-
ics of the studied systems. The depth of the image color represents the complexity 
of the chaotic system within the parameter range, if the color is darker then it means 

Fig. 12   Coexistence of attractors in different directions: a x–y coexistence attractor b x–z coexistence 
attractor c u-z coexistence attractor d y–z coexistence attractor d System Bifurcation Diagram e System 
Bifurcation Diagram
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that the complexity value of the system is higher and the corresponding sequence 
randomness is better, on the contrary, the lighter the color means that the complexity 
value of the system is lower and the random sequence of the system is worse. The 
results of the complexity analysis show that the complexity corresponds precisely 
to the randomness of the system it has the same effect as the Poincaré mapping, the 
bifurcation diagram, and the Lyapunov exponent. The complexity is the degree to 
which the chaotic sequence is close to the random sequence. The method is mainly 
to make the chaotic sequence close to the random sequence by using the correlation 
algorithm, and the closer it is to the random sequence, the greater the complexity 
and thus the higher the security of the system will be. This good feature can then 
be utilized for image encryption. There are two main types of complexity in cha-
otic systems, one is the SE complexity and the other is the C0 complexity, and it 
is verified that in continuous chaotic systems, the trends of both remain the same 
[33, 34].SE complexity is a measure of complexity in chaotic systems. It is often 
used to describe how sensitive the system is to initial conditions.C0 complexity is 
another measure of complexity in chaotic systems. It describes the entropy growth 
rate of the system’s trajectory in phase space. The connection between the two is 
that both SE complexity and C0 complexity are used to measure the complexity of 
chaotic systems. They both reflect the unpredictability and nonlinear characteristics 
of the system behavior. The difference between the two is that SE complexity mainly 
focuses on the sensitivity of the system behavior to the initial conditions, while C0 
complexity pays more attention to the chaotic degree of the system behavior com-
plexity emphasizes the effect of small perturbations, while C0 complexity takes into 
account the entropy growth rate of the trajectories in the whole phase space.

The present analysis is based on the fixed parameters a = 3.04,b = 1.02,c = 9.02,d = 
1, and e = 2.02. Figure 13a shows the 3D SE complexity of the system for the initial 
values (1,1, x(0),z(0)). Figure 13b shows the 3D C0 complexity of the system for the 
initial values (1,x(0),0,z(0)). It can be observed that a large area of black is mixed with 
a small area of white and yellow, the darker the color indicates a higher complexity of 
the system, and the only remaining small amount of yellow and red in the darker area 
represents the state transfer phenomenon that exists in a chaotic system, and thus the 

(a) (b)

Fig. 13   Three-dimensional complexity of the system at different initial values: a C0 complexity with 
x(0)-z(0) as variables b SE complexity with x(0)-z(0) as variables
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state complexity of the hyperchaotic system. The system is more complex and its appli-
cation in the field of image encryption will have higher security.

As shown in Fig. 14a and b plots of SE and C0 single-parameter complexity with 
parameter d, respectively, it can be seen that the complexity is higher at d = 1, indicat-
ing that chaos is more pronounced. Compared to the literature  [34], this system has 
high complexity and high security and has good properties when applied to confiden-
tial communication.

5 � Analog circuit design and simulation

In order to verify the dynamical behavior of the chaotic system, the results will 
be analytically verified in this section by designing a simulation circuit. It can be 
observed through Fig.  1 that the variable dynamic range of the phase diagram does 
not exceed ± 13.5 V, therefore no scaling compression transformation of the system is 
required. If the system exceeds ± 13.5 V, a variable proportional compression transfor-
mation must be performed. Perform proportional transformation of Eq. (2), set τ0 = 1/
(R0C0) = 1/(R3C1) = 1/(R8C2) = 1/(R14C3) = 1/(R20C4) to derive Eq. (10):

Based on the use of an inverse adder, Eq. (11) is obtained after the evolution and 
transformation of the equation:

(10)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

dx

d(�0t)
= y − ax + yx

dy

d(�0t)
= by − xz − u

dz

d(�0t)
= xy − cz + −yu

du

d(�0t)
= dy + e sin(x)

(a) (b)

Fig. 14   Complexity: a SE complexity when d = 1 b C0 complexity when d = 1
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By introducing resistance values, the circuit system equation can be derived 
based on the differential equation of the system circuit:

Set C1 = C2 = C3 = C4, by comparing (10) and (12), we can get the follow-
ing parameters R3 = R8 = R14 = R20 = 15KΩ, R5 = R10 = R3 = R25 = R16 = 1KΩ, 
R23 = 3.3KΩ, R24 = 10.5KΩ, R17 = 1.5KΩ, R22 = 4.9KΩ, R4 = R9 = R15 = R21 = R33 = 
R30 = R11 = 10KΩ.The circuit diagram of the system is derived from the mathemati-
cal Eq. (12) as shown in Fig. 15.The quantitative relationship between Eq. (10) and 
Eq. (12) is for example the ratio of the coefficients R4/R30 of y in Eq. (12) is the coef-
ficient of y in Eq. (10) which is 1, and the ratio of R4/R23 in Eq. (12) is the coefficient 
a of Eq. (10). The tool used in this analog circuit is Multisim 14.0, and the models 
used are the AD633 multiplier, LM248 amplifier, and AD639 sine converter.

The simulation is carried out through the circuit software simulation multi-simu-
lation and the phase diagram of the system is obtained as shown in Fig. 16. By com-
paring this figure with the phase diagram of the system, the attractor of the circuit 
agrees with the theoretical attractor, so the correctness of the system is verified by 
numerical analysis and experimentation, and the attractor exists in the system.

6 � Hardware circuit implementation

Field programmable gate arrays (FPGA) are the ideal solution we chose for build-
ing chaotic circuits. Conventional chaotic circuits are constructed using analog 
electronic components, but the performance of these components is affected by 

(11)

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

x =
1

R0C0
∫

�
−(−y) − ax − x(−y)

�
dt

y =
1

R0C0
∫

�
−b(−y) − xz − u

�
dt

z =
1

R0C0
∫

�
−x(−y) − cz − (−y)u

�
dt

u =
1

R0C0
∫

�
−d(−y) − e sin(−x)

�
dt

(12)

⎧
⎪
⎪
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⎨
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⎪
⎪
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⎩
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1
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R14C3
∫ (

R15
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R20C4
∫ (

R21

R33

y −
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aging and other factors, and long-term performance stability cannot be guaranteed.
FPGA are used exclusively in the field of integrated circuits, successfully address-
ing the shortcomings of custom circuits and overcoming the shortcomings of the 
limited number of gates in the original programmable devices. By designing circuits 
using FPGA, you can reduce printed circuit board area, shorten design time, and 
significantly improve system reliability.FPGA is more flexible and programmable 

Fig. 15   System circuit schematic
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than DSP. Compared to DSP, FPGA can configure hardware circuits on demand to 
accommodate a variety of complex chaotic systems and different algorithms.

The XC6SLX16-2FTG256I chip is selected as the FPGA and the Texas Instru-
ments PROGRAMMED 12-bit dual-channel TLC5618A is used as the digital-to-
analog converter (DAC). The main parameters of the XC6SLX16-2FTG256I chip 
are the number of logic cells: 16,256, the capacity of internal memory: 49,152 bits, 
the number of I/O pins: 148, the internal clock management resources: 4 global 
clock line networks. The main parameters of the XC6SLX16-2FTG256I chip are the 
number of logic cells: 16,256, internal memory capacity: 49,152 bits, the number 
of I/O pins: 148, and the internal clock management resources: 4 global clock line 
networks. Quartus 15.0 was used as the development environment, and an oscillo-
scope with a bandwidth of 20 Hz was used to output the images with a MATRIX 
MOS-620 model.The XC6SLX16-2FTG256I chip offers a number of outstanding 
features including low static and dynamic power consumption, a maximum clock 
frequency of 667.0 MHZ, adjustable I/O slew rate for improved signal integrity, 
rich logic resources and higher logic capacity, and a highly efficient 6-input LUT 
that improves performance and reduces power consumption. Compared with other 
FPGA chips, the XC6SLX16-2FTG256I’s advantageous features are more condu-
cive to realizing chaotic digital circuits. The digital implementation circuit flow is 
shown in Fig. 17.

The specific operation is as follows. First, connect the FPGA development board 
to the computer, you can generally use the USB interface to connect. Install the 
appropriate FPGA development tool Quartus II 15.0 on the computer to write, syn-
thesize, and download the FPGA design. Open the FPGA development tool and cre-
ate a new project, set appropriate pin constraints in the project to ensure that the 

Fig. 16   Circuit simulation diagram: a Phase diagram of the x–y plane b Phase diagram of the x–z plane c 
Phase diagram of the x-u plane d Phase diagram of the y–z plane
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input and output pins on the FPGA development board correspond to the inputs and 
outputs of the chaotic system phase diagram.The design is synthesized and imple-
mented using the FPGA development tool and binary files are generated that can 
be burned onto the FPGA. Connect the computer to the FPGA development board 
and the FPGA development tool downloads the generated binary file to the FPGA 
development board via JTAG. Convert the input signals (initial conditions or param-
eters) of the chaotic system into analog signals via DA and input them to the FPGA 
development board.Finally, run the chaotic system design on the FPGA development 
board and use an oscilloscope connected to the output pins of the chaotic system to 
observe and record the waveforms on the oscilloscope.

Considering that the Runge Kutta algorithm would take up a lot of logic resources 
in the FPGA, we chose the Eulerian algorithm to convert the system to C code and 
discretization to obtain Eq.  (13), where the step size is h = 0.001 and the param-
eters are a = 3.04, b = 1.02, c = 9.02, d = 1, and e = 2.02. The utilization of the chip 
resources in the FPGA in implementing the digital hardware circuit of the new sys-
tem is shown in Table 3. Finally, the planar phase diagram of the system is obtained 
by a digital oscilloscope, as shown in Fig. 18, which is basically consistent with the 
numerical simulation results and Multisim circuit simulation results. The RTL dia-
gram of the system is shown in Fig. 19.

(13)

⎧
⎪
⎨
⎪
⎩

x(n + 1) = x(n) + h(y(n) − ax(n) + y(n)z(n))

y(n + 1) = y(n) + h(by(n) − x(n)z(n) − u(n))

z(n + 1) = z(n) + h(x(n)y(n) − cz(n) + y(n)u(n))

u(n + 1) = u(n) + h(dy(n) + e sin(x(n))

Fig. 17   Block diagram of hardware implementation of FPGA platform

Table 3   Resource utilization 
in the design of new four-
dimensional ultra chaotic 
hardware

Resource Estimation Available Utilization (%)

IO 47 150 31.33
FF 16,300 112,010 14.55
BUFG 1 32 3.12
LUTRAM 16,215 589,824 2.74
LUT 13,021 47,800 27.24
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Fig. 18   Oscilloscope phase diagram: a x–y plane b x–z plane c x-u plane d y–z plane

Fig. 19   RTL schematic diagram
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7 � Application in image encryption

With time, image encryption algorithms based on chaotic systems have achieved rapid 
development  [19–23]. Chaotic systems have the good properties of unpredictability 
and sensitivity to initial values, as well as the randomness of the generated sequences, 
so chaotic systems are widely used in image encryption. Early chaotic image encryp-
tion mainly uses some simple low-dimensional chaotic systems or only performs a sin-
gle encryption. However, the image encryption algorithm proposed in this paper adopts 
multiple encryption strategies. Taking a grayscale image with the size of M × N as an 
example, Arnold transformation  [24–27] was performed on the original image first, 
and then DNA encryption operation was performed on the transformed image. The 
framework diagram of the image encryption algorithm is shown in Fig. 20  [28–32].

7.1 � Arnold Disruption

The Arnold permutation is a transformation proposed by Russian mathematician 
Vladimir I. Arnold, whose transformation matrix equation is:

(14)
[
X

Y

]
=

[
1 A

B AB + 1

][
X

Y

]
(modN)

(15)X = (x + By) mod N

(16)Y =
[
Bx + (AB + 1)y

]
mod N

Fig. 20   Encryption process
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x, y = {0,1 …,   N-1} denotes the position before the transformation, and (X, Y) 
denotes the transformation position. a, b are the parameters of Arnold’s transforma-
tion. a = xi, b = yi (i = 1, 2, 3…, MN), N denotes the side length of the square image, 
and mod denotes the modulus operation.A and B are pseudo-random sequences gen-
erated by vector generation X, both of size M × N, and the transformation between 
pixel points can be realized by pseudo-random variables A and B.

7.2 � DNA encoding encryption

Watson and Crick jointly proposed the double helix structure of the DNA strand, 
in which each DNA sequence consists of four bases: adenine (A), cytosine (C) and 
guanine (G), and thymine (T), and the two DNA sequences are bonded together by 
the complementary pairing laws of A-T and C-G. The four bases are encoded by 00, 
01, 10 and 11, and then eight coding rules can be obtained according to the princi-
ple of DNA complementarity. These four bases are encoded with 00, 01, 10 and 11, 
and then eight encoding rules can be obtained according to the principle of DNA 
base complementarity. To realize image encryption, the image data should first be 
converted into binary numbers, and then a DNA coding rule is randomly selected 
to encode two binary numbers into one base, and decoding is the inverse process of 
this process. Tables 4, 5 and 6 show the complete DNA algorithm.

As shown in Table 4, the so-called DNA computation refers to the "different-or" 
or "same-or" operation between DNA codes, as well as the complementary opera-
tion of DNA codes, such as the eight DNA coding modes shown in Table 4, where 
DNA computation is still essentially a binary The DNA calculation here is still 
essentially a binary arithmetic operation.

The definition of addition and subtraction of DNA follows traditional binary 
addition and subtraction operations. Since there exist 8 DNA coding rules, there also 

Table 4   DNA coding rules Rules 1 2 3 4 5 6 7 8

00 A A C T T G G C
01 C G C G T A T A
10 G C G C A T A T
11 T T A A C C G G

Table 5   DNA addition and 
subtraction rules

Addition Subtraction

 +  A C G T − A C G T

A A C G T A A T G C
C C G T A C C A T G
G G T A C G G C A T
T T A C G T T G C A
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exist 8 corresponding DNA rules. When using DNA coding rule 1, for example, the 
DNA addition and subtraction rules shown in Table 5 are obtained.

The definition of DNA dissimilarity rules follows the traditional binary dissimi-
larity operation. Because there are 8 DNA coding rules, there are also 8 correspond-
ing DNA dissimilarity rules. For example, when using DNA coding rule 1, the DNA 
dissimilarity rules shown in Table 6 are obtained.

Using the ode45 algorithm to calculate the initial value of the chaotic system and 
iterate the chaotic system, four keys are obtained. To improve security and obtain 
better randomness, the first 3001 terms are removed to obtain four chaotic sequences, 
xi, yi, zi, ui, where (i = 1, 2, 3…M × N), the {ui} chaotic sequence is converted to an 
integer between 0 and 255, and then ui is converted into a random matrix R with 
M rows and N columns. Next, the binary matrix transformation will be performed 
on the matrix A and matrix R after Arnold permutation, and then every two binary 
numbers will be converted into a DNA base according to the DNA coding rules, and 
the corresponding DNA sequence matrix will be obtained, and the matrix H will be 
represented by DNA calculation.

7.3 � Pixel‑level diffusion

Firstly, the matrix H is decoded according to the rules of DNA decoding. A binary 
matrix is obtained, and then it is converted into a binary matrix notated as F. The 
pseudo-matrix sequences ui’, Di, and Li are the sequences after diffusion. Then the 
diffusion is performed, the diffusion is performed by using two-way diffusion with 
heterogeneous operations, and the forward and reverse diffusion are each diffused 
once, and the formulas for the forward and reverse operations are (17) and (18), 
respectively.

The standard 512 × 512 Lena image and the baboon image are chosen for the 
experiments of the images, and the encrypted results are shown in Fig. 21b and e, 
where the image features of the original image are no longer observed.

(17)
{

Li = Li−1 ⊕ Di ⊕ Fi

Fi = Li−1 ⊕ Li ⊕ Di

(18)
{

Li = Li+1 ⊕ Di ⊕ Fi

Fi = Li+1 ⊕ Li ⊕ Di

Table 6   DNA coding rule 1 
when the DNA heterodyning 
rule

XOR A T G C

A A C G T
C C A T G
G G T A C
T T G C A
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7.4 � Image security analysis

7.4.1 � Histogram analysis

Histogram is a statistical method to describe the distribution of images smoothly, 
usually, the encrypted histogram has the characteristics of uniform distribution, and 
the image histogram of plain text is not uniform, the implementation of this part 
selects the classical image Lena and orangutan image of size 512 × 512 as shown 
in Fig. 22. Figure 22 b and e are the histogram before encryption, Fig. 22c and f 
are the histograms after encryption, it can be observed that the encrypted histogram 
presents an overall uniform distribution, which makes it difficult for an attacker to 
use the statistical characteristics of the sample values to recover the original image. 
Therefore, it is verified that the algorithm has an excellent ability to prevent statisti-
cal analysis.

7.4.2 � Keyspace and sensitivity analysis

The set of valid keys becomes the key space, and the key space is large enough 
to be effective against attacks. A new four-dimensional chaotic system is pro-
posed in this paper, the initial value of the system is k = (x0,y0,z0,u0) and the 
parameters of the system are a, b, c, d, and e. The computational accuracy 

Fig. 21   Encrypted rendering: a Lena Original image b Lena Encrypted images c Lena Decrypting the 
image d Baboon Original image e Baboon Encrypted images f Baboon Decrypting the image
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of the computer is 10–16, so the key space of the chaotic system in this paper is 
10–16 × 10–16 × 10–16 × 10–16 × 10–16 × 10–16 × 10–16 × 10–16 × 10–16 × 10–16≈2478. It is 
generally stipulated that the reliability of an encryption system is guaranteed only 
when the key space is greater than 2100. According to this standard, it is obvious 
that the key space of the system in this paper is much larger than this requirement.

Key sensitivity is the ratio of the difference between two ciphertext images 
obtained by observing the encryption of the same plaintext image when the key is 
changed. If the difference between the two cipher images is small, it proves that the 
sensitivity of the key is poor. If the difference between two cipher images is large 
then the sensitivity of the key is proved to be good. When the key sensitivity test is 
performed in this paper, the key K is changed to K1 and it is found that the image 
could not be decrypted as shown in (a) and b in Fig. 23, which shows that the image 
encryption algorithm in this paper has good key sensitivity.

7.4.3 � Correlation analysis

One of the important factors to measure the effectiveness of image encryption is 
the correlation property. Digital images have a strong correlation between adjacent 
pixel points in horizontal, vertical, diagonal, and anti-diagonal directions, close to 1. 
The correlation between adjacent pixels of the encrypted image becomes very small, 

(a) (b) (c)

(d) (e) (f)

Fig. 22   Image histogram: a Lena Original image b Lena Original image histogram c Lena Histogram of 
the encrypted image d Baboon Original image e Baboon Original image histogram f Baboon Histogram 
of the encrypted image
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so breaking the correlation between adjacent pixels of the image is the meaning of 
image encryption. The formula to calculate the correlation is as follows:

x and y are pixel values representing adjacent pixels, E(X) is representing expecta-
tion, and D(X) is representing variance. In this paper, a classic 512 × 512 Lena image 
is selected to calculate the correlation coefficients before and after encryption, and 
the correlation coefficients are calculated from four directions. The correlation coef-
ficients of the images before and after encryption are shown in Fig. 24, and it can be 
observed that the correlation of the encrypted images is evenly distributed compared 
with the images before encryption, thus verifying that the algorithm in this paper 
destroys the correlation of the original images.

As shown in Table 7, the unencrypted image has a strong correlation close to 1 in 
4 directions and the image has a dense pixel distribution, while the encrypted image 
has a small correlation close to 0 in 3 directions and the image has a uniform pixel 
distribution. It can also be seen from Table 5 that the correlation coefficients of all 
three directions of the encrypted images of the system in this paper are closer to 0 
than the other compared with other methods, which indicates that the encryption 
effect of the new system algorithm proposed in this paper is very effective (Table 8).

7.4.4 � Analysis of information entropy

Information entropy can be used to measure the random distribution of image infor-
mation, which is an important indicator of the random distribution. The better the 

(19)
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Fig. 23   Key sensitivity test: a 
Original image b Decrypted 
image after key replacement
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random distribution, the greater the value of information entropy, which is calcu-
lated by the formula:

All states of pixel values in the image are denoted by 2n and the probability of 
pixel values in the image is denoted by p(si), which has the information of 256 states 
in this paper, so the ideal information entropy is 8. The image information entropy 
after encryption is 7.9994, which is very close to 8. The comparison with other sys-
tems after encryption is given in the chart, and it is found that the encryption effect 
of this paper is better.

7.4.5 � Robustness analysis

Robustness is the most important characteristic to measure the resistance of an 
encryption algorithm to interference. In this paper, we choose to test the robustness 
of the encryption algorithm by cropping attack and noise attack. After cropping a 
part of the image, the image is then decrypted, and the result of decryption is shown 
in Fig. 25c. Applying 0.03 times pretzel noise to the encrypted image, the decrypted 
image is shown in Fig. 26c. It is found that the key information of the graphics can 
still be identified using the encryption algorithm in this paper. It can be verified that 
this algorithm can resist the cropping attack and noise attack to a certain extent and 
has good robustness.

8 � Conclusion

In this paper, a novel four-dimensional hyperchaotic system is proposed and the 
dynamical properties of the system are analyzed. It is found that burst oscillations 
appear on the time series, intermittent chaos, and inverse multiplicative period 
bifurcations appear in the Lyapunov exponential spectrum and bifurcation dia-
gram. The coexisting attractor appears to have a rare symmetric structure, indi-
cating that the system has a rich dynamical behavior and a very good topology. In 
addition, in the aspect of system design and verification, Multisim circuit simu-
lation software and FPGA digital hardware circuits are used. The experimental 
results show that the system exhibits excellent chaotic generation capability and 
verifies its feasibility and effectiveness. Finally, the new image encryption algo-
rithm is designed by combining the new chaotic system proposed in this paper 
and DNA encryption algorithm, and the security performance such as informa-
tion entropy and correlation after image encryption is analyzed, and the sys-
tem is found to have good encryption cryptographic effect. Therefore, the novel 

(20)G(s) = −

2n−1∑

i=0

p(si) log2 p(si)

Fig. 24   The correlation coefficient of images: a Plaintext horizontal direction b Plaintext vertical direc-
tion c Plaintext diagonal direction d Plaintext anti-diagonal direction e Ciphertext horizontal direction f 
Ciphertext vertical direction g Ciphertext diagonal direction h Ciphertext anti-diagonal direction

▸
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four-dimensional hyperchaotic system and encryption algorithm proposed in this 
paper have good prospects for application in digital image communication.

Table 7   Correlation coefficient comparison

Method Horizontal correlation Vertical correlation Diagonal correlation

Original Lena image 0.9855 0.9711 0.9623
Literature  [28] 0.01022 0.02141 0.00562
Literature  [29] 0.00270 0.01520 0.00711
Literature  [30]  − 0.0034  − 0.0060 0.0063
Algorithm of this paper 0.0019 −0.0032 −0.0053

Table 8   Information entropy 
comparison

Method Infor-
mation 
entropy

Original Lena image 7.0211
Algorithm of this paper 7.9994
Literature  [24] 7.9964
Literature  [25] 7.9978
Literature  [26] 7.9975
Literature  [27] 7.9380

Fig. 25   Key trimming test: a Original image b Trimming test c Decrypting the image
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