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Abstract
The optimized radial basis function network is a kind of neural network that utilizes 
a step size inside of the gradient strategy for the modeling, where a small step size 
will spend much time to reach a minimum, while a big step size will jump over 
the minimum; hence, it needs an acceptable step size. The genetic optimizer is one 
option to seek an acceptable step size. In this study, the genetic optimizer is sug-
gested to seek an acceptable step size in the gradient strategy for an optimized radial 
basis function network. The difference between the other genetic optimizers and our 
genetic optimizer is that the other genetic optimizers utilize high number of stages, 
while our genetic optimizer utilizes small number of stages. The idea of utilizing 
small number of stages in our genetic optimizer is based on the simplex optimizer 
and bat optimizer which also utilize small number of stages. To validate the perfor-
mance of the optimized radial basis function network, the fatigue driving modeling 
in a vehicle is evaluated.

Keywords Genetic optimizer · Bat optimizer · Simplex optimizer · Optimized radial 
basis function network · Fatigue driving modeling

1 Introduction

The optimized radial basis function network is a kind of neural network that uti-
lizes a step size inside of the gradient strategy [1, 2], and a Gaussian function as the 
activation function [3, 4] for the modeling, where a small step size will spend much 
time to reach a minimum, while a big step size will jump over the minimum; hence, 
it needs an acceptable step size. Seeking of an acceptable step size in the gradient 
strategy it is not easy, the genetic optimizer is one option to seek an acceptable step 
size.
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The genetic optimizer has been evaluated in several optimization problems. In 
[5], the route calculation is performed by a genetic optimizer. In [6, 7], the hybrid 
genetic optimizer which combine the genetic mechanism with the gradient strategy 
is suggested. In [8], the genetic optimizer-based integer-valued optimization is con-
sidered for two machine optimization models. In [9], the genetic optimizer is uti-
lized to optimize the terms of variational mode decomposition. In [10], the deep 
optimization trained by genetic optimizer is suggested. In [11], a cluster-based 
genetic optimizer that outputs a result of the bin pack problem is developed. In [12], 
a problem-specific non-dominated sorting genetic optimizer is suggested. In [13], 
the impact of utilizing constraint priorities on genetic optimizer is studied. In [14], 
a the genetic optimizer is addressed for the practical medical task of selecting drug 
combinations. In [15], the automatic design of dispatching rules using the genetic 
optimizer is addressed. In [16], the genetic optimizer is applied to achieve a balance 
between privacy protection and resource consumption. In [17], a genetic optimizer 
that uses a statistical-based chromosome replacement strategy is proposed. In [18], a 
high-performance solution is presented for parcel exchange based on a genetic opti-
mizer. In [19], a hybrid feature selection method that combines a genetic optimizer 
with a proposed filter is presented. Nevertheless, the genetic optimizer is not evalu-
ated to seek an acceptable step size in the gradient strategy for an optimized radial 
basis function network.

In this study, the genetic optimizer is suggested to seek an acceptable step size in 
the gradient strategy for an optimized radial basis function network. The justification 
of the genetic optimizer to seek an acceptable step size is described as follows: a 
small step size will reach small steps and will spend much time to reach a minimum 
in the gradient strategy, while a big step size will reach big steps and will jump over 
the minimum in the gradient strategy; hence, it is important to suggest a genetic 
optimizer to seek an acceptable step size. The advantage of our genetic optimizer 
with the other genetic optimizers is described as follows: the other genetic optimiz-
ers utilize high number of stages denoted as the initialization, fitness function, con-
straint handling, crossover, mutation, decode chromosomes, calculate fitness value, 
chromosome selection, replace old chromosome, and stopping criteria, while our 
genetic optimizer utilizes small number of stages denoted as the initialization, con-
straint handling, decode chromosomes, chromosome selection, and stopping criteria. 
The idea of utilizing small number of stages in our genetic optimizer is based on the 
simplex optimizer [20, 21] and bat optimizer [22, 23] which also utilize small num-
ber of stages.

On the other hand, fatigue driving is one of the leading causes of traffic accidents; 
consequently, the fatigue driving modeling plays a crucial role in road safety. To 
validate the performance of the optimized radial basis function network, the fatigue 
driving modeling in a vehicle is evaluated. A data table is utilized in a Arduino 
Mega to save the final data; after the data collection, the data table is utilized in a 
personal computer to train the optimized radial basis function network; and after of 
the training, the trained optimized radial basis function network is utilized in a per-
sonal computer for the testing.
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The rest of the work is ordered in this sentence. Section 2 describes the literature 
review. Section 3 describes the research model. Section 4 describes the experimental 
design and performance evaluation. Section 5 describes the conclusion.

2  Literature review

In this section, the research which provides a broader context for our work is 
presented.

The genetic optimizers utilize several stages, but there are some works such as 
[24–26] that does not explain the stages utilized by the genetic optimizers.

There are other works that explain the stages utilized by the genetic optimiz-
ers. In [27], the chromosome representation, fitness function, and genetic operators 
are described as the stages utilized by genetic optimizers and gradient-free meth-
ods. In [28], the population initialization, selection operation, crossover operation, 
and mutation operation are described as the stages utilized by a stochastic gradi-
ent descent with genetic optimizer. In [29], the genetic encoding, objective func-
tion and fitness function, genetic operation, selection, crossover, and mutation are 
described as the stages utilized by a genetic optimizer-based fuzzy optimization. In 
[30], the adaptive crossover and mutation operation are described as the stages uti-
lized by an adaptive genetic optimizer. In [31], the solution representation, gener-
ating the initial population and calculation of the fitness function, developed local 
search optimizer, selection, crossover, and mutation operators are described as the 
stages utilized by a hybrid genetic optimizer. In [32], the genetic operations, ini-
tialization, parent selection, crossover, mutation, and termination are described as 
the stages utilized by a genetic optimizer and a pore network model. In [33], the 
chromosome encoding, crossover operation, and mutation operation are described as 
the stages utilized by a clustering-based extended genetic optimizer. In [34], the ini-
tialization operator, design of chromosome coding, design of filter chain, crossover 
operator, mutation operator, correction operator, design of selection operator, design 
of termination condition are described as the stages utilized by an improved genetic 
optimizer. In [35], the chromosome representation, population initialization, cost 
function, operators, selection, crossover, and mutation are described as the stages 
utilized by a wireless sensor network using a genetic optimizer. In [36], the popula-
tion initialization, select the fitness function, select operation, crossover operation, 
and mutation operation are described as the stages utilized by a neural network and 
a genetic optimizer. In [37], the initialize population, generate the next generation 
of individuals, cross operation, mutation operation, decode chromosomes, calculate 
the fitness value, chromosome selection operation, replace the old chromosome with 
simulated annealing operator, determine the number of iterations, and output results 
are described as the stages utilized by a simulated annealing genetic optimizer. In 
[38], the selection of initial population, crossover, and mutation are described as the 
stages utilized by a wireless sensor network using genetic optimizer. In [39], the 
genetic operator design, selection, cross, and variation are described as the stages 
utilized by a proposed genetic optimizer. In [40], the representation, initializa-
tion, fitness function, constraint handling, selection and reproduction, crossover, 
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mutation, and stopping criteria are described as the stages utilized by a genetic opti-
mizer based probabilistic model.

Some of the main stages utilized by a genetic optimizer are described as fol-
lows [37, 40].

Initialization. The size of population is selected. The chromosomes are cre-
ated in the initial stage, and each unit of a chromosome is initialized with a ran-
dom number.

Fitness function. The value of fitness corresponding to a chromosome is its 
efficacy. A good fitness value maximizes the success probability and minimizes 
the associated cost.

Constraint handling. Real-world problems are mostly constrained, i.e., solu-
tions may lie outside the feasible region. To avoid constraint violation, chromo-
somes are encoded in harmony with the constraints.

Crossover. It is the exchange of gene fragments at the same position on two 
chromosomes. For the optimization of assembly sequence in precast concrete 
buildings, the cross operation needs to meet the following conditions: (a) inherit 
the excellent gene of mother chromosome to the greatest extent; (b) all gene val-
ues in offspring chromosomes cannot be repeated with each other; (c) offspring 
chromosomes must meet strict constraints.

Mutation. Because all gene values in the chromosome cannot be repeated 
with each other, the mutation operation can be realized by randomly exchanging 
two genes in the chromosome. This method is also called exchange mutation. 
Mutation operation adopts two-point reciprocity to mutate.

Decode chromosomes. The assembly sequence is obtained by decoding the 
components.

Calculate the fitness value. The fitness value is calculated according to the 
assembly difficulty coefficient and assembly time of components in the assembly 
process.

Chromosome selection. It is to select better individuals from the previous 
generation and pass them on to the next generation. Selection technology has 
a great impact on the efficiency of genetic programming. Roulette wheel selec-
tion is adopted. Roulette wheel selection is used to select outstanding individu-
als from a population.

Replace the old chromosome. The combination of simulated annealing and 
genetic optimizer is to judge whether to replace the old chromosome with simu-
lated annealing operator.

Stopping criteria. A maximum number of generations is taken as the halting 
condition.

Figure  1 shows the difference between the other genetic optimizers and our 
genetic optimizer, where the other genetic optimizers utilize high number of 
stages denoted as the initialization, fitness function, constraint handling, crosso-
ver, mutation, decode chromosomes, calculate fitness value, chromosome selec-
tion, replace old chromosome, and stopping criteria, while our genetic optimizer 
utilizes small number of stages denoted as the initialization, constraint handling, 
decode chromosomes, chromosome selection, and stopping criteria. The idea of 
utilizing small number of stages in our genetic optimizer is based on the simplex 
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optimizer [20, 21] and bat optimizer [22, 23] which also utilize small number of 
stages.

3  Research model

This section introduces the optimized radial basis function network. Later, this sec-
tion presents the design and the pseudocode of the genetic optimizer to seek an 
acceptable step size in the gradient strategy for an optimized radial basis function 
network.

3.1  The optimized radial basis function network

This subsection introduces the optimized radial basis function network.
Figure 2 shows the application of the genetic optimizer to seek an acceptable step 

size in the gradient strategy for an optimized radial basis function network, where 
the collected data is used for the training of the optimized radial basis function net-
work, later, the genetic optimizer is utilized to seek a new step size for the optimized 
radial basis function network; if the root mean square of the new step size is smaller 
to the root mean square of the previous step size, the new step size is chosen for the 
optimized radial basis function network, otherwise, the previous step size is chosen 
for the optimized radial basis function network. The details are in this and in the 
next section.

Fig. 1  Comparison between the other genetic optimizers and our genetic optimizer
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The optimized radial basis function network with a hidden layer is:

where i = 1,… ,N , j = 1,… ,M , xi,k ∈ ℜ is the optimized radial basis function net-
work input, wk ∈ ℜ is the optimized radial basis function network output, aj,k ∈ ℜ , 
bij,k ∈ ℜ , ci,k ∈ ℜ are the terms of the output layer, hidden layer, and centers, 
�j(uj,k) ∈ ℜ and �j(uj,k) are nonlinear functions, uj,k ∈ ℜ is the addition function, M 
is the hidden layer neurons numeral. Figure  3 shows the architecture of the opti-
mized radial basis function network with the input layer, hidden layer, and output 
layer.

In this section, the optimized radial basis function network is suggested. In this part, 
the tuning law is obtained.

Define an error sum as:

where 
(
wk − tk

)
 is the error, wk is the optimized radial basis function network output, 

tk is the target. The tuning law is achieved utilizing the following equations:

(1)

wk =

M∑

j=1

aj,k�j(uj,k),

�j(uj,k) = e
−u2

j,k ,

uj,k =

N∑

i=1

bij,k
[
xi,k − ci,k

]
,

�j(uj,k) = 2uj,k�j(uj,k),

(2)�k =
1

2

(
wk − tk

)2
,

Fig. 2  Application of the genetic optimizer to seek an acceptable step size in the gradient strategy
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where � is the step size to be defined in the next section. Utilizing the chain rule to 
achieve ��k

�aj,k
 gives:

Utilizing the chain rule to achieve ��k
�bij,k

 gives:

Utilizing the chain rule to achieve ��k
�ci,k

 gives:

By substituting (4), (5) and (6) into (3), gradient strategy of the optimized radial 
basis function network is as follows:

(3)

△aj,k = aj,k+1 − aj,k = −�
��k

�aj,k
,

△bij,k = bij,k+1 − bij,k = −�
��k

�bij,k
,

△ci,k = ci,k+1 − ci,k = −�
��k

�ci,k
,

(4)
c
��k

�aj,k
=

��k

�
(
wk − tk

)
�
(
wk − tk

)

�wk

�wk

�aj,k

= �j(uj,k)
(
wk − tk

)
,

(5)
c
��k

�bij,k
=

��k

�
(
wk − tk

)
�
(
wk − tk

)

�wk

�wk

�bij,k

= �j(uj,k)aj,k
[
ci,k − xi,k

](
wk − tk

)
,

(6)

��k

�ci,k
=

��k

�
(
wk − tk

)
�
(
wk − tk

)

�wk

�wk

�ci,k

= bij,k�j(uj,k)aj,k
(
wk − tk

)
,

Fig. 3  The optimized radial basis function network
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where
(
wk − tk

)
 is the error of (2).

3.2  Genetic optimizer to seek an acceptable step size in the gradient strategy 
for an optimized radial basis function network

This subsection presents the design and the pseudocode of the genetic optimizer to seek 
an acceptable step size in the gradient strategy for an optimized radial basis function 
network.

Figure 4 shows the block diagram of the genetic optimizer to seek an acceptable step 
size in the gradient strategy for an optimized radial basis function network. From the 
gradient strategy (7), the genetic optimizer will tune the step size �.

Figure 5 shows the justification of the genetic optimizer to seek an acceptable step 
size � in the gradient strategy for an optimized radial basis function network, where a 
small step size � will reach small steps and will spend much time to reach a minimum 
in the gradient strategy, while a big step size � will reach big steps and will jump over 
the minimum in the gradient strategy.

The information about k is:

(7)
aj,k+1 = aj,k − ��j(uj,k)

(
wk − tk

)
,

bij,k+1 = bij,k − ��j(uj,k)aj,k
[
ci,k − xi,k

](
wk − tk

)
,

ci,k+1 = ci,k − �bij,k�j(uj,k)aj,k
(
wk − tk

)
,

Fig. 4  Block diagram of the 
genetic optimizer to seek an 
acceptable step size in the gradi-
ent strategy

Fig. 5  Justification of the 
genetic optimizer to seek an 
acceptable step size in the gradi-
ent strategy
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where zk is the chromosome in the time k, vk is the velocity chromosome in the time 
k, �k is the auxiliary velocity chromosome in the time k, yk is the chromosome preci-
sion in the time k.

The step size �k is assigned to the chromosome zk of the genetic optimizer:

The chromosome precision yk is tuned as follows:

where zmin and zmax are the minimum and maximum values that can take the next 
chromosome zk+1 , C is the chromosome number in a population. The auxiliary 
velocity chromosome �ok is tuned as follows:

where rand2 is a random numeral in the interval [0, 1]. The velocity chromosome vk 
is tuned as follows:

where �ok is the auxiliary velocity chromosome, C is the chromosome number in a 
population.

To reflect the next chromosome, the chromosome is changed with some random-
ness. The auxiliary chromosome zk+1 is tuned as follows:

where vk is the velocity chromosome, �k is the auxiliary velocity chromosome, yk is 
the chromosome precision, and zk is the chromosome.

Utilizing the chromosome zk of (9), the objective function g(zk) is tuned as follows:

Utilizing the auxiliary chromosome zk+1 of (13), the auxiliary objective function 
g(zk+1) is tuned as following:

(8)⟨zk, vk, �k, yk⟩,

(9)zk = �k,

(10)yk =
zmax − zmin

2C − 1
,

(11)𝛽
ok
=

{
1

(
rand2 > 0.5

)

0 otherwise
,

(12)vk =

C∑

o=1

2o�ok,

(13)zk+1 = vkyk + zmin,

(14)

a�j,k+1 = a�j,k − �
��k

�aj,k
,

w�,k =

M∑

j=1

aj,k�j(uj,k),

g(zk) =
(
w�,k − tk+1

)2
,
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After the auxiliary chromosome zk+1 is obtained with (13), the next chromosome 
zk+1 is tuned as follows:

where zmin and zmax are the minimum and maximum values that can take zk+1 . (16) 
implicates that the chromosome is tuned when two requirements are satisfied: a) it 
finds the better position of the objective function, i.e., g(zk+1) < g(zk) , b) the values 
of zk+1 are bounded by the minimum zmin and maximum values zmax.

The next chromosome zk+1 of the genetic optimizer is assigned to the next step 
size �k+1:

The optimization by the genetic optimizer uses the constants shown in Table  1. 
Since in this genetic optimizer, the chromosome is changed with some randomness, 
other similar constants will obtain similar results.

The pseudo code of the genetic optimizer to seek an acceptable step size in the 
gradient strategy is as follows:

Inputs: z1 , v1 , y1.

 1. Generate the initial chromosome z1 and initial velocity chromosome v1;
 2.  Define the initial chromosome precision y1;
 3.  While (k < maximum iteration numeral) do
 4.        Tune the chromosome zk with Eq. (9);
 5.        Tune the chromosome precision yk , the auxiliary velocity chromosome �k , 

and the velocity chromosome vk with Eqs. (10), (11), and (12), respectively;
 6.        Tune the auxiliary chromosome zk+1 with Eq. (13);
 7.        Determine the objective function g(zk) with Eq. (14);
 8.        Determine the auxiliary objective function g(zk+1) with Eq. (15);
 9.        If ( 

(
g(zk+1) < g(zk)

)
&
(
zk+1 ≥ zmin

)
&
(
zk+1 ≤ zmax

)
 ) then

 10.              Accept the new result zk+1 with Eq. (16);

(15)

a�j,k+1 = a�j,k − �
��k

�aj,k
,

w�,k+1 =

M∑

j=1

aj,k+1�j(uj,k),

g(zk+1) =
(
w�,k+1 − tk+1

)2
,

(16)zk+1 =

{
zk+1

(
g(zk+1) < g(zk)

)
&
(
zk+1 ≥ zmin

)
&
(
zk+1 ≤ zmax

)

zk otherwise
,

(17)�k+1 = zk+1,

Table 1  Genetic optimizer 
constants

Constant Symbol Value

Chromosome number C 15
Minimum step size zmin 0.1
Maximum step size zmax 1
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 11.              Otherwise, take the past value zk with Eq. (16).
 12.        End If
 13. Tune the next step size �k+1 with Eq. (17);
 14.  End While

Output: �k+1.
The genetic optimizer of Eqs. (8)–(15) considered to seek an acceptable step size 

� in the gradient strategy and to reach the objective function g0 is described by:

4  Experimental design and performance evaluation

In this section, we compare the simplex optimizer of (19) [20, 21], the bat opti-
mizer of (20) [22, 23], and the genetic optimizer of Eqs. (1 )–(7), (8)–(18), to seek 
an acceptable step size in the gradient strategy for an optimized radial basis func-
tion network. The aim of the strategies is that utilizing the inputs ui,k , the optimized 
radial basis function network output wk needs to reach the target tk faster.

4.1  Experimental materials

A data table is utilized in a Arduino Mega to save the final data; after the data col-
lection, the data table is utilized in a personal computer to train the optimized radial 
basis function network; and after of the training, the trained optimized radial basis 
function network is utilized in a personal computer for the testing.

For the development of a sleep monitoring system in the vehicle, it is necessary 
to establish some sensors that will be measuring the state of the driver, taking into 
account some sleep features, it is convenient to place the following sensors inside 
the vehicle: the steering wheel force sensor, the steering wheel heart rate sensor, 
and the steering wheel blood oxygen saturation sensor. The signals of heart rate, 
pressure, and blood oxygen concentration chosen because these signals are easier 
and cheaper to collect. The structure of the circuit with the steering wheel heart rate 
sensor can be seen in Fig. 6; the structure of the circuits with the other two sensors 
is similar.

To carry out the test of the steering wheel force sensor, the updating is carried out 
on the steering wheel as shown in Fig. 7, it consists of a pressure sensor FSR con-
nected to the analog port of the Arduino Mega 2560, and through Octave software 
the reading is stored to obtain the final data. This procedure does not involve any 

(18)

min g0 = min
((

w�,k − tk
)2)

subject to

�min ≤ �k ≤ �max

zk = �k
zmin = �min

zmax = �max,
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data processing such as data cleaning, resampling, etc. The sampling frequency of 
the final data is 3200 samples per second.

To carry out the test of the steering wheel heart rate sensor, with the help of the 
Octave software, the heart rate reading is obtained for the driver, this is done experi-
mentally, for this it was necessary to adjust the sensor MAX30102 on the driver fin-
ger as shown in Fig. 8, in this way a good fixation of the sensor is obtained and thus 
not obtain erroneous readings.

The calculation of the oxygen saturation in a driver is carried out with the same 
sensor MAX30102 with which the heart rate is obtained as shown in Fig. 8, in this 

Fig. 6  Structure of the circuit with the steering wheel heart rate sensor

Fig. 7  The steering wheel force sensor
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case the same tests are carried out under the same conditions so that the results are 
similar.

4.2  Experimental environment

Fatigue driving is one of the leading causes of traffic accidents as can be seen in 
Fig. 9; consequently, the fatigue driving modeling plays a crucial role in road safety. 
To validate the performance of the optimized radial basis function network, the 
fatigue driving modeling in a vehicle is evaluated.

As the first comparison [20, 21], the objective function g0 considered of the sim-
plex optimizer to achieve this aim is:

Fig. 8  The steering wheel heart rate sensor

Fig. 9  Fatigue driving is one of the leading causes of traffic accidents
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As the second comparison [22, 23], the objective function g0 considered of the bat 
optimizer to achieve this aim is:

4.3  Parameters setting

For the awake driver and somnolent driver, we utilize 2 inputs to train the optimized 
radial basis function network:

• u1.k = the steering wheel force sensor.
• u2,k = the steering wheel blood oxygen saturation sensor.

and we utilize 1 target to train the optimized radial basis function network:

• tk = the steering wheel heart rate sensor.

We utilize 2 inputs u1,k , u2,k , 1 target tk , and 1 optimized radial basis function network 
output wk . The aim is that utilizing the inputs ui,k , the optimized radial basis function 
network output wk needs to reach the target tk faster. It is significant to note that the 
optimization utilizes time-varying terms and time-varying step size for the modeling 
of 8000 input and target data of an awake driver, the training utilizes time-varying 
terms and constant step size for the modeling of 8000 input and target data of an awake 
driver, and the testing utilizes constant terms and constant step size for the modeling of 
8000 input and target data of an awake driver and a somnolent driver.

In this part of the study, the suggested optimizer is applied for the awake driver and 
the somnolent driver, where the root mean square error MSE is utilized as:

(19)

min g0 = min
(
w�,k − tk

)

subject to

�min ≤ �k ≤ �max

zk = �k
zmin = �min

zmax = �max,

(20)

min g0 = min
((

w�,k − tk
)2)

subject to

�min ≤ �k ≤ �max

zk = �k
zmin = �min

zmax = �max,

(21)MSE =

(
1

T

T∑

k=1

(
wk − tk

)2
) 1

2

,
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where wk − tk is the error, wk is the optimized radial basis function network output, tk 
is the target, T is the final iteration.

Equation (19), [20, 21], describes the simplex optimizer with 2 inputs, 1 output, 
and 3 hidden layer neurons, zs,1 = �s,1 = 0.5 is the initial value of the step size before 
the optimization, zs,T = �s,T = 0.4105 is the final value of the step size after the opti-
mization, aj,1 = rand , bij,1 = rand , ci,k = rand , rand is a random numeral in the inter-
val [0, 1].

Equations (20) [22, 23] describes the bat optimizer with 2 inputs, 1 output, and 3 
hidden layer neurons, zb,1 = �b,1 = 0.5 is the initial value of the step size before the 
optimization, zb,T = �b,T = 0.3571 is the final value of the step size after the optimi-
zation, aj,1 = rand , bij,1 = rand , ci,k = rand , rand is a random numeral in the interval 
[0, 1].

Equations (1)–(7), (8)–(18) describe the genetic optimizer with 2 inputs, 1 out-
put, and 3 hidden layer neurons, zg,1 = �g,1 = 0.5 , is the initial value of the step size 
before the optimization, zg,T = �g,T = 0.7674 is the final value of the step size after 
the optimization, aj,1 = rand , bij,1 = rand , ci,k = rand , rand is a random numeral in 
the interval [0, 1].

4.4  Performance evaluation

Example 1. Figure 10 shows the step size during the optimization for 8000 itera-
tions and for the first 40 iterations. Figures 11 and 12 show the modeling and MSE 
during the training. Figures 13 and 14 show the modeling and MSE during the test-
ing. Table 2 shows the MSE of (21) during the training and testing.

Example 2. Figure 15 shows the step size during the optimization for 8000 itera-
tions and for the first 40 iterations. Figures 16 and 17 show the modeling and MSE 

Fig. 10  Step size during the optimization for example 1
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during the training. Figures 18 and 19 show the modeling and MSE during the test-
ing. Table 3 shows the MSE of (21) during the training and testing.

4.5  Discussion

Example 1. In Figs. 11, 13, since the signal of the genetic optimizer reaches bet-
ter the signal of an awake driver than the signal of the simplex optimizer and bat 
optimizer, it is observed that the genetic optimizer reaches better step size than the 

Fig. 11  Modeling during the training for example 1

Fig. 12  MSE during the training for example 1
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Fig. 13  Modeling during the testing for example 1

Fig. 14  MSE during the testing for example 1

Table 2  MSE for example 1 Training Testing

Simplex optimizer 0.0155 0.2500
Bat optimizer 0.0153 0.2510
Genetic optimizer 0.0130 0.2421
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simplex optimizer and bat optimizer. In Figs. 12, 14, and Table 2, since the MSE is 
the smallest for the genetic optimizer, it is noticed that the genetic optimizer reaches 
better step size than the simplex optimizer and bat optimizer. Thus, the genetic opti-
mizer is the optimum one in example 1.

Example 2. In Figs. 16, 18, since the signal of the genetic optimizer reaches bet-
ter the signal of a somnolent driver than the signal of the simplex optimizer and bat 
optimizer, it is observed that the genetic optimizer reaches better step size than the 
simplex optimizer and bat optimizer. In Figs. 17, 19, and Table 3, since the MSE is 

Fig. 15  Step size during the optimization for example 2

Fig. 16  Modeling during the training for example 2
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the smallest for the genetic optimizer and bat optimizer, it is noticed that the genetic 
optimizer reaches better step size than the simplex optimizer and bat optimizer. 
Thus, the genetic optimizer is the optimum one in example 2.

Remark 1 Even if the genetic optimizer, simplex optimizer, and bat optimizer have 
similar structure, the genetic optimizer outperform the simplex optimizer and bat 
optimizer because the genetic optimizer utilizes different equations than the utilized 
by the simplex optimizer and bat optimizer.

Fig. 17  MSE during the training for example 2

Fig. 18  Modeling during the testing for example 2
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5  Conclusion

On the basis of the modeling, three strategies denoted as simplex optimizer, bat 
optimizer, and our genetic optimizer were compared to seek an acceptable step size 
in the gradient strategy for an optimized radial basis function network. To validate 
the performance of the optimized radial basis function network, the fatigue driving 
modeling in a vehicle was evaluated by two examples, where the genetic optimizer 
achieved better step size in the optimized radial basis function network than the sim-
plex optimizer and bat optimizer. The suggested strategy has other applications as 
are the mechatronic, robotic, energy, electric, electronic, or computing. In the future, 
other optimizer will be studied to seek an acceptable step size in the gradient strat-
egy for an optimized radial basis function network, or the suggested optimizer will 
be utilized in other kind of optimized radial basis function network.
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Fig. 19  MSE during the testing for example 2

Table 3  MSE for example 2 Training Testing

Simplex optimizer 0.0450 0.3616
Bat optimizer 0.0485 0.3775
Genetic optimizer 0.0429 0.3587
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