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Abstract
Anomaly detection of multivariate time series plays a growingly crucial role in intel-
ligent operation and maintenance. Most existing anomaly detection models tend to 
focus on extracting temporal information while essentially ignoring the relationships 
among multiple sensors. Graph neural networks simulate multivariate inter-series 
relationships but suffer from the independent updating of graph structure from data. 
To overcome such limitation, we present a graph attention network-based model to 
learn the sensors relationships. It is equipped with a sustainable updating similarity-
constrained graph structure learning method and a time series encoder. The graph 
learning method performs continuous updating of the graph structure. The encoder 
generates augmented and representative views along the temporal dimension. Our 
proposed model not only efficiently learns sensor relationships but also improves 
the ability of anomaly detection. Experiments are performed on publicly benchmark 
datasets, including SWaT, WADI, and HAI, with F1 scores of 92.98%, 91.19%, and 
87.12%, respectively. This confirms that the proposed model outperforms the state-
of-the-art in anomaly detection performance.

Keywords Anomaly detection · Multivariate time series · Graph neural network · 
Similarity constraint

1 Introduction

Modern industrial systems are becoming increasingly complex due to technological 
advancements, changing customer demands, globalization, and regulatory require-
ments [1]. In such systems, the operation and maintenance of interconnected sensors 
generate massive multivariate time series data with high dimensionality and spatio-
temporal complexity [2, 3]. Efficient and precise anomaly detection techniques for 
multivariate time series enable companies to continuously monitor their key indica-
tors and timely alerts for potential events [4, 5]. By employing these techniques, 
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operators can perform scheduled maintenance based on detected anomalies, mini-
mizing downtime and emergency repairs. In terms of security, anomaly detection 
helps monitor data traffic and system behavior, identifying cyber security threats or 
unauthorized access attempts and triggering necessary security protocols. Recently, 
rapid progress in neural network-based methods has led to significant performance 
improvements in anomaly detection models.

Some typical methods [6–9] adopt models such as autoencoder (AE) and recur-
rent neural network (RNN) as their core modules to obtain representation and con-
struct networks. However, such models completely focus on the extraction of tem-
poral information, ignoring explicitly the correlations in multivariate time series. 
This correlation manifests that sensors in actual industrial systems are complex and 
nonlinearly interconnected. For instance, the flow change will affect the temperature 
and pressure [10]. Determining whether the entire system is running normally based 
on a single sensor may be challenging. Consequently, such correlations should be 
considered for anomaly detection in multivariate time series.

Note that graph neural networks (GNNs) [11, 12] can effectively extract and 
discover features and patterns from graph structured data. Several works have 
employed GNNs to model topological structure relationships among multiple sen-
sors [10, 13–16]. As depicted in the top part of Fig. 1, such methods employ embed-
ding vectors to capture each sensor’s distinctive characteristics. Then, at iteration 
i, the graph structure relationships Ai are only learned from the sensor embedding. 
However, in these approaches, the learning of graph structure relationships between 
sensors is completely determined by the sensor embedding, i.e., the update of graph 
structure relationships Ai is not subject to Ai−1 . Each iteration learns independently, 
neglecting the valuable information from previous ones. This learning scheme of 
graph structure between sensors lacks continuity modeling relationships, leading 
to inadequate modeling of sensor relationships. As a result, the motivation of this 
paper is to introduce a sustainable graph structure learning process. This sustainable 
updating ensures that the knowledge gained in each iteration is not discarded, lead-
ing to more accurate and robust anomaly detection.

Fig. 1  Comparison of graph 
structure learning between exist-
ing method and our proposed 
method
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In this paper, we present a Time-Series Graph Attention network (TS-GAT) 
approach to improve anomaly detection performance. As shown in the bottom part 
of Fig. 1, we propose a sustainable updating graph structure learning method that 
can continually learn relationships between sensors from the sensor embedding. 
Specifically, the graph structure relationships Ai are not only learned from the sensor 
embedding but also subject to Ai−1 . Our proposed learning scheme can completely 
exploit the learned graph structure relationships Ai−1 to implement sustainable 
updating, which improves the efficiency of modeling relationships between sensors. 
Besides, we construct a time series encoder for generating temporal views to help 
with multivariate time series. Our contributions are summarized as follows:

• We present a novel graph attention network-based model that concurrently learns 
from temporal and spatial perspectives, thereby providing more knowledge of 
the relationships between multivariable sensors.

• We present a sustainable updating method for graph structure learning combin-
ing a similarity-constrained loss and a threshold selection strategy. It facilitates 
more efficient learning of topological sensor dependencies.

• Experimental results on three publicly available real-world datasets demonstrate 
that our model surpasses the state-of-the-art approaches.

The remaining sections are organized below. Section  2 expounds relevant litera-
ture in deep learning anomaly detection models. Section  3 describes the method-
ology, including the model framework, training loss function, and anomaly score 
calculation. Section 4 explains the experimental results, which are displayed visually 
through tables and graphs. Section 5 briefly summarizes the proposed model.

2  Related work

Currently, numerous deep approaches are flourishingly implemented in anomaly 
detection. This section will thoroughly sort out the mainstream models.

AE has a strong nonlinear representation ability and employs the reconstruc-
tion residuals as a criterion for anomaly discrimination. Zong et  al. [6] proposed 
an end-to-end hybrid model that combined AE with the Gaussian method. Another 
study [7] adopted the architecture of AE, consisting of one encoder and two decod-
ers, and leveraged an adversarial learning technique to train the model. Naito et al. 
[17] adopted a two-stage AE model to enhance the interpretability and accuracy of 
anomaly detection. Moreover, RNNs capture the temporal characteristics for deal-
ing with time series tasks. Park et  al. [9] proposed a framework combining vari-
ational autoencoder (VAE) and long short-term memory network (LSTM) to tackle 
the issue of anomaly detection on multimodal data. Fährmann et al. [18] also was 
a hybrid model of VAE and LSTM, but it focused on lightweight. To characterize 
the temporal correlation of time series distributions, Li et al. [8] built a generative 
adversarial network-like architecture using LSTM and RNN as basic modules and 
performed anomaly detection synthetically through reconstruction and discrimina-
tion errors. In addition, the prevalent transformer [17] also appears in some studies. 
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Zeng et al. [19] constructed a deep transformer-based model, which was trained in 
an adversarial training manner and used anomaly scores combining reconstruction 
residuals and probability during detection. However, the models discussed above are 
essentially incapable of constructing unequivocally the relationships among multi-
variate sensors.

To deal with the above issue, some research has shifted to sensor relationship 
modeling. By virtue of excellent graph relationship modeling capabilities [20–23], 
GNNs have been extensively applied in anomaly detection. Deng and Hooi [14] 
adopted a graph attention network (GAT) to learn sensor relationships, which first 
employed the linear layer to embed sensors, then used the top-k technique to deter-
mine the graph structure. Tang et al. [16] was highly similar to [14], except that [16] 
utilized gate recurrent unit to learn temporal features. Zhan et al. [15] established 
a reconstruction GAT model focused on multi-scale feature learning. Regarding 
model design, Zhao et al. [13] and [10] were comparable. Both employed two GATs 
to simultaneously learn spatio-temporal linkages, optimizing the reconstruction and 
prediction networks. However, these models have a main drawback: the graph struc-
ture learning lacks continuity in modeling sensor relationships.

To compare the above models more clearly, we have compiled a summary 
Table  1. From Table  1, we can draw two conclusions. First of all, the non-graph 
models are hybrids of existing deep models, emphasizing the extraction of temporal 
features. However, these models ignore the modeling of sensor relationships. Sec-
ondly, existing graph models use GAT to solve the relationship modeling, but it has 
the defect of independent updating during training. In contrast to the above methods, 
our proposed model has the graph structure learning ability of sustainable updat-
ing to model sensor relationships. Next, the proposed model in this paper will be 
explained in detail.

3  Method overview

3.1  Problem statement

The objective of anomaly detection in multivariate time series is to find anomalous 
data during testing, which is usually implemented using the paradigm of unsuper-
vised learning. Under this paradigm, the training dataset consists solely of normal 
data, whereas the test dataset contains both normal and abnormal data. The two data 
types are distinguished based on their patterns and behaviors. As depicted in Fig. 2, 
the highlighted area indicates an anomaly segment, with apparent fluctuations in the 
data, while the normal area is relatively stable.

Generally, the multivariate time series data are symbolized as 
X =

{
x1, x2,… , xn

}
∈ Rn∗m , where n represents the length of data and m denotes 

the number of features observed from sensors. For any time step t, xt ∈ Rm is a 
m-dimensional vector. For input data, we perform data normalization and sliding 
window ( window w and step c, as plotted in Fig. 3). The final output is a vector with 
the value Y =

{
y1, y2,… , yn

}
 , where yt ∈ {0, 1} and yt = 1 declares that the current 

sample is an anomaly.
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3.2  Model architecture

We comprehensively elucidate the proposed model TS-GAT in this section, as 
depicted in Fig.  4. Our model mainly comprises three core components: time 
series encoder, sustainable updating graph structure learning, and forecasting-
based decoder. Each is then thoroughly explained.

Fig. 2  Example of normal and 
anomaly data

Fig. 3  Example of sliding window
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3.2.1  Time series encoder

In multivariate time series data, distinct sensors often have unique properties, which 
may be related to each other in complex ways. For example, consider a smart home 
system with sensors for measuring temperature, humidity, and light. It is reason-
able to assume that temperature and humidity sensors in different rooms will behave 
similarly. However, within the same room, there is often a close correlation between 
these sensors. Humidity decreases may accompany temperature increases. There-
fore, a flexible and diverse way to describe the behavior of each sensor is required. 
Sensor embedding [14] can convert sensor data and features into embedding rep-
resentations in high-dimensional vector space. Therefore, we propose a time series 
encoder to obtain embedding vectors from multivariate time series flexibly.

As described in Fig. 4, the time series encoder is formed with an LSTM layer, a 
timestamp masking layer, and a fully connected layer. Among them, LSTM can bet-
ter capture long-term dependencies by introducing special memory units and gating 
mechanisms, as shown in Fig. 5.

For input data x, the LSTM layer handles long-term temporal dependencies in 
a recurrent and memorized manner, which can effectively gain temporal features. 
The timestamp masking layer occludes the latent features at stochastically selected 
timestamps to obtain more robust views. The fully connected layer maps the masked 
features to produce the representative sensor embedding z, as shown in Eq. 1.

Fig. 4  A high-level framework of TS-GAT 
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where F is the time series encoder. z ∈ Rd , d denotes the embedding dimension.
Through the above sensor encoding, the model can map each unique sensor 

behavior into a semantically rich representation vector. This representation ability 
helps to understand the patterns and laws behind sensor behavior deeply and pro-
vides more information for subsequent task processing.

3.2.2  Sustainable‑updating graph structure learning

Based on the sensor embeddings obtained from the above time series encoder, this 
section will introduce graph structure learning in detail. When modeling sensor rela-
tionships, the entire multivariate sensor is treated as a graph structure. Typically, 
since the relationships of the graph structure do not require symmetry, a directed 
graph is defined to represent the graph structure. The nodes represent sensors, and 
the edges represent relationships between sensors.

The proposed sustainable updating method integrates a similarity-constrained 
loss and a threshold selection strategy. First, we define a global and learnable simi-
larity matrix H, created through random initialization, as shown in Eq. 2. Then, we 
leverage a threshold select strategy to determine the adjacency matrix A instead of 
the irrational top-k form, as indicated in Eq. 3. Concretely, assume that the nodes 
are related if the similarity in H is higher than or equal to threshold � . The threshold 
selection strategy avoids redundant graph fully connected mode. Finally, we calcu-
late another similarity S using the node i and all its potential neighbors j in the fol-
lowing Eq. 4. Through the similarity constraint loss of H and S, the learning of H 
ensures the sustainable updating of A from the data. The graph structure, i.e., the 
adjacency matrix A, can be continuously updated based on the previous learning, 
guaranteeing continuity.

(1)z = F(x)

(2)H = Rand()

(3)Aji = 1
{
(i, j) ∈ Index(Hij ≥ �)

}

(4)Sij =
z⊤
i
⋅ zj

‖zi‖ ⋅ ‖zj‖

Fig. 5  A separate flow diagram 
of LSTM model. The LSTM 
consists of a forget gate ft , an 
input gate it , an output gate ot , 
and a memory unit
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where H ∈ Rm∗m denotes a learnable matrix derived from Rand stochastic func-
tion. Index stands for the index pair operation of a matrix. z is the embedding vector 
obtained from the time series encoder. S denotes the similarity matrix. Both i and j 
belong to [1, m].

Following the adjacency matrix A, we utilize GAT to capture the sensor 
dependencies, employing a flexible graph structure to represent the associations 
between individual sensors. As depicted in Fig. 6, the graph attention mechanism 
of GAT enables the network to learn the strength of relationships, i.e., attention 
coefficients, between each node and its neighboring nodes. This coefficient allo-
cation allows the network to focus on neighboring nodes highly relevant to the 
current node, enhancing the model’s expressive ability. Its calculation process is 
shown in Eqs. 5 and 6.

where a denotes the learnable weights. W is a learnable weight matrix. z represents 
the embedding vector obtained from the time series encoder. ⊕ means the operation 
of concatenation. 𝜓(i) =

{
j ∣ Aji > 0

}
 represents the set of neighbors of node i. �i,j 

denotes the attention coefficients. By the � , the aggregate representation vi of node i 
is defined as Eq. 7.

(5)ei,j = LeakyReLU
(
aT ⋅

(
Wzi ⊕Wzj

))

(6)�i,j =
exp

�
ei,j

�

∑
k∈�(i)∪{i} exp

�
ei,k

�

Fig. 6  A simple representation 
of graph attention mechanism



8538 W. Zhang et al.

1 3

3.2.3  Forecasting‑based decoder

Through the representations v obtained above, we can gain the predicted output. The 
prediction paradigm can portray the future behavior of sensors by modeling historical 
observations against normal data. Therefore, we construct a forecasting-based decoder 
g, formed via a causal convolution [24] and a fully connection layer. The fully con-
nection layer performs the feature mapping. The causal convolution is a strict time-
constrained model that obeys the fundamental contextual dependencies of data mode-
ling on temporal order. As shown in Fig. 7, causal convolution only uses historical data 
when calculating, making the model more suitable for capturing patterns of time series 
and helping to improve forecasting performance.

To better guarantee the model output x̂ , we integrate the information from the 
embedding vectors z and graph attention-based representations v and feed it to the 
decoder G, as shown in Eq. 8.

where ◦ is element-wise operation.

3.3  Model training and anomaly detection

Model training. To reduce the discrepancy between input data x and the forecasting 
output x̂ , we adopt the mean squared error (MSE) as a prediction loss in Eq. 9. Further-
more, we compute a similarity loss using two similarity matrices S and H, as shown in 
Eq. 10. Imposing the similarity loss to constrain the H can further ensure the sustain-
able updating of the adjacency matrix A. In sum, when training the proposed model, we 
minimize the loss function according to Eq. 11.

(7)vi = ReLU

(
�i,iWzi +

∑

j∈�(i)

�i,jWzj

)

(8)x̂ = G(z◦v)

(9)Lpred =
1

n

n�

i=1

‖xi − x̂i‖22

Fig. 7  Visualization of causal 
convolution
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where � ∈ (0, 1].
Based on the above loss functions, we provide Algorithm 1 to clearly show 

the model’s training process.
Anomaly detection. Following [14], we leverage graph deviation scoring 

(GDC) to gain the anomaly scores. GDC computes the anomaly statistics less 
sensitive to severe biases from specific sensor behavior. Firstly, we obtain the 
prediction error specified in Eq  12. To prevent the impact caused by different 
dimensions of sensors, it is more robust to normalize by the median and inter-
quartile range (IQR) rather than its mean and standard deviation, as demon-
strated in Eq 13. Then, the max function aggregates multiple sensors to achieve 
the final scores, as shown in Eq  14. When performing anomaly detection, the 
threshold is selected through the validation dataset. If the anomaly score exceeds 
the threshold, we label a timestamp in the test dataset as an anomaly.

where erri(t) indicate the error of sensor i at time t. �̃�i and �̃�i denotes the median and 
IQR.

4  Experiment

4.1  Datasets

We leverage three publicly available datasets throughout the experiments: 
Secure Water Treatment (SWaT) [13], Water Distribution (WADI) [10], and 
Hardware-in-the-loop-based Augmented Industrial control systems security 
(HAI) [25]. SWaT and WADI are operational water treatment testbeds primarily 
utilized for cyberattack and anomaly detection research. HAI, a cyber-physical 
system, can simulate various complicated processes to generate sophisticated 
attacks. Table 2 lists each dataset in full. We visualize some multivariate time 
series observations to observe the data clearly, as illustrated in Fig. 8.

(10)Lsim = ‖S − H‖2
2

(11)L = Lpred + � ⋅ Lsim

(12)erri(t) = |xi(t) − x̂i(t)|

(13)pi(t) =
erri(t) − �̃�i

�̃�i

(14)P(t) = max
(
pi(t)

)
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4.2  Evaluation metric

As performance metrics for the proposed model, we employ precision (P), recall 
(R), and F1-score (F1). P denotes the proportion of true anomalous samples that 
the model correctly detects. R indicates the percentage of predicted anomalous 
points relative to all anomalies. The F1 comprehensively considers P and R. The 

Table 2  Dataset statistics Dataset Train Test Dimensions Anomaly rate (%)

SWaT 496,800 449,919 51 11.98
WADI 1,048,571 172,801 123 5.99
HAI 309,600 291,600 59 3.96

Fig. 8  Visualization of multivariate time series data. The pink highlights represent anomalous segments
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higher the above F1, the better the accuracy of anomaly detection, as defined in 
Eqs. 15, 16, 17.

where TP, FP, and FN denote true positive, false positive and false negative, 
respectively.

Anomalies observations frequently take place continuously for a while generat-
ing abnormal segments. The previous work [26] provides a point-adjust technique 
that, if any anomaly observation within it is correctly recognized, deems the whole 
abnormal segment to be accurate. Audibert et al. [7], Zhao et al. [13], Su et al. [27] 
adopted such strategy in evaluation. Additionally, another work [28] focuses on the 
optimal threshold to evaluate the performance using the best F1 score (short F1 
score hereafter). In this paper, we adopt the above F1 and the adjustment strategy to 
evaluate anomaly detection performance.

4.3  Implementation details

Our experiment uses PyTorch on a machine with NVIDIA RTX 3090 GPU. Fol-
lowing empirical values in the existing literature, the learning rate is 0.001, and the 
batch size is 128. We adopt Adam [29] as the network optimizer with �1 = 0.9 and 
�2 = 0.999 . We set the training epoch as 100 and leverage the early stopping strat-
egy with patience=8 to prevent overfitting. For the following parameters, we select 
the optimal value based on the experimental parameter adjustment results. The slid-
ing window w and step c are 15 and 3. The embedding dimension d of the time 
series encoder is set to 128. The kernel size of casual convolution is 5. The � in 
Eq. 3 equals 0.5. The � in Eq. 11 is 0.8.

4.4  Comparison with state‑of‑the‑art methods

We quantitatively compare the proposed TS-GAT model with existing approaches, 
including LSTM-VAE [9], DAGMM [6], MAD-GAN [8], USAD [7], MTAD-GAT 
[13], GDN [14], STGAT-MAD [15], GTA [30], HAD-MDGAT [10], GRN [16]. 
Table 3 presents the comparison findings of the models for P, R, and F1. The most 
outstanding performance is highlighted in bold, while the second is underlined.

From Table  3, several significant conclusions can be drawn. Firstly, our model 
consistently achieves the best F1 scores across all available datasets. It also acquires 
the highest recall in all circumstances other than HAI, where it performs worse than 
(81.84% vs. 86.58% ). However, the precision of our model (93.14% ) is dramatically 

(15)P =
TP

TP + FP

(16)R =
TP

TP + FN

(17)F1 = 2 ×
P × R

P + R
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higher than that of GTA (83.22% ) on the same dataset. Secondly, models such as 
LSTM-VAE, DAGMM, and MAD-GAN, which do not account for sensor relation-
ships, exhibit noticeably lower F1 scores than models that incorporate this relation-
ship. This underscores the criticality of graph relationships in the context of anom-
aly detection. Thirdly, incorporating sensor relationships enhances the performance 
of graph models, such as MTAD-GAT, STGAT-MAD, etc. However, the inability to 
update the continuous graph structure hampers further performance enhancements. 
In contrast to these approaches, our model addresses this limitation, achieving supe-
rior performance. Finally, as obtained by the above models, the slight compromise 
between high recall and precision has critical implications for real-world applica-
tions. In most cases, FPs and FNs demand the execution of an inevitable trade-off. 
However, minimizing alarms triggered by FPs is prominent for applications’ effi-
ciency. But in the long run, detecting as many potential anomalies as possible can 
enhance the system stability since even rare abnormalities may lead to malfunction 
of the whole system. The maintenance technical staff with specialized knowledge 
will incline toward a high-level sensitivity instead of specificity to avoid missing 
informative and pivotal events [31].

4.5  Anomaly detection visualization

To intuitively show the performance of the TS-GAT model, we visualize the test 
values, predicted values, and anomaly scores on the HAI dataset in Fig.  9. For 
sensors P1_FCV02Z and P4_ST_PT01, values vary quite steadily, and the model 
detected all the abnormal segments accurately. The sensor P4_ST_PO is character-
ized by dense fluctuations and sharply distinguishes the middle two anomalies. We 
can see from Fig. 9 that the prediction and the test values essentially follow the same 
trends. It indicates that the forecasting of the model is precise enough. Under the 

Table 3  Comparison results of TS-GAT and various models

Method SWaT(%) WADI(%) HAI(%)

P R F1 P R F1 P R F1

LSTM-VAE 76.00 89.50 82.20 87.79 14.45 24.82 57.83 70.51 63.54
DAGMM 89.92 57.84 70.40 54.44 26.99 36.09 21.38 68.79 32.62
MAD-GAN 98.97 63.74 77.54 41.44 33.92 37.30 47.70 32.83 38.89
USAD 99.77 68.79 81.43 18.73 82.96 30.56 9.32 13.35 10.98
MTAD-GAT 90.30 82.10 86.00 72.00 51.80 60.20 13.30 34.29 19.17
GDN 99.35 68.12 81.00 97.50 40.19 57.00 88.37 60.32 71.70
STGAT-MAD 96.50 84.10 90.00 79.70 91.00 84.90 89.01 82.31 85.53
GRN 99.86 59.09 74.96 35.84 73.98 48.28 79.06 83.46 81.20
GTA 94.83 88.10 91.00 83.91 83.61 84.00 83.22 86.58 84.87
HAD-MDGAT 95.30 88.36 91.70 86.10 95.60 90.60 88.39 82.25 85.21
TS-GAT 96.27 89.92 92.98 85.30 97.96 91.19 93.14 81.84 87.12
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prediction-based paradigm, the proposed model possesses the ability to detect all 
anomalies.

4.6  Ablation study

To verify the efficacy and necessity of each component of TS-GAT, the ablation 
experiments with simplified counterparts of the model are carried out in Table 4. 
Concretely, we first evaluate the significance of the time series encoder by replacing 
it with linear embedding. Then, to discuss the effect of threshold selection strategy 
on graph structure learning, we adopt an entire static graph in which every node is 

Fig. 9  Display of anomaly detection performance. Each sensor consists of two subgraphs and the high-
lighted area denotes the abnormal segment. The first represents test and predicted values, while the sec-
ond denotes the anomaly scores
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correlated with all other nodes. Lastly, we discard the similarity loss to evaluate the 
model’s performance.

Obviously, these variants with the corresponding component removed clearly 
underperform the TS-GAT model. It reveals that each component is indispensable to 
the model and contributes to performance. In addition, the model’s performance sig-
nificantly deteriorates in the absence of similarity loss, thus confirming the efficacy 
of the sustainable updating graph structure learning method proposed in this paper.

4.7  Interpretability of model

Interpretability via time series embedding. We further investigate the interpretabil-
ity of the time series encoder through the visualization of t-distributed Stochastic 
Neighbor Embedding (t-SNE) [32] in Fig. 10. We are concerned about whether the 
features mapped by the encoder can be reflected in the t-SNE space. For instance, 
the similarity of representation features may reflect similar sensor behaviors. 
According to Fig. 10, we confirm that some sensors essentially form local clusters. 
It proves that features obtained from the proposed model may accurately capture the 
behavioral similarities among local sensors.

Interpretability via learned relationships. According to the learned model, we 
discover the connections in the graph structure, which can further provide interpret-
ability to know which sensors are relevant. As plotted in Fig. 11a, the sensors P1_
LCV01D and P1_FCV03Z are linked, and their responses to the two abnormal seg-
ments are nearly identical. In Fig. 11b, sensor P1_FT02Z connects with P1_FT03, 
and both exhibit a strong reaction to the last abnormal segment. This is most likely 
caused by the connections between these sensors. Therefore, we declare that con-
nected sensors typically behave similarly and are beneficial for anomaly detection.

Table 4  Comparison of 
TS-GAT ablation experiments 
on F1

Model SWaT(%) WADI ( %) HAI ( %)

TS-GAT 92.98 91.19 87.12
w/o TS Embedding 88.38 89.12 80.43
w/o Threshold Select 90.23 88.59 86.13
w/o Sim Loss 78.46 87.38 75.89

Fig. 10  t-SNE visualization 
of latent features mapped 
from time series embedding 
component on HAI dataset. 
Different colors indicate distinct 
processes. The nodes in the red 
dashed circle basically form 
a local cluster (color figure 
online)
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Fig. 11  Left side displays the connection relationships, while the right contains four subplots, where the 
first column represents test and predicted values, and the second denotes anomaly scores. The highlights 
indicate the anomaly segment
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5  Conclusion

In this work, we present a graph attention network-based anomaly detection 
approach for multivariate time series. The proposed model is integrated with a 
time series encoder, a sustainable updating graph structure learning module, and 
a forecasting-based decoder. The encoder has an excellent embedding ability for 
effectively generating temporal features. The graph learning module can improve 
the efficiency of modeling sensor relationships. The decoder incorporates causal-
ity based on time series, which gives excellent predictive capability. Experimental 
results on three real-world available datasets indicate the superior performance of 
the proposed model over state-of-the-art approaches. Remarkably, it also provides 
good interpretability.

This research monolithically focuses on the relational modeling of multivar-
iate sequences from both temporal and spatial views to better handle anomaly 
detection. In the future, we will concentrate on detecting tiny abnormalities and 
explore more possibilities of graph neural networks for anomaly detection.
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