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Abstract
The exponential growth of social networks has resulted in the generation of vast 
amounts of graph data containing sensitive information. However, the exposure of 
such data could lead to disastrous consequences. Current graph data protection algo-
rithms lack sufficient research on the attribute characteristics of social users, which 
results in a failure to safeguard potentially vulnerable private data effectively. To 
address these issues, an entropy-driven differential privacy protection scheme based 
on social graphlet attributes (EDP-SGA) is proposed. Firstly, a matrix-based algo-
rithm is proposed for constructing an attribute intimacy matrix, which can quantify 
the strength of links among social users’ attributes. Secondly, an influence algorithm 
based on user node attributes and information entropy is proposed, which can divide 
social networks into communities and select seed nodes. Thirdly, a privacy-preserv-
ing social network data publishing algorithm is proposed, which can combine graph 
modification techniques and differential privacy to convert sensitive graph data into 
an uncertain graph. Finally, experimental results demonstrate that the EDP-SGA can 
keep the balance between the privacy and the utility of social graph data.
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1 Introduction

The emergence of the internet has sparked exponential growth in social network 
services (SNS), leading to the development of various social networking appli-
cations. The network of collaborative relationships among people formed under 
social application software is called social network [1]. Social network is a social 
structure formed by the collection of social individuals and individual connec-
tion relationships based on information network. A large amount of graph data 
generated in social networks can visualize social changes and overall trends [2, 
3]. At present, social graph data has been widely used in various fields of life, 
such as social recommendation systems, marketing influence maximization, 
social behavior research, etc. Social network graph data have enormous research 
value. Furthermore, some specific subgraph structures appear more frequently in 
real networks than in random networks, known as graphlet [4, 5]. Scholars have 
studied the evolution of social networks from a topological perspective and found 
that graphlet are one of the basic topological structures of networks and play an 
important role in network evolution [6].

Nevertheless, frequent privacy breaches, such as the leakage of personal data 
from 533 million Facebook users across 106 countries and over 235 million Twit-
ter accounts had their personal information leaked and posted on an online hacker 
forum, are now common [7–9]. The leaked data include sensitive user attribute 
information like phone numbers, resumes, home addresses, names, and company 
addresses, as well as the relationships between user nodes, such as friend pro-
files, likes, reposts, etc. Through the analysis of these data, the sensitive informa-
tion about individual users and their relationships with others may be inferred 
by adversaries. This can lead to informed speculation regarding a user’s prefer-
ences, political attitudes, education level, and other details. Additionally, adver-
saries may exploit a user’s friend list to extend their reach and cause significant 
harm  [10]. Although social networks provide social services, the confidential 
information they possess is exposed  [11, 12]. Ensuring secure data publishing 
while safeguarding user-sensitive information and contact relationships, has now 
become an urgent and important social issue that requires attention.

The social network can be formalized as a network topology graph, where nodes 
and edges represent social network users and connections, respectively. Social net-
work graph not only includes sensitive user information and attributes but also 
includes vital relationships among user nodes. Moreover, various sensitive attributes 
can be associated by user nodes and have dissimilar degrees of sensitivity in their 
social associations [13]. The connections among user nodes are built on both strong 
and weak ties, and play a critical part in transmitting information within social net-
works [14–16]. These two types of relationship structures constitute necessary com-
ponents of social networks are established by research [17, 18]. When adversaries 
gain access to parts of a social network graph structure, they can utilize this knowl-
edge to pinpoint critical groups based on the strength of relationships between users 
and obtain valuable details. Thus, it is imperative to partition and safeguard both the 
link and the weak ties in social networks.
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Various techniques have been proposed to protect graph data privacy in differ-
ent situations  [19–21], such as graph modification techniques, clustering meth-
ods, K-anonymity mechanism, etc. However, most of these solutions focus on 
protecting the topological structure between individual nodes in a social graph, 
which are limited to edge relationships between single nodes. These approaches 
lack a deeper understanding of node attribute information, overlook the links 
between users with different attributes, and thus fail to reflect the real interper-
sonal relationships among user nodes in a social network accurately. Therefore, 
an entropy-driven differential privacy protection scheme based on social graphlet 
attributes (EDP-SGA) is proposed.

Various techniques have been proposed to protect graph data privacy in differ-
ent situations  [19–21], such as graph modification techniques, clustering meth-
ods, K-anonymization mechanisms, etc. However, most of these solutions focus 
on protecting the topology between individual nodes in a social graph, limited 
to the edge relationships between individual nodes. Moreover, some techniques 
may be vulnerable to background knowledge attacks. Background knowledge 
includes specific information held by adversaries, which can be exploited for pri-
vacy-related attacks on published social network data. This information can be 
obtained through crawling or well-known web browser history stealing attacks or 
by participating actively in social networking sites or by exploring overlapping 
members of several social networking sites [22].

Nowadays, the imperative importance of privacy protection is pronounced 
increasingly. Trusted third party (TTP) plays a crucial role in data exchange and 
privacy preservation across various domains. Trusted third party is an independ-
ent and impartial entity with the primary responsibility of ensuring user privacy 
and data security during data processing and information transmission. Social 
Network Service Provided (SNSP) collects user information and performs ini-
tial anonymization before sending it to TTP. The TTP is responsible for privacy 
protection of both social user information and the social graph data. The EDP-
SGA scheme proposed in this paper is based on privacy protection of social net-
works by trusted third party, which can defend against background knowledge 
attacks while protecting the social network graph structure. The system model of 
EDP-SGA is illustrated in Fig. 1. The principal contributions of this paper are as 
follows: 

(1) An attribute intimacy matrix construction algorithm is proposed to quantify the 
intimacy between attributes of nodes in a social network. The strength of node 
links can be measured by the intimacy of user nodes’ attribute features, thereby 
uncovering potential privacy leakage risks in the social network.

(2) An influence algorithm based on user node attributes and information entropy is 
proposed to measure the influence of nodes in the social network. Based on the 
attribute intimacy matrix of the social network and after dividing it into com-
munities, seed nodes are selected. Seed nodes are special nodes with maximum 
influence in the social network, as starting points for protecting the privacy of 
the social network graph.
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(3) A differential privacy-based graph data security publishing algorithm is pro-
posed. Firstly, the graph structure of seed nodes is modified by using graph 
modification technology. Secondly, different privacy budgets are allocated to 
different strong or weak links based on the attribute intimacy by using differen-
tial privacy techniques. Finally, an uncertain graph is generated to publish social 
network graph data securely.

(4) EDP-SGA is evaluated across different scales of real social network data experi-
mentally, and its effectiveness in protecting the privacy of social network graph 
data while maintaining good data usability is analyzed.

The rest of the article is organized as follows: The related work is given in Sect. 2; 
the Preliminaries is given in Sect. 3; the entropy-driven differential privacy protec-
tion scheme based on social graphlet attributes is designed in Sect. 4; Experimental 
results are shown in in Sect. 5; and finally, the conclusion is given in Sect. 6.

2  Related work

Graph data have become important increasingly in privacy protection and research 
across various fields, including social networks. Companies like Amazon and Net-
flix use graph data to enhance their recommendation services, while analyzing this 
data can provide valuable insight into social issues like communication patterns and 
information dissemination [23, 24]. Large-scale sharing of graph data can bring sig-
nificant benefits to society, but can also lead to the disclosure of personal informa-
tion. Therefore, many solutions related to social network graph data privacy protec-
tion are proposed. In this section, the privacy protection methods based on social 

Fig. 1  System model of EDP-SGA consists of three parts: Social Network Service Provider (SNSP), 
Trusted Third Party (TTP) and Graph Data Publishing. a SNSP refers to organizations or platforms that 
offer social networking services to users. Examples include social media platforms like Facebook, Twit-
ter, and others. b TTP is an impartial entity that verifies and secures transactions, ensuring the integrity 
of interactions between two parties. It sends social network data to the EDP-SGA scheme, ensuring pri-
vacy protection. c Graph Data Publishing can be applied to multiple domains such as social recommen-
dation, data mining and analytics and marketing impact maximization, etc.
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network graphs will be introduced in three aspects, which are graph modification, 
differential privacy, and uncertain graph.

2.1  Graph modification‑based privacy method

The privacy protection method based on graph modification aims to achieve privacy 
protection by altering the local structure of the original graph. Graph modification 
is primarily accomplished through three techniques: random edge or node editing, 
random walk, and K-anonymous mechanism [19]. These methods modify the graph 
in different ways to break the link between sensitive information and the original 
graph.

Mittal et al.  [25] proposed a method, which randomly walks from j, a neighbor 
of any node i, to u through the random walk, and replaces the original edge (i,  j) 
with (i, u). K-anonymity is a classic limiting perturbation mechanism in graph modi-
fication, the core idea of K-anonymity is to ensure that after modifying the origi-
nal graph, the probability of the attacker identifying a certain edge or node is no 
more than 1/k [26]. Xue et al. [27] proposed a probabilistic attack algorithm based 
on the random walk, which randomly flips the existence of each edge with prob-
ability p. Huang et al. [28] proposed a new privacy model (k, t)-privacy that com-
bines the K-automorphism model for graph structure with the t-closeness privacy 
model for node label generalization. Mortazavi et al. [29] proposed the GRAM, an 
efficient (k, l) graph anonymization method based on edge addition. Tang et al. [30] 
proposed a k − Vretr method to protect user query privacy and location privacy by 
combining the K-anonymity mechanism with the Voronoi diagram and quadratic 
residual hypothesis model. Ren et al. [31] proposed a novel graph privacy preserva-
tion mechanism, namely kt-safe graph. This approach can efficiently anonymize the 
graph by letting its n-hop neighbors contain the same or similar information.

However, modifying the topological structure of the original graph will destroy 
the original graph structure and cannot guarantee the availability of data. The 
method based on random walk cannot determine a reasonable walk step length, and 
the long walk length leads to low efficiency of the algorithm. If it is too short, the 
privacy of the graph data cannot be guaranteed. As for K-anonymous mechanism, 
relevant constraints need to be formulated, resulting in the inability to balance the 
efficiency of the algorithm and the availability of data, and it cannot resist back-
ground knowledge attacks such as link attacks and differential attacks.

2.2  Differential privacy‑based privacy method

To solve the problem that K-anonymous mechanism cannot resist attacks such as 
background knowledge. Differential privacy protection model is proposed by 
Dwork [32], which defines the intensity of privacy protection on the basis of strict 
mathematics. Differential privacy is to perturb the data, so that whether a data exists 
in the data set does not affect the output [33].

Nguyen et  al.  [34] proposed an edge difference privacy method based on the 
adjacency matrix of the graph. By setting thresholds for edge noise, the algorithm 
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protects the privacy of the graph while preserving the edge density of the original 
graph. Li et al.  [35] proposed an edging difference privacy algorithm for publish-
ing edge weight sequences. By sorting edge weights and grouping them according 
to the array, Laplacian noise is added. Nguyen et al.  [36] proposed a new privacy 
definition, called subgraph-differential privacy (subgraph-DP), for graph data pub-
lishing based on the conventional differential privacy definition. Adhikari et al. [37] 
controlled the size and quality of the edge set through different privacy budgets, and 
publish the edge set in the graph by using the exponential mechanism and sampling 
method proposed by Roohi et al. [38]. Ning et al. [39] designed a privacy protection 
algorithm for the weighted graph, and use the differential privacy protection model 
to protect the edge weight and structure of graph. Qu et al. [40] proposed a privacy 
protection method based on differential privacy uncertainty, called HPDU, which 
takes into account both edge and node degree privacy. Jian et  al.  [41] proposed 
two methods for publishing graphs under node-DP. One is the node-level perturba-
tion algorithm which modifies the input graph by randomly inserting and remov-
ing nodes. The other one is the edge-level perturbation algorithm which randomly 
removes edges and inserts nodes.

Despite the differential privacy can mitigate background knowledge attacks effec-
tively, if the assumptions about the background knowledge are restrictive overly, it 
may result in randomized outcome. This is due to the differential privacy methods 
introduce significant amounts of noise to achieve high levels of privacy, which can 
reduce the usability of data and even render graph data unusable greatly. Therefore, 
the main challenge for most differential privacy methods is how to ensure some data 
availability while reducing the addition of noise.

2.3  Uncertainty graph‑based privacy method

Uncertain graph is emerged as a novel approach to safeguarding privacy. This 
method entails injecting different probabilities into the edges of an original graph 
prior to its release, thereby generating the uncertain graph that ensures privacy pro-
tection. By assigning probability values to the graph edges, this method safeguards 
privacy effectively while minimizing alterations to the original data. Consequently, 
uncertain graph offers a higher degree of data utility than methods involving com-
plete edge removal or addition. As such, uncertain graphs offer superior privacy pro-
tection guarantee [42, 43].

Boldi et al. [44] proposed the (k–� ) obfuscation algorithm, which injects uncer-
tainty into the social graph to achieve fuzzy processing. This method can also resist 
the attack of node identity on the premise of minimizing the distortion of graph 
structure. Yan et al. [45] proposed an uncertain graph method based on the theory of 
triadic closure, which involves adding edges to nodes. The method then injects dif-
ferent probabilities into these edges, thereby transforming the network into an uncer-
tain graph. Yan et al. [46] proposed an improvement on the ternary closure method, 
selecting the top 10% nodes with the highest centrality in the social network as seed 
nodes and adding edges to them. Xu et al. [47] proposed an Uncertain Graph scheme 
based on Node Similarity (UG-NS), which can not only preserve user privacy in 
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social networks but also maintain high data utility. Wu et al.  [43] proposed a pri-
vacy protection algorithm based on differential privacy (UGDP), which combines 
the differential privacy technology and the graph modification. UGDP adds edges 
to the original graph according to the theory of triadic closure, and uses the dif-
ferential privacy to inject Laplace noise into the edge of the triangle, and finally 
generates the uncertain graph for data release. However, the ternary closure algo-
rithm of UGDP cannot resist the background knowledge attack, the privacy of the 
social graph is still at risk of being leaked even after being disturbed [48]. Therefore, 
Zheng et al. [48] proposed a differential privacy algorithm of uncertain graph based 
on ternary closure(TCDP), which adds edge between two nodes to form a triangle 
according to the theory of triadic closure. The edges that form a triangle are noised 
and the remaining edges are assigned a value of 1. Finally, the uncertain graph is 
generated.

However, when the privacy protection level of the uncertain graph algorithm is 
high, the effectiveness of data availability is the worst, unable to balance privacy 
and data availability [49]. Moreover, existing uncertain graph methods modify the 
original topology without considering the diverse attribute relationships among user 
nodes in social networks. Consequently, there is a dearth of profound exploration 
into the attribute links between social network users, resulting in inadequate protec-
tion of sensitive information of users within social networks.

To summarize, graph modification-based privacy protection schemes are unable 
to guarantee data privacy and are vulnerable to background knowledge attacks. 
Differential privacy-based schemes struggle to balance the availability and pri-
vacy security of social network graph data, as high privacy protection can result in 
excessive noise addition that reduces the availability of graph data greatly. Uncer-
tain graph protection schemes lack a thorough exploration of attribute information 
between social network users, making it impossible to fully protect their privacy and 
security. In response to these limitations, an entropy-driven differential privacy pro-
tection scheme based on social graph graphlet attributes (EDP-SGA) is proposed in 
this paper. A social network attribute intimacy matrix is constructed to partition the 
network into communities and identify high-influence seed nodes. The graph modi-
fication and differential privacy technology are utilized to protect the privacy of the 
graph structure of seed nodes. Lastly, the social graph is transformed into an uncer-
tain graph for secure publishing.

3  Problem description and preliminaries

3.1  Motivation scenario

Social network graph data contains not only user-sensitive data but also connection 
relationships among users. With the web crawler, public datasets, and other ways, 
the adversary can infer user node attribute information, inter-user connection prob-
abilities and identify special graphlet by social network part structure. The adversary 
could identify seed nodes by combining background knowledge and graph struc-
ture information, launch node entity identity re-identification attacks on anonymized 
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graphs, and further infer entities’ semantic attributes, connectivity relationships, and 
other privacy information. Most graph data protection methods lack deeper mining 
of the network and have difficulty in balancing data privacy and availability.

The EDP-SGA proposed in this paper is built in the social network application 
scenario, which aims to defend against background knowledge attacks and prevent 
the leakage of multi-attribute and structural information. EDP-SGA provides a new 
social graph protection scheme that meets the privacy requirements while preserv-
ing the statistical characteristics of the original data. The privacy objective of the 
EDP-SGA scheme proposed in this paper is to safeguard the attribute relationships, 
network structure of social network users, user information and social relationships, 
etc.

3.2  Problem definition

3.2.1  Social network

Definition 1 (Social Network) [50]: Let the social network graph be denoted as 
G(V, E, S), where V = {v1, v2,… vn} represents the set of user nodes in the network; 
E represents the set of edges in the social network G; S represents the set of attrib-
utes for social network users, where vi, vj ∈ V  denotes two users in the network, ei,j 
denote the friendship relationship between users vi and vj relationship ( ei,j, ej,i ∈ E ), 
|V| and |E| denote the total number of nodes and edges in the network, respectively. 
A social user vi ( vi ∈ V  ), whose attribute set is set as Si ∈ S(1 ≤ i ≤ |V|) , where |Si| 
denotes the total number of user attributes, where the attribute atrj ∈ Si ( 1 ≤ j ≤ |Si| ) 
is for its corresponding attribute category ACj ∈ AC(1 ≤ j ≤ |AC|) , where |AC| 
denotes the total number of all the sets of categories in the social network G.

For example, AC={(AC1=Music), ( AC2=Sport), ( AC3=Job)}; V={(v1=Bob), ( v2
=Jane)}; atr1={(AC1=Country Music), ( AC2=Basketball), ( AC3=Engineer)}; atr2
={(AC1=Jazz), ( AC2=Badminton ), ( AC3=Teacher)}. Social network graph and cor-
responding adjacency matrix as shown in Fig. 2.

Fig. 2  Social network graph and corresponding adjacency matrix. A social graph can be represented by 
an adjacency matrix. In this matrix, there are edges among nodes 1, 2, and 5; while, node 1 is not con-
nected to node 6. Therefore, node 1 can be represented as A1 = [0, 1, 1, 1, 1, 0]
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Definition 2 (Attribute Similarity) [51]: Attribute similarity reflects the intimacy 
between two nodes. The more identical attributes they share, the closer their social 
relationship is. The attribute similarity is defined as Eq. (1).

where si and sj represent the number of attributes for nodes i and j, respectively. The 
higher the similarity between si and sj , the larger the value of Sim(i, j), which ranges 
from 0 to 1.

Definition 3 (Uncertain Graph) [52]: Let G(V,  E) be a social graph, and 
p ∶ Vp → [0, 1] be a mapping that represents the probability of presence of each 
edge, where Vp = {vi, vj ∣ 1 ≤ i < j ≤ n ∣} represents all vertex pairs in the vertex set 
V. The uncertain graph of G is denoted as G� = (V , p).

Definition 4 (Information Entropy) [53]: Information entropy is a concept proposed 
by Shannon based on thermodynamics, which uses probability and statistical meth-
ods to quantify the degree of disorder in a system. Therefore, information entropy 
can be identified in the process of decay, and the larger the entropy value, the more 
valuable the information is, indicating a wider range and longer duration of informa-
tion propagation. The information entropy in a network is expressed as Eq. (2).

where Ii =
∑

i∈Γi wij

Qj

 presents the importance of node vi . In graph theory, information 
entropy reflects the local importance of nodes in the network. Based on whether the 
edges in the network are directed and weighted, the network can be divided into four 
types. In a weighted undirected network, as a measure of node importance, the edge 
weights are converted into node strengths  [54]. The information entropy in the 
weighted undirected network is denoted as Eq. (3).

where Γvi represents the set of neighboring nodes of node vi , and the adjacency 
strength value for node vj is defined as Qj =

∑
w∈Γj

∑
i∈Γj wij , where wij represents the 

weight of the edge between node vi and node vj.

3.2.2  Differential privacy protection models

Definition 5 (�-Differential Privacy) [33]: Two adjacent datasets D and D′ differ by 
at most one record. Let Z be a randomized query algorithm on D and D′ , and let 

(1)Sim(i, j) =
si ∩ sj

si ∪ sj

(2)E = −

n∑

i=1

IilnIi

(3)Hi =
�

j∈Γvi

∑
i∈Γj wij

Qj

�∑
j∈Γi wij

Qj

log2

∑
j∈Γi wij

Qj

�
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Range(Z) be the range of Z’s output. If the output O ∈ Range(Z) satisfies Eq.  (4), 
then Z satisfies �-differential privacy.

Definition 6 (Laplace Mechanism) [33]: The Laplace mechanism mainly adds noise 
satisfying the Laplace distribution to the query result f(D) through algorithm Z. For 
any function f ∶ D → Rd , if algorithm Z satisfies Eq. (5), then Z satisfies �-differen-
tial privacy protection.

where Lapi(△f∕�)(1 ≤ i ≤ d) are independent Laplace variables, and the noise size 
is proportional to the function’s global sensitivity and inversely proportional to � . 
In other words, the larger the noise, the higher the global sensitivity of the function. 
The Laplace mechanism is mainly used for numerical outputs.

Definition 7 (Composition of Differential Privacy Sequences) [33]: If algorithm Z 
can be decomposed into multiple processes Z1, Z2 …Zn all of which satisfy �i-differ-
ential privacy (1 ≤ i ≤ n) , and act on the same dataset D, then algorithm Z satisfies 
�−differential privacy, where � =

∑n

i=1
�i.

3.2.3  Privacy attack model and definitions

Definition 8 (Threat Model of Graph Privacy Attacks) [44]: Adversary obtains 
the local structure of the network, which includes node degree, set of neighboring 
nodes, and user node attribute information through crawlers, publicly available data-
sets, and other means. The adversary can use the known information as an auxil-
iary graph to launch graph data privacy attacks on the social network. For example, 
adversary launches a graph structure re-identification attack based on node degree, 
neighbor node sets and utilizes user attribute information to launch a background 
knowledge attack on the network.

Definition 9 (Graphlet) [55]: Graphlet of G is denoted as gi = (V �,E�) , V ′ ⊆ V  and 
E′ ⊆ E . Graphlet is a subset of the vertices in graph G as well as all edges whose 
endpoints are both in this subset. Graphlet is composed of only a few nodes, primar-
ily consisting of 3–4 nodes. Figure 3 shows all 3-node and 4-node graphlet struc-
tures. Graphlet statistical significance is evaluated by comparing the Z-score of the 

(4)Pr[Z(D) ∈ O] ≤ e� × Pr[Z(D�) ∈ O]

(5)Z(D) = f (D) + (Lap1(△f∕�),… , Lapd(△f∕�))

Fig. 3  3-Node and 4-node graphlets 
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computed subgraph with the randomized network. The Z-score is defined as shown 
in Eq. (6).

where Nreadi denotes the number of occurrences of graphlet gi in the real net-
work, while ⟨Nrandi⟩ and std(�randi) denote the average number of occurrences and 
the standard deviation of graphlet gi in the set of random networks, respectively. 
A higher Z-score indicates the greater importance of the graphlet in the network. 
Among them, 4 − f  has the highest Z-score.

Definition 10 (Graph Utility Measurement) [44, 56, 57]: The graph data utility is 
for characterizing changes in the graph data structure, connection tightness, degree 
distribution, and so on. dv = {d1, d2, d3 … dn} denotes the sequence of degrees of 
nodes in the graph, the number of edges denotes as NE =

1

2

∑
v∈V dv , the average 

degree of nodes denotes AD =
1

n

∑
v∈V dv , the variance of degrees of nodes denotes 

DV =
1

n

∑
v∈V (dv − AD)

2 . Besides, Degree Distribution Entropy (DDE) is intro-
duced as a metric to quantify network heterogeneity when the uncertainty in the dis-
tribution probability of node degrees with a specified edge number is considered. 
DDE is defined as DDE = −

∑N−1

d=0
p(d)logp(d).

Definition 11 (Edge Entropy) [45]: The edge entropy in information entropy can 
measure the degree of privacy protection in the uncertain graph. The greater the 
edge entropy, the greater the uncertainty in the uncertain graph, which means 
stronger privacy protection for the graph. The definition of edge entropy is denoted 
as Eq. (7).

where p(ei) represents the probability of the presence of the edge.

4  Entropy‑driven differential privacy protection scheme based 
on social graphlet attributes

In order to protect the privacy and security of social network graph data and pre-
vent adversaries from launching background knowledge attacks on social net-
works, it is crucial to protect not only the structure of the social network but also 
the attribute feature information of social users. As a solution, an entropy-driven 
differential privacy protection scheme based on social graph graphlet attributes 
(EDP-SGA) is proposed in this paper, which can protect the privacy of social 
graph data.

(6)Zi =
(Nreadi − ⟨Nrandi⟩)

std(�randi)

(7)Ente =
∑

e∈G�

−p(ei) × log2p(ei)
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Step 1. An attribute intimacy matrix construction algorithm is offered, which cal-
culates the attribute intimacy between nodes based on the similarity of their attrib-
ute values and constructs the attribute affinity matrix of the social network.

Step 2. An influence algorithm based on user node attributes and information 
entropy is proposed. The social network is partitioned into community structures 
based on the attribute intimacy matrix, and a seed node set that maximizes network 
influence using information entropy is selected.

Step 3. A privacy-preserving social network data publishing algorithm is pro-
posed, which can mine the important social graph graphlet of the seed nodes. To 
protect the privacy of the graph data structure, the edge intimacy of the graph 
graphlet structure is perturbed using graph modification techniques combined with 
differential privacy technology. Finally, the algorithm transforms the graph into an 
uncertain graph for publishing.

4.1  Attribute intimacy matrix construction algorithm

Social network users have various social and characteristic attributes, which are 
interrelated with each other. Therefore, having the same attribute relationship 
between users affects the intimacy significantly among them. The attribute intimacy 
matrix construction algorithm aims to quantify the strength of relationships between 
nodes. Through the calculation of the similarity of node attributes, the attribute inti-
macy between nodes can be determined. This intimacy reflects the strength of the 
links among nodes and allows for the identification of potential privacy risks in their 
connections.

In Fig. 5, node A has three neighboring nodes: node B, C, and D.According to the 
node attribute list in Fig. 4b, the total number of attributes shared by node A and 
node B is sA + sB = 8 , and they have 3 common attributes, sA ∩ sB = 3 . So, by using 
Eq.  (1) for attribute similarity, the attribute intimacy between node A and node B 
can be calculated as Sim(A,B) = ∣sA∩sB∣

∣sA∪sB∣
= 3∕8 . Similarly, the attribute intimacy 

between node A and C can be obtained as Sim(A,C) = 1∕4 , and between node A and 
D as Sim(A,D) = 1∕4 . As there is no edge connecting node A with E, F, G, and H in 
Fig.  3a, the attribute intimacy can be calculated as 
Sim(A,E) = Sim(A,F) = Sim(A,G) = Sim(A,H) = 0 . By following these steps, the 
attribute intimacy of all nodes can be calculated and the attribute intimacy matrix of 
the social network can be constructed. The attribute Intimacy Matrix Construction 
Algorithm is provided in Algorithm 1.

4.2  Influence algorithm based on user attributes and information entropy

Seed nodes in social networks are vital for identifying the key nodes involved in 
information propagation, making them a crucial starting point for safeguarding the 
structure of social networks. These nodes not only contain sensitive attribute infor-
mation but also have the potential to maximize influence on other nodes within the 
network. Hence, an influence algorithm based on user node attributes and informa-
tion entropy is presented in this section.
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The first step involves using a structural clustering algorithm for networks 
(SCAN) to partition the network into non-overlapping community structures, while 
also detecting bridge nodes and isolated nodes  [58]. Bridge nodes represent con-
nections between different communities that can facilitate information propagation 
across communities, leading to faster diffusion and wider spread. Isolated nodes are 
independent of other community structures and have no connection to other nodes. 
In the second step, the nodes with maximum influence within each community and 
all bridge nodes are added to the candidate seed set SeedG . Finally, based on the 

Fig. 4  The flowchart of the EDP-SGA. In EDP-SGA, the original social network graph is transformed 
into an adjacency matrix. Then, the graph is partitioned into communities, and important seed nodes are 
selected from the social network. Next, the important structural graphlets of the seed nodes are protected 
for privacy. Finally, the output is an uncertain graph of the social network after being processed by EDP-
SGA

Fig. 5  Social Network Graph G(V, E, S). a the social network structure with 8 nodes. b the attributes of 
nodes in the social network. ‘1’ denotes that the node has this attribute feature, while ‘0’ indicates that 
the node does not have this attribute feature
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social network attribute intimacy matrix combined with information entropy, the 
influence of nodes in the candidate seed set SeedG is calculated, and the final seed 
node set Seedtopk is selected. The specific process of selecting social network seed 
nodes is shown in Algorithm 2.

An example is given by Fig. 5 to describe the process of selecting seed nodes in 
social networks. First, the SCAN algorithm is used to partition the social graph in 
Fig. 4a into communities. The resulting community structures are: C1 = {A,B,C} , 
C2 = {E,F,G} , bridge node set CB = {D} , and isolated node set Cg = {H} . The 
number of seed nodes N is set to 2, and the attribute intimacy between nodes is 
equivalent to the edge weight. Then, we can calculate the attribute entropy of each 
node within community C1 and C2 using Eq.  (3). The attribute entropy of nodes 
within C1 are as follows: HA = 0.58,HB = 0.38,HC = 0.56 . The attribute entropy 

Algorithm 1  Attribute Intimacy Matrix Construction Algorithm.

Algorithm 2  Influence algorithm based on user node attributes and information entropy
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of nodes within C2 is as follows: HE = 0.59,HF = 0.46,HG = 0.44 . Similarly, the 
attribute entropy value of bridge node D is HD = 0.61 , and the attribute entropy of 
isolated node H is HH = 0 . Next, we select node A with the highest attribute entropy 
value from C1 , and nodes E and D from C1 and bridge node set CB , respectively, to 
form the candidate seed set. Finally, we select the two nodes with the highest attrib-
ute entropy value, D and E, from the candidate seed set as the final seed nodes.

4.3  Privacy‑preserving social network data publishing algorithm

Social network graphlet has enormous research value, and graphlet is the basic topo-
logical structure of social networks. Therefore, graphlet plays an important role in 
social network graph data. The EDP-SGA algorithm mainly consists of two phases 
in the privacy-preserving social network data publishing algorithm:

Phase 1. Graph Structure Perturbation: Set the sets Graphletf  and Graphletc to 
store the seed node 4 − f  graphlet and 4 − c graphlet, respectively. Perform edge 
additions on the social network graphlet structure based on the theory of triadic 
closure.

Phase 2. Graph Data publishing: To improve the privacy protection effect and 
ensure the secure publishing of graph data, convert the perturbed social graph attrib-
ute intimacy matrix into an uncertain graph. Inject uncertainty into the attribute inti-
macy between nodes to enhance privacy protection. The specific algorithmic pro-
cess is shown in Algorithm 3.

In Algorithm 3, lines 1–11 aim to mine the graph graphlets of the seed nodes in 
the social network and create sets Graphletf  andGraphletc to store 4-f graphlet and 
4-c graphlet collections. Lines 12–20 modify the graphlet structure by adding edges 
to 4-c graphlets based on the ternary closure principle and perturbing their attribute 
intimacy values. Lines 21–27 perturb the edges formed by the seed nodes’ graphlet 
structure by partitioning them into different sets according to their attribute intimacy 
values. � =

IntiMmax + IntiMmin

2
 is the threshold set for this purpose. The privacy 

budget is allocated as �1:�2:�3:�4=1:4:3:2. Different levels of noise are added based 
on the attribute intimacy value of each edge to prevent excessive noise from degrad-
ing data utility. Finally, lines 28–31 convert the perturbed attribute intimacy matrix 
into an uncertain graph with p(i, j)(p ∈ [0, 1]).

In Algorithm 3, the modification of graph graphlets involves both edge addition 
and deletion. Figure 6 illustrates the protective process of graphlet deletion. Firstly, 
the 4-f graphlet structure of Seed-A is selected. Based on the intimacy values cal-
culated according to Algorithm 1, the edge ESeedA,D with the highest intimacy value 
is removed. Subsequently, differential privacy protection is applied to the modified 
graphlet structure by injecting Laplace noise to perturb the intimacy values. Finally, 
the graph is transformed into an uncertain graph based on the perturbed intimacy 
values.

However, some constraints need to be added to the graph structure modification 
process to prevent a decrease in data utility. Specifically, the edges added or deleted 
cannot share common edges with the already modified edge sets. To protect sensi-
tive node attributes and resist background knowledge attacks, the attribute intimacy 



7414 J. Zhang et al.

1 3

Algorithm 3  Influence algorithm based on user node attributes and information entropy

Fig. 6  Graphlet protection process
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values of the seed nodes’ edge sets are partitioned based on their sensitivity levels, 
and different levels of Laplace noise are added using differential privacy techniques 
to protect social network graph data comprehensively.

4.4  Complexity analysis and privacy statement

4.4.1  Complexity analysis

Theorem 1 The time complexity of the EDP-SGA is O(n2).

Proof The computation complexity of the EDP-SGA scheme is analyzed according 
to its process described by the aforementioned pseudo-codes of Algs. 1–3. Here, 
n, m, nein , N, C, cn and g are used to denote the number of nodes, edges, neigh-
bor nodes, seed nodes, community, nodes in the community and graphlet, respec-
tively. Algorithm 1 calculates the intimacy between social users with the complexity 
of O(n2) . Algorithm  2 involves selecting the seed set in the social network, with 
the complexity of O(C ⋅ cn) . Algorithm 3 is responsible for selecting the important 
graphlet structure for privacy protection based on the seed nodes, it has the com-
plexity of O(N ⋅ nein + g) . To sum up, the time complexity is O(n2) .   ◻

4.4.2  Privacy statement

Theorem 2 The EDP-SGA satisfies �-differential privacy.

Proof The EDP-SGA scheme consists of three algorithms, where the privacy-pre-
serving social network data publishing algorithm applies differential privacy tech-
niques to perturb the edges of the graph graphlets. Assuming that graphs G(V, E) 
and G�(V �,E�) are attribute intimacy neighboring graphs in Algorithm 3, it can be 
concluded from Definition 5 that V = V � and E⊕ E� = 1 . Assuming that the edges 
of graphs G and G′ differ from each other by e, then we have E = E ∪ e , and the 
maximum difference between graphs G(V, E) and G�(V �,E�) in graphs G(V, E) and 
G�(V �,E�) caused by the edge e. The maximum difference between E and E′ is 2, and 
by Definition 5, it can be obtained as Δf = maxG1G2

‖f (G) − f (G�)‖1 = 2 . According 
to Definition 6, in the Laplace mechanism, the Laplace noise added by the query 
function f is Lap(Δf∕�) , where Δf = 2 .   ◻

In this paper, we set the privacy budget allocation ratio as �1:�2:�3:�4 = 1:4:3:2. 
privacy-preserving social network data publishing algorithm divides the privacy 
budget into four parts, as shown in lines 22–24 of Algorithm 3, adding noise as 
Lap(Δf∕�1) to the intimacy of the newly added edges. In lines 26–32 of Algo-
rithm 3, the intimacy progression on the edges of the graph element is divided 
into sets of edges with different sensitivities based on the threshold � . Noise 
Lap(Δf∕�2) is added to edges with high sensitivities, followed by Lap(Δf∕�3) , 
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and Lap(Δf∕�4) to the set of edges with less sensitivities. From Definition 7, it 
follows that the algorithm satisfies (�1 + �2 + �3 + �4)-differential privacy preser-
vation and the privacy-preserving social network data publishing algorithm has 
an overall privacy budget � = �1 + �2 + �3 + �4 so that EDP-SGA satisfies �-dif-
ferential privacy preservation.

The level of privacy protection provided by the algorithm depends on the 
privacy budget, denoted as � . A larger privacy budget means a narrower range 
of noise values and weaker privacy protection, while a smaller privacy budget 
means a wider range of noise values and stronger privacy protection.

5  Experiments

5.1  Experimental data

Facebook [59]: The SNAP Facebook dataset contains interpersonal relationships 
and multiple attributes of users, which can be applied to influence analysis, pri-
vacy protection, user behavior prediction, and other fields. This social network 
dataset consists of a social relationship dataset (.edege) and a node attribute data-
set (.feature), where the attribute dataset contains a large number of attribute 
dimensions. These attributes have been anonymized to protect personal informa-
tion. The dataset contains 10 anonymized networks, 6 of which are selected for 
this paper.

LastFM [60]: A social network dataset comprises LastFM users and was 
obtained from the public API in March 2020. The nodes represent LastFM users 
hailing from various Asian countries, and the edges represent mutual follower 
relationships among them. The node attributes are generated based on the artists 
that users have liked. In this paper, 500 attribute values are extracted from node 
attributes for calculation.

Table 1 shows the properties of the eight datasets.

Table 1  Facebook dataset list Social network Node number Edge number Attribu-
tion 
number

Facebook_0 347 5038 224
Facebook_107 1045 53,499 574
Facebook_686 170 3312 63
Facebook_1912 755 60,050 480
Facebook_3980 59 292 42
Facebook_3437 547 9626 262
Facebook 4039 88,234 574
LastFM 7624 27,806 500
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5.2  Evaluation metrics

5.2.1  Privacy evaluation metric

The privacy protection scheme proposed in this paper transforms the original 
graph into an uncertain graph by assigning different probabilities to the edges, 
making it uncertain highly. The edge entropy in information entropy can meas-
ure the degree of privacy protection in the uncertain graph. The greater the edge 
entropy, the greater the uncertainty in the uncertain graph, which means stronger 
privacy protection for the graph [43]. The definition of edge entropy is denoted as 
Eq. (8).

Edge Entropy:

5.2.2  Data utility metric

The sequence of node degrees dv = {d1, d2, d3 … dn} is some random variables. 
The degree of a node in an uncertain graph is represented by its expected degree, 
defined as the sum of the probabilities of the edges connected to any node v 
within the set V. The sequence of node degrees dv = {d1, d2, d3 … dn} is some ran-
dom variables, which is given in Eq. (9).

In the uncertain graph, Number of Edges ( NE′ ) is denoted as Eq.  (10). Average 
Degree of Nodes ( AD′)is denoted as Eq.  (11). DV computed in the certain graph 
is in the same way as DV ′ computed in the uncertain graph, which are denoted as 
Eq. (13).

Number of Edges (NE):

Average Degree of Nodes(AD):

Degree Variance of Nodes (DV):

(8)Ente =
∑

e∈G�

−p(ei) × log2p(ei)

(9)dv =
∑

p(i, j)

(10)NE� =
∑

e∈E�

p(e)

(11)AD� =
2

n

∑

e∈E�

p(e)

(12)DV � =
1

n

∑

v∈V

(dv − AD)
2
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Degree Distribution Entropy (DDE�) is proposed to measure the utility of graph data 
[47, 57]. DDE′ degree distribution entropy in the uncertain graph, which is denoted 
as Eq. (13).

Degree Distribution Entropy (DDE):

5.3  Experimental analysis

To verify the effectiveness of the EDP-SGA scheme, experiments are conducted 
on the datasets listed in Table  1 to compare EDP-SGA with the Uncertain graph 
method based on the ternary closure, an uncertain graph approach based on impor-
tant nodes method, and the Transitive Closure-based Differential Privacy (TCDP) 
algorithm.

Uncertain graph method based on the ternary closure algorithm (UGTC) uti-
lizes the transitive closure principle to randomly select nodes for edge addition and 
assigns different probabilities to the triangle edges formed after edge addition, mak-
ing the resulting graph uncertain [45].

An uncertain graph approach based on important nodes (UGIN) selects the top 
10% nodes based on their centrality value as seed nodes, then uses the transitive clo-
sure principle to add edges to the neighboring nodes that have not formed triangles 
in the seed nodes, and finally assigns probability values to the formed triangles to 
create an uncertain graph [46].

Differential privacy algorithm of uncertain graph based on ternary closure 
(TCDP) improves on the transitive closure method by adding noise to the edges 
of the triangle before assigning probability values, using differential privacy tech-
niques  [48]. The resulting uncertain graph can resist attacks based on background 
knowledge, enhancing data privacy protection.

In order to verify the privacy protection effect of uncertain graphs, Eq.  (8) is 
used to measure the algorithm’s privacy protection level on social network graphs in 
terms of edge entropy. According to Eq. (8), the higher the edge entropy, the higher 
the uncertainty of the graph and the better the protection effect.

5.3.1  Data privacy analysis

Tables 2, 3, 4 and 5 shows the changes in edge entropy for the EDP-SGA, TCDP, 
UGTC, and UGIN, respectively. Both EDP-SGA and TCDP algorithms use differ-
ential privacy technology to add Laplace noise to uncertain graphs, so their edge 
entropy values are also affected by the number of nodes and privacy budget � . The 
results presented in Tables 2 and 3 indicate that as the privacy budget � increases, the 
edge entropy of both EDP-SGA and TCDP algorithms decreases when the privacy 
budget � is smaller. However, for privacy budgets within the range of � ∈ [0.1, 1] , 
the edge entropy value of EDP-SGA is 4–19 times higher than that of the TCDP 

(13)DDE� = −

N−1∑

d=0

p(d)logp(d)
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algorithm. This disparity can be attributed to the random selection of nodes and 
injection of Laplace noise into the edges of triangles by the TCDP algorithm. While 
this approach can prevent background knowledge attacks, its single privacy budget 
cannot provide a controllable level of privacy. In contrast, the proposed EDP-SGA 
algorithm selects important seed nodes based on user attributes and information 

Table 2  Variation of edge 
entropy in EDP-SGA

�

∣ V ∣ � = 0.1 � = 0.3 � = 0.5 � = 1

59 41.38 33.63 30.14 28.83
170 646.03 616.32 605.81 550.11
347 924.86 912.16 880.58 775.85
547 1690.66 1709.89 1661.26 1498.17
792 5073.59 5004.50 4791.10 4381.40
1045 10,400 10320.53 9981.11 8936.21
4039 99022.53 90832.23 89562.43 78932.32
7624 164365.43 144365.43 124365.43 93293.23

Table 3  Variation of edge 
entropy in TCDP

�

∣ V ∣ � = 0.1 � = 0.3 � = 0.5 � = 1

59 10.94 8.47 12.54 9.98
170 80.18 75.93 60.59 43.64
347 136.15 125.92 116.72 79.09
547 244.53 219.85 196.16 129.86
792 362.50 311.10 298.97 288.71
1045 732.99 628.67 511.66 487.65
4039 7073.87 6073.87 3791.97 2876.0
7624 12859.68 8205.79 6098.85 5275.19

Table 4  Variation of edge 
entropy in UGTC 

(m ∗ c)

∣ V ∣ c = 0.1 c = 0.3 c = 0.5 c = 1

59 4.37 6.59 17.91 28.15
170 15.40 20.44 53.73 79.48
347 42.35 54.11 70.16 117.78
547 71.31 91.06 124.89 211.90
792 101.58 126.43 197.24 266.34
1045 157.43 283.67 329.62 427.28
4039 1132.9 2132.995 3516.07 6110.04
7624 1589.73 2676.94 2919.73 4700.90
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entropy, modifies their graph structure, and then leverages differential privacy 
technology to inject different privacy budgets into the edge sets connected to these 
seed nodes. This approach enables more effective allocation of the privacy budget, 
improving the overall privacy of social networks.

Tables 4 and 5 present the changes in edge entropy resulting from the applica-
tion of two graph construction algorithms, namely, the UGTC algorithm and the 
UGIN algorithm. Both algorithms rely on the triad closure principle to add edges 
to the original graph while injecting probability values into the newly formed edges 
in order to preserve the privacy of the graph. Furthermore, the variables m and 
c represent the number of added edges and an adjusting factor, respectively. The 
total number of edges added to the graph is given by m × c . The data presented in 
Tables 4 and 5 clearly de3monstrate that as the value of c increases, i.e., more edges 
are added, the edge entropy of the generated uncertain graph also increases.

In conclusion, the analysis of experimental data from Tables 2, , 4 and 5 reveals 
that as the number of nodes increases, the edge entropy of all four algorithms also 
increases. Furthermore, it is observed that EDP-SGA has a significantly higher edge 
entropy value than the other three algorithms.

5.3.2  Data utility analysis

Figure 7 shows the variation of NE for the EDP-SGA algorithm and the TCDP algo-
rithm with different privacy budgets, as well as for the UGTC algorithm and the 
UGIN algorithm with adjustment factors c = 1 and C = 0.1. Figure 7 indicates that 
the NE of EDP-SGA and TCDP algorithms increases with the number of nodes, and 
also changes with the size of the privacy budget. The noise introduced by perturba-
tion is larger, the range of edge probabilities in the perturbed graph is wider.

Figure 7a–f show that when the number of nodes is less than 500, the NE of 
TDCP changes the most and decreases with the increase in the privacy budget. 
When the privacy budget is greater than 0.1, the NE of UGIN has the greatest 
difference from the original image. Figure 7g, h show that when the number of 
nodes is around 547, the NE difference of UGTC is the highest. In Fig. 7i, j, the 
NE difference of UGIN when the number of nodes is 755. In Fig. 7k–p, when the 

Table 5  Variation of edge 
entropy in UGIN

(m ∗ c)

∣ V ∣ c = 0.1 c = 0.3 c = 0.5 c = 1

59 5.08 6.79 9.36 11.01
170 32.22 32.25 35.14 39.22
347 61.52 63.77 64.21 67.91
547 124.04 122.18 120.02 117.45
792 152.75 153.79 158.95 166.88
1045 189.16 209.70 215.43 218.19
4039 296.9 466.9 564.46 896.9
7624 786.43 9676.94 1676.94 28287.0
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number of nodes is greater than 1000, the maximum difference between the NE 
difference of TCDP and the original image exceeds 3000, followed by UGTC and 
UGIN, while the EDP-SGA proposed in this article has the smallest difference 
from the original image. However, when the number of nodes is around 1000, the 
maximum NE difference between the TCDP and the original graph reaches about 
300, followed by differences of 84 for the UGTC and 83 for the UGIN, while the 
EDP-SGA proposed in this paper has a difference of only 80 from the original 
graph. In Fig.  7k, l, when the number of nodes more than 4000, the maximum 
difference in NE between the TCDP and the original graph is more than 3300, 
followed by differences of 3041 for the UGTC and 83 for the UGIN, while the 
EDP-SGA has a difference of only 80 from the original graph. Figure 7 show that 
the NE differences between the TCDP algorithm and the original graph are the 
largest, followed by the UNTC and UGIN algorithms, while the EDP-SGA has 
the smallest difference from the original graph.

Fig. 7  NE comparison
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Figure 7 demonstrates that the EDP-SGA algorithm has the smallest NE differ-
ence from the original graph, making it closer to the original data structure. The rea-
son why the NE of the EDP-SGA is closest to that of the original graph is that after 
adding edges to the seed nodes during graph modification, the corresponding edges 
are deleted to prevent significant changes in the degree of the seed nodes. Whereas, 
the other three algorithms follow the theory of triadic closure to protect privacy in 
social network graphs, which can preserve the structure of social network graph data 
to some extent. However, during the protection process, random nodes are selected 
for edge additions, resulting in significant uncertainty in the level of privacy protec-
tion for the final uncertain graph. Moreover, as the number of nodes increases, the 
number of added edges also increases, leading to a significant decrease in the utility 
of the graph data. Thus, the EDP-SGA proposed in this paper has higher data utility.

Figure  8 displays the changes in AD (Average Degree) for EDP-SGA, TCDP, 
UGTC, and UGIN. These algorithms compute the overall change in node degree 
by assigning probability values to the edges disturbed in the graph. As depicted in 

Fig. 8  AD comparison
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Fig. 8, the AD values of all four algorithms increase with an increase in the number 
of nodes.

Figure 8a–d illustrate the variations in AD when the node number is below 200. 
It’s apparent that TDCP and UGTC exhibit the most substantial disparities in AD 
compared to the original graph, with differences ranging from slightly above 0.2 to 
just under 0.4. In contrast, EDP-SGA and UGIN demonstrate the most minor devia-
tions in AD from the original graph, staying within the 0.2 range. Figure 8e–l show 
the fluctuations in AD for node number spanning from 200 to 1047. It’s noteworthy 
that UGTC showcases the most significant AD differences, with disparities rang-
ing between 0.35 and 0.7, followed by TDCP and UGIN. In contrast, the proposed 
EDP-SGA maintains AD differences within the 0.2 threshold compared to the origi-
nal graph. Figure  8m, n outline the changes in AD for node counts ranging from 
200 to 1000. When the privacy budget is below 0.3, TCDP exhibits the largest AD 
disparities. However, with a privacy budget exceeding 0.3, UGTC records the most 
substantial AD differences, followed by UGIN. Meanwhile, TCDP and EDP-SGA 
display diminishing AD values as the privacy budget increases. Figure 8o–p dem-
onstrate the variations in AD as the node count reaches 7624. With a privacy budget 
less than 0.4, TCDP showcases the most prominent AD disparities, approximately 
around 1.2. ED follows with discrepancies of approximately 0.9. When the privacy 
budget is 1, TCDP and EDG-SGA’s AD differences gradually approach those of the 
original graph.

When the node number is less than 500, Fig. 9a–f present the difference between 
the DV of TCDP and the original graph reaches a maximum of 14, followed by 6.8 
of UGTC, while the proposed EDF is closest to the original graph DV. In Fig. 9g–l, 
the difference between the DV of TCDP and the original graph is the largest when 
the node number ranges from 200 to 1000. When the node number is 547 and 
the privacy budget is greater than 0.3, the DV difference between UGTC and the 
original graph is 12.24, followed by 10.84 of TCDP. In Fig. 9m–p, when the node 
number is more than 4000, the maximum difference between the DV of TCDP and 
UGTC and the original graph is more than 70, followed by the difference range of 
UGIN in (10,40). In conclusion, Fig. 9 shows that the DV of the proposed EDP-SGA 
is closest to the DV of the original graph.

Figure  9 illustrates the changes in DV for the EDP-SGA, TCDP, UGTC, and 
UGIN algorithms as node degree increases. As the degree of nodes in the original 
graph is modified, the DV also increases accordingly.

The experimental comparison presented in Fig. 9 demonstrates that the proposed 
EDP-SGA approach has the smallest increase in DV value and the least deviation 
from the original graph’s DV, compared to the other three algorithms. This result 
indicates that EDP-SGA maintains a better social network structure when dealing 
with uncertain graphs.

Degree distribution entropy (DDE) is used as a measure of uncertainty or diver-
sity of node degree distribution in a network. Node degree is the number of con-
nections between a node and other nodes, and the degree distribution indicates the 
frequency distribution of degrees of different nodes. Higher entropy of the degree 
distribution indicates a more diverse degree distribution of the network, with greater 
variation in the degrees of individual nodes. In order to measure the graph data 
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utility more comprehensively, the degree distribution entropy is therefore introduced 
as a graph data utility indicator.

Figure  10 shows the variation of degree distribution entropy of the four algo-
rithms on different datasets. Figure  10a shows the variation of DDE at privacy 
budget = 0.1 and adjustment factor c = 1. It can be seen that on datasets with more 
than 500 nodes less than 7000 (Facebook_107, Facebook_1912, Facebook_3437 
and Facebook) UNTC has the largest difference in DDE from the original graph, 
followed by TCDP. On the LastFM dataset, TCDP has the largest difference with 
the original graph for DDE and the smallest for EDP-SGA. In Fig. 11b, with a pri-
vacy budget of 0.1 and an adjustment factor c = 1, UGTC demonstrates the largest 
deviation from the original graph across most datasets, followed by UGIN, TDCP, 
and EDP-SGA. This disparity can be attributed to the common usage of the triadic 
closure principle in TCDP, UGIN, and UGTC, which involves adding edges. Con-
sequently, this addition of edges leads to increased node degrees within the graph. 

Fig. 9  DV comparison
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However, UGIN selects seed nodes to add edges based on the betweenness central-
ity, so the edges added will be less compared to UGTC. Additionally, Fig. 10 illus-
trates that as the privacy budget increases, the DDE differences between EDP-SGA 
and TDCP and the original graph decrease. In summary, the degree distribution 
entropy can be used to measure the utility of the graph. This result indicates that 
EDP-SGA maintains a better social network structure when dealing with uncertain 
graphs.

A novel approach to address the issue of privacy protection in social network 
graph data is presented in this paper. We introduce the graphlet structure and infor-
mation entropy to design an entropy-driven differential privacy protection scheme 
based on social graphlet attributes (EDP-SGA). EDP-SGA is capable of providing 
robust privacy protection through graph modification and differential privacy tech-
niques, thereby ensuring the confidentiality of sensitive user information. In the 
graph modification stage, the EDP-SGA scheme proposed in this paper is to find 
the special graphlet structure composed of a specific set of seed nodes for edge 
modification, which is a modification of the local structure of the social network. 

Fig. 10  Degree distribution entropy comparison
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The comparison algorithms rely on the concept of ternary closure to connect nodes 
with edges and form triangles, resulting in alterations to the overall structure of the 
social network. Figures 7, 8, 9 and 10 show that the average number of edges, aver-
age degree variance and degree distribution entropy of EDP-SGA is the closest to 
the original graph structure. Therefore, the EDP-SGA scheme provides greater data 
availability. During the publishing phase of graph data, differential privacy is used 
to perturb the intimacy of edges to resist graph structure attacks. Then, we convert 
the perturbed intimacy into probabilities to avoid inferring the relationship or inti-
macy between users from their attribute intimacy. Finally, the uncertainty graph is 
publishing. According to Tables 2, 3 and 4, the uncertainty of uncertainty graph of 
EDP-SGA is higher than other algorithms.

5.3.3  Performance evaluation

Table 6 presents a comparison between the EDP-SGA scheme and three other algo-
rithms. Both EDP-SGA and TCDP employ differential privacy to perturb the graph, 
resulting in an uncertain graph as output. However, TCDP is based on the triadic 
closure principle, adding edges to the social network graph structure, while EDP-
SGA seeks specific graphlet structures of seed nodes for graph modification. In 
addition to using NE, AD, and DV to measure the data availability of the uncertain 
graph, EDP-SGA also employs DDE to assess the utility of the graph data.

Figure 11 illustrates a comparison of the running times of the four algorithms on 
datasets with varying numbers of nodes. Figure 11 shows that the running time of all 
four algorithms is fast basically around one second when the number of nodes is less 
than 100. When the number of nodes is less than 500, the difference in the running time 
of the four algorithms is not very large, and all are within five seconds. However, when 
the number of nodes is more than 500, it can be clearly seen that the running time of 
UGTC is much greater than the other algorithms, while UGIN has the least runtime. 
TCDP has the longest running time when the number of nodes is greater than 1000 and 
the number of nodes reaches about 4000, followed by EDP-SGA, and the least time is 
UGIN. However, when the number of nodes is greater than 1000, each algorithm’s run-
ning time is more than 2000s. The number of nodes is more than 7000, the algorithm 
EDP-SGA proposed in this paper has the shortest running time and the longest running 
time is TCDP followed by UGTC and UGIN. This is due to the fact that TCDP, UNIN, 
and UNTC algorithms all rely on the triadic closure principle to add edges to the graph, 

Table 6  Comparison of different privacy protections

EDP-SGA TCDP UGTC UGIN
Time Complexity O(n2) O(n × m) O(n3logn) O(n2 + m)

Edge Edit Edge Add & Delete Edge Add Edge Add Edge Add
Privacy Metric Edge Entropy Edge Entropy Edge Entropy Edge Entropy
Utility Metric NE & AD & DV & DDE NE & AD & DV NE & AD NE & AD
Privacy protection
technology

Differential privacy
& Graph modification

Differential privacy
& Graph modification

Graph
modification

Graph
modification
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necessitating a traversal of the entire graph structure to identify suitable nodes for edge 
addition. In contrast, EDP-SGA identifies specific structures of seed nodes, eliminating 
the necessity for a complete graph structure traversal.

Figure 12 shows the visualization changes in social network graph data after protect-
ing by the EDP-SGA scheme. Figure 12a, b present the visualizations of the Facebook 
dataset, which exhibit distinct community structure characteristics. In Fig.  12a, we 
observe the community structure after SCAN community partitioning, while Fig. 12b 
showcases the visualization of Facebook data after EDP-SGA processing. The red 
areas represent modified graphlet structures. It’s worth noting that in densely connected 
community areas, the distribution of red points is denser, indicating a higher number of 
graphlets within these communities. Figure 12c, d display the visualization of change 
in the LastFM dataset’s graph data. Compared to the Facebook dataset, the LastFM 
dataset has fewer edges, resulting in a lower graph structure and community density. In 
Fig. 12d, we can observe a relatively uniform distribution of red points with no signifi-
cant dense areas.

Overall, through the visualization comparisons in Fig. 12, it becomes evident that 
the EDP-SGA scheme can maintain the original data characteristics without substantial 
changes to the community structure. When combined with the results of the data util-
ity experiments from Figs. 7, 8, 9, 10, 11 and 12, we can conclude that the EDP-SGA 
scheme ensures data privacy while preserving data efficiency.

6  Conclusion

As social network structures continue to evolve and become more complex, user 
nodes in real life often contain various social attributes and characteristic attributes 
that are interrelated. Furthermore, user attributes may be associated with multiple 

Fig. 11  Execution time comparison
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sensitive pieces of information, making it challenging to protect their privacy when 
publishing social graphs. Different social groups also have varying degrees of sensi-
tivity in their social relationships, and the degree of intimacy between nodes varies.

To address these challenges, this paper proposes an entropy-driven differential 
privacy protection scheme based on social graph graphlet attributes (EDP-SGA) 
and proposes three algorithms for privacy protection in social networks. Firstly, the 
attribute intimacy matrix construction algorithm is proposed to quantify the attrib-
ute intimacy between user nodes based on their feature attributes. Secondly, an 
influence algorithm based on user node attributes and information entropy is pro-
posed to identify seed nodes containing significant amounts of information in the 
social network based on the attribute intimacy matrix and the concept of entropy. 
Finally, a graph data security publishing algorithm based on differential privacy is 

Fig. 12  Visualization of graph data changes
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proposed to modify the important graph graphlet of seed nodes using graph modi-
fication techniques to protect the topological structure of the social network. This 
is followed by adding noise to the edges between nodes using differential privacy 
protection technology and converting the network to an uncertain graph for publish-
ing. To evaluate the EDP-SGA, a real Facebook network dataset is used, and the 
NE, AD, DVand DDE evaluation data structure indicators are utilized to compare the 
EDP-SGA with the TCDP algorithm, uncertain graph method based on the ternary 
closure algorithm, and an uncertain graph approach based on important nodes algo-
rithm. Moreover, the performance of the EDP-SGA is evaluated by visualization and 
time performance comparison. The results indicate that the proposed EDP-SGA has 
high data privacy protection and data utility.

According to the analysis of the scenario, it can be found that not all comput-
ing centers are trusted. Possible future works are: (1) Because of the existence of 
untrustworthy centers. The distributed local differential privacy strategy will be dis-
cussed in graph data privacy-enhanced. (2) The social network graph data volume is 
extremely large, and the traditional algorithms can not be satisfied, will be extended 
to machine learning and deep learning direction.
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