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Abstract
The lack of a central controller, severe resource constraints, and multi-path data 
routing have turned data exchanges into one of the fundamental challenges of the 
Internet of Things. Despite numerous research efforts on various aspects of rout-
ing and data exchanges, some fundamental challenges such as the instant negative 
impacts of selecting the best possible path and the absence of measures to observe 
the dynamic conditions of nodes still exist. This study introduces a method called 
RI-RPL, based on the development of the RPL routing protocol, along with the use 
of reinforcement learning to address these challenges effectively. To achieve this, 
RI-RPL is designed in three general stages. In the first stage, routers are aligned 
with optimizing the RPL protocol with a focus on the Q-learning algorithm. In the 
second stage, based on learning and convergence, changes in the parents’ learning in 
different network conditions are supported. In the third stage, control and manage-
ment changes are coordinated. The reason for choosing this algorithm is its abil-
ity to address the desired challenges effectively without wasting network resources 
for calculations. Simulation results using the Cooja software show that the proposed 
RI-RPL method, compared to similar recent methods such as ELBRP, RLQRPL, 
and RPL, has improved successful delivery rates by 4.03%, 13.26%, and 28.87%, 
respectively, for end-to-end delay by 3.04%, 9.82%, and 13.12%, respectively, for 
energy consumption optimization by 10.43%, 28.91%, and 36.35%, respectively, for 
throughput by 10.23%, 28.45%, and 46.88%, respectively, and for network data loss 
rate by 15.06%, 34.95%, and 49.66%, respectively.

Keywords  Internet of Things · Routing · RPL protocol · Service quality · Learning 
algorithms · Q-learning

 *	 Behrang Barekatain 
	 Behrang_Barekatain@iaun.ac.ir

1	 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2	 Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3	 E.T.S.I. Telecomunicación, Universidad de Málaga, Málaga, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05724-z&domain=pdf


7692	 N. Zahedy et al.

1 3

1  Introduction

Internet of Things (IoT) networks are the most recent communication technology 
in the current era and have gained extensive attention from researchers and wide-
ranging research in today’s world. This technology consists of a large number of 
nodes, known as wireless sensors, and one or more sink nodes, all equipped with 
radio communications capabilities, enabling them to communicate with each other 
through electromagnetic waves [1]. Among the prominent features of IoT, we can 
mention aspects such as multi-path routing, dynamic topology, wireless network 
communication, the absence of central infrastructure and controller, complete distri-
bution, and limitations, especially in energy and node communication resources [2, 
3]. These characteristics provide unique advantages for IoT and have led to its use 
in various applications. The most important of these applications include military, 
industrial, research, medical applications, smart cities, maritime, transportation sys-
tem automation, and crisis management [4–7]. Despite the advantages and diverse 
applications of IoT, it faces unique challenges and complexities, such as security, 
routing, energy consumption, the development of suitable equipment, and more. 
In IoT, all network members have individual electronic identifiers that allow them 
to be identified and distinguished [8]. The sensor nodes, due to their extensive dis-
tance from the sink node and the radio range limitation, are unable to communicate 
directly with the sink node. In these circumstances, multi-path communications with 
the participation of other nodes are used to achieve communication between net-
work members and the sink node [9]. These multi-path communications are per-
formed using routing protocols. The presence of such conditions has made routing 
and service discussions (including security, quality, stability, reliability, etc.) in IoT 
particularly relevant [10, 11]. The distributed nature of network operations, particu-
larly in terms of communication and data exchanges, necessitates the cooperation 
of all nodes. This issue, along with other challenges related to IoT, such as network 
topology dynamics, wireless communication interference, and severe resource con-
straints, has turned the design of routing algorithms for these networks into a serious 
challenge [12, 13]. It can be stated that routing in IoT, due to its extensive challenges 
and unique characteristics, is a highly sensitive and complex issue. Furthermore, 
the distributed nature of IoT networks has made routing protocols the foundation 
of their operation. The presence of these two factors clearly emphasizes the need 
for the design of efficient routing protocols to ensure continuous and stable network 
performance.

Various methods and algorithms have been introduced for use in this field so far, 
but among them, only the RPL1 protocol has been widely accepted as the routing 
standard for IoT [14]. This protocol was introduced by the ROLL2 working group for 
low-power and lossy networks (especially IoT) and was adopted by the IETF3 as the 
routing standard for IoT [15]. Currently, RPL is the most important and widely used 

1  Routing Protocol for Low-Power and Lossy Networks.
2  Routing Over Low Power and Lossy.
3  Internet Engineering Task Force.
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routing protocol for the Internet of Things, with almost all research related to IoT 
routing based on this protocol’s design and development. However, although RPL 
effectively covers the routing needs of the Internet of Things and addresses them, 
it still faces various challenges, including increased control overhead, lack of trust 
establishment capability, absence of measures to observe the dynamic conditions 
of nodes, negative effects of momentary parent selection, and low communication 
quality [16]. Among these challenges, the quality and quality of service support in 
RPL have been a major focus of recent researchers [16]. In general, the RPL stand-
ard does not provide any capability to meet the quality requirements of transmitted 
data, making it an inefficient protocol in this regard. The main goal of the proposed 
research is to address this issue as one of the most important issues related to the 
field of IoT routing. RPL, in addition to routing, allows users to optimize and rede-
fine it according to their needs [17]. This capability is provided through the concept 
of the objective function in the RPL protocol. The current research mainly focuses 
on optimizing and improving this function. The objective function is responsible for 
selecting intermediate nodes to form the network communication graph and transmit 
data through them. In general, RPL has two objective functions, namely, OF0 [18] 
and ETX [19]. However, it is important to note that this single-criteria assessment of 
the objective function and the selection of parents based on it not only do not meet 
the quality needs of transmitted data but also in some cases lead to the selection of 
inefficient nodes and paths [20].

Numerous studies have been conducted to improve this issue, each in a unique 
way and with a focus on specific techniques aimed at enhancing this problem 
[21–40]. However, some critical challenges in this regard have not been adequately 
covered in previous studies or have not received attention. The existence of these 
challenges will lead to the performance degradation of previous methods and have 
negative effects on network performance. Among the most important of these chal-
lenges are: (1) momentary negative effects, (2) the absence of measures to observe 
the dynamic conditions of nodes, and (3) low communication quality.

In the upcoming research, the aim is to optimize and enhance the objective func-
tion of the RPL protocol based on the utilization of artificial intelligence techniques, 
specifically Q-learning. To improve Quality of Service (QoS), the Q-learning crite-
rion, which determines decision-making based on penalties and rewards, is defined 
based on a multi-criteria evaluation to effectively ensure and support QoS. To 
address two other issues (the negative effects of momentary computations on objec-
tive function evaluation and considering the dynamic conditions of nodes), Q-learn-
ing will be employed in a training and convergence step. This will not only enhance 
data exchanges but also preserve network performance efficiency. Furthermore, it 
leads to improvements in successful reception parameters, end-to-end delay, energy 
consumption, data loss rate, and network throughput.

In summary, the contributions of the proposed method can be listed as follows:

•	 Optimization and improvement of the RPL objective function with the efficiency 
of reinforcement learning algorithms (specifically and for the first time, the 
Q-learning algorithm). The reason for choosing this algorithm is the ability to 
solve the two challenges without wasting network resources on calculations.
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•	 Based on the efficiency of this technique, in addition to improving QoS, it has 
been tried to eliminate the negative effects of real-time calculations on the eval-
uation of the objective function and to include the dynamic conditions of the 
nodes in the calculations of the objective function. To improve QoS, the learning 
criterion is defined based on multi-criteria evaluation, so that QoS can be pro-
vided and supported effectively.

•	 To solve two important problems (the negative effects of instantaneous calcula-
tions on the evaluation of the objective function and considering the dynamic 
conditions of the nodes), the step of training and convergence of learning Q will 
be used. With the efficiency of the training step, the selection of parents is not 
only limited to the moment of sending DIOs but also after the selection of par-
ents, there will be the ability to evaluate the objective function and replace the 
parents.

•	 The training step provides the ability to adapt and adapt to changing network 
conditions, and the convergence step will guarantee the optimal performance of 
the proposed method.

•	 In the proposed method, in addition to solving the past challenges related to the 
momentary negative effects, the lack of measures to consider the dynamic condi-
tions of the nodes, and the low quality of communications, it will be designed 
and implemented in such a way that the optimal performance of the network will 
also be within the negative radius of its practical measures.

The structure of the article is as follows: In the second section, we will delve into 
the research background, followed by an overview of the Q-learning algorithm in 
the third section. Sections 4, 5 and 6, respectively, discuss the problem statement, 
details of the proposed method, and evaluation and analysis of results. Finally, the 
article’s findings are summarized in the conclusion section.

2 � Preliminary

Based on the previous sections, the RPL objective function is going to be enhanced 
using artificial intelligence techniques, more precisely, the Q-learning technique. 
Below, we provide detailed explanations of the key aspects related to this technique.

•	 Reinforcement learning

Various learning techniques have been proposed for leveraging the concept of learn-
ing. One of the most effective and efficient techniques among them is reinforcement 
learning. This technique will be employed in the development of the proposed pro-
tocol. In reinforcement learning, learning is based on interacting with the environ-
ment. In this context, the learning process of agents (IoT nodes) will continuously 
improve through actions taken in each state. Each chosen action by the agent in a 
given state results in either a reward or a penalty. The policy involved in this process 
aims to achieve the highest level of rewards [41]. In this technique, some terms are 
used as follows:
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•	 Agents: These refer to the members of the IoT network that are expected to per-
form suitable routing and data communication actions.

•	 States: These denote specific conditions that network members can monitor.
•	 Actions: These refer to activities that network members decide to take (such as 

selecting preferred parents and transmitting data). The actions that sensors can 
choose are limited to a specific number of activities.

•	 Rewards: After each activity performed by nodes, the respective node (IoT mem-
ber) receives a reward or punishment based on its behavior.

•	 Q-learning

The Q-learning mechanism is one of the most common reinforcement learning 
techniques. This mechanism will be utilized for the development of quality routing 
in the proposed protocol. This mechanism is environment-independent and operates 
based on designed rewards and penalties. In this mechanism, a Q value is assigned 
to each action performed by IoT members, representing the positive impact of the 
desired activity. In essence, based on each node’s activity, a reward is considered, 
and the Q value is updated accordingly. Over time and through Q value updates, 
learning improves, enabling nodes to perform optimal and appropriate behaviors 
[41].

3 � Related work

Given the high importance of routing in IoT, numerous methods and protocols have 
been introduced for use in this field, especially in recent years, reflecting the signifi-
cance and value of this research topic among other research areas. In this section, 
some of the most important and recent research has been reviewed and evaluated 
from various perspectives, particularly their capabilities and limitations.

In the proposed research, a protocol called EGDAS-RPL4 has been introduced by 
Sankar et al. to enhance routing and data exchange management for IoT [21]. This 
protocol, based on RPL and utilizing a technique called virtual partitioning, aims 
to optimize energy consumption while managing data exchanges. This protocol is 
generally divided into three main steps. In the first step, the network is segmented, in 
the second step, a leader is selected for each segment, and finally, parents are chosen 
for the leaders, and data are communicated by segment leaders and parents. The 
result of this design and optimization is improved data exchanges and energy con-
sumption efficiency. However, on the flip side, it lacks measures to support quality 
of service, does not account for the dynamic conditions of nodes, and is susceptible 
to the momentary negative effects on routing decisions.

In studies conducted by Touzene et  al., a protocol named EARPL5 has been 
introduced to improve IoT routing [22]. This protocol is focused on optimizing and 
enhancing the RPL objective function and aims to develop energy-efficient routing. 

4  Energy-Aware Grid-based Data Aggregation Scheme in Routing.
5  Energy-Aware RPL.
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Based on this performance, network exchanges are improved, and energy consump-
tion is optimized. To achieve this, EARPL introduces a new objective function that, 
in addition to link quality (ETX index), also considers the energy status of nodes 
in the objective function calculation, which guides routing decisions. The most sig-
nificant capability of this method can be seen in energy consumption optimization. 
However, its limitations include low quality of exchanges, increased congestion in 
some network nodes, and susceptibility to momentary negative effects on routing 
decisions.

Rana et al. introduced a protocol called EBOF6 in 2020 to improve data exchange 
quality while maintaining load balance and traffic equilibrium [23]. In this protocol, 
routing processes are based on the evaluation of factors derived from the aggregate 
ETX index and an assessment of node congestion and intermediate path statuses. 
The result of this design is an enhancement in data transactions and congestion con-
trol. However, this method also lacks effective measures to support unforeseen qual-
ity of service in data exchanges. Additionally, it does not account for the dynamic 
conditions of nodes in routing decisions.

In reference [24], Mirshra et  al. introduced an enhanced protocol called EHA-
RPL7 based on the extension of RPL to improve its performance. EHA-RPL intro-
duces a combined metric for routing improvement, wherein nodes are evaluated and 
intermediate paths are selected based on the outcome of three parameters: remaining 
energy, expected transmission count (ETX index), and hop count to the sink node. 
Simulation results indicate improvements in successful receptions at sink nodes and 
reduced transaction delays. However, this method imposes high overhead on the 
network and is also affected by issues related to the lack of consideration for the 
dynamic conditions of nodes and momentary negative impacts on routing decisions.

In research conducted by Seyfollahi et al., a protocol named L2RMR8 was pro-
posed [25]. The goal of this protocol is to enhance service quality while maintaining 
graph balance and network load equilibrium. L2RMR focuses on the RPL objective 
function and aims to improve routing accordingly. The proposed L2RMR objective 
function is composed of an evaluation of parent conditions, the number of children, 
and rank. Based on this function, preferred parents are selected. Its key capability 
lies in congestion control and support for load balancing. However, L2RMR lacks 
measures to cover other routing aspects, particularly quality of service support, 
making it inefficient in this regard. It also strongly suffers from momentary negative 
effects on routing decisions. In research conducted by Hassani et  al. in 2020 [26] 
and 2021 [27], protocols named FTC-OF9 and IRH-OF10 were introduced, respec-
tively, to improve IoT service quality. In both of these studies, they addressed the 
issues arising from the single-metric nature of the RPL protocol’s objective function 

6  A New Load Balancing Objective Function for Low-Power and Lossy Networks.
7  Composite Routing Technique in IoT Application Networks.
8  Lightweight Load Balancing and Route Minimizing Solution for RPL.
9  Forwarding Traffic Consciousness Objective Function for RPL Routing Protocol.
10  QoS‑Centric Fault‑Resilient Routing Protocol for Mobile‑WSN-Based Low-Power and Lossy Net-
works.
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and aimed to improve this fundamental problem. To achieve this, two new objective 
functions were introduced: FTC-OF based on an evaluation of rank, received signal 
quality, and node congestion rates, and IRH-OF based on evaluating signal quality 
(RSSI) and calculating hop counts to the sink node. The most significant advantages 
of these objective functions include improvements in data exchange quality and suc-
cessful network receptions. However, these protocols are challenged by momentary 
negative impacts, the lack of consideration for the dynamic conditions of nodes, and 
high control overhead.

In [28], Acevedo and et al. introduced a protocol called WRF-RPL.11 This proto-
col is designed based on RPL and aims to enhance its performance for use in highly 
congested networks. To achieve this goal, WRF-RPL evaluates node conditions dur-
ing the DIO transmission process based on remaining energy, congestion rates, and 
hop counts to the sink node. Then, by applying weighted criteria, it evaluates node 
priorities and selects preferred parents. The weighting of criteria and the selection 
of preferred parents are done in a way that strives to balance traffic and network 
paths as much as possible. However, this method also lacks measures to mitigate 
momentary negative impacts and consider the dynamic conditions of nodes in rout-
ing decisions. In studies conducted by Wang et al. [29] and Zarzoor et al. in 2021 
[30], protocols named RR-RPL12 and MHOF,13 respectively, have been introduced. 
The goal of these protocols is to enhance concurrent services while optimizing 
energy consumption in the Internet of Things. Both studies focus on optimizing and 
improving the RPL objective function, to enhance parent selection. In the proposed 
objective function by RR-RPL, parent selection and routing processes are based on 
parameters such as ETX, rank, and residual energy. In contrast, MHOF evaluates 
the signal quality of received signals, examines link quality, and considers energy. 
The key advantage of these protocols lies in improving concurrent service with 
energy management. However, on the downside, they lack measures to accommo-
date the dynamic conditions of nodes, momentary negative impacts, and high con-
trol overhead.

In research conducted by Pushpalatha et al. [31] and Shinde et al. [32], protocols 
named L-RPL14 and FlAR15 have been proposed, respectively, to improve routing 
and data communication in IoT. The objectives of both protocols are to enhance the 
RPL objective function and improve routing quality. In L-RPL, routing processes 
are based on ETX, residual energy evaluation, and link error assessment. In contrast, 
FlAR is designed based on fuzzy logic and selects parents based on energy, link 
quality, and delay. Simulation results show that L-RPL improves successful data 
exchanges alongside energy management. However, FlAR lacks empirical results. 
Limitations of both protocols include high overhead, the absence of measures to 

11  Weighted Random Forward RPL for High Traffic and Energy Demanding Scenarios.
12  Rank Remain Energy RPL.
13  Enhance-Minimum Rank with Hysteresis Objective Function.
14  RPL Powered by Laplacian Energy for Stable Path Selection During Link Failures in an Internet of 
Things Network.
15  Fuzzy Logic Approach for Routing in Internet of Things Network.
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mitigate momentary effects, and interference with the dynamic conditions of nodes 
in routing decisions. In a proposed study by Kaviani et al. [33] in a protocol called 
CQARPL,16 based on optimizing the RPL protocol using the TOPSIS technique, has 
been suggested. The goal of this protocol is to improve service quality while concur-
rently controlling congestion. Parent selection in CQARPL is based on multi-criteria 
evaluation, including energy, hop count, congestion, and ETX, using the TOPSIS 
technique. The result of this design and performance is an improvement in service 
quality along with congestion control. However, on the flip side, it suffers from high 
overhead, lacks measures to mitigate momentary effects, and interferes with the 
dynamic conditions of nodes in routing decisions.

In studies conducted by Hassani et al., a protocol called E-MRHOF17 has been 
introduced based on the development and optimization of the RPL protocol [34]. 
The objective of this protocol is to improve end-to-end routing by RPL, and it oper-
ates based on the cumulative evaluation of the ETX metric. This design and perfor-
mance lead to improved data exchange reliability and successful receptions in the 
network. However, the limitations of this protocol include high latency and low ser-
vice quality. In [35], Charles et al. proposed a mechanism named RLQRPL.18 This 
protocol, based on RPL, aims to improve IoT service quality. RLQRPL introduces a 
new objective function called LQBOF,19 which is used for selecting preferred par-
ents. This function includes a quality of link metric, based on which nodes with 
the best link quality are chosen as preferred parents. The primary advantage of this 
protocol is the improvement in data exchange quality. However, on the downside, 
it faces challenges related to increased congestion in some nodes, lacks measures 
to consider the dynamic conditions of nodes, and is susceptible to momentary neg-
ative impacts on routing decisions. In [36], Thenmozhi et  al. proposed a method 
called PMQoSR.20 This method aims to enhance the quality of service, particularly 
for real-time data transactions. To achieve this, PMQoSR utilizes priority tags and 
latency patterns during data communication. PMQoSR conducts routing processes 
by focusing on distance evaluation, successful reception rates, error rates, energy 
status, and congestion but with the distinct goal of ensuring the quality of real-time 
data. To fulfill this objective, the transmission of real-time data takes precedence. 
However, on the downside, this approach leads to increased control overhead and 
network energy consumption. Additionally, it lacks mechanisms to monitor dynamic 
node conditions and mitigate momentary negative impacts on routing decisions.

In a proposed project by Darabkh et al. [37], a novel method called FL-HELR-
OF21 is introduced. This method is based on the improvement and optimization of 
the RPL protocol, to enhance routing quality and data exchanges. To achieve this 
goal, FL-HELR-OF introduces an objective function based on fuzzy logic, focusing 

20  Energy-Efficient Priority-Based Multi-Objective QoS Routing.
21  Fuzzy Logic Objective Function.

17  Improvement of Minimum Rank Hysteresis Objective Function.
18  Reliable Link Quality-Based RPL Routing.
19  Link Quality-Based Objective Function.

16  Congestion and QoS Aware RPL for IoT Applications Under Heavy Traffic.
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on the evaluation of metrics including hop count, signal quality, energy, and delay. 
This design and performance result in improved service quality, but this method also 
lacks measures to consider dynamic node conditions and unforeseen momentary 
effects on routing decisions. Furthermore, it imposes heavy overhead on the net-
work. Fazli et al. proposed a protocol named V-RPL22 [38], which is based on opti-
mizing VIKOR23 and AHP24 techniques. The objective of this protocol is to improve 
data exchanges using the RPL protocol. To achieve this, V-RPL is designed based 
on the evaluation of multiple criteria and operates based on the assessment of con-
nection quality, energy, and ETX. Parent selection is performed using multi-criteria 
techniques, forming the network graph based on the results of this evaluation. The 
result of this design and performance is an enhancement in service quality. How-
ever, it faces limitations such as increased congestion in some nodes, a lack of meas-
ures to mitigate momentary effects, and interference with the dynamic conditions of 
nodes in routing decisions.

In research conducted by Ms. Kalantar et  al. in 2023 [39], a protocol named 
ELBRP25 was introduced. This method is also based on the extension of RPL and 
aims to improve concurrent service quality while maintaining energy consumption 
and traffic balance among nodes. ELBRP operates based on data traffic distribution. 
In ELBRP, when network and node traffic is low, routing elections and data commu-
nication are focused on quality. Conversely, when node and network traffic is heavy, 
parent selections are made in a multi-valued manner, with a focus on preserving traf-
fic load balance. Consequently, concurrent quality is maintained while balancing the 
traffic load. However, this approach faces challenges such as high overhead, a lack of 
measures to mitigate momentary effects, and interference with dynamic node condi-
tions in routing elections.

In [40], a hybrid energy approach for data routing and transmission on the 
Internet of Things is presented. In this approach, after the clustering of IoT sen-
sors, the energy consumption of the sensors is predicted using the ML technique 
and included in the selection of the cluster head, or CH. Then, the meta-heuristic 
algorithm selects CHs by considering indicators such as centrality and energy status. 
This technique improves parameters such as energy consumption, end-to-end delay, 
and load balancing, but on the other hand, measures to consider the dynamic condi-
tions of the network and support parent replacement have not been provided.

In Table 1, some of the most significant research studies conducted in the past 
two years have been summarized and analyzed:

22  An Effective Routing Algorithm for Low-Power and Lossy Networks Using Multi-Criteria Decision-
Making Techniques.
23  Vlse Kriterijumsk Optimizacija Kompromisno Resenje.
24  Analytical Hierarchy Process.
25  Energy and Load Balancing Routing Protocol for IoT.
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4 � Problem statement

While the potential of IoT-based networks and their applicability across various 
domains is undeniable, there are still ongoing challenges that have not been ade-
quately addressed, despite extensive research. Some of the most important chal-
lenges include:

•	 Momentary negative effects: This issue pertains to the fact that if, at the time 
of evaluating the objective function, a node is in unfavorable conditions (e.g., 
experiencing high congestion), this issue continuously affects the ranking of 
lower-level nodes in the network. Even though the adverse conditions of a 
node are limited to the current time, they still affect the rankings of the node 
of interest and other nodes in the network.

•	 Lack of measures to monitor dynamic node conditions: In RPL and related 
research, parent selection, network graph formation, and updates are based 
on the RPL protocol and are transmitted through DIO (DODAG Informa-
tion Object) messages. This means that the selection of parents and election 
updates are solely dependent on the evaluation of node conditions at the time 
of DIO transmission. However, IoT networks are highly dynamic, and condi-
tions can change at any moment. Therefore, evaluating and selecting nodes 
exclusively during DIO transmission may not be ideal because conditions that 
are ideal at that moment might change immediately afterward, or vice versa.

•	 Low quality of communications: As previously mentioned, most IoT applica-
tions are critical and of significant importance. Consequently, the data trans-
mitted in these applications is valuable and sensitive. The primary need and 
necessity for this data are effective coverage of the quality requirements of the 
transmitted information. This capability can only be well addressed when the 
quality requirements of the transmitted data are considered during the routing 
processes. This will be achieved by effectively optimizing the routing objec-
tive function based on quality requirements. The lack of such measures leads 
to increased data loss and data exchange delays, as observed in some prior 
research.

These issues have been among the most significant challenges in previous 
research, and the goal of the proposed research is to address and improve them, 
with a focus on reinforcement learning algorithms. In the upcoming research, 
these issues will be enhanced through the optimization and improvement of the 
RPL protocol’s objective function using artificial intelligence techniques, specifi-
cally Q-learning. By utilizing Q-learning, not only can service quality be effec-
tively improved but also momentary effects on the objective function evaluation 
can be mitigated, and dynamic node conditions can be considered in the objective 
function calculations.

For the resolution of the first and second issues, it is worth noting that the 
Q-learning technique consists of two steps: learning and convergence. By lev-
eraging these two steps, the challenges of momentary negative effects can be 
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improved, and the dynamic conditions of nodes can be included in the objective 
function evaluation. With the learning step, the selection of parents is not limited 
to the moment of DIO (DODAG Information Object) transmission but extends 
to the after-parent selection, allowing for the evaluation of the objective func-
tion and the replacement of parents. This process continues until the algorithm 
enters the convergence step. In this step, the selected parent will remain stable 
throughout the process of DIO retransmission. In essence, the learning step pro-
vides adaptability and responsiveness to variable network conditions, while the 
convergence step ensures the efficiency of the proposed method.

The result of this design and operation, in addition to addressing past research 
issues, will lead to a significant improvement in service quality. The utilization 
of the concepts of learning and convergence in reinforcement learning not only 
enhances service quality effectively but also preserves the efficiency of the proposed 
method.

5 � RI‑RPL: the proposed method

In this research, considering the significance and value of routing in the Internet of 
Things and drawing on extensive studies and researcher ideas, a proposed method 
called RI-RPL26 is introduced and presented. The primary goal of designing RI-RPL 
is to improve routing, enhance service quality, and address the challenges of the RPL 
protocol and the research based on this protocol by focusing on artificial intelligence 
techniques, particularly Q-learning. To design RI-RPL, key indicators for organizing 
an effective and efficient method were first obtained, and based on these, the pro-
posed method will be designed. One of the most fundamental objectives of RI-RPL, 
in addition to addressing the limitations of past research, is to improve reliability 
and increase the Quality of Service (QoS) of the RPL protocol. The presence of 
these measures is one of the most outstanding features of the proposed method com-
pared to past research. Additionally, it is worth noting that although past research 
has been successful in improving the quality and performance of the RPL protocol, 
some fundamental challenges remain, especially regarding the momentary selection 
of parents. This is where RI-RPL excels by providing adaptability to variable net-
work conditions through the utilization of learning techniques. Further details of the 
design of the proposed method and how it operates will be presented in the follow-
ing sections, demonstrating how the goals envisioned for the performance of RI-
RPL have been adequately achieved.

5.1 � Energy consumption model

In RI-RPL, energy consumption follows the standard for Internet of things networks. 
According to this standard, the energy consumption of sensors for sending and 

26  Reinforcement Learning-Based RPL Routing Protocol.



7704	 N. Zahedy et al.

1 3

receiving data is as per Eqs. (1) and (2). Where ES(c, d) is the energy consumed for 
sending c bits of data over a distance of d (the distance between two transmitting and 
receiving sensors), ER(c) is the energy consumed for receiving c bits of data by the 
receiver (c equals the total bits of sent or received packets), Eelect represents the energy 
consumed by electronic circuits to process 1 bit of data, εfs is the energy required to 
transmit data to a distance of d2, and εamp is the energy required to transmit data to a 
distance of d4. Lastly, TR corresponds to the radio range of network members.

5.2 � Communication model

The target IoT network consists of k sensor nodes that are randomly distributed in 
the environment and are capable of bidirectional communication with each other. 
In addition to the sensors, the network has a sink node, which is the destination for 
all data transmitted by network members. For data communications in RI-RPL, it 
adheres to the RPL protocol and DODAG graph. The DODAG graph is a graph cre-
ated through the exchange of control data of the RPL protocol and ensures commu-
nication between all network nodes and the sink node. Based on this, communica-
tions in RI-RPL include:

•	 P2P27 Communications: This type of communication involves data exchange 
between two specific network members (for example, between one of the net-
work nodes and the sink node).

•	 P2MP28 Communications: This type of communication pertains to data trans-
mission from one member to multiple network members (for example, sending a 
packet from the sink node to several network nodes).

•	 MP2P29 Communications: This type of communication involves data transmis-
sion from multiple network members to one member (for example, nodes send-
ing a packet to the sink node). RI-RPL supports all three of these communication 
types.

5.3 � Assumptions

To design and develop RI-RPL, some general assumptions have been considered 
in network design:

(1)
ES(c, d) = c × Eelect + c × 𝜀fs × d2 d < TR

ES(c, d) = c × Eelect + c × 𝜀amp × d4 d > TR

(2)ER(c) = c × Eelect

27  Point-To-Point.
28  Point-To-Multipoint.
29  Multipoint-To-Point.
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•	 The network is distributed and lacks any central infrastructure or controller.
•	 RI-RPL is based on the RPL protocol, and in terms of performance, adheres to 

RPL routing standards.
•	 Network members (nodes except the sink node) are homogeneous in terms of 

energy and radio range limitations.
•	 Each network node has a unique and distinct digital identity.
•	 Interactions between nodes are symmetrical and bidirectional.
•	 Network connectivity is dynamic and variable.
•	 Network members communicate with the sink node using single/multi-hop 

based on their location in the network.
•	 The common media access standard is CSMA-CA [41].
•	 Nodes do not possess the capability to self-locate in the network or any addi-

tional tools for positioning.

5.4 � Details of the proposed method

In order to better understanding, Table 2 depicts all used symbols in the proposed 
method.

Based on the aforementioned fundamentals, we will introduce the design 
details and performance of RI-RPL. RI-RPL is based on the RPL protocol and 
focuses on using learning algorithms. The goal of this technique is to improve 
routing and enhance service quality, which is achieved through the following 
three operational steps:

1.	 Routing operations are conducted by the optimization of the RPL protocol based 
on RI-RPL’s proposed measures (with a focus on the Q-learning algorithm).

2.	 Support for parent node changes in various network conditions (based on learn-
ing).

3.	 Control and management of changes in network topology.

It is worth noting that each of the introduced steps plays a crucial role in 
advancing the objectives of the proposed method. In the following sections, a 
functional flowchart of the method is presented in Fig. 1, followed by a discus-
sion of the design and operation of each of its stages.

5.4.1 � Phase one: routing aligned with RI‑RPL proposed measures

This phase aims to establish the network’s communication graph in line with RI-
RPL objectives. The RPL protocol operates by utilizing the exchange and sharing 
of three control packets: DIO, DAO, and DIS. RI-RPL has been designed based 
on these three processes, with this phase focusing on optimizing the transmission 
of DIO and DAO packets. In essence, this phase seeks to harmonize the delivery 
of DIO packets (by RPL) with the proposed measures for facilitating high-quality 
routing in RI-RPL. Figure 2 illustrates the flowchart for this phase of RI-RPL. It 
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is noteworthy that in the provided flowcharts, the color-coded boxes represent the 
main components of the proposed method and RI-RPL innovation.

This phase of RI-RPL consists of two fundamental pillars:

1.	 Optimized and Targeted Development: In addition to providing the necessary 
prerequisites for performing the desired routing, measures are taken to prevent 
overburdening the network for the advancement of RI-RPL’s performance. It 
is important to note that the proposed protocol, aligned with RPL, has evolved 
without adding a specific procedure to the network.

2.	 Facilitating the Analysis of RI-RPL’s Routing Requirements: This pillar focuses 
on providing sufficient provisions for analyzing the routing requirements of the 
proposed protocol to effectively support QoS.

In RPL, the creation and updating of the DODAG graph (routing operations) 
occur through the periodic transmission and reception of DIO and DAO packets. 
This means that DIO packets are generated by the sink node at specified inter-
vals and disseminated throughout the network. Nodes, by receiving these packets, 
become aware of their new conditions and parent nodes, and then, based on their 
new conditions and parent nodes, make selections and inform them by sending 
DAO packets. This process continues repeatedly until the end of the network’s 
lifetime. According to the RPL protocol, the routing process in RI-RPL also con-
sists of two main sub-steps as follows:

•	 DIO transmission process

In RPL, DIO packets are generated by the sink node and disseminated among 
nodes to the extent that all network members receive the transmitted packets. 
Thus, all sensors and parent nodes identify each other and become aware of their 
positions in the network. The DIO transmission process in RI-RPL has some dif-
ferences from the RPL protocol, as outlined in Table 3. As shown in the flowchart 
in Fig. 2, after the network starts, the sink node creates a DIO packet and sends it 
to the nodes in the network. Each receiving node first checks whether the received 
packet is new or not (the first condition in the flowchart). Based on the result of 
this assessment, two different scenarios are presented, as described in Table 4.

As mentioned in Table  2, one of the fundamental differences between RI-RPL 
and RPL is the addition of proposed routing metrics to the DIO packet. RI-RPL 
updates the DIO packet according to its requirements. To achieve this, in addition 
to the node’s rank, remaining energy status, probability of successful transmission, 
congestion, and the number of hops to the sink node are added to the DIO packet 
and shared along with the shared packet. Equations (3)–(10) provide details on the 
calculation of RI-RPL’s routing metrics along with relevant discussions.

As mentioned, one of these metrics is the remaining energy status of nodes. 
Equation (3) provides details on evaluating the remaining energy of nodes. The use 
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of this metric leads to the selection of nodes with higher energy on one hand, and 
the other hand, prevents early energy depletion of some nodes.

In Eq. (3), eIntI is equivalent to the initial energy of node i, and ECS,ECR,ECP , 
and ECL , respectively, represent the energy consumption related to transmissions, 
receptions, processing, and low-energy mode (sleep mode).

The next parameter is the probability of successful transmission. Based on 
this metric, the higher the parent’s probability of success in transmissions, the 
higher their priority for selection. Using this parameter improves the reliability of 
exchanges and enhances successful receptions. Equation (4) presents the evaluation 
of this metric. In this equation, SPi represents the probability of success in transmis-
sions by node i, 

∑

No.ofSSPi is the sum of packets correctly sent by node i during 
previous interactions (a random mode will be used to check the success of transmis-
sions), and 

∑

No.ofPRi is equal to the sum of packets received by node i. In this 
case, if the sending node receives its sent message again, it means that the packet 
has been sent correctly.

(3)ERi =
EInti −

(

ECS + ECR + ECP + ECL

)

EIi

Fig. 1   Block diagram of the proposed method
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(4)SPi =

∑

No. of SSPi
∑

No. of PRi

Fig. 2   Flowchart related to the first stage of RI-RPL
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The next parameter is the number of hops to the sink node. Examining this 
parameter will play a significant role in optimizing the communication graph and 
data exchanges. Using this metric leads to the selection of parents with fewer hops 
to the sinkhole. Equation (5) provides the evaluation of this parameter, where 
No.ofhoproot i is equal to the number of hops from node i to the sink node. This 
parameter is increased by one for each hop that the DIO packet is sent.

The next parameter is the nodes’ congestion rate. Examining this parameter 
results in nodes with lower congestion being selected as the main parents. Using this 
metric prevents some parents from becoming overloaded, mitigates the problem of 
child explosion, and improves communication delay significantly. Equation (6) pre-
sents the evaluation of this parameter, where BUi equals the efficiency of the node 
i’s buffer, BSi equals the total buffer capacity of node i, and BBi equals the buffer 
occupancy rate of node i [5].

(5)HCi = No. ofhop rooti

Table 3   Differences in the DIO 
transmission process between 
RI-RPL and RPL

Row Difference

1 The first difference is that in RI-
RPL, in addition to performing 
the DIO transmission-related 
procedures (including rank 
updates, adding addresses, etc.), 
nodes also calculate their other 
conditions such as congestion, 
success probability in transmis-
sion, remaining energy, and the 
number of hops to the sink node. 
The results of these assess-
ments are then added to the DIO 
packet. This is done to provide 
awareness of the nodes’ status 
and conditions relative to each 
other in RI-RPL. Therefore, each 
node, in addition to identifying 
the positions of its parents rela-
tive to the sink node, will also be 
aware of their other conditions

2 The second difference lies In the 
calculation of the objective func-
tion for the nodes. In RPL, the 
objective function is calculated 
based on rank and/or the ETX 
metric. This is in contrast to RI-
RPL, where the objective func-
tion is based on a multi-criteria 
concept and is evaluated using 
Q-learning concepts
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In addition to the mentioned parameters, each node evaluates its rank and replaces 
the rank field in the DIO message. The rank refers to the position of nodes from 
the sink node. Using this parameter leads to the selection of parents closer to the 
sink node, which has significant effects on improving communication and exchange 
delays. Equation (7) presents the evaluation of this parameter, where Ri equals the 
node i’s rank, RAFather equals the rank of the node i’s parent, and RAinc equals the 
constant rank increment value for nodes. The value of this parameter in the RPL 
protocol is considered as 255 [14].

After evaluating the introduced parameters, the results of these calculations are 
added to the DIO message and the packet is sent back into the network in a flooding 
manner. This process continues until all members receive it. Figure  3a shows the 
DIO message in RPL, and in Fig. 3b, it is represented in RI-RPL. As shown in the 
figure, the desired parameters are added to the option section of the packet.

Following the dissemination and sharing of DIO messages based on what has 
been presented, the second sub-step of the first phase, based on the provided infor-
mation, is invoked and executed.

•	 The DAO sending process

According to the presented flowchart for this stage of RI-RPL, after completing 
the DIO transmission process, the DAO transmission process begins. In this pro-
cess, if any node in the network has only one parent, it informs that parent of its 
choice by sending a DAO packet. In other cases, according to the RI-RPL objec-
tive function, the best parent is selected from the candidates and this choice is 
reported to it by sending a DIO packet. The RI-RPL objective function and its 
evaluation details are designed based on the Q-learning algorithm. In this algo-
rithm, decision outcomes are quantified under an index called “Q.” RI-RPL also 

(6)BUi = 1 −
BBi

BSi

(7)Ri = RFather + Rinc

Fig 3   DIO package in a RPL and b proposed RI-RPL
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adheres to this concept and calculates and evaluates the objective function based 
on discussions related to Q-learning. The details of this design and evaluation are 
provided below.

Before discussing the details of calculating the Q-learning-based objective func-
tion, it should be noted that in RI-RPL, each network member has a learning table 
(routing table) that stores a pair (a, b) with a value of Q for each of its parents. Dur-
ing network initialization, the values of Q assigned to these pairs are set to zero, and 
they are updated during each round of the DIO transmission process. Since Q repre-
sents a learning index, given that there is no learning during network initialization, 
its value is zero.

Based on this pair, whenever a node intends to make a decision, it examines the 
current conditions of “a” and acts similarly to “b.” After performing the desired 

Fig. 4   Flowchart related to the second stage of RI-RPL
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action, a reward value is obtained (represented by Rw (a, b)), based on which the 
Q parameter is updated. The calculation of the Q-learning parameter is presented 
in Eq. (8). In this equation, Q

[

at, bt
]

 represents the value of the Q parameter at the 
current time (moment “t”), Q

[

at+1, bt+1
]

 corresponds to the value of the Q parameter 
in the future (moment “t+1”), Rw

[

at, bt
]

 equals the reward value obtained from per-
forming action “a” by a network node, �[u, v] is the coefficient determining how the 
Q parameter learning is carried out, and � is equivalent to the coefficient determin-
ing the importance of future rewards in reinforcing learning.

As discussed, �[u, v] is a coefficient that determines how the Q parameter is 
learned. In the equation, this coefficient specifies to what extent the conditions 
obtained in the current state are preferred and prioritized over past conditions. 
Therefore, if the value of this symbol is set to zero, nodes will not be able to learn 
against their current activities, and if it is set to one, nodes will learn to the maxi-
mum extent in longer time intervals for reward. If Q is initially set to zero for all 
network members, θ[a, b] can be considered as one to accelerate the reinforcement 
of learning. If we take Q as zero at the beginning and θ[a, b] as one, then Eq. (8) 
becomes Eq. (9).

Considering what was mentioned about � , we set the importance of future 
rewards for maximizing greediness in current learning actions to zero ( � = 0 ) in RI-
RPL. If the value of ϑ is set to zero, then Eq. (9) becomes Eq. (10). It should be 
noted that in RI-RPL, Q

[

at, bt
]

 is the same as the objective function for selecting the 
primary parent. According to Eq. (10), OF(RI-RPL) represents the RI-RPL objective 
function, which determines the decision outcomes.

Based on Eq. (10), the evaluation and update of the Q parameter directly depend 
on the value and magnitude of the reward Rw

[

at, bt
]

 , and Q is updated accordingly.

(8)Q
[

at, bt
]

= Q
[

at, bt
]

+ �[a, b] ⋅
(

Rw
[

at, bt
]

+ � ⋅maxQ
[

at+1, bt+1
])

(9)Q
[

at, bt
]

=
(

Rw
[

at, bt
]

+ � ⋅maxQ
[

at+1, bt+1
])

(10)Q
[

at, bt
]

= Rw
[

at, bt
]

→ OFRI−RPL = Q
[

at, bt
]

= Rw
[

at, bt
]

Fig. 5   Learning cycle in the proposed RI-RPL method
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To calculate and evaluate the reward Rw
[

at, bt
]

 in RI-RPL, Eq. (11) is used. 
Rw

[

at , bt
]

 represents the reward obtained from acting “a” in the current state “b.” 
CCv is a constant value associated with the cost incurred by nodes for data transmis-
sion (in RI-RPL, considering the step-by-step data transmission, this constant value 
is assumed to be one), and CV

(

at+1
)

 is equivalent to the variable cost of data trans-
mission by candidates (candidate parents), or in other words, the data exchange cost 
through candidate parents.

Depending on the discussed concepts, the CV
(

at+1
)

 factor represents the cost 
or price of communicating data through candidate parents. The data transmission 
cost in the proposed RI-RPL protocol is calculated based on Eq. (12) and takes 
into account energy efficiency, transmission success probability, congestion status, 

(11)Rw
[

at, bt
]

=

(

CCv +

[

1
(

CV
(

at+1
)

+ 1
)

])

Fig. 6   Flowchart related to the last stage of RI-RPL
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expected transmission count (ETX), the number of hops, and parent ranks. ETXi is 

equivalent to the expected transmission rate by node i, which is equal to 1

df×dr
 , where 

df corresponds to the success probability of receiving the transmitted data packet and 
dr corresponds to the probability of successfully receiving the sent message acknowl-
edgment. �E , �SP , �R , �B , and �ETX are coefficients assigned to the evaluation cri-
teria ERi, SPi, HCi, Ri, Bui, and ETXi, such that 1 ≥ �E,�sp,�B,�R,�ETX ≥ 0 , and 
�E + �SP + �B + �R + �ETX = 1 . Other criteria have been introduced earlier.

Based on the discussed concepts, the Q parameter is calculated, and its result is 
recorded as the objective function and decision criterion for parent nodes in the rout-
ing table. The result and output of this stage of the proposed method are the selec-
tion of the best parent as the preferred parent.

(12)

CV
(

at+1
)

=
(

�E ×
(

1 − ERi

)

+ �SP ×
(

1 − SPi
)

+ �B ×
(

1 − BUi

)

+�R.

((

1 −
1

HCi

)

×

(

1 −
1

Ri

))

+ �ETX ⋅

(

1 −
1

ETXi

))

+ � × FC
(

ut+1
)

Table 5   Simulation parameters

Parameter Values

OS Contiki/Cooja 2.7
Communication protocols CSMA, IEEE 802.15.4, IPv6, UDP
Number of nodes 20,40,60,80,100
Sensor type Tmote sky
Deployment area 200*200 m
Transmission range 50 m
Data rate (Kbits/s) 250 Kbps
Routing protocols RI-RPL, RLQRPL, ELBRP, RPL
Data message length 512 bit
Simulation time Until the first node dies
Result 15 round
Link failure model UDGM with distance
Traffic rate 60-120-180-240 packet per minutes (PPM)
Adaptation 6LoWPAN
Radio model Unit disk graph medium (UDGM)
Queue size 10 packet
Queuing model M/M/k/1
TX current consumption 21 mW
RX current consumption 23 mW
Low-power mode (LPM) current consumption 1.2 mW
CPU current consumption 2.4 mW
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5.4.2 � Second stage ‑ utilizing Q‑learning for optimal selection

This stage, serving as the second phase of RI-RPL, is designed to ensure optimal 
performance under varying and dynamic network conditions based on the principles 
of Q-learning. This step comprises two sub-phases: training and convergence. Fig-
ure 4 illustrates the flowchart associated with this phase of RI-RPL, and we will pro-
ceed to analyze and elaborate on the details of this phase, referring to the relevant 
flowchart.

The input to this stage is the output of the previous stage, namely, the selected 
parents.

The design principles and performance of this stage in RI-RPL consist of two 
fundamental pillars as follows:

1.	 Ensuring optimal performance under various network conditions: One of the key 
objectives of this stage is addressing issues stemming from momentary selections. 
The training and learning sub-phase facilitate this capability for the proposed 
protocol.

2.	 Preserving performance efficiency: It should be noted that a protocol can only 
be deemed successful if it not only ensures optimal performance under different 
conditions but also remains efficient. The learning convergence sub-phase pro-
vides this capability for RI-RPL.

The foundation of the design for this stage is the provision of measures to 
ensure optimal performance. For this purpose, RI-RPL leverages reinforcement 
learning concepts. Accordingly, this phase of RI-RPL consists of two key sub-
phases known as training learning and convergence learning. The details of these 
two stages are explained below.

Table 6   Simulation scenarios Traffic rate Number 
of nodes

Scenario Traffic rate Number 
of nodes

Scenario

180 60 11 60 20 1
240 60 12 120 20 2
60 80 13 180 20 3

120 80 14 240 20 4
180 80 15 60 40 5
240 80 16 120 40 6
60 100 17 180 40 7

120 100 18 240 40 8
180 100 19 60 60 9
240 100 20 120 60 10
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•	 Training learning

According to the provided flowchart, after completing the first stage of RI-RPL, 
the preferred parent selection, and data exchange process commences through the 
selected parent. In this scenario, the child node, after sending data to the selected 
parent, monitors the learning status of the chosen parent. Based on the results of 
this monitoring, two general scenarios arise. The first scenario involves learn-
ing during the training phase, and the related process follows the training learn-
ing sub-phase (the process associated with this sub-phase). The second scenario 
involves learning during the stabilization phase, and the process related to the 
convergence learning sub-phase follows (the process associated with the next 
sub-phase). Typically, after selecting the preferred parent, learning occurs during 
the training phase. Before discussing the details of training learning, it is worth 
mentioning that during network initialization or any change in network topology, 
learning is initiated, and after completing the learning process, the convergence 
step is executed.

During the training learning phase, as presented in the flowchart in Fig. 4, the 
node, after sending data to the selected parent, enters a listening state and begins 
monitoring the chosen parent. Here, after initiating data transmission, the sending 

b) Scenario 2a) Scenario 1

d) Scenario 4c) Scenario 3

Fig. 7   The results of the success delivery ratio parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 20 nodes with traffic rates: a 60 PPM, b 120 PPM, c 
180 PPM, and d 240 PPM
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node (child node) enters a listening state and listens to the parent node. The pre-
ferred parent, after receiving the packet from the child, evaluates the Q param-
eter for itself, in addition to performing the transmission process (sending data 
to its selected parent in the path toward the sink node), and includes the Q value 
along with the data packet. After sending the data by the parent, the child node 
(the sending node in the previous step, which was in the listening state) receives 
the sent packet and extracts the Q value from it. Subsequently, the new Q value 
replaces the previous value in the routing table for the target node. This process 
continues iteratively until the data is received by the sink node. In fact, during 
this learning sub-phase, learning is continuously updated and reinforced with 
each listening and the dynamic conditions of the nodes.

It should be noted that the goal of using the learning concept in RI-RPL is to man-
age the challenge of momentary parent selections and consider the dynamic conditions 
of nodes, which are addressed through learning. Furthermore, in subsequent transmis-
sions, if the preferred parent still has the best Q value, this node will continue to be 
chosen as the preferred parent. Otherwise, the node with the best Q value will replace 
it as the preferred parent, and data transmission will continue through this node. Impor-
tantly, the process of sending DIOs and updating the Q value during the transmission 
of these packets is also part of the training process, as it involves learning and updating 

f) Scenario 6e) Scenario 5

h) Scenario 8g) Scenario 7

Fig. 8   The results of the success delivery ratio parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 40 nodes with traffic rates: e 60 PPM, f 120 PPM, g 
180 PPM, and h 240 PPM
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the Q value. Figure 5 depicts the learning cycle in the proposed RI-RPL method. In this 
figure, x represents the action, and y represents the reinforcement signal.

After completing the training process, the convergence learning process is invoked.

•	 Convergence stage

The primary goal of the Convergence stage is to maintain the efficiency of the proto-
col’s performance. Since frequent listening and consecutive Q value updates impose 
additional costs on the network and can lead to a decrease in protocol efficiency, it is 
essential to control and optimize these side costs. To support this, RI-RPL utilizes the 
concept of learning convergence. Learning convergence ensures the efficiency of the 
proposed protocol’s operation. Learning convergence in RI-RPL is presented in two 
ways, depending on the network conditions:

1.	 The network is intended for use in typical applications. After repeating the learn-
ing step “n” times, the algorithm enters the convergence phase. In the convergence 
phase, there is no need for listening, monitoring the parent, or updating the Q value. 
It is worth noting that increasing the “n” parameter can enhance learning but may 

j) Scenario 10i) Scenario 9

l) Scenario 12k) Scenario 11

Fig. 9   The results of the success delivery ratio parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 60 nodes with traffic rates: i 60 PPM, j 120 PPM, k 
180 PPM, and l 240 PPM
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also lead to more effective stability assurance. The value of “n” depends on the 
application and will be determined accordingly.

2.	 The network is intended for use in highly dynamic applications where network 
traffic changes significantly. In such cases, after repeating the learning step “n” 
times, the algorithm enters the convergence phase. In the convergence phase, after 
every “k” packet, one packet is randomly monitored by the child node, and the Q 
value is updated based on the result of this monitoring.

In RI-RPL, convergence is based on the first execution state.

5.4.3 � Third stage ‑ network topology changes management

This stage, as the third and final stage of RI-RPL, is introduced to control network 
topology changes and maintain stability under different conditions. Figure 6 illus-
trates the flowchart related to this stage of RI-RPL.

By the depicted flowchart for this stage, if an error occurs during data trans-
mission to a parent node, the concerned node informs other nodes by sending a 
DIO message. Upon receiving the sent DIO, nodes invoke the parent selection 
process, choose a new parent, and continue their exchanges through this new 

n) Scenario 14m) Scenario 13

p) Scenario 16o) Scenario 15

Fig. 10   The results of the success delivery ratio parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 80 nodes with traffic rates: m 60 PPM, n 120 PPM, o 
180 PPM, and p 240 PPM
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parent. On the other hand, if a new node is added to the network or if the position 
of one of the nodes in the network changes for any reason, the concerned node 
notifies other nodes by sending a DIS message. The receiving nodes respond to 
the concerned node by sending a DIO message to it. Then, the node selects the 
best parent by receiving DIOs and becomes a member of the network graph by 
sending a DAO. As presented, RI-RPL is designed based on three general stages 
to achieve its objectives. It starts with the performance of the first stage, where 
routing (aligned with the proposed RI-RPL measures) is implemented. Subse-
quently, in the second stage, learning convergence is supported to ensure the best 
selection in various network conditions. Finally, in the third stage, network topol-
ogy changes are controlled and managed.

6 � Analyzing the results

Implementation and evaluation of RI-RPL were carried out in the Cooja simulator 
software. Cooja is one of the most widely used and efficient simulators for IoT. This 
software provides all the components, standards, and patterns required for imple-
menting and simulating various IoT applications and is readily available by default. 
Cooja can be considered a dedicated simulator for IoT applications. Its prominent 

r) Scenario 18q) Scenario 17

t) Scenario 20s) Scenario 19

Fig. 11   The results of the success delivery ratio parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 100 nodes with traffic rates: q 60 PPM, r 120 PPM, s 
180 PPM, and t 240 PPM
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features, compared to other software, include accurate simulation of low-power and 
lossy networks (especially IoT applications), providing a desirable graphical simula-
tion environment, access to various components and tools related to IoT applica-
tions, the presence of the RPL protocol by default, and the provision of extensibil-
ity and optimization capabilities as needed. Cooja simulator is based on the Contiki 
operating system.

6.1 � Simulation scenarios

To conduct accurate experiments, simulation scenarios for all four protocols: Pro-
posed RI-RPL, RLQRPL [35], ELBRP [39], and RPL [14], have the same condi-
tions. Table 5 lists the simulation parameters and their assigned values. The selec-
tion and assignment of network communication protocol components, including the 
carrier sense multiple access (CSMA) medium access technique, IEEE-standardized 
communication techniques (IEEE 802.15.4), the IP version used (IPv6), and the 
transport layer protocol (UDP) are based on IoT standards and prior research. Addi-
tionally, simulation scenarios are ranked according to Table 6. The important and 
influential parameters for the performance of the method are the number of nodes 

b) Scenario 2a) Scenario 1

d) Scenario 4c) Scenario 3

Fig. 12   The results of the end-to-end delay parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 20 nodes with traffic rates: a 60 PPM, b 120 PPM, c 
180 PPM, and d 240 PPM
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and the traffic rate. In addition, these two parameters are the most important param-
eters in evaluating the efficiency of methods in the network, especially IoT-based 
networks. In this regard, we have proposed various simulation scenarios based on 
different values of the two parameters to simulate all possible situations.

6.2 � Evaluated metrics and results

In this section, the results obtained from the simulations are presented, and the rele-
vant analyses are discussed. The parameters used to evaluate the performance of the 
protocols are among the most critical parameters related to the routing domain and 
IoT exchanges, significantly affecting the performance of the compared protocols. 
These parameters and details are presented below.

6.2.1 � Success delivery ratio of the sink node

The graphs presented in Figs. 7, 8, 9, 10 and 11 depict the evaluation results of the 
network’s successful reception rate under varying numbers of nodes and variable 
traffic rates according to the scenarios defined in Table 5 for the proposed RI-RPL 

f) Scenario 6e) Scenario 5

h) Scenario 8g) Scenario 7

Fig. 13   The results of the end-to-end delay parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 40 nodes with traffic rates: e 60  PPM, f 120  PPM, g 
180 PPM, and h 240 PPM
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protocol, in comparison with three other protocols: RLQRPL, ELBRP, and RPL. 
This parameter is calculated based on the total successfully received packets by the 
sink node concerning all transmissions and is calculated using Eq. (13), where SDR 
represents the successful reception rate of the network (sink node).

Please note that in the Internet of Things, the network’s successful reception rate 
is evaluated based on the ratio of packets successfully received by the sink node to 
the total sent packets. Therefore, in the conducted experiments, only packets that 
were received correctly and successfully by the sink node were considered in the 
calculations for this parameter. The data transmission rate is the same for all four 
protocols. However, the successful reception results vary, such that the protocol that 
performs better in routing and data exchanges, supporting QoS more effectively, will 
have better successful reception. Overall, this parameter has changed based on two 
main factors and results. The first factor relates to the discussion of QoS (Quality of 
Service). This refers to the protocols’ ability to provide quality routing and support 
for QoS in a way that the better the protocol performs in routing and data exchanges, 

(13)SDR =

∑

No. of Data packet Recevied
∑

No. of Data packet Send
× 100

j) Scenario 10i) Scenario 9

l) Scenario 12k) Scenario 11

Fig. 14   The results of the end-to-end delay parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 60 nodes with traffic rates: i 60  PPM, j 120  PPM, k 
180 PPM, and l 240 PPM
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the better the successful receptions will be. Therefore, RI-RPL and ELBRP proto-
cols effectively ensure service quality. These two protocols evaluate multiple met-
rics during routing, ensuring that the highest quality and most suitable intermediate 
routes are selected. RLQRPL also performs well in this regard but focuses only on 
evaluating ETX and signal quality, making it less effective than the other two pro-
tocols in this aspect. RPL does not provide measures for this purpose and is inef-
ficient in supporting QoS. The second factor relates to the reliability and stability of 
the communication graph. In this regard, only RI-RPL is effective and efficient. The 
proposed protocol is the only one that has been successful in evaluating the reliabil-
ity of routes and ensuring the adaptability of the graph in the face of parent dynam-
ics, based on the concept of learning. Based on the results, with an increase in the 
number of nodes, the successful reception rate for all four protocols decreased, as 
this is due to the increased interference and issues caused by the increasing number 
of nodes. However, the reduction rate in successful receptions for RI-RPL compared 
to the other three protocols was lower. The reason for this is that RI-RPL’s practical 
measures are more tangible in scenarios with a larger number of nodes, making the 
proposed protocol more successful in these scenarios. Figures 7, 8, 9, and 10 present 
the results of the success delivery ratio parameter for the proposed RI-RPL proto-
col compared to RPL, ELBRP, and RLQRPL in the presence of 20, 40, 60, and 80 
nodes, respectively.

n) Scenario 14m) Scenario 13

p) Scenario 16o) Scenario 15

Fig. 15   The results of the end-to-end delay parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 80 nodes with traffic rates: m 60 PPM, n 120 PPM, o 
180 PPM, and p 240 PPM
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Figure 11 presents the results of the success delivery ratio parameter for the pro-
posed RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 
100 nodes with variable traffic rates. According to the obtained results, with an increase 
in traffic rate, the successful reception rate showed a decreasing trend. However, it is 
important to note that RI-RPL was more efficient in scenarios with heavy traffic com-
pared to scenarios with light traffic. RI-RPL effectively managed congestion events and 
unexpected errors, making it more successful in traffic management. ELBRP focuses 
on traffic management and congestion control, and in this regard, its performance is 
better as network traffic increases.

6.2.2 � End‑to‑end delay

The graphs presented in Figs. 12, 13, 14, 15 and 16 depict the evaluation results of 
the end-to-end delay rate under varying numbers of nodes and variable traffic rates 
according to the scenarios defined for the Proposed RI-RPL protocol, in compari-
son to three other protocols: RLQRPL, ELBRP, and RPL. This parameter is based 
on the average delay of received data, as calculated by Eq. (14), where ED repre-
sents the average end-to-end delay, Delayi is the delay of the received packet, and 
No.of thepacketreceived is the total number of received packets.

r) Scenario 18q) Scenario 17

t) Scenario 20s) Scenario 19

Fig. 16   The results of the end-to-end delay parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 100 nodes with traffic rates: q 60 PPM, r 120 PPM, s 
180 PPM, and t 240 PPM
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Delay is a qualitative parameter and one of the crucial factors, especially about 
the Quality of Service (QoS) of transmitted data. It’s worth noting that this param-
eter has been evaluated in experiments based only on the data that have been suc-
cessfully received. Essentially, the average delay presented in the results is the delay 
of packets that have been successfully received by the sink node. This parameter has 
a direct connection with the performance of protocols in supporting QoS. However, 
maintaining the stability of the network topology and the convergence of the net-
work also significantly affects the reduction of unwanted factors, increasing delay. 
According to the results, with an increase in both the number of nodes and the traf-
fic rate, the delay has increased. The reason for this is that an increase in the num-
ber of nodes leads to longer intermediate routes, which is a key factor in increasing 
delay. Furthermore, an increase in traffic rate leads to network congestion, which 
directly affects an increase in the delay of exchanges. However, RI-RPL has per-
formed more successfully in scenarios with increasing factors. RI-RPL, based on 
its capabilities in ensuring and supporting QoS, minimizes and controls the delay of 

(14)ED =

∑No. of packet received

i=1
Delayi

No. of packet received

b) Scenario 2a) Scenario 1

d) Scenario 4c) Scenario 3

Fig. 17   The results of the overheads parameter for the Proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 20 nodes with traffic rates: a 60 PPM, b 120 PPM, c 180 PPM, 
and d 240 PPM
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exchanges as much as possible. These provisions have had more significant effects 
in scenarios with a higher number of nodes, resulting in a noticeable improvement 
in delay in these scenarios. Additionally, RI-RPL effectively manages issues arising 
from increased congestion and inefficiency of parents by ensuring the adaptability 
and dynamism of parents. This has had significant effects in scenarios with higher 
traffic rates (due to traffic intensity and fluctuations), resulting in more successful 
performance in these scenarios.

ELBRP is efficient in traffic management and congestion control, and in this 
regard, its performance is much more successful in scenarios with heavier traffic. 
The other two protocols, especially RPL, do not provide significant measures for 
controlling and optimizing delay, and as a result, exchanges in these methods are 
accompanied by an increase in delay compared to the other two protocols. Figure 12 
presents the results of the end-to-end delay parameter for the proposed RI-RPL pro-
tocol compared to RPL, ELBRP, and RLQRPL in the presence of 20 nodes with 
variable traffic rates. Figure 13 presents the results of the end-to-end delay param-
eter for the proposed RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in 
the presence of 40 nodes with variable traffic rates. Figure 14 presents the results 
of the end-to-end delay parameter for the proposed RI-RPL protocol compared to 

f) Scenario 6e) Scenario 5

h) Scenario 8g) Scenario 7

Fig. 18   The results of the overheads parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 40 nodes with traffic rates: e 60 PPM, f 120 PPM, g 180 PPM, 
and h 240 PPM
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RPL, ELBRP, and RLQRPL in the presence of 60 nodes with variable traffic rates. 
Figure 15 presents the results of the end-to-end delay parameter for the proposed 
RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 80 
nodes with variable traffic rates. Figure  16 presents the results of the end-to-end 
delay parameter for the proposed RI-RPL protocol compared to RPL, ELBRP, and 
RLQRPL in the presence of 100 nodes with variable traffic rates.

6.2.3 � Control overheads

The presented graphs in Figs. 17, 18, 19, 20 and 21 provide the evaluation results of 
the control overhead rate with varying numbers of nodes and variable traffic rates 
for the proposed RI-RPL protocol in comparison to three other protocols: RLQRPL, 
ELBRP, and RPL. This parameter is calculated based on the quantity of control data 
transmitted in the network, as detailed in Eq. (15), where OH represents the quantity 
of control overheads in the network.

j) Scenario 10i) Scenario 9

l) Scenario 12k) Scenario 11

Fig. 19   The results of the overheads parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 60 nodes with traffic rates: i 60 PPM, j 120 PPM, k 180 PPM, 
and l 240 PPM
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Control overheads refer to non-data packets that are exchanged in the network to 
perform auxiliary tasks, especially routing. In general, the data sent in IoT networks 
can be divided into two categories. The first category is the primary network data 
(such as pollution measurement results in environmental applications). The second 
category includes non-primary network data, which is transmitted to advance the 
objectives of routing processes in the communication network. These supplemen-
tary data are called control overheads. The existence of these overheads is neces-
sary for achieving the goals of the methods and implementing their measures, but if 
not controlled, they can lead to increased network traffic and energy consumption, 
ultimately resulting in reduced network performance. Therefore, the performance of 
proposed protocols should be optimized as much as possible.

In line with what was mentioned regarding the performance of RI-RPL, the pro-
posed protocol uses the extension of the option field in DIO packets to share the 

(15)OH =

∑

No. of control bit send

Time (s)

n) Scenario 14m) Scenario 13

p) Scenario 16o) Scenario 15

Fig. 20   The results of the overheads parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 80 nodes with traffic rates: m 60 PPM, n 120 PPM, o 
180 PPM, and p 240 PPM
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quality conditions of nodes, resulting in a negligible increase in control overheads. 
Additionally, in the proposed protocol, the concepts of Q-learning are used to con-
trol the conditions of parents and ensure graph dynamism, which results in parent 
changes when necessary.

While this strategy ensures the preservation of graph superiority under various 
conditions, it does impose a minor control overhead on the network. Among other 
methods, ELBRP, due to its routing development based on multi-metric evaluation 
and the use of data dissemination techniques (selecting multiple parents to maintain 
load balance), has imposed higher overheads on the network. This increase in over-
heads has been more noticeable in scenarios with denser traffic due to the increased 
need for load distribution.

RPL, on the other hand, does not implement any additional measures, resulting 
in lower control overheads compared to the other protocols. With an increase in 
the number of nodes, the complexity of the routing process and graph formation 
has increased, leading to increased control overheads in all four protocols. Simi-
larly, with an increase in traffic rates, control overheads have also seen a limited 

r) Scenario 18q) Scenario 17

t) Scenario 20s) Scenario 19

Fig. 21   The results of the overheads parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 100 nodes with traffic rates: q 60 PPM, r 120 PPM, s 
180 PPM, and t 240 PPM
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increase. However, it should be noted that in these scenarios, due to the increase in 
node rates and network congestion, parent changes in RI-RPL have been more fre-
quent, resulting in higher overheads. Nevertheless, considering the substantial and 
notable improvements in the proposed method in five critical and influential network 
parameters, namely, successful network receptions, end-to-end delay, energy con-
sumption, throughput, and the insignificance of these overhead rates, this overhead 
rate becomes relatively inconsequential.

Figure 17 presents the results of the overheads parameter for the proposed RI-
RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 20 nodes 
with variable traffic rates.

Figure 18 presents the results of the overheads parameter for the proposed RI-
RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 40 nodes 
with variable traffic rates. Figure 19 presents the results of the overheads parameter 
for the proposed RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the 
presence of 60 nodes with variable traffic rates. Figure 20 presents the results of the 
overheads parameter for the proposed RI-RPL protocol compared to RPL, ELBRP, 

b) Scenario 2a) Scenario 1

d) Scenario 4c) Scenario 3

Fig. 22   The results of the energy consumption parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 20 nodes with traffic rates: a 60 PPM, b 120 PPM, c 
180 PPM, and d 240 PPM
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and RLQRPL in the presence of 80 nodes with variable traffic rates. Figure 21 pre-
sents the results of the overheads parameter for the proposed RI-RPL protocol com-
pared to RPL, ELBRP, and RLQRPL in the presence of 100 nodes with variable 
traffic rates.

6.2.4 � Energy consumption

The presented graphs in Figs. 22, 23, 24, 25 and 26 display the results of energy con-
sumption with varying numbers of nodes and variable traffic rates for the proposed 
RI-RPL protocol, in comparison with three other protocols: RLQRPL, ELBRP, and 
RPL. This parameter is evaluated based on the energy consumption rate for network 
exchanges, as detailed in Eq. (16), where PEC represents the energy consumption 
rate for each packet.

(16)PEC = Energy consumption∕packet (j)

f) Scenario 6e) Scenario 5

h) Scenario 8g) Scenario 7

Fig. 23   The results of the energy consumption parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 40 nodes with traffic rates: e 60 PPM, f 120 PPM, g 
180 PPM, and h 240 PPM
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According to the results of experiments, energy consumption has increased with 
an increase in the number of network members and traffic rates. The reason for this 
is that an increase in the number of nodes leads to longer intermediate routes and a 
higher rate of exchanges, resulting in increased network energy consumption. Addi-
tionally, an increase in traffic rates has also led to increased network traffic volume, 
directly impacting increased energy consumption. However, RI-RPL has performed 
more successfully in scenarios with increasing factors. In scenarios with increas-
ing disturbances, network instability, data loss, and more retransmissions, measures 
provided by RI-RPL effectively support service quality and graph reliability, mini-
mizing energy consumption. RPL had the highest energy consumption, attributed to 
its inefficiency in preventing unintended factors and disruptions to quality and reli-
ability. The presence of these issues was more pronounced in increasing scenarios, 

j) Scenario 10i) Scenario 9

l) Scenario 12k) Scenario 11

Fig. 24   The results of the energy consumption parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 60 nodes with traffic rates: i 60 PPM, j 120 PPM, k 
180 PPM, and l 240 PPM
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thus leading to higher energy consumption for RPL. ELBRP exhibited better per-
formance than RLQRPL, but both methods were inefficient in maintaining stability 
and continuity in exchanges, resulting in reduced performance in certain conditions. 
Figure 22 presents the results of the energy consumption parameter for the proposed 
RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 20 
nodes with variable traffic rates. Figure 23 presents the results of the energy con-
sumption parameter for the proposed RI-RPL protocol compared to RPL, ELBRP, 
and RLQRPL in the presence of 40 nodes with variable traffic rates.

Figures  24 presents the results of the energy consumption parameter for the 
proposed RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the pres-
ence of 60 nodes with variable traffic rates. Figure  25 presents the results of the 
energy consumption parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 80 nodes with variable traffic rates. Fig-
ure 26 presents the results of the energy consumption parameter for the proposed 

n) Scenario 14m) Scenario 13

p) Scenario 16o) Scenario 15

Fig. 25   The results of the energy consumption parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 80 nodes with traffic rates: m 60 PPM, n 120 PPM, o 
180 PPM, and p 240 PPM
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RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 100 
nodes with variable traffic rates.

6.2.5 � Network data loss rate

The graphs presented in Figs. 27, 28, 29, 30 and 31, respectively, show the results 
of the network data loss rate with varying numbers of nodes and variable traffic 
rates for the proposed RI-RPL protocol, in comparison with three other protocols: 
RLQRPL, ELBRP, and RPL. This parameter is evaluated based on the percentage 
of lost data compared to the total transmissions, as detailed in Eq. (17), where PDR 
represents the network data loss rate, calculated as the sum of lost packets over the 
sum of transmissions.

(17)PDR =

∑

No. of Data Message Drop
∑

No. of Data Message Send

r) Scenario 18q) Scenario 17

t) Scenario 20s) Scenario 19

Fig. 26   The results of the energy consumption parameter for the proposed RI-RPL protocol compared 
to RPL, ELBRP, and RLQRPL in the presence of 100 nodes with traffic rates: q 60 PPM, r 120 PPM, s 
180 PPM, and t 240 PPM
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Regarding this parameter, it is essential to note that while the performance of pro-
tocols has a direct and reciprocal impact on data loss, several other issues, including 
wireless medium interference, node performance degradation, and other unintended 
factors, also contribute to data loss. However, because the configured scenarios for 
the protocols were uniform and similar, the impacts of these factors on the results of 
the protocols were consistent, with the only difference being the performance of the 
compared protocols. Data loss has a reciprocal relationship with routing confidence 
and network graph stability. In other words, the more effectively a protocol operates 
in these aspects, the less data loss occurs, and vice versa.

RI-RPL, based on multi-metric evaluation graph formation (with a focus on 
energy, congestion, successful reception probability, and link reliability), along 
with providing the ability to examine route conditions, forms the communica-
tion graph through the most reliable nodes and intermediate paths. The pres-
ence of this capability, along with support for adaptability and parent changes, 
ensures the stability and continuity of exchanges, minimizing data loss. ELBRP 
has also been successful in this area, especially in scenarios with heavy traffic, 
and has minimized data loss. However, this protocol introduces the ability to 
assess route conditions and the dynamics of the graph, which has led to data loss 

b) Scenario 2a) Scenario 1

d) Scenario 4c) Scenario 3

Fig. 27   The results of the data loss rate parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 20 nodes with traffic rates: a 60 PPM, b 120 PPM, c 180 PPM, 
and d 240 PPM
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in certain situations. RLQRPL, compared to the two mentioned protocols, has 
performed weaker but has been more successful than RPL due to its support for 
quality of service (QoS). RPL has been ineffective in supporting reliability and 
quality, resulting in increased data loss rates for this method. With an increase 
in the number of nodes, disruptions and consequently data loss have increased, a 
trend observed in all four protocols. With an increase in traffic, congestion, and 
its associated effects, such as data loss, have also increased. However, this issue 
has been less pronounced for RI-RPL and ELBRP compared to the other two 
protocols.

Figure 27 presents the results of the data loss rate parameter for the proposed 
RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 20 
nodes with variable traffic rates. Figure 28 presents the results of the data loss 
rate parameter for the proposed RI-RPL protocol compared to RPL, ELBRP, and 
RLQRPL in the presence of 40 nodes with variable traffic rates. Figure 29 pre-
sents the results of the data loss rate parameter for the proposed RI-RPL proto-
col compared to RPL, ELBRP, and RLQRPL in the presence of 60 nodes with 
variable traffic rates. Figure 30 presents the results of the data loss rate param-
eter for the proposed RI-RPL protocol compared to RPL, ELBRP, and RLQRPL 
in the presence of 80 nodes with variable traffic rates.

f) Scenario 6e) Scenario 5

h) Scenario 8g) Scenario 7

Fig. 28   The results of the data loss rate parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 40 nodes with traffic rates: e 60 PPM, f 120 PPM, g 180 PPM, 
and h 240 PPM
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Figure 31 presents the results of the data loss rate parameter for the proposed 
RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 
100 nodes with variable traffic rates.

6.2.6 � Network throughput

The graphs presented in Figs. 32, 33, 34, 35 and 36 depict the network throughput 
results with varying numbers of nodes and variable traffic rates for the proposed RI-
RPL protocol, in comparison to three other protocols: RLQRPL, ELBRP, and RPL. 
This parameter is evaluated based on the total received interactions over time, as 
detailed in Eq. (18), where TG represents the network throughput rate.

Network throughput is the ideal network transmission rate and has a direct rela-
tionship with the performance of protocols, especially their capabilities in support-
ing quality and reliability. However, other factors have also played a role in changes 
in this parameter, with their impacts being consistent across the compared protocols. 

(18)TG =

∑

No. of all byte recivied ∗ 8

Time (s)

j) Scenario 10i) Scenario 9

l) Scenario 12k) Scenario 11

Fig. 29   The results of the data loss rate parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 60 nodes with traffic rates: i 60 PPM, j 120 PPM, k 180 PPM, 
and l 240 PPM
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Therefore, what has been highlighted in the conducted experiments is the varia-
tions in network throughput about protocol performance. Based on what has been 
presented in the previous sections and the results shown, the proposed protocol 
has operated in a way that prioritizes QoS first and then improves reliability to the 
best extent possible. To achieve this, RI-RPL initially creates the communication 
graph through paths with maximum quality, subsequently supports parent dynamics 
based on learning to prevent performance degradation in temporary network con-
ditions, and finally manages topology changes. The result of this targeted design 
and adaptive performance has been an increase in network throughput for RI-RPL. 
Among the other three protocols, ELBRP has been more successful due to the effec-
tive measures it has taken in supporting QoS and traffic management compared to 
RLQRPL and RPL. However, in terms of routing aspects, especially ensuring graph 
dynamism and supporting adaptive routing, it has not performed as well and has 
shown lower improvements in these aspects compared to RI-RPL. RLQRPL has 
been more successful than RPL in evaluating connection quality and ETX for rout-
ing selections.

However, this protocol does not provide measures to support other needs and 
requirements, resulting in weaker results compared to RI-RPL and ELBRP in this 
regard. RPL focuses solely on routing and does not provide the capability to ensure 
quality and reliability. With an increase in the number of nodes and traffic rates, 

n) Scenario 14m) Scenario 13

p) Scenario 16o) Scenario 15

Fig. 30   The results of the data loss rate parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 80 nodes with traffic rates: m 60 PPM, n 120 PPM, o 
180 PPM, and p 240 PPM
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the throughput has shown an increasing trend, and after a certain number of nodes 
and specific traffic levels, throughput becomes stable and even exhibits a decreasing 
trend. This issue is a result of the negative impacts of increased traffic and the num-
ber of nodes on protocol performance.

Figure 32 presents the results of the throughput parameter for the proposed RI-
RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 20 nodes 
with variable traffic rates. Figure 33 presents the results of the throughput parameter 
for the proposed RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the 
presence of 40 nodes with variable traffic rates. Figure 34 presents the results of the 
throughput parameter for the proposed RI-RPL protocol compared to RPL, ELBRP, 
and RLQRPL in the presence of 60 nodes with variable traffic rates. Figure 35 pre-
sents the results of the throughput parameter for the proposed RI-RPL protocol com-
pared to RPL, ELBRP, and RLQRPL in the presence of 80 nodes with variable traf-
fic rates. Figure 36 presents the results of the throughput parameter for the proposed 
RI-RPL protocol compared to RPL, ELBRP, and RLQRPL in the presence of 100 
nodes with variable traffic rates.

r) Scenario 18q) Scenario 17

t) Scenario 20s) Scenario 19

Fig. 31   The results of the data loss rate parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 100 nodes with traffic rates: q 60 PPM, r 120 PPM, s 
180 PPM, and t 240 PPM
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6.3 � Analysis of results

The proposed protocol, RI-RPL, has been designed to enhance the Quality of Ser-
vice (QoS) and ensure the reliability of Internet of Things (IoT) communications. 
The results obtained from RI-RPL experiments, across various parameters and fac-
tors, indicate a significant improvement and acceptable performance compared to 
prior research in the field. Table 7 provides an overall evaluation of the performance 
of the proposed RI-RPL protocol compared to three other protocols under consid-
eration. The parameters under our review are among the most important parameters 
that increase the efficiency of the network. By improving these parameters, the net-
work has become much more efficient and resistant. Also, these parameters are all 
in the same direction, which means that the improvement of each one will have a 
positive effect on the improvement of the rest of the parameters and ultimately the 
stability of the network.

b) Scenario 2a) Scenario 1

d) Scenario 4c) Scenario 3

Fig. 32   The results of the throughput parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 20 nodes with traffic rates: a 60 PPM, b 120 PPM, c 180 PPM, 
and d 240 PPM
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7 � Conclusion

Considering the studies related to the present research in the realm of the Internet of 
Things (IoT), which is one of the most significant and widely used communication 
technologies in scientific research, it becomes evident that if QoS is not adequately 
provided and supported, or if challenges related to routing and data exchanges are not 
effectively managed, the data communication process will fail, rendering the network 
non-functional. Given this, and in line with the research focus on ensuring and guar-
anteeing the QoS of IoT data exchanges, the proposed protocol, RI-RPL (based on the 
extension of the RPL routing protocol), has been introduced and its details have been 
elucidated. RI-RPL, to achieve its objectives, implements its performance in three oper-
ational phases: performing routing by the optimization of the RPL protocol based on 
RI-RPL’s proposed measures (with a focus on the Q-learning algorithm), ensuring the 
best selection under various network conditions (based on learning and convergence), 

f) Scenario 6e) Scenario 5

h) Scenario 8g) Scenario 7

Fig. 33   The results of the throughput parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 40 nodes with traffic rates: e 60 PPM, f 120 PPM, g 180 PPM, 
and h 240 PPM
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and controlling and managing changes in network topology. The proposed performance 
design of RI-RPL has been executed in a way that, in addition to pursuing and achiev-
ing research objectives, the proposed protocol is compatible with the characteristics and 
conditions governing IoT and is well-suited for implementation in various applications. 
Simulation results using the Cooja software demonstrate improvements in key param-
eters, including successful receptions, end-to-end delays, energy consumption, network 
throughput, and data loss rates compared to similar recent methods such as ELBRP, 
RLQRPL, and RPL. By improving these parameters, the proposed method stabilizes 
the topology and DODAG graph. Also, despite some works that have problems with 
traffic or a higher number of nodes, our method has often shown better and more opti-
mal behavior with an increase in the number of nodes and traffic rate. The positive 
results obtained from the simulation in 20 different scenarios indicate that our method 
has good scalability and adaptability to different network conditions. The proposed 
method, in terms of the investigated parameters, has only a small amount of weakness 

j) Scenario 10i) Scenario 9

l) Scenario 12k) Scenario 11

Fig. 34   The results of the throughput parameter for the proposed RI-RPL protocol compared to RPL, 
ELBRP, and RLQRPL in the presence of 60 nodes with traffic rates: i 60 PPM, j 120 PPM, k 180 PPM, 
and l 240 PPM
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in the amount of control overhead. which, in exchange for the many improvements it 
has had, is very insignificant and can be ignored. As future work for the development 
of the proposed method, expanding the RI-RPL protocol based on location-based rout-
ing techniques to ensure QoS for specific IoT applications (including latency-sensitive 
applications such as medical and industrial uses), equipping the proposed protocol with 
trust models to support routing trust and data exchanges, in addition to ensuring service 
quality and extending RI-RPL based on data distribution techniques to improve fault 
tolerance and increase communication reliability, is proposed.

n) Scenario 14m) Scenario 13

p) Scenario 16o) Scenario 15

Fig. 35    The results of the throughput parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 80 nodes with traffic rates: m 60 PPM, n 120 PPM, o 
180 PPM, and p 240 PPM
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r) Scenario 18q) Scenario 17

t) Scenario 20s) Scenario 19

Fig. 36    The results of the throughput parameter for the proposed RI-RPL protocol compared to 
RPL, ELBRP, and RLQRPL in the presence of 100 nodes with traffic rates: q 60 PPM, r 120 PPM, s 
180 PPM, and t 240 PPM

Table 7   Review and general conclusion of the simulation results for different scenarios

Criterion ELBRP RLQRPL RPL

Successful receipts 4.03% improvement 13.26% improvement 28.87% improvement
End-to-end delay 3.04% improvement 9.82% improvement 13.12% improvement
Energy consumption 10.43% improvement 28.91% improvement 36.35% improvement
Throughput 10.23% improvement 28.45% improvement 46.88% improvement
Data loss 15.06% improvement 34.95% improvement 49.66% improvement
Control overheads 1.44% weakening 4.29% weakening 6.68% weakening
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