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Abstract
This work presents a novel approach to quantum computing by proposing a custom-
izable hardware design of a dedicated processor that emulates the execution of quan-
tum algorithms. Unlike software-based quantum computation simulators, which run 
on standard general-purpose computers and suffer from reduced performance, this 
hardware design, which is based on classical concepts of bits, registers and memo-
ries, aims to leverage pure parallelism and pipelined execution for efficient quan-
tum computations via emulation. The architecture includes several key components: 
memories, computation unit, measurement unit and control unit. The quantum state 
memory stores the individual and group states of qubits. This memory is crucial 
for maintaining the quantum information required for quantum operations. Basic 
operators are stored in dedicated operator memory. Additionally, a scratch memory 
allows for larger operators to be dynamically built at runtime. The computation unit 
is responsible for performing complex number multiplications, which form the basis 
of tensor and matrix products necessary for executing quantum operations. A meas-
urement unit enables quantum state sampling, which is an essential aspect of quan-
tum computation. Furthermore, a control unit is incorporated to ensure the correct 
operation of the quantum processor’s data path. It utilizes a microprogram to man-
age and coordinate the functional units. All the functional units communicate with 
each other through dedicated and shared data buses, depending on the frequency of 
information exchange. This enables efficient data transfer and coordination among 
the components. The proposed hardware design has been simulated and proved to be 
effective in executing quantum operations. By exploiting parallelism and employing 
a pipelined execution, this architecture overcomes the limitations of software-based 
simulators, delivering improved performance for emulating quantum algorithms. We 
use Grover’s search algorithm as a benchmark to evaluate the performance of the 
proposed hardware design and compare it to software-based simulation and to hard-
ware-based algorithm-dedicated emulation.
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1 Introduction

Quantum computing has garnered considerable research interest due to its poten-
tial to enhance processing speed through the use of algorithms with inherent par-
allelism. It offers the possibility of achieving polynomial time solutions for NP-
complete problems [1–3]. However, the control of quantum states in real quantum 
computers remains challenging, with only a few qubits being controlled for a 
short duration. At the time of this work’s conclusion, the largest number of entan-
gled qubits achieved under special conditions was twenty [4]. Companies have 
invested in the development of commercial real quantum devices. For instance, 
in 2015, D-Wave introduced a quantum computer with 1000 qubits, although not 
all were entirely entangled [5]. Four years later, D-Wave announced the next-gen-
eration Pegasus quantum processor chip, featuring 15 connections per qubit com-
pared to the previous 6. They projected that the subsequent system would utilize 
the Pegasus chip, encompassing over 5000 qubits, and become available shortly 
[6].

While commercial real quantum processors are not yet available to the general 
public, quantum programming is being explored through simulators and libraries 
of quantum operation routines. Examples of these include QCL (Quantum Com-
putation Language) [7], QCS (Quantum Computer Simulator), QuaSi, Fraunhofer 
Quantum Computing Simulator, QuCalc, QDensity, OpenQuacs, QML, JaQuzzi, 
Senko’s Quantum Computer, Shornuf, Simqubit and QHaskell [8–10]. For effi-
cient software simulation, many sophisticated data structure has been proposed. 
Among others, tensor networks [11] and decision diagrams [12] provide suc-
cessful implementations for the simulation of quantum computations on classical 
computers. However, these kinds of data structures are complex and dynamic, 
thus limiting their suitability for a hardware implementation, which require a con-
cise internal representation and efficient management of dynamic memory.

Nowadays, various efficient quantum simulators, such as IBM’s quantum cir-
cuit composer [13] and Munich Quantum Toolkit [14], run effectively on stand-
ard general-purpose computers. However, simulators, being software products, 
often suffer from longer processing times due to sequential execution, although 
this can be partially mitigated by utilizing multiple processors and resource shar-
ing [15, 16]. The usage of general-purpose processors and thus internal general 
data paths, which are not necessarily optimized for the low-level instructions 
used to simulate quantum operations, are the main reason for the execution bot-
tleneck. Optimized data paths as well as custom-made parallelism are the main 
contributions in quantum hardware emulators with dedicated designs towards the 
acceleration of quantum operations. So, dedicated processors, custom-designed to 
emulate quantum operations efficiently, can offer significant advantages over sim-
ulators run on standard general-purpose processors, thus providing faster speed 
as well as a well-tailored parallelism to guarantee a good trade-off between cost 
and efficiency. By running on specialized processors, such as emulated quantum 
processors, the results of quantum operations can be obtained in a shorter time 
frame. Building dedicated hardware for quantum computing is a complex and 
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ongoing research effort, involving various scientific disciplines, engineering chal-
lenges and optimization to achieve stable, reliable and scalable quantum comput-
ing emulators. As real quantum computing technology advances, dedicated hard-
ware emulators should meanwhile help unlocking the full potential of quantum 
algorithms and applications.

Dedicated hardware for quantum computing refers to specialized physical devices 
and components designed to implement and perform quantum computations. Unlike 
classical computers that rely on bits to represent information, quantum computers 
use quantum bits or qubits, which can represent multiple states simultaneously due 
to the principles of quantum superposition and entanglement. Real quantum pro-
cessors, which are the key element in quantum computers, are built using various 
physical systems such as superconducting circuits [17], trapped ions [18], topologi-
cal qubits [19] and photonic qubits [20]. Dedicated hardware emulators for quantum 
computing are nowadays necessary because quantum computations require dedi-
cated and precise control over the idealized representations of qubits and quantum 
registers and the ability to manipulate the emulated quantum states with high fidelity 
and high processing speed.

This work introduces an architecture of an emulated quantum processor, designed 
to be implemented using classical hardware and embedded into classical general-
purpose computers. The design should enable the acceleration of problem-solving, 
when compared with software-based quantum simulators and more versatility when 
compared to a hardware design, dedicated to implement a specific quantum algo-
rithm. This work represents a pioneering effort, as it is the first attempt to implement 
a classical hardware-based emulation of a quantum processor, capable of emulat-
ing the execution of quantum operations. It does so via user directives inserted in 
a traditional program, as it is the case in physical real quantum computers, which 
by design receive their instructions from a classical program. As to this point in 
time, we were unable to find a similar work, wherein a hardware design of a quan-
tum emulator based on classical concepts of memory, register and bits to emulate 
quantum computations, is proposed. Of course, as mentioned before, this has been 
done either using novel physical technologies, such as superconducting qubits [17], 
trapped Ions [18], photonic qubits [20] and topological qubits [19], or in software-
based simulators, but not using emulation via a dedicated quantum processor as it is 
the case in this work. Dedicated hardware specifically designed for some quantum 
algorithms can be found in [21].

For the sake of simplicity and to lift any ambiguity, throughout the rest of this 
paper, physical quantum implementations, based on aforementioned advanced tech-
nologies for qubits, will be termed (real) quantum hardware or processors while 
software simulation and hardware emulation of quantum computations will be dis-
criminated as simulated and emulated quantum processor or simply simulator and 
emulator, respectively. So, the processor hardware design, proposed in this work, 
which is based on classical logic concepts to emulate quantum computations, will be 
termed as emulated quantum processor (EQP) or simply emulator.

Some key issues that hardware design dedicated to quantum emulation include: 
(1) processing unit, allowing to manipulate the set of qubits and to emulate quantum 
operations; (2) state control units, which are specialized electronics and control systems 
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to manipulate and maintain the internal representation of qubits states; (3) computa-
tion units, which are components responsible for emulating the execution of quan-
tum operations on the qubit internal representations used in quantum algorithms; (4) 
memory units, which are representation, techniques and hardware to store and retrieve 
the internal representation of quantum information; and (5) measurement units, which 
allow interfacing with the quantum emulator, enabling the emulation of quantum 
states observation and transformation into a classical binary representation. Note that 
error correction unit that is fundamental in real quantum processors is not required in 
emulated quantum processor designs that are based on classical logic gates. Classical 
binary circuits do not experience a significant amount of bit flips errors due to the high 
external energy needed to change the electrical current [22].

Our work proposes a novel hardware architecture of a dedicated processor to 
accelerate the emulation of quantum operations. The design can be customized 
according to some parameters, such as the overall number of qubits of machine 
state, the maximum number of qubits that can be operated simultaneously and the 
number of qubits entanglements. The proposed quantum emulator works alongside a 
general-purpose processor. It is capable of emulating quantum operations efficiently 
using a custom-designed of parallelism and pipeline. The design leverages dedicated 
information bookkeeping memories to enable efficient access to information regard-
ing to stored internal representation of qubits and emulate quantum operations with 
high efficiency. It does by optimizing the design’s data paths for efficient execution. 
It is worth noting that the current design does not require any error detection unit. 
We establish the superiority of the proposed solution over software-based simulation 
regarding time requirements and over hardware-based alternative when the design 
is dedicated to a given algorithm regarding versatility. The proposed design trades 
some performance for a larger versatility.

This paper is divided into seven sections. First of all, in Sect. 2, we provide an 
introduction to quantum computing, including a definition of the data model and the 
primary quantum operations. After that, in Sect.  3, we present and discuss recent 
related works of the literature. Subsequently, in Sect.  4, we describe the macro-
architecture of the proposed quantum processor. There follows, in Sect. 5, the details 
of the micro-architecture regarding the data path and control path of the quantum 
processor. This includes the organization of the included memory. Later, in Sect. 6, 
we present and explain simulation results related to instruction execution within 
the quantum processor. Subsequently, in Sect.  7, we present and analyze the per-
formance of the proposed processor design for a quantum algorithm with respect 
to memory and time requirements and compare it to that of software simulation 
and hardware emulation alternatives. Finally, in Sect. 8, we provide the concluding 
remarks and suggest promising directions for future research.

2  Quantum computations

Quantum computing is founded on the concept of the fundamental information unit 
known as the quantum bit, qubit or simply qubit. Unlike classical bits, which can 
only store a single value of 0 or 1, qubits can exist in a state of superposition. This 
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means that a qubit can simultaneously hold both 0 and 1, with each state having its 
own amplitude. This unique property allows qubits to represent an infinite range of 
values, including the boundary states of 0 and 1, using probabilistic characteristics 
instead of deterministic ones.

Mathematically, a qubit can be represented as a vector in a two-dimensional 
orthonormal basis and can be used to express an infinite set of values through linear 
combinations in the complex number field. The common notation is �0⟩ = �

1 0
�T 

and �1⟩ = �
0 1

�T . So, qubit �v⟩ can be represented interchangeably by either forms: 
�v⟩ = �

� �
�T or �v⟩ = ��0⟩ + ��1⟩ , where � and � are complex numbers representing 

the magnitude of each base vector. Thus, it features a qubit in simultaneously states 
0 and 1, but with the respective coefficients for each state. The squared amplitude 
represents the probability that the qubit is in that corresponding state. The sum of 
the squared amplitudes is always 1, i.e., |�|2 + |�|2 = 1 , preserving the vector norm.

The state of a quantum system can be represented by a vector that is a linear com-
bination of the base vectors, with the dimension of the base being equal to 2n , where 
n is the number of qubits in the system. As a result, a vector representing the state of 
the quantum system contains not only as many states as the number of qubits, but 2n 
states.

The quantum state of a machine is formed by a linear combination of collapsed 
states (base vectors) multiplied by their associated amplitudes. When an operation 
is performed on a vector, it is equivalent to performing the operation on each term 
of the linear combination. This results in an inherent parallelism, and for any given 
operator, say T, we can express it as in Eq. 1:

A qubit can be entangled with one or more other qubits, allowing for mutual inter-
ference, which is referred to as entanglement, and not just a group of isolated qubits 
[23]. Entanglement results in a grouping characteristic that is of particular interest in 
quantum computing, enabling applications such as super-dense coding and telepor-
tation [24]. Measuring an entangled qubit results in the collapse of all qubits in the 
group, forcing them to collapse to either state �0⟩ or �1⟩ [23]. Entangled qubits cannot 
be factorized into individual states. This means that there are no states of isolated 
qubits that can be manipulated to result in an entangled state. Therefore, entangled 
qubits are operated on by specific quantum gates that act on the entire set of entan-
gled qubits.

In contrast to classical computing, a qubit cannot be copied without conse-
quence, as this would entail a measurement and thus alter the state of the qubit. 
The non-cloning theorem, as explained in [25], asserts that even if we had a 
machine with an input of two qubits, one of which is an unknown state ��⟩ and 
the other an "inert" state �v⟩ , we cannot discover a unitary operator T that would 
output the state �𝜙⟩⊗ �𝜙⟩ without altering the initial state of the qubits. The ten-
sor product operation is denoted by ⊗ . The hypothetical operator T would need to 
reproduce the state of ��⟩ in �v⟩ , regardless of the state of ��⟩ . However, the usual 

(1)
T�v⟩ = T(��0⟩ + ��1⟩ + ��2⟩ +⋯ + ��2n − 1⟩)

= �T�0⟩ + �T�1⟩ +⋯ + �T�2n − 1⟩.
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inner product between ��⟩ and �v⟩ would only be useful if it resulted in either the 
state 0 or 1, indicating orthogonality or equality between the states, respectively. 
For any other result, the operator T would fail. [25].

When a quantum operation is performed on a state of n qubits, with n ≥ 2 , 
a tensor product would be required, resulting in a column vector of 2n rows. A 
quantum operator on such a set of qubits is a 2n × 2n matrix. It is constructed 
from basic 2 × 2 quantum operators. The tensor product of 2 matrices of any size 
is given by the product of each coefficient of the first matrix by its counterpart 
coefficient in the second matrix [23]. Quantum operators allow the execution of 
operations on one or more qubits. They have an equal number of inputs and out-
puts, maintaining the equivalence between the energy of the inputs and that of 
the outputs. Therefore, there should be no heat dissipation. These operators allow 
to know the conditions of the input data, as this information is preserved. With 
reversible operators, it possible to return the quantum system to its previous state, 
i.e., before applying the quantum operator in question [26].

For this works, we define basic quantum operators as those having dimension 
2 × 2 , acting on a single qubit, the controlled NOT (CNOT) and Swap operators, 
whose size is 4 × 4 , acting on two qubits, and controlled Swap (CSwap) and Tof-
foli’s operators, whose size is 8 × 8 , acting on three qubits. Complex quantum 
operators can act on two or more qubits simultaneously. In this case, the operator 
is built using tensor products, as explained earlier. In this way, a quantum opera-
tor, with the exception of CNOT or Toffoli’s gate, can be constructed from tensor 
products between basic quantum operators, which allows the state reversibility 
characteristic. That is, from a certain quantum state, one can return to the previ-
ous state by applying the inverse operator of the last operator used [27].

Basic unary quantum operators include [23]: (1) The X operator, also known as 
the Pauli-X, allows a qubit rotation of � around the x-axis and inverts the ampli-
tudes associated with the base vectors. If applied to a qubit in a collapsed state, 
it results in the opposite collapsed state, similar to a classic NOT gate. (2) The Y, 
also known as the Pauli-Y, allows a qubit rotation of � around the y-axis. It. (3) 
The Z operator, also known as the Pauli-Z, allows a qubit rotation of � around the 
z-axis. (4) The I operator is the identity operator that preserves the state of the 
qubit it is applied to. (5) The H operator, also known as the Hadamard operator, 
transforms a qubit in the collapsed state ( �0⟩ or �1⟩ ) into a superposition of both 
states with equal amplitude. The H operator coincides with its adjunct opera-
tor [28]. (6) The P � operator performs a phase shift dependent on the informed 
angle � . Operator P �∕4 is known as the T operator and P �∕2 as the S operator. The 
formal definition of these operators and their application to �v⟩ = ��0⟩ + ��1⟩ are 
shown in Table 11.

Basic binary quantum operators include [29]: (1) The controlled NOT (CNOT) 
operator is one of the main operators in quantum computing because it has the abil-
ity to entangle qubits. This operator has two arguments: the control qubit and the tar-
get qubit. The CNOT operator inverts the state of the target qubit when the control 
qubit is in state 1. (2) The Swap operator swaps the contents of two qubits. (3) The 
controlled phase shift (CZ) operator is a fundamental gate used in quantum comput-
ing for various quantum algorithms and quantum error correction. It introduces a 
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phase shift to the target qubit based on the state of the control qubit. It. The formal 
definition of these operators and their application are shown in Table 21.

Basic ternary quantum operators include: (1) The controlled Swap (CSwap) oper-
ator, also known as the Fredkin operator, exchanges the second and third qubits if 
the first qubit, also called the control qubit, is in state �1⟩ [30]. (2) The Toffoli opera-
tor uses three qubits: two qubits for control and third as target. It reverses the state of 
the target qubit whenever the two control qubits are in state �1⟩ . The formal defini-
tion of these operators and their application are shown in Table 3.1

It is important to note that there are other unary operators not mentioned here 
as well as other multi-qubit quantum operations, supporting arbitrary numbers of 
qubits. Operators CNOT, Swap, CSwap and Toffoli are just common examples of 
multi-qubit operators. A complete summary of quantum operators and possible 
combinations together with their representative symbol, matrix and application can 
be found in [31].

3  Related works

Numerous research studies in the field have focused on simulating quantum opera-
tions, utilizing both software and hardware approaches. These works encompass the 
development of libraries, the implementation of quantitative circuits using program-
mable or reconfigurable devices and initiatives that extend beyond the use of hard-
ware description languages. Additionally, there are efforts dedicated to designing 
modeling tools to facilitate the simulation of quantum operations.

Table 1  Unary quantum 
operators: definition and 
application

Op Gate symbol Matrix Linear definition

X X
[
0 1

1 0

]
X�v⟩ = ��0⟩ + ��1⟩

Y Y
[
0 − i

i 0

]
Y�v⟩ = i(−��0⟩ + ��1⟩)

Z Z
[
1 0

0 − 1

]
Z�v⟩ = ��0⟩ − ��1⟩

I I
[
1 0

0 1

]
I�v⟩ = �v⟩

H H ⎡⎢⎢⎣

1√
2

1√
2

1√
2

−
1√
2

⎤⎥⎥⎦

H�v⟩ = �+�√
2
�0⟩ + �−�√

2
�1⟩

T T
[
1 0

0 �
i�

4

]
T�v⟩ = ��0⟩ + 1√

2
�(1 + i)�1⟩

S S
[
1 0

0 i

]
S�v⟩ = ��0⟩ + i��1⟩

1 Note that there are other unary, binary and ternary as well as multi-qubit operators not mentioned here.
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3.1  Quantum hardware emulators

In the work by Khalid et  al. [32], a quantum circuit model is presented, which 
describes various quantum algorithms and their corresponding analogies with 

Table 2  Binary quantum 
operators: definition and 
application

Op Gate symbol Matrix Application �q1q0⟩
CNOT Xq1

q0

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦

CNOT�00⟩ = �00⟩
CNOT�01⟩ = �01⟩
CNOT�10⟩ = �11⟩
CNOT�11⟩ = �10⟩

CZ Zq1

q0

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1

⎤
⎥⎥⎥⎦

CZ�00⟩ = �00⟩
CZ�01⟩ = �01⟩
CZ�10⟩ = �10⟩
CZ�11⟩ = − �11⟩

Swap

×

× ⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

Swap�00⟩ = �00⟩
Swap�01⟩ = �10⟩
Swap�10⟩ = �01⟩
Swap�11⟩ = �11⟩

Table 3  Ternary quantum operators: definition and application

Op Gate symbol Matrix Application �q2q1q0⟩
CSwap

×
×

q0

q1

q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

CSwap�000⟩ = �000⟩
CSwap�001⟩ = �001⟩
CSwap�010⟩ = �010⟩
CSwap�011⟩ = �011⟩
CSwap�100⟩ = �100⟩
CSwap�101⟩ = �110⟩
CSwap�110⟩ = �101⟩
CSwap�111⟩ = �111⟩

TOFFOLI Xq0

q1

q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

TOFFOLI�000⟩ = �000⟩
TOFFOLI�001⟩ = �001⟩
TOFFOLI�010⟩ = �010⟩
TOFFOLI�011⟩ = �011⟩
TOFFOLI�100⟩ = �100⟩
TOFFOLI�101⟩ = �101⟩
TOFFOLI�110⟩ = �111⟩
TOFFOLI�111⟩ = �110⟩
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digital circuit models. The authors focus on developing an FPGA-based emulator 
for quantum algorithms, with a particular emphasis on novel techniques for mod-
eling quantum circuits. This includes addressing aspects such as qubit entanglement, 
probabilistic computation and precision-critical issues.

In the study conducted by Shende et al. [33], the authors analyze the logical effi-
ciency of quantum circuits that perform generic quantum computations and the ini-
tialization of quantum registers.

Guowu et  al. [34] propose an approach for synthesizing quantum circuits from 
non-commutative quantum gates, such as the controlled square root of not quan-
tum gate (controlled-V). The authors utilize group theory to transform the synthesis 
problem into a multiple-valued optimization.

Hashemi et al. [35] explore the use of quantum-dot cellular automata (QCA), a 
nanotechnology, to propose a reconfigurable device (FPGA) with efficient, sym-
metric and reliable programmable switch matrix interconnection elements. The 
results demonstrate the high efficiency of the proposed designs in QCA-based FPGA 
routing.

Vandijk et al. [16] discuss the challenges involved in designing a scalable elec-
tronic interface for real quantum processors. They also highlight the specific require-
ments that vary based on the different existing qubit technologies.

3.2  Quantum software simulators

In Ömer’s work [36], the author explores the application of classical computing con-
cepts, such as hardware abstraction, structured programming, data types, memory 
management and control flow, in the context of quantum computing. To facilitate this, 
the author introduces a quantum computing language called QCL. QCL includes an 
interpreter that enables the execution of quantum programs. It incorporates both quan-
tum and non-quantum instructions, such as irreversible functions, local variables and 
conditional branching. By using the provided interpreter, users can experiment with 
non-classical features such as the reversibility of unitary transformations and the non-
observability of quantum states within a procedural programming language.

Karafy et  al. [37] propose a quantum simulator designed for users with limited 
knowledge of quantum mechanics. The simulator is based on the circuit model of quan-
tum computation, where models of quantum gates act on the data structure modeling a 
quantum registers composed of multiple internal representation of quantum bits.

In the work by Raedt et al. [38], a massively parallel quantum computer simulator 
is presented. It utilizes a software component with portability features to simulate 
the behavior of universal quantum computers on parallel computing systems. The 
simulator supports various quantum algorithms across different computer architec-
tures. The simulator outputs matrices that represent the quantum register state at 
each step of the quantum computation, as well as details regarding the measurement 
probabilities of the quantum registers. The well-known Deutsch’s algorithm and the 
quantum Fourier transform are demonstrated using the proposed simulator.

Maron et  al. [39] focus on optimizing the execution library of a visual pro-
gramming environment designed for the quantum geometric machine model. The 
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model employs recursive mathematical functions to dynamically generate values 
that define quantum transformations, resulting in a significant reduction in memory 
consumption.

Nikahd et al. [15] introduce a general direct simulator called OWQS for the one-
way quantum computation (1WQC) model. The simulator incorporates techniques 
such as qubit elimination, pattern reordering and implicit simulation of actions to 
greatly reduce the time and memory requirements for simulations. Furthermore, 
it employs measurement patterns with a generalized flow without calculating the 
measurement probabilities. Experimental results confirm the effectiveness and effi-
ciency of the proposed model for quantum computing simulation.

In Willie’s work [40], useful extensions are presented for the programming lan-
guage SyReC (Synthesis of Reversible Circuits), which enables the specification and 
automatic synthesis of reversible circuits. The authors also propose algorithms for 
optimizing the resulting circuits based on different objectives, such as time delay 
and circuit cost.

Fu et al. [41] propose a control architecture for fault-tolerant quantum computing 
based on the rotated planar surface code with logical operations. The architecture 
incorporates a two-level address mechanism that supports a scalable compilation 
model for a large number of qubits. It also includes architectural support for quan-
tum error correction during runtime, significantly reducing the size of the quantum 
program and improving its scalability.

4  Macro‑architecture of the proposed EQP

The emulated quantum processor proposed in this work is specifically designed to 
execute quantum operations on a set of qubits that constitute the quantum state of 
the machine. Acting as an isolated system, this emulator interacts with a host proces-
sor through a dedicated communication channel. The main processor sends format-
ted commands to the processor, instructing it to perform quantum operations on the 
qubits and manipulate the quantum state. Until the processor receives a command to 
read its state, the quantum state remains enclosed within the quantum machine rep-
resentation, leading to the assumption of a collapsed state for each qubit.

First and foremost, and before we get to the details of proposed design, let us 
define the qubit internal representation used by this design. A qubit is represented 
internally by two complex numbers: one representing the amplitude of ket �0⟩ and 
the other that of ket �1⟩ . Each of the complex numbers are held as two float numbers 
of 32 bits. So, a qubit is kept internally as four float numbers using 128 bits. The 
sequence of these four float numbers will be made clear, in the next section, when 
the structure of the quantum state memory is detailed.

The emulated quantum processor has the capability to execute quantum opera-
tions on one or more qubits of the machine state, utilizing either basic quantum 
operators or operators generated dynamically based on the requests from the main 
processor. Once a quantum instruction is executed, the processor waits for further 
instructions, remaining idle until then. It can provide the most recent machine quan-
tum state upon request. The proposed emulator implements fundamental operators 
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such as H, X, Y, Z, T, S, I and CNOT, while any other quantum operator can be exe-
cuted if the corresponding basic operator matrix is loaded into the operator memory 
[42].

Figure 1 depicts the communication between the main processor (MP) and the 
proposed emulated quantum processor (EQP) using a half-duplex channel. The 
choice of a half-duplex configuration acknowledges the sequential nature of quan-
tum algorithms, considering the potential dependence of the outcome on one or 
more qubits from previous operations. Although a full-duplex configuration is also 
feasible, it necessitates additional control mechanisms to manage data dependencies. 
Quantum operations are requested by the main processor using descriptive blocks 
that specify the desired basic quantum operation and the target qubit(s). For opera-
tions involving multiple qubits, multiple descriptors are needed to define the opera-
tion and the corresponding target qubits.

Figure 2 provides an overview of the macro-architecture of the proposed quantum 
processor emulator. The interaction between EQP’s units is done via data, address 
and control buses. There are 5 data buses: (1) ODATA is a unidirectional data bus. 
It provides the calculation unit with the coefficients of the quantum operators’ matri-
ces; (2) SDATA is a bidirectional data bus. It allows the exchange of intermediate 
results during the computation of the tensor products between operators of two or 
more bits; (3) QDATA is a bidirectional data bus. It allows the exchange of states 
of the qubits addressed by a quantum instruction, as sent by the main processor; 
(4) MDATA is a bidirectional data bus. It allows the exchange of the states of the 
observed qubits before and after measurements; (5) RANDOM is a unidirectional 
data bus of 32 bits. It forwards the generated random number, necessary for state 
measurement. The former four buses have 128 bits each.

The control unit of the EQP, referred to as UCO, manages the operation of the 
data path within the architecture using a microprogram and dedicated components. 
It is responsible for recording, decoding and interpreting quantum descriptors that 
contain essential information about the quantum operation code and the target 
qubit(s). Processor EQP utilizes three memory components: 

1. Memory MQS (Memory for Quantum State) stores the machine quantum state, 
which is the quantum state of the qubits.

2. Memory MOP (Memory for basic OPerator) stores the coefficients of basic opera-
tors used in quantum operations.

Emulated 

Quantum Processor

EQP

Main Processor

MP
Half duplex channel

Fig. 1  Communication of the host processor and emulated quantum processor



7039

1 3

Dedicated hardware design for efficient quantum computations…

3. Memory MSC (Memory for SCratch computation) is a scratch memory that stores 
coefficients of quantum operators for two or more qubits. These coefficients are 
calculated based on the basic quantum operators. Further details about the mem-
ory organization can be found in [43].

The calculation unit of EQP is represented by the UCA unit. It performs tensor 
products and matrix products, which are essential for various quantum operations. 
Tensor product operations are required between qubits, between basic operators, and 
between the calculated operator and the basic operator. Matrix product operations, 
on the other hand, are necessary for combining an operator and a qubit.

The measurement unit, denoted as UMS, is responsible for performing the 
measurement of the quantum state. It utilizes a pseudorandom number generator 

Fig. 2  Emulated quantum processor macro-architecture
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component called RNG to assist in the measurement process. When requested by the 
main processor (MP), the UCO unit provides the measurement result or the prob-
abilities associated with different possible states.

5  Micro‑architecture of the proposed EQP

In this sequel, we describe the detailed micro-architecture of the composing memo-
ries and functional units of the proposed emulated quantum processor.

5.1  Quantum state memory

The quantum state memory (MQS) is a dual-port memory that allows both reading 
and writing operations but does not support simultaneous read and write operations 
at the same address. MQS is divided into two parts: MQB for qubit state memory 
and MQC for qubit control memory. Both parts have an equal number of addresses, 
and their contents are linked together for each address, creating a seamless extension 
of each other. The purpose of this separation is to enable updating of only one of the 
memories in certain situations during the execution of quantum instructions.

The number of addresses in MQS is sufficient to represent all possible states of 
the quantum machine. Here, nq represents the maximum number of qubits in the 
machine’s quantum state. The first nq addresses are reserved for storing the kets 
(quantum states) of non-entangled or the first states of entangled qubits. The remain-
ing 2nq−1 − nq addresses are utilized to store the remaining quantum states regarding 
the set of entangled qubits. These entries complement the coefficients of the column 
vector stored in some of the nq initial addresses, which are required for the entan-
gled qubits. It is important to note that this memory organization allows the machine 
to handle a maximum of nq qubit entanglements.

MQS is designed to hold two kets for each non-entangled qubit in the 
machine’s quantum state at each address. It is augmented with additional data 
to describe the amplitudes of each possible state relative to sets of two or more 
entangled qubits. At each address a in MQS, the data is divided into two parts: 

1. The coefficients (real and imaginary parts) for both kets of the qubit are stored 
in MQB at address a. The word format in MQB consists of four fields of 32 bits 
each (64 bits for each ket), as illustrated in Fig. 3.

2. The addresses of the first and next qubits in the entangled qubit list, to which the 
qubit at address a belongs, are stored in MQC at address a. The format of MQC 
consists of two fields of nq − 1 bits each and a third field of 1 bit, as depicted in 
Fig. 4.

It is important to note that a word at address a − 1 of MQB holds the ath qubit of 
the quantum state when it is not yet entangled or one of the possible combinations 
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regarding an entanglement the ath qubit is part of. So, for instance, let us assume 
a quantum machine of nq = 10 qubits. So, MQB and MQC have each 29 locations, 
which is enough to store all possible 210 states if the 10 qubits were all entangled. 
Recall that a single location in MQB holds the details of two possible states of 
an entanglement (see Fig. 3). Initially, the first 10 locations keep the 10 not yet 
entangled qubits. Let the three qubits, stored at address 2, 5 and 7, be entangled. 
Then, four locations in MQB are required to store all 23 possible states regarding 
the entanglement and other four locations in MQC are required to keep control 
of this entanglement. So, the entangled states �0⟩ – �5⟩ will be kept in the proper 
qubits’ locations, i.e., states �0⟩ and �1⟩ at locations 2, �2⟩ and �3⟩ at location 5 and 
�4⟩ and �5⟩ at location 7. The remaining two states �6⟩ and �7⟩ will be stored in an 
available extra location in MQB. If these three qubits are the first to be entangled 
in the quantum machine, then this extra location will be of address 10. According 
to the MQC word format of Fig. 4, at locations 1, we would have the data 2/5/1, 
in location 5, the word would be set to 7/10/1, and at location 10, the stored word 
would be 10/10/1. This example shows that any possible entanglement, i.e., in 
terms of which qubits and/or how many qubits are involved, is fully functional.

Figure 5 illustrates the logic block of MQS, the memory component of the sys-
tem. MQS handles input and output data through the QDATA bus, which is organ-
ized into four parts. These parts represent the real and imaginary components of 
the complex numbers that correspond to the amplitudes of the kets �0⟩ (even) and 
�1⟩ (odd) of the qubits. This specific organization of data is chosen to facilitate the 
design of unit UCA, as will be explained later. In the figure, the input pins for data, 
address and control signals are depicted in black, white and gray, respectively. On 
the other hand, the output pins for data and control signals are represented with 
hatched and dotted patterns, respectively. It is important to note that there are no 
output address signals in the design proposed.

The logic block of memory MQB, which stores information about the complex 
numbers representing the amplitudes of the kets, is depicted in Fig. 6. In a quantum 
algorithm, the non-entangled state of a qubit can be temporary and may change due 
to entanglement. Therefore, the address initially assigned to a non-entangled qubit 
will be repurposed to store the first two coefficients of the column vector represent-
ing the set of entangled qubits to which it belongs. One coefficient corresponds to 

Fig. 3  Word format of memory 
MQB

EvenRe EvenIm OddRe OddIm

ket |0〉 ket |1〉

32 bits 32 bits 32 bits 32 bits

Fig. 4  Word format of memory 
MQC

FirstReg NextReg Entangled

nq − 1 bits nq − 1 bits 1 bit
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�0⟩ (even) and the other to �1⟩ (odd). The even and odd references are essential for 
understanding the design of unit UCA, which will be described later.

During the operation of EQP, each position in memory MQB is initialized with 
the tuple (1.0, 0.0, 0.0, 0.0) according to the format shown in Fig. 3. This means that 
the ket �0⟩ is represented by the values 1.0 in the real part and 0.0 in the imaginary 
part, while the ket �1⟩ is represented by 0.0 in both the real and imaginary parts. It is 
important to note that all data is stored in the IEEE754 standard floating-point num-
ber format, ensuring compatibility and accuracy.

In order to represent the qubit entanglement, each qubit in the quantum state is 
associated with the addresses of the first and next qubits in the sequence of entan-
gled qubits it belongs to (see Fig. 4). Recall that the entanglement bit, included in 
the stored word, indicates whether a qubit is entangled or not. For entangled qubits, 
the entanglement bit is set to 1. In the case of a non-entangled qubit, both the first 
and next qubit addresses are set to the address of the qubit itself. This information is 
stored in memory MQC whose logic block is shown in Fig. 7.

It is important to mention that the parameter anq represents the number of bits 
required to address a cell in both memories MQB and MQC. The binary decod-
ing output of the address from memory MQS is used as a read/write selector for 
both MQB and MQC. To achieve this, two binary address decoders are utilized to 
decode nq − 1 bits into the corresponding one-hot code of the address. As a result, 
anq is equal to 2nq−1 bits, providing sufficient addressing capability for both MQB 
and MQC.

To represent a sequence of e entangled qubits, 2e−1 locations are required in mem-
ory MQB, resulting in a total of 128 × 2e−1 bits. Both the even and odd coefficients 
are stored in these locations to capture the entanglement. When performing a quan-
tum operation on a set of qubits, knowing the address of the first qubit is crucial, as 
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the operation involves a matrix product that starts with the first row of the column 
vector representing the entangled qubits. Since each MQB address contains infor-
mation for two rows of the column vector of e qubits, the number of positions to be 
read during a quantum operation is 2e−1 , considering that each MQB address con-
tains four coefficients. Note that when resetting the quantum machine, each address 
a in MQC is initially set to the tuple (a, a, 0).

Therefore, the total number of bits in the quantum state memory MQS is the sum 
of the bits in memories MQB and MQC. Although both memories have the same 
addressable space, ranging from 0 to 2nq−1 , their word sizes differ. Each position in 
MQB has a fixed size of 128 bits, while each position in MQC has a variable size 
depending on the number of qubits in the coprocessor. Each MQS word consists of 
2nq − 1 bits. Hence, for nq qubits, the size of memory MQS in terms of bits can be 
calculated as SizeMQS = 2nq(2 × nq + 129).

5.2  Operator memory

The quantum operator memory, MOP, is a read-only memory that stores the coef-
ficients of basic quantum operators. Each MOP address contains the coefficients of 
a given row of the operator matrix, organized in the same manner as memory MQB. 
For a basic 2 × 2 quantum operator, its coefficients are stored in two consecutive 
MOP addresses. The logic block of memory MOP is illustrated in Fig. 8.

In MOP, the coefficients of the operator matrix are represented by the even and 
odd columns, which respectively store the real and imaginary parts. For a 2 × 2 
operator, the bits are arranged as follows: Bits 0… 31 represent the real part of the 
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Fig. 6  Logic block MQB for the qubit memory

FirstRegWr 〈anq〉
NextRegWr 〈anq〉
EntangledWr 〈1〉

CsWr 〈1〉
CWr 〈1〉

AddrSelWr 〈anq〉

1

2

3

4

5

6 AddrSelRd 〈anq〉
CRd 〈1〉
CsRd 〈1〉
EntangledRd 〈1〉
FirstRegRd〈anq〉
NextRegRd 〈anq〉

7

8

9

10

11

12

Q-Bit Control Memory

(MQC)

Fig. 7  Logic block MQC for the qubit control memory



7044 N. Nedjah et al.

1 3

coefficient in the odd column, bits 32… 63 represent the imaginary part of the coef-
ficient in the odd column, bits 64… 95 represent the real part of the coefficient in the 
even column, and bits 96… 127 represent the imaginary part of the coefficient in the 
even column.

The number of bits required to address memory MOP is denoted as aop and is 
calculated using the formula Aop = ⌈log2

�
1

2

∑nop

o=1
4noqo

�
⌉ . Here, nop represents the 

number of basic operators, and noqo represents the number of qubits required by 
operator o. Thus, aop corresponds to half the total number of complex coefficients 
of the quantum operators implemented by EQP.

The storage arrangement of two complex numbers within an MOP address is 
compatible with the arrangement of ket coefficients in memory MQB. This com-
patibility enables the design of efficient tensor and matrix multipliers, as discussed 
in Sect. 5.5. The implemented quantum operators include I, X, Y, Z, H, S, T and 
CNOT. It is important to note that for all other existing quantum operators, their cor-
responding matrices can be derived from the implemented ones.

In the quantum program, quantum operators are referenced using a unique code 
associated with the initial address of the reserved range for that specific operator in 
MOP. Instead of using three bits to represent the eight operators and an additional 
lookup table to access the starting address of the operator matrix in MOP, we uti-
lize only four bits to indicate the address of the word associated with the requested 
operator as stored in memory MOP.

The total number of bits in the operator memory, MOP, can be calculated 
by summing the space required to store all permitted basic operators by the 
coprocessor. Therefore, for the total of nop coefficients required for all con-
sidered basic operators, the size of memory MOP in terms of bits is given by: 

SizeMOP = 128 × 2

�
⌈log2

�
1

2

∑nop

o=1
4noqo

�
⌉
�
.

5.3  Scratch memory

The scratch memory (MSC) is a dual-port read–write memory designed to store the 
coefficients of quantum operators for multiple qubits. These coefficients are gener-
ated dynamically by performing tensor products of basic quantum operators. It is 
important to note that MSC has limitations when it comes to simultaneous reading 
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Fig. 8  Logic block MOP for the quantum operator memory
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and writing operations at the same address. The logic block of MSC is illustrated in 
Fig. 9.

Memory MSC utilizes a word structure similar to that of memory MQB, as 
depicted in Fig. 3. In a manner analogous to memory MOP, each MSC address con-
tains two coefficients corresponding to a row of the operator matrix: one for the odd 
column and another for the even column. These coefficients serve as inputs to the 
two complex number multipliers embedded within the calculation unit UCA, which 
facilitate efficient computation of both tensor and matrix products. The total number 
of MSC addresses, denoted by a, is determined by the maximum number of qubits 
that can be operated simultaneously in the quantum machine, denoted by mq. Conse-
quently, we have a = 4mq∕2 = 22mq−1 , and thus, amq = 2mq − 1 . It should be noted 
that mq is limited by the total number of qubits in the quantum machine, denoted as 
nq. Therefore, the upper bound on amq is 2nq − 1.

Memory MSC is exclusively employed during the construction and tempo-
rary storage of quantum operators involving more than two qubits, based on 
the instructions extracted from the currently executing quantum program. The 
total number of bits required by MSC can be calculated as the sum of the space 
needed to accommodate the largest operator that the coprocessor can handle. 
This is determined by the parameter mq. Consequently, the size of memory MSC 
in terms of bits is SizeMSC = 128 × 22mq−1 and its upper bound can be defined as 
SizeMSC = 128 × 22nq−1.

5.4  Measurement unit

The measurement unit UMS plays a crucial role in preparing the state of the quan-
tum machine upon request from the main processor. When a quantum state is meas-
ured, each qubit of the coprocessor collapses into either the state �0⟩ or �1⟩ . Many 
ways have been proposed to simulate state measurement in quantum computing in 
the computational basis of �0⟩ and �1⟩ state, depending on the model used and the 
level of interference on the machine quantum state. Among other, we have the fol-
lowing state measurement models:
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• The projective measurement, after which the state collapses [44]. It is a fun-
damental method for performing state measurement in quantum computing. It 
allows the extraction of classical information from a quantum system by project-
ing the quantum state onto the specified basis.

• The quantum non-demolition measurement, which is a technique that allows the 
extraction of the information about a quantum state without disturbing it [45];

• The weak measurement, which involves performing a weak interaction with the 
quantum system, providing partial information about the state without fully col-
lapsing it [46]. The outcome is based on averaging multiple weak measurements 
to yield the quantum state’s properties;

• The quantum state tomography, which is a technique used to fully characterize an 
unknown quantum state. It involves performing measurements in multiple bases 
to reconstruct the density matrix representing the quantum state [47]. Quantum 
state tomography is especially useful for verifying the fidelity of quantum opera-
tions and diagnosing errors in quantum circuits;

• The homodyne detection, which used for continuous-variable quantum systems, 
such as those in quantum optics. It involves measuring the quadrature amplitudes 
of a quantum state [48].

In the proposed design, we use the standard projective measurement model. We 
propose a simple yet effective implementation. It is noteworthy to point out that no 
specifics about a functional implementation of the measurement process have been 
found. In our approach, each of the 2nq possible states for the nq qubits, either entan-
gled or not, in the coprocessor (where nq ≥ 1 ) is associated with a specific probabil-
ity value, as explained in 2. We adopt the proportional selection model, commonly 
known as the “roulette” model, which is widely used in genetic algorithms during 
the selection phase of individuals to form the next-generation population [49]. In 
this model, the probability interval [0, 1[, which is the range covered by the pseudor-
andom number generator, is divided into n non-overlapping subintervals. The exten-
sion of each subinterval is proportional to the score assigned to the corresponding 
individual [49].

Applying the aforementioned concept to the possible quantum states of the 
coprocessor, where each state is treated as an individual, the associated probabil-
ity determines the extension of the subinterval representing that quantum state. 
So, in the case of the measurement of a single non-entangled qubit defined by 
�v⟩ = ��0⟩ + ��1⟩ , there two subintervals 

[
0.0, |�|2[ for a state outcome of a classi-

cal 0-bit and 
[|�|2, |�|2 + |�|2[ for a state outcome of a classical 1 bit. Recall that 

|�|2 + |�|2 = 1.
Similarly, in the case of n entangled bits, with 1 ≤ n ≤ nq , defined as 

�v⟩ = ∑n−1

i=0
�i�i⟩ , there are n subintervals with the first one defined by 

[
0.0, |�0|2

[
 

while the remaining subintervals related to states �i⟩ , for 1 ≤ i ≤ n − 1 , are defined 
as 
�∑n−2

i=0
��i�2,∑n−1

i=0
��i�2

�
 . Also, recall that 

∑n

i=0
��i�2 = 1 . Table 4 summarizes the 

subinterval configuration for n qubits. It is fundamental to emphasize that the subin-
tervals re dependent on the qubits that are being observed. So, for every measure-
ment, a new range configuration is yielded by the measurement process.
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So, for instance, consider a measurement of quantum register of 2 entangled qubits 
and the squared amplitudes presented in the second column of Table 5. The corre-
sponding subintervals are defined based on the values provided in the last column of 
the same table. The resulting roulette wheel for this case is illustrated in Fig. 10.

When a state measurement takes place, the range configuration is first set up 
based on the amplitudes associated with the specified qubits for which an obser-
vation is required. Then, a pseudorandom number r is drawn. The quantum state 
�i⟩ , for which r falls in its associated subinterval, is selected and the classical bit-
wise representation of state �i⟩ is thus the outcome of the measurement process. All 
qubits involved in such measurement process are then collapsed to their correspond-
ing state in �i⟩ . For instance, let us assume that the configuration of Table 5 is built 
based on the amplitudes of the 2-qubit register �v⟩ = �q0q1⟩ for which a measurement 
operation is required. If random number r = 0.25 is drawn, then the observed state 
�01⟩ is selected. Hence, qubits q0 and q1 will collapse to quantum states �0⟩ and �1⟩ , 
respectively. So, the measurement process implement in such a way is completely 
stochastic and depends on the faithfully on the amplitudes of the observed qubits.

The micro-architecture of the measurement unit UMS is illustrated in Fig. 11. It 
consists of a local control unit CUnit, responsible for coordinating the different steps 
of a measurement operation. Upon receiving the signal StartMs, UMS obtains the 
coefficients from each address in the MQB memory, denoted as OddReRd, Odd-
ImRd, EvenReRd and EvenImRd. Using the functional unit RgCalc, it initiates the 
quantum state measurement process. First, it computes the upper limits for each 
sub-range based on the given coefficients. The lower limit of the first subinterval 

Table 4  Configuration for 
quantum state amplitudes for n 
entangled qubits

State Squared amplitude Range

�0⟩ |�0|2 [0.0, |�0|2[
�1⟩ |�1|2 [|�0|2, |�0|2 + |�1|2[
… …

�i⟩ |�
i
|2 [ i−2

∑

i=0
|�i−1|2,

i−1
∑

i=1
|�i|2

[

… …

�n − 1⟩ |�
n−1|2 [ n−2

∑

i=1
|�i|2, 1.0

[

Table 5  Configuration example 
of state squared amplitudes for 2 
entangled qubits

State Squared amplitude Range

�00⟩ 0.15 [0.0, 0.15[
�01⟩ 0.20 [0.15, 0.35[
�10⟩ 0.25 [0.35, 0.6[
�11⟩ 0.4 [0.6, 1.0[
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is always 0, while the subsequent subintervals have the higher limit of the previous 
range as their lower limit. The 2nq values corresponding to the sub-ranges, where 
nq is the number of qubits in the coprocessor, are then stored in the local memory 
LMem, implemented as a lookup table and retrieved when necessary.

Functional unit UMS determines the distribution and extension of the subinter-
vals based on the tensor product of all qubits in MQB and the obtained amplitudes 
for each state. It compares these values with the generated pseudorandom number 
rand from the RNG unit in parallel, using the Cmp unit. The comparison is per-
formed for all contents of the LMem positions simultaneously. A match is declared 
when the 1-bit result of the comparison is set for the state �2i⟩ , while the result for 
state �2i−1⟩ is reset. The selected quantum state is then recorded in the MQB memory 
by setting the n qubits in MQB accordingly. For �0⟩ qubits, the coefficients (1.0, 0.0, 
0.0, 0.0) are used, and for �1⟩ qubits, (0.0, 0.0, 1.0, 0.0) is used, based on the binary 
representation of the observed state 2i . It is important to note that all data are stored 
in the IEEE754 standard floating-point number format.

Furthermore, after a measurement operation, all qubits are assumed to be in a 
collapsed state, and any existing entanglements must cease to exist. Therefore, all 
entries in the MQC memory for the observed qubits are reinitialized. The content of 
each address a is set as (a, a, 0) according to the MQC word format shown in Fig. 4. 
Once this process is complete, the signal EndMs is triggered to indicate the comple-
tion of the measurement operation.

The proposed macro-architecture includes the RNG component, which utilizes 
the linear feedback shift register (LFSR) principle to generate pseudorandom num-
bers within the range [0, 1[. The LFSR is a type of shift register where the input 
bit is determined by a linear function based on the previous state, as illustrated in 
Fig. 12. The XOR operation is the only available linear function in this case. The 
register acts as an offset register, with its input bit being influenced by the XOR 
operation of certain bits within the register, causing a random change in its value. 
The specific bit positions that affect the next state are referred to as taps.

In an LFSR register with n bits, the maximum period of cycles before the 
sequence repeats is equal to 2n − 1 . To ensure that the generated numbers fall within 
the interval [0, 1[, the function is applied to the eight most significant bits of the 
mantissa and the four least significant bits of the exponent. This configuration guar-
antees that the generated numbers remain within the specified interval [50, 51].

Fig. 10  Example roulette wheel 
configuration for proportional 
selection regarding the setting 
of Table 5

|00〉: 15%

|01〉: 20%

|10〉: 25%

|11〉: 40%



7049

1 3

Dedicated hardware design for efficient quantum computations…

5.5  Quantum calculation unit

The calculation unit (UCA) plays a crucial role in computing complex numbers 
required for various quantum operations, including the tensor product of quantum 
operators, tensor product of qubits, matrix product between operators, quantum reg-
ister of qubits and the summation of complex numbers. It receives data from three 
memories: MSC, MQS and MOP. The control unit (UCO) manages the operations 
of other components within EQP. The micro-architecture of UCO is depicted in 
Fig. 13, illustrating its connections and functions.

The UCA is connected to two input data buses and two output data buses, each 
with a width of 128 bits. The first input data bus is responsible for transmitting coef-
ficient pairs from memory MQS, representing the column vector that represents a 
single qubit or a set of qubits. The second input data bus carries coefficient pairs 
from either memory MOP or MSC. MOP supplies coefficients of basic quantum 
operators, while MSC provides coefficients of operators constructed for two or more 
qubits.

Additionally, the UCA unit is connected to output data buses dedicated to writing 
data in MSC and MQS independently. The data intended for the MSC writing data 
bus pertains to intermediate results of the ongoing tensor product calculation. On 
the other hand, the data intended for the MQS writing data bus relates to the final 
result of the tensor product involving qubits or the matrix product between a quan-
tum operator and a single qubit or a register of qubits.

Fig. 11  Micro-architecture of the measurement unit UMS

S

0 0 1 0 1 1 0 11 001 1...

Exponent Mantissa

Fig. 12  Configuration of the LFSR for the generation of random numbers
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In the architecture depicted in Fig. 13, several registers play specific roles in the 
computation process. RMC1 and RMC2 are registers that store the coefficients of 
the qubit or operator currently undergoing multiplication. RMCTP1 and RMCTP2 
hold the coefficients of the second row of basic quantum operators when perform-
ing a tensor product. RMCEX11… n and RMCEX21… n are a set of n registers 
designed to store data from the positions in MQS that are involved in the quantum 
operation before the operation is executed. The number of these registers is deter-
mined by n = 2p − 2 , where p represents the maximum number of qubits on which 
an operator can act. RMCTP11 and RMCTP21 store the coefficients of the first row 
of the basic quantum operator, while RMCTP12 and RMCTP22 store the coeffi-
cients of the second row.

The components MULTC1 and MULTC2 function as multipliers of complex 
numbers, while SUMC1 and SUMC2 are adders of complex numbers. The first 
adder is responsible for summing up two partial products in a matrix multiplication 
between an operator and a set of qubits. The second adder accumulates the partial 
products of an operator matrix row with the column vector represented by one or 
more entangled qubits. This accumulation process is achieved by iteratively using 
the complex number register RSC. Register RSP holds the intermediate complex 
number resulting from the sum of computed partial products. It temporarily stores 
this value in MSC until the corresponding final result is available and can be written 
to the appropriate address in MQS.

Fig. 13  Micro-architecture of the calculation unit UCA 
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The complex number multipliers, MULTC1 and MULTC2, are based on a simple 
precision floating-point arithmetic unit (FPU) [52]. Four multipliers, one adder and 
one subtractor are employed in this architecture. Considering two complex numbers 
as ordered pairs (A, B) and (C, D), where A and C represent the coefficients of the 
real part and B and D represent the coefficients of the imaginary part, their multipli-
cation yields a complex number represented by the pair (AC − BD,AD + BC) . The 
four multiplications required to obtain the partial products AC, AD, BC and BD are 
performed in parallel. Once the products are ready, the sum AD + BC and the differ-
ence AC − BD are computed concurrently. The micro-architecture of the complex 
number multiplier is depicted in Fig. 14.

Since the FPU operates continuously, independent of a specific trigger, the com-
plex number multiplier can be serially supplied with data, and the results are sequen-
tially made available. Each FPU considers the data present at its input pins during 
the rising transition of the clock and the result is sampled during the rising transition 
of the clock as well. The number of clock cycles required to obtain the correct result 
is determined by the FPU’s latency parameter. For multipliers, this parameter is set 
to 3 clock cycles, while for adders and subtractors, it is set to 2.

To ensure efficient operation, different clock signals are used for the multiplier 
and adder/subtractor. This design allows the products to be available for use by the 
adder/subtractor before the next transition of the multiplier’s clock signal. Without 
this approach, a delay of 1 clock cycle would be introduced for every complex num-
ber multiplication, leading to significant delays when performing quantum opera-
tions involving multiple qubits.

The total number of complex number multiplications in a quan-
tum operation involving n ≥ 2 qubits can be calculated as 
2n + 4n + 4n = 2n + 4n+1 = 2n + 22(n+1) = 23n+2 . This total includes the tensor 
product of the n qubits, augmented by the tensor product required to obtain the 
desired quantum operator from basic ones, and further augmented with the matrix 

Fig. 14  Micro-architecture of the complex number multiplier
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multiplication between the obtained quantum operator and the result of the tensor 
product of the qubits involved in the operation. For example, a single quantum oper-
ation on 3 qubits would require the coprocessor to perform 6,144 clock cycles for 
floating-point multiplications.

5.6  Control unit

The control unit UCO plays a vital role in synchronizing the operation of EQP’s 
remaining components. It utilizes a microprogram and several auxiliary components 
to coordinate and manage the actions of the macro-architecture based on instruc-
tions from the main processor. By employing planned micro-orders and dedicated 
controllers, UCO effectively orchestrates the functionality of other components 
within EQP. The micro-architecture of UCO, illustrating its internal structure, can 
be seen in Fig. 15.

Unit UCO includes one memory, two counters, five registers, five controllers 
and two address converters. Their functions are detailed as follows: (1) JumpC-
trl handles conditional and unconditional jumps within the microprogram; (2) 
InstCtrl is the instruction controller; (3) MPR is the read-only control memory 
wherein the microprogram resides; (4) MPR-AddrReg is the address register 
of the control memory; (5) MIR is the micro-instruction register; (6) OpTPC-
trl controls the computation of the tensor product of quantum operator, starting 
from basic ones; (7) OpTPRecCtrl manages the recording of tensor product in 
MSC; (8) QbNumReg stores the quantity of current qubits regarding the quan-
tum operator in construction; (9) MOP-AddrReg is the address register of coef-
ficients in memory MOP; (10) QbTPCtrl controls the computation of the tensor 
product of quantum bits as well as matrix product; (11) MSC-AddrRdCnt and 
MSC-AddrWrCnt are the address counters for reading and writing in memory 
MSC; (12) MQS-AddrRdReg and MQS-AddrWrReg are the address registers for 
reading and writing into memory MQS. (13) MSC-AddrRdConv and MSC-Addr-
WrConv are converters of reading and writing addresses of the tensor product 
coefficients in memory MSC, respectively. Moreover, unit UCO handles SADDR-
Rd and SADDR-Wr, which are the address buses for accessing memory MSC in 
read and write modes, respectively; OADDR, which is the address bus for reading 
form memory MOP; QADDR-Rd and QADDR-Wr, which are the address buses 
for accessing memory MQS in read and write modes, respectively; and QDATA, 
which is the main data bus for memory MQS.

The main processor interacts with the emulated quantum processor by trans-
mitting quantum operations in a sequential manner, with each operation consist-
ing of a fixed-size instruction. The size of an instruction is predetermined and 
remains consistent throughout the communication. The execution of a quantum 
operation requires a specific number of instructions, which is determined by 
the number of qubits involved. The quantum instruction format comprises three 
essential components: the quantum operator code, the target qubit to which the 
operation is applied and a flag indicating whether it is the final instruction in 
the quantum operation. The structure of a quantum instruction is illustrated in 
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Fig.  16, where m denotes the total number of available quantum operators and 
n represents the number of qubits in the quantum state. Once the last instruc-
tion flag is set to 1, the instruction controller (InstCtrl) ceases to await further 
instructions.

The InstCtrl component is responsible for receiving and storing the set of 
instructions for a quantum operation transmitted by the main processor. The logic 
block of the instruction controller is depicted in Fig. 17. When input control sig-
nals 1 and 2 are activated, the instruction controller can either request the next 
instruction of the quantum operation or reset the pointer to the instruction buffer. 
The output flags 3–5 indicate the status of any remaining instructions that are 
yet to be executed. Output data signals 6–8 provide information about the cur-
rent instruction being executed, the number of qubits in the first instruction and 
the total number of instructions in the current quantum operation, respectively. 
Output address signal 9 indicates the last address that was read in memory MOP.

Fig. 15  Micro-architecture of the control unit UCO
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The input pins for data, address and control signals are represented by black, 
white and gray lines, respectively. On the other hand, the output pins for data, 
address and control signals are denoted by hatched west, hatched east and dotted 
lines, respectively.

The task coordination as performed by the UCO to execute quantum opera-
tions is accomplished through the execution of a microprogram stored in the con-
trol read-only memory MPR. This microprogram comprises a sequence of micro-
instructions, given in the format shown in Fig. 18.

The micro-instruction format consists of three pieces of information. The first 
is the Micro-orders field, which contains a set of commands used to activate the 
data path components, including units UCA, UMS and the read/write operations 
of the different memories.

The second field of the micro-instruction is Flags, which consists of a collec-
tion of status flags used in micro-instructions that require conditional jumps. There 
are two conditional jump instructions: One checks whether a specific flag is set to 
high, while the other checks whether the flag state is different from high. The cur-
rent design utilizes ten flags: MQBRdAddrZero and MQBWrAddrZero, indicat-
ing whether the address to read from/write to memory MQB is zero, respectively; 
NoInst, indicating an empty list of instructions; PlusOp, indicating the presence of 
more than one quantum operator in the current quantum operation; LastInst, signify-
ing that the current instruction is the last in the quantum operation; EntangledBit, 
indicating the presence of at least one entangled qubit in the specified set of qubits; 
MSCRdAddrZero and MSCWrAddrZero, indicating whether the address to read 
from/write to memory MSC is zero, respectively; TPOpComplete and TPQbCom-
plete, indicating the completion of the tensor product of the operators listed in the 
instructions and the qubits specified in the instructions, respectively.

Fig. 16  Format of a quantum 
instruction

Operator code Q-bit number IsLastInstruction

�log2 m� bits n bits 1 bits

InstReq 〈1〉
RstPtrInst 〈1〉

NoInst 〈1〉
YetInst 〈1〉
LastInst 〈1〉

3

2

1

4

5 CurrentInst 〈�log2 m�+ n+ 1〉

NumQbit 〈n〉

NumInst〈�log2 m�〉

MOPLastAddr 〈5〉

7

8

9

6

Instruction Controller

(InstCtrl)

Fig. 17  Logic block of component InstCtrl

Fig. 18  Format of a micro-
instruction

Micro-orders Flags Operand

64 bits 10 bits p bits
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The third field of the micro-instruction, termed as Address, serves multiple pur-
poses. It can represent one of four items: the address of a qubit in memory MQB, an 
address in memory MOP when accessing the coefficients of a basic quantum opera-
tor, an MPR address to jump to or a specific value to be loaded when required. The 
number of bits p allocated for this field is determined by the largest size needed to 
accommodate any of the four cases.

The MPR address register is implemented as an up-counter with a preset option, 
enabling the sequencing of micro-instructions that do not deviate from the primary 
flow of the program. When a jump instruction occurs and the jump condition is met, 
the address provided in the micro-instruction is loaded into this counter. The JumpC-
trl component, illustrated in Fig. 19, guarantees the update of the MPR register.

Unit UCO is equipped with specialized components that facilitate the execution 
of tensor products between qubits and quantum operators, as well as the computa-
tion of matrix products. One of these components is QbTPCtrl, which is responsible 
for managing the read/write addresses for memory MQB, controlling the records of 
memory MQC and handling the multiplexers and registers of unit UCA. Component 
QbTPCtrl ensures the generation of the desired tensor product. This is detailed in 
Sect. 5.6.1. Another essential component is OpPTCtrl, which handles the sequencing 
and synchronization of the read/write addresses for memory MSC. It also manages 
the multiplexers and registers of unit UCA to produce the required composed opera-
tor from the available basic operators stored in memory MOP. Moreover, component 
OpPTCtrl ensures the proper execution and generation of the composed operator. 
This is detailed in Sect. 5.6.2. Comprehensive information on these controllers, their 
functionality and some illustrated examples of their operation can be found in [42].

5.6.1  Controller of the qubit tensor and matrix products

In order to produce the required tensor product, component QbTPCtrl takes control 
of the read/write addresses for memory MQB, the control records of memory MQC, 
as well as the multiplexers and registers of unit UCA to produce the requested tensor 

Fig. 19  Micro-architecture of 
controller JumpCtrl
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product. The tensor product of qubits requires not only the appropriate mathemati-
cal operation but also the handling of the control records associated with the qubits 
involved. Recall that these control records, depicted in Fig. 7, form a linked list that 
contains all the necessary information for the column vector representation of the 
entangled qubits.

When performing operations with entangled qubits, the linked records are pro-
cessed sequentially, starting from the first record and following the link order until 
the last record. The intermediate results of the tensor product, obtained from the 
entangled qubits and the subsequent qubit as indicated in the associated records in 
MQC, are generated by multipliers MULTC1 and MULTC2. These results are then 
placed on the data bus of memory MQB, ready for a write operation. Component 
QbTPCtrl commands the tensor multiplication between the coefficients of the qubit 
set specified in the records and the qubit indicated in the next record. The address to 
be used in the read operation is stored in register MQS-AddrRdReg. The number of 
records needed in MQB to store the coefficients of the column vector representing 
the entangled qubits is 2q−1 , where q is the number of qubits referenced in the asso-
ciated records.

Controller QbTPCtrl is triggered to initiate the tensor product by a high-level 
input signal. When triggered, it takes control of the coprocessor components. The 
controller operates based on the following inputs: 

1. Overall number of operators of the current quantum operation;
2. Number of the qubit of the first instruction in the current quantum operation;
3. Number of the qubit of the current instruction;
4. Control record of the qubit referred to in the current instruction;
5. Current micro-instruction;
6. Control register wherein the new control data will be stored in MCQ;
7. Address of the qubits wherein the data will be stored in MQB;
8. Address used to update the qubit number register.

Once the controller receives the flag indicating the completion of the requested ten-
sor product computation, it enables the writing of the result into memory MQS. The 
address to be used for this write operation is stored in register MQS-AddrWrReg. It is 
important to note that registers MQS-AddrRdReg and MQS-AddrWrReg are imple-
mented as up-counters with a preset option. This allows for sequential reads/writes 
during the initialization/measurement of qubits, facilitating the setup and observation 
of the quantum state of the machine. Additionally, the preset option enables the regis-
ters to use a target address for isolated read/write operations, as may occur in a tensor 
product between qubits or in a matrix product involving two or more qubits.

5.6.2  Controller of operator tensor product

Controller OpPTCtrl is responsible for controlling the sequencing and synchroniza-
tion of the read/write addresses of memory MSC, as well as the multiplexers and 
registers of unit UCA, in order to generate the desired composed operator from the 
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available basic operators stored in memory MOP. When triggered, this controller 
uses relative addresses to access the coefficients of the quantum operator stored in 
MSC memory, starting from the last pair of coefficients and moving towards the 
first pair. The converters MSC-AddrRdConv and MSC-AddrWrConv are utilized 
to determine the corresponding absolute addresses based on the relative addresses 
managed by OpPTCtrl. The relative address from which the reading starts depends 
on the number of qubits handled by the current quantum operator stored in MSC 
memory. The total number of addresses occupied in MSC by the operator is given 
by 22oq−1 , where oq represents the number of qubits involved in the operator.

During the construction of a two-qubit operator, the two basic operators to be 
multiplied are read from memory MOP, and the resulting tensor product is stored in 
memory MSC. For operators involving three or more qubits, the operator read from 
memory MSC is tensor multiplied with the operator provided by memory MOP. The 
resulting operator is then written back into memory MSC. Read and write opera-
tions in MSC may occur simultaneously but always at different addresses. During 
the construction of an operator for two or more qubits, OpPTCtrl follows a predeter-
mined address sequence to reference the operator’s coefficients. This sequence starts 
from the first pair of coefficients in the first row and ends at the last pair of last row 
coefficients.

The address converters, MSC-AddrRdConv and MSC-AddrWrConv, are 
responsible for computing the destination address in MSC memory using 
Aabs = 2mq−oq

(
Arel − Arel mod 2oq−1

)
+ Arel mod 2oq−1 . Here Aabs represents the 

absolute address while Arel relative one. Recall that oq denotes the number of qubits 
the operator that is being constructed will operate on while and mq the maximum 
number of qubits that the coprocessor can handle simultaneously.

Controller OpTPCtrl is responsible for activating the appropriate control signals 
for the multiplexers and registers of UCA in order to correctly input the coefficients 
into the multipliers MULTC1 and MULTC2. It also controls the enable signal for 
the write operation, which determines when the partial results of the operator tensor 
product are stored in memory MSC. This enable signal remains active for a dura-
tion of 4 clock cycles after the start of the tensor product, which corresponds to the 
latency of the complex number multiplier.

Additionally, OpTPCtrl provides the recording converters MSC-AddrRdConv 
and MSC-AddrWrConv with two signals that play a role in determining the read/
write address in memory MSC. These signals are the column number of the selected 
coefficient from the first operator and the row number of the selected coefficient 
from the second operator. By utilizing these signals, the address converters can 
accurately compute the appropriate address for reading and writing operations in 
memory MSC.

Controller OpTPRecCtrl is responsible for recording the tensor product results 
in memory MSC. Its main function is to control the sequencing of MSC addresses 
where the results of the operator tensor products need to be written. The controller 
utilizes two key inputs: the largest relative address of the next quantum operator, 
which is obtained from a specific register, and the relative address counter MSC-
AddrWrCnt. To initiate the recording process, OpTPRecCtrl requires a count-
ing enable signal, which is provided by the current micro-instruction. This signal 
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triggers the controller to start counting clock cycles, considering the latency of the 
complex number multiplier needed to compute the product. Once the countdown 
reaches its conclusion, the writing enable signal is activated. This signal indicates 
that the writing phase of the results has commenced. When the relative address 
reaches 0, the counter MSC-AddrWrCnt is reset, preparing it for the next recording 
operation.

Register QbNumReg functions as an up-counter and serves as a register. Its pur-
pose is to store the number of qubits in the current operator. Various components, 
namely MSC-AddrRdCnt, MSC-AddrWrCnt, MSC-AddrRdConv and MSC-Addr-
WrConv, utilize this register to determine the largest relative address of the opera-
tor being constructed. During the iteration of the tensor product sequence between 
operators, QbNumReg is incremented at the end. This ensures that the register holds 
the updated value for the subsequent operator construction. When the construction 
of an operator commences, the initial value of QbNumReg is set to 2, indicating the 
presence of two qubits.

6  Simulation results

This section offers proof of the precise performance of the proposed design of EQP 
by showcasing simulations that highlight two specific aspects of its operation during 
the execution of a quantum instruction. For more details, refer to the relevant infor-
mation provided in [42].

6.1  Operation on non‑entangled qubits

In this simulation, we demonstrate that a non-entangled quantum operation on n 
qubits with n ≥ 2 can be achieved by sequentially applying n quantum operations, 
each on a single qubit. Specifically, we apply the quantum operator NOT on two 
non-entangled qubits, resulting in the collapse of the qubits into the state �0⟩ . A 
quantum NOT operator for 2 qubits that can be obtained from the one for 1 qubit is 
shown in Eq. 2:

The column vector formed by the tensor product of 2 qubits, each in state �0⟩ , is 
defined as: �0⟩⊗ �0⟩ = [1 0]⊗ [1 0] = [1 0 0 0]T . The matrix-based repre-
sentation of this operation is defined as: (NOT ⊗ NOT)(�0⟩⊗ �0⟩) = [0 0 0 1]T.

The NOT operation is executed on two qubits in two distinct steps, with each 
qubit undergoing a separate NOT operation. The time diagram of this process is 
illustrated in Fig. 20, showcasing the execution of the two NOT operations on a sin-
gle qubit.

(2)NOT ⊗ NOT =
[

0 1
1 0

]

⊗
[

0 1
1 0

]

=

⎡

⎢

⎢

⎢

⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦
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For a closer look at the time period encompassing these two operations, a 
zoomed-in view is presented in Fig. 21. Figures 22 and 23 show, respectively, the 
time diagram of the first and second NOT operation.

The NOT operation on two qubits is accomplished using two descriptive instruc-
tions encoded in the signal CurrentInst. The first instruction, 02 01 1, represents the 
NOT operation on qubit #1 and is not the final instruction of this operation. The 
second instruction, 02 02 0, signifies the NOT operation on qubit #2 and serves 
as the last instruction of this operation. Initially, the signal NoInst is set to a high 
level until an instruction is provided by the host processor. Subsequently, the signal 
InstReq is activated multiple times until the final instruction in the current quantum 
operation is reached, while also verifying if at least one qubit is entangled in the cur-
rent instruction. In the simulated example, this condition occurs twice. If there is no 
entangled qubit, the signal RstPtrInst is triggered, enabling the instruction controller 
InstCtrl to supply the data of the first instruction the next time the signal InstReq is 
issued. Once the final instruction of the quantum operation is selected, the signal 
LastInst is set to a high level. The signal InstReq is initially activated after initial-
izing the instruction pointer. In the given example, the quantum NOT operators are 
applied to qubits in the collapsed state �0⟩ . The calculations and results presented in 
the operation on one qubit are repeated separately for both qubits.

6.2  Operation on entangled qubits

When performing quantum operations on entangled qubits or when the operation 
results in entanglement between qubits, a quantum operator needs to be constructed 
using tensor product. This section presents three case studies: 

1. Constructing a quantum operator for operating with 2 qubits when the memory 
MSC can only accommodate operators for 4 qubits.

InstCtrl
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Fig. 20  Matrix product of a NOT operation on two non-entangled qubits
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2. Constructing a quantum operator for operating with 3 qubits when memory MSC 
can only store operators for 4 qubits.
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Fig. 21  Amplified view of the two NOT operation on the qubit
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Fig. 22  Detailed view of the first NOT operation
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3. Constructing a quantum operator for operating with 3 qubits when memory MSC 
can handle operators for 4 qubits.

In the case where the scratch memory MSC can only hold an operator for 4 qubits 
with 128 addresses, the example utilizes only 8 addresses to store the 16 coefficients 
of the NOT operator for 2 qubits, which is constructed from two NOT operators for 
1 qubit.

The process begins by obtaining the coefficients of the first row from mem-
ory MOP, followed by retrieving the coefficients of the second row for the NOT 
operator on 1 qubit, which are stored in the registers of the calculation unit UCA. 
Subsequently, the coefficients of the second basic quantum operator are read from 
memory MOP and temporarily stored in the registers of unit UCA. The tensor 
product operation between these operators generates 8 coefficients, which are 
then stored in memory MSC. The timing diagram illustrating this process is pre-
sented in Fig. 24.

When qubits are entangled or targeted by an operation that results in entangle-
ment, a total of 2n memory positions are required to store the coefficients of the 
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OddReWr 00...

OddImWr 00...

EvenReWr 3F...

EvenImWr 00...

BWr

AddrWr 2 2

MOP

OddRe 00000000 3F800000

OddIm 00000000

EvenRe 3F800000 00000000

EvenIm 00000000

Addr ... 02 03

OEn

Fig. 23  Detailed view of the second NOT operation
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column vector representing the entangled qubits, where n represents the number 
of qubits involved in the operation. Each memory address can hold two coeffi-
cients. As a result, the first 2nq−1 memory positions of memory MQB, which were 
initially designated for tracking the kets of each non-entangled qubit, are now 
utilized to store the initial pairs of coefficients that constitute the entangled col-
umn vector. If more than two qubits are involved, additional memory positions 
are allocated to store the remaining coefficients.

For instance, consider nq = 4 and the tensor product on two qubits ( n = 2 ) that 
are in the collapsed state �0⟩ : [1 0]T ⊗ [1 0]T = [1 0 0 0]T . Table 6 presents the 
values of the coefficient pairs stored at each memory address in MQB before and 
after the tensor product operation. In this particular example, the same two mem-
ory positions are sufficient to store the four coefficients of the resulting column 
vector.

Figure 25 shows the timing diagram regrading to the aforementioned tensor prod-
uct. Markers READ and WRITE are separators of the signal groups, associated with 
the read and write operation of memory MQB, respectively.

MOP

Addr 2 3 2 3

OEn

ODATA

OddRe 00000000 3F80... 00000000 3F80...

OddIm 00000000 00000000

EvenRe 3F800000 0000... 3F800000 0000...

EvenIm 00000000 00000000

MSC

AddrRd 0

Rd

OddReWr 00000000 3F80... 00000000 3F80... 00...

OddImWr ... 00000000

EvenReWr ... 00000000 3F80... 00000000 3F80... 00000000

EvenIm wr ... 00000000

addr wr 0 32 0 1 8 9 16 17 24 25

wr

Fig. 24  Building a NOT operator for 2 qubits when the design can handle quantum operations that 
involve at most 4 qubits

Table 6  Contents of the first 
four addresses of memory MQB 
before and after performing the 
tensor product

Address Part Original value Computed value

0 Even 1.0000 1.0000
0 Odd 0.0000 0.0000
1 Even 1.0000 0.0000
1 Odd 0.0000 0.0000
2 Even/odd Unused Unused
3 Even/odd Unused Unused
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7  Performance evaluation

In order to evaluate the performance of the proposed design, we synthesized the 
design of EQP for the Xilinx Virtex UltraScale FPGA XCVU095-2FFVA2104E. 
The system maximum frequency yielded is 52.0 MHz. With these characteristics, 
we run the quantum search algorithm, known as Grover’s algorithm. It is a well-
known quantum search algorithm to speedup search in unsorted database [53]. The 
algorithm is designed to search an unsorted database of N = 2n entries to find a 
specific target item. The items of the database are the possible states formed by n 
qubits, i.e., �i⟩ , for 1 ≤ i ≤ n − 1 , and the target is one of these states. Grover’s algo-
rithm can also be used to search for more than one target.

The steps of the algorithm depend on the number of qubits n and the configu-
ration of procured target state. It offers a quadratic speedup compared to classical 
search algorithms that require linear time in terms of N. The algorithm involves 
applying a series of quantum operations iteratively. There are many circuit designs 
for this algorithm. The used version of Grover’s algorithm for n qubits is depicted in 
Fig. 26 [44, 54].

Grover’s algorithm consists of three main steps: (1) input state preparation, which 
allows to yield the quantum states representing the searched database items; (2) ora-
cle, which allows the identify the target items within the input data changing distinc-
tively the amplitude of the corresponding quantum state with respect to the remain-
ing items of the database; (3) target’s amplitude amplification, also known as the 
diffuser, which allows to increase the amplitude of the amplitudes of the targets’ 
states while decreasing that of the remaining states (4) output state measurement, 
which allows to observe the final results of the search, wherein amplitudes associ-
ated with the target states should be significantly high with respect to that associated 
with the remaining states. Of course, the sum of the squared amplitudes for all states 
must be equal to 1. Steps 2 and 3 are iterated to achieve satisfactory identification of 
the targets via the corresponding high amplitudes. In each iteration, the state under-
goes specific quantum gates that allow marking the target and others that amplify its 
amplitude and reduce that of the remaining items.

For the preparation of the input states, a set of Hadamard operators, implements 
the first step of the algorithm, allowing the generation of a uniform state superpo-
sition with an amplitude do 1∕

√
2n . A controlled Z operator is included in the 

READ

OddRe 3F800000 3F800000

OddIm 00000000 00000000

EvenRe 00000000 00000000

EvenIm 00000000 00000000

AddrRd 0 0

Rd

WRITE

OddRe 3F800000 00000000

OddIm 00000000 00000000

EvenRe 00000000 00000000

EvenIm 00000000 00000000

AddrWr 0 1

Wr

Fig. 25  Memory MQB contents before and after a tensor product regarding the example of NOT opera-
tor and Table 6
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implementation of the second and third steps. The number of control qubits is n − 1 
so that the amplitude of state �2n−1⟩ is inverted to −1∕

√
2n while that of the remaining 

state remain unchanged. It is noteworthy to emphasize that this operator has not been 
constructed by the processor. Instead, we stored the adequate matrix of the controlled 
Z operator according to the required controls in MOP as a basic operator. The con-
struction of this operator from basic ones, as described in Sect. 2, is not a straightfor-
ward process, as it needs a complex transpilation process to be converted to simpler 
basic operators [55, 56], which is clearly out of the scope of this work. The third step 
is implemented by a state reflection around the average amplitude by a set of Had-
amard operators, a set of X operators and a controlled Z operator with n − 1 control 
qubits.

The iterations create constructive interference, which leads to the desired state 
where the probability of measuring the target item is higher. The main steps of 
Grover’s algorithm need to be iterated both real and simulated quantum computers. 
In a simulated quantum processor, these iterations are still necessary because they 
are a fundamental part of how Grover’s algorithm works [53]. The ideal number of 
iteration is defined in [57] as �∕4

√
N∕m , wherein N = 2n represents the number of 

entries in the searched unsorted database and m is the number of targets.
The simulations are executed on a personal computer equipped with 4GB RAM 

memory, using the ModelSim program on the Windows 7 operating system. In this 
case, the coprocessor is capable of handling operations on up to 6 qubits simultane-
ously. Of course, if we run the simulation on better equipped computer, we would 
be able to run operations that act on more qubits. So, for the processor performance 
evaluation, we run Grover’s algorithm, described in Fig. 26, for two to six qubits. 
Table  7 shows the memory and time requirements for the execution of Grover’s 
algorithm for quantum search in a unsorted database of n input qubits. The results 
are averages of 100 shots.

For each case, we provide the number of qubits n, the bit configuration of the tar-
get state, the number of required iterations, the required memory, the overall execu-
tion time, the measured target amplitude (TA) and the average amplitudes of the 
nontarget states (NTAA). Note that the reported memory size is customized for the 

H

H

H

...

H

(1)

q0 = |0〉

q1 = |0〉

q2 = |0〉

...

qn−1 = |0〉

Z

•

•

...

•

(2)

H

H

H

...

H

X

X

X

...

X

Z

•

•

...

•

(3)

X

X

X

...

X

H

H

H

...

H

...

(4)

Fig. 26  Steps of Grover’s quantum algorithm for n qubits searching for target �n − 1⟩
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case, i.e., exactly what is required for the circuit. Memories MQS, MOP and MOP 
as well as the local memory used in UMS are set to the fit the qubits and operators, 
used in the circuit. The processor with a maximum quantum state of 6 qubits that 
can be handled simultaneously via all basic operators described in Sect. 2 requires 
7,6204 Bytes, all memories included.

For comparison purposes, we focus on different ways to implement Grover’s 
algorithm. We compare the results regarding software simulation, hardware emula-
tion and direct execution on real quantum hardware. For simulation, we consider 
a dedicated software implementation of the algorithm (GDSS) [21] and a general-
purpose software implementation of Grover’s algorithm via a simulation (GPSS) 
[58]. For emulation, we consider a dedicated hardware, which is custom-designed 
for Grover’s algorithm (GDHE) [21] and a general-purpose hardware emulation of 
the algorithm using EQP, presented in this work. Finally, for real quantum hard-
ware, we consider the execution of Grover’s algorithm on quantum computers IBM 
Q (GIBMQ) and IonQ (GIonQ) [59]. For each of the considered implementations, 
Table 8 shows the execution time of Grover’s algorithm for n input qubits. Note that 
for a more concise presentation of the timing figures, we opted to use different time 
unit: nanoseconds ( ×10−9s ), microseconds ( ×10−6s ) or seconds. Note that the tim-
ings are sourced from their respective cited works. Also, due to the variations in 
system configurations among the compared implementations, the comparability of 
the results is limited.

Before, we get to further details about the comparison, it is fundamental to note 
that the performance of implementations based on real quantum hardware are 
included here only for completeness. State-of-the-art real quantum hardware are 

Table 7  Performance of the 
Grover search algorithm for 
different state number of qubits

n Target Iteration Memory (B) Time (ns) TA NTAA 

2 �11⟩ 1 4,273 1.688 0.9101 0.1381
3 �111⟩ 2 5,411 14.891 0.8223 0.1242
4 �1111⟩ 3 8,711 91.591 0.8505 0.0784
5 �11111⟩ 4 21,458 491.907 0.8096 0.0609
6 �111111⟩ 6 71,532 2,821.748 0.7996 0.0437

Table 8  Performance comparison of software-based simulation and hardware-based emulation of quan-
tum computations

n GDSS ( �s) GPSS (ms) GDHE (ns) GPDP (ns) GIBMQ (s) GIonQ (s)
 [21]  [58]  [21] EQP  [59]  [59]

2 29.6 5.0 4.6 1.7 2.0 13.0
3 74.0 6.0 12.0 14.9 3.0 23.0
4 220.7 7.0 21.4 91.6 5.0 54.0
5 398.8 10.0 36.7 491.9 12.0 65.0
6 1069.6 13.1 62.7 2821.7 – –
7 2771.4 29.7 96.8 – – –
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slower than emulated quantum hardware for many reasons. Among these reasons, 
we can cite (1) error-proneness due to decoherence and gate imperfections, among 
other forms of noise, requiring error correction techniques to mitigate the effects 
of noise; (2) limited qubit connectivity, requiring additional operations and/or extra 
qubits to implement correct interactions; (3) high measurement time due to physical 
constraints; and (4) device calibration and initialization procedures to ensure proper 
operation. All these reasons lead to slower execution times in real quantum hard-
ware when compared to an ideal simulation or emulation [60].

Considering the time unit by kind of implementations, it is clear that the hard-
ware-based solutions of Grover’s algorithm (GDHE [21] and the one proposed in 
this work GPDP) are a way faster (of the order of 103× than GDSS [21] and 106× 
than GPSS [58]) than the software-based ones. Also, considering the same basis, it 
is clear that the dedicated software implementation of the algorithm GDSS [21] is 
103× faster than the one implemented on a general-purpose emulated quantum pro-
cessor GPSS [58]. Moreover, the dedicated hardware GDHE [21] scales better than 
the one implemented on the emulated quantum processor, proposed in this work. 
The former allows to run the algorithm for 7 qubits while the proposed implementa-
tion does not. Also, except for the cases of 2 qubits, for which both designs the latter 
is 2.7× faster, the former performs better. The speedups for 3, 4, 5 and 6 qubits are 
about 1.3× , 4 × , 13× and 45× , respectively. Nonetheless, it is important to note that 
GDHE can only run Grover’s algorithm, and a new hardware needs to be designed 
for another quantum algorithm. In contrast, the same hardware processor that is used 
to get GDPE, can also be simply programmed to run any other quantum algorithm. 
The proposed solution trades speedup for higher versatility.

8  Conclusions

This paper introduces an adaptive hardware design of an emulated quantum proces-
sor that can be customized for various applications. The proposed design utilizes 
a completely parallel pipelined approach to perform the tensor product operation, 
which is a fundamental operation in quantum computing. The design operates on 
complex numbers and is expected to be highly efficient. The effectiveness of the 
design is demonstrated through simulations of representative quantum instructions.

The main units of the proposed macro-architecture consist of the calculation unit, 
the control unit and the measurement unit. The calculation unit plays a critical role 
in executing the extensive and computationally intensive complex number products 
and sums required by the coprocessor. The modular nature of the proposed micro-
architecture of this unit allows for scalability, enabling the design to be expanded to 
achieve the desired level of parallelism. However, this expansion entails increased 
control complexity, widening of the data path, and potentially, the buses. The con-
trol unit is micro-architecture is optimized. It utilizes control memory and auxiliary 
components to handle various tasks. The control path automates elementary opera-
tions and contributes to simplifying the microprogram.

Simulations of typical computations are provided to validate the correct function-
ing of the coprocessor using typical quantum operations and instructions involving 
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matrices and tensor products. The simulations utilize scalable and parameterizable 
code, executed on a personal computer equipped with 4GB RAM memory, using the 
ModelSim program on the Windows 7 operating system. In this particular case, the 
coprocessor is capable of handling operations on up to 6 qubits simultaneously.

The performance of the proposed processor is presented for Grover’s algorithm for 
unsorted database search. The time and memory requirements are shown for a given 
item search in databases of 4, 8, 16, 32 and 64 items, i.e., testing with Grover’s algo-
rithm for 2, 4, 5 and 6 qubits. We also compare the performance of the proposed pro-
cessor regarding execution time to a dedicated implementation of Grover’s algorithm: 
using a simulated quantum processor and via emulation using a dedicated hardware. 
For completeness, we also provide the algorithm execution times on two real quan-
tum hardware. We establish clearly that proposed hardware design of the proposed 
emulated quantum processor is far faster than the software solution but somehow 
slower than the dedicated hardware implementation, which scales better than the pro-
posed processor design. Nonetheless, the proposed processor is versatile and allows 
the implementation of any quantum algorithm by simply programming while the 
dedicated hardware is designed specifically for Grover’s algorithm. Another design, 
built from scratch, is required to implement another quantum algorithm.

There are several avenues for future work that can be explored to enhance the 
coprocessor design: (1) Increasing the number of multipliers in the calculation unit, 
always in powers of 2, would allow for the simultaneous execution of more matrix 
and tensor products. This would leverage the coprocessor’s capabilities and improve 
its overall performance. (2) Implementing a pipeline organization in the architecture 
could optimize quantum operations by utilizing auxiliary complex number multipli-
ers. This approach would facilitate the matrix product calculation by performing it 
on already computed lines, reducing the waiting time for the required calculations. 
(3) Enhancing the scratch memory by incorporating additional read and write ports, 
along with a larger number of complex number multipliers, would accelerate the 
construction of quantum operators. This would enable faster processing and improve 
the efficiency of the coprocessor. (4) Introducing a new auxiliary scratch memory 
dedicated to storing operators constructed for multiple qubits could save time by 
avoiding the need for recalculating larger operators repeatedly. This would enhance 
performance and efficiency by eliminating redundant calculations.

The proposed future directions to improve the design efficiency will certainly 
increase the design size. However, it is expected that the increase would further 
accelerate the emulation of quantum operations, allowing the execution of bigger 
instances of quantum algorithms. Of course, based on state-of-the-art science and 
technology, it would be always true that such an emulator whose design cost does 
not exponentially scale with the number of handled qubits will be certainly not capa-
ble of universal quantum emulation. Nonetheless, the general idea for future work 
is to increase the level of parallelism during execution, finding a good trade-off 
between cost (hardware area) and throughout (execution time). This will always be 
sought during the design improvement. Exploring these directions in future research 
and development efforts would contribute to the ongoing improvement and optimi-
zation of the coprocessor design.
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