
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:7028–7070
https://doi.org/10.1007/s11227-023-05687-1

1 3

Dedicated hardware design for efficient quantum
computations using classical logic gates

Nadia Nedjah1 · Sérgio Raposo2 · Luiza de Macedo Mourelle3

Accepted: 25 September 2023 / Published online: 2 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
This work presents a novel approach to quantum computing by proposing a custom-
izable hardware design of a dedicated processor that emulates the execution of quan-
tum algorithms. Unlike software-based quantum computation simulators, which run
on standard general-purpose computers and suffer from reduced performance, this
hardware design, which is based on classical concepts of bits, registers and memo-
ries, aims to leverage pure parallelism and pipelined execution for efficient quan-
tum computations via emulation. The architecture includes several key components:
memories, computation unit, measurement unit and control unit. The quantum state
memory stores the individual and group states of qubits. This memory is crucial
for maintaining the quantum information required for quantum operations. Basic
operators are stored in dedicated operator memory. Additionally, a scratch memory
allows for larger operators to be dynamically built at runtime. The computation unit
is responsible for performing complex number multiplications, which form the basis
of tensor and matrix products necessary for executing quantum operations. A meas-
urement unit enables quantum state sampling, which is an essential aspect of quan-
tum computation. Furthermore, a control unit is incorporated to ensure the correct
operation of the quantum processor’s data path. It utilizes a microprogram to man-
age and coordinate the functional units. All the functional units communicate with
each other through dedicated and shared data buses, depending on the frequency of
information exchange. This enables efficient data transfer and coordination among
the components. The proposed hardware design has been simulated and proved to be
effective in executing quantum operations. By exploiting parallelism and employing
a pipelined execution, this architecture overcomes the limitations of software-based
simulators, delivering improved performance for emulating quantum algorithms. We
use Grover’s search algorithm as a benchmark to evaluate the performance of the
proposed hardware design and compare it to software-based simulation and to hard-
ware-based algorithm-dedicated emulation.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05687-1&domain=pdf

7029

1 3

Dedicated hardware design for efficient quantum computations…

1 Introduction

Quantum computing has garnered considerable research interest due to its poten-
tial to enhance processing speed through the use of algorithms with inherent par-
allelism. It offers the possibility of achieving polynomial time solutions for NP-
complete problems [1–3]. However, the control of quantum states in real quantum
computers remains challenging, with only a few qubits being controlled for a
short duration. At the time of this work’s conclusion, the largest number of entan-
gled qubits achieved under special conditions was twenty [4]. Companies have
invested in the development of commercial real quantum devices. For instance,
in 2015, D-Wave introduced a quantum computer with 1000 qubits, although not
all were entirely entangled [5]. Four years later, D-Wave announced the next-gen-
eration Pegasus quantum processor chip, featuring 15 connections per qubit com-
pared to the previous 6. They projected that the subsequent system would utilize
the Pegasus chip, encompassing over 5000 qubits, and become available shortly
[6].

While commercial real quantum processors are not yet available to the general
public, quantum programming is being explored through simulators and libraries
of quantum operation routines. Examples of these include QCL (Quantum Com-
putation Language) [7], QCS (Quantum Computer Simulator), QuaSi, Fraunhofer
Quantum Computing Simulator, QuCalc, QDensity, OpenQuacs, QML, JaQuzzi,
Senko’s Quantum Computer, Shornuf, Simqubit and QHaskell [8–10]. For effi-
cient software simulation, many sophisticated data structure has been proposed.
Among others, tensor networks [11] and decision diagrams [12] provide suc-
cessful implementations for the simulation of quantum computations on classical
computers. However, these kinds of data structures are complex and dynamic,
thus limiting their suitability for a hardware implementation, which require a con-
cise internal representation and efficient management of dynamic memory.

Nowadays, various efficient quantum simulators, such as IBM’s quantum cir-
cuit composer [13] and Munich Quantum Toolkit [14], run effectively on stand-
ard general-purpose computers. However, simulators, being software products,
often suffer from longer processing times due to sequential execution, although
this can be partially mitigated by utilizing multiple processors and resource shar-
ing [15, 16]. The usage of general-purpose processors and thus internal general
data paths, which are not necessarily optimized for the low-level instructions
used to simulate quantum operations, are the main reason for the execution bot-
tleneck. Optimized data paths as well as custom-made parallelism are the main
contributions in quantum hardware emulators with dedicated designs towards the
acceleration of quantum operations. So, dedicated processors, custom-designed to
emulate quantum operations efficiently, can offer significant advantages over sim-
ulators run on standard general-purpose processors, thus providing faster speed
as well as a well-tailored parallelism to guarantee a good trade-off between cost
and efficiency. By running on specialized processors, such as emulated quantum
processors, the results of quantum operations can be obtained in a shorter time
frame. Building dedicated hardware for quantum computing is a complex and

7030 N. Nedjah et al.

1 3

ongoing research effort, involving various scientific disciplines, engineering chal-
lenges and optimization to achieve stable, reliable and scalable quantum comput-
ing emulators. As real quantum computing technology advances, dedicated hard-
ware emulators should meanwhile help unlocking the full potential of quantum
algorithms and applications.

Dedicated hardware for quantum computing refers to specialized physical devices
and components designed to implement and perform quantum computations. Unlike
classical computers that rely on bits to represent information, quantum computers
use quantum bits or qubits, which can represent multiple states simultaneously due
to the principles of quantum superposition and entanglement. Real quantum pro-
cessors, which are the key element in quantum computers, are built using various
physical systems such as superconducting circuits [17], trapped ions [18], topologi-
cal qubits [19] and photonic qubits [20]. Dedicated hardware emulators for quantum
computing are nowadays necessary because quantum computations require dedi-
cated and precise control over the idealized representations of qubits and quantum
registers and the ability to manipulate the emulated quantum states with high fidelity
and high processing speed.

This work introduces an architecture of an emulated quantum processor, designed
to be implemented using classical hardware and embedded into classical general-
purpose computers. The design should enable the acceleration of problem-solving,
when compared with software-based quantum simulators and more versatility when
compared to a hardware design, dedicated to implement a specific quantum algo-
rithm. This work represents a pioneering effort, as it is the first attempt to implement
a classical hardware-based emulation of a quantum processor, capable of emulat-
ing the execution of quantum operations. It does so via user directives inserted in
a traditional program, as it is the case in physical real quantum computers, which
by design receive their instructions from a classical program. As to this point in
time, we were unable to find a similar work, wherein a hardware design of a quan-
tum emulator based on classical concepts of memory, register and bits to emulate
quantum computations, is proposed. Of course, as mentioned before, this has been
done either using novel physical technologies, such as superconducting qubits [17],
trapped Ions [18], photonic qubits [20] and topological qubits [19], or in software-
based simulators, but not using emulation via a dedicated quantum processor as it is
the case in this work. Dedicated hardware specifically designed for some quantum
algorithms can be found in [21].

For the sake of simplicity and to lift any ambiguity, throughout the rest of this
paper, physical quantum implementations, based on aforementioned advanced tech-
nologies for qubits, will be termed (real) quantum hardware or processors while
software simulation and hardware emulation of quantum computations will be dis-
criminated as simulated and emulated quantum processor or simply simulator and
emulator, respectively. So, the processor hardware design, proposed in this work,
which is based on classical logic concepts to emulate quantum computations, will be
termed as emulated quantum processor (EQP) or simply emulator.

Some key issues that hardware design dedicated to quantum emulation include:
(1) processing unit, allowing to manipulate the set of qubits and to emulate quantum
operations; (2) state control units, which are specialized electronics and control systems

7031

1 3

Dedicated hardware design for efficient quantum computations…

to manipulate and maintain the internal representation of qubits states; (3) computa-
tion units, which are components responsible for emulating the execution of quan-
tum operations on the qubit internal representations used in quantum algorithms; (4)
memory units, which are representation, techniques and hardware to store and retrieve
the internal representation of quantum information; and (5) measurement units, which
allow interfacing with the quantum emulator, enabling the emulation of quantum
states observation and transformation into a classical binary representation. Note that
error correction unit that is fundamental in real quantum processors is not required in
emulated quantum processor designs that are based on classical logic gates. Classical
binary circuits do not experience a significant amount of bit flips errors due to the high
external energy needed to change the electrical current [22].

Our work proposes a novel hardware architecture of a dedicated processor to
accelerate the emulation of quantum operations. The design can be customized
according to some parameters, such as the overall number of qubits of machine
state, the maximum number of qubits that can be operated simultaneously and the
number of qubits entanglements. The proposed quantum emulator works alongside a
general-purpose processor. It is capable of emulating quantum operations efficiently
using a custom-designed of parallelism and pipeline. The design leverages dedicated
information bookkeeping memories to enable efficient access to information regard-
ing to stored internal representation of qubits and emulate quantum operations with
high efficiency. It does by optimizing the design’s data paths for efficient execution.
It is worth noting that the current design does not require any error detection unit.
We establish the superiority of the proposed solution over software-based simulation
regarding time requirements and over hardware-based alternative when the design
is dedicated to a given algorithm regarding versatility. The proposed design trades
some performance for a larger versatility.

This paper is divided into seven sections. First of all, in Sect. 2, we provide an
introduction to quantum computing, including a definition of the data model and the
primary quantum operations. After that, in Sect. 3, we present and discuss recent
related works of the literature. Subsequently, in Sect. 4, we describe the macro-
architecture of the proposed quantum processor. There follows, in Sect. 5, the details
of the micro-architecture regarding the data path and control path of the quantum
processor. This includes the organization of the included memory. Later, in Sect. 6,
we present and explain simulation results related to instruction execution within
the quantum processor. Subsequently, in Sect. 7, we present and analyze the per-
formance of the proposed processor design for a quantum algorithm with respect
to memory and time requirements and compare it to that of software simulation
and hardware emulation alternatives. Finally, in Sect. 8, we provide the concluding
remarks and suggest promising directions for future research.

2 Quantum computations

Quantum computing is founded on the concept of the fundamental information unit
known as the quantum bit, qubit or simply qubit. Unlike classical bits, which can
only store a single value of 0 or 1, qubits can exist in a state of superposition. This

7032 N. Nedjah et al.

1 3

means that a qubit can simultaneously hold both 0 and 1, with each state having its
own amplitude. This unique property allows qubits to represent an infinite range of
values, including the boundary states of 0 and 1, using probabilistic characteristics
instead of deterministic ones.

Mathematically, a qubit can be represented as a vector in a two-dimensional
orthonormal basis and can be used to express an infinite set of values through linear
combinations in the complex number field. The common notation is �0⟩ = �

1 0
�T

and �1⟩ = �
0 1

�T . So, qubit �v⟩ can be represented interchangeably by either forms:
�v⟩ = �

� �
�T or �v⟩ = ��0⟩ + ��1⟩ , where � and � are complex numbers representing

the magnitude of each base vector. Thus, it features a qubit in simultaneously states
0 and 1, but with the respective coefficients for each state. The squared amplitude
represents the probability that the qubit is in that corresponding state. The sum of
the squared amplitudes is always 1, i.e., |�|2 + |�|2 = 1 , preserving the vector norm.

The state of a quantum system can be represented by a vector that is a linear com-
bination of the base vectors, with the dimension of the base being equal to 2n , where
n is the number of qubits in the system. As a result, a vector representing the state of
the quantum system contains not only as many states as the number of qubits, but 2n
states.

The quantum state of a machine is formed by a linear combination of collapsed
states (base vectors) multiplied by their associated amplitudes. When an operation
is performed on a vector, it is equivalent to performing the operation on each term
of the linear combination. This results in an inherent parallelism, and for any given
operator, say T, we can express it as in Eq. 1:

A qubit can be entangled with one or more other qubits, allowing for mutual inter-
ference, which is referred to as entanglement, and not just a group of isolated qubits
[23]. Entanglement results in a grouping characteristic that is of particular interest in
quantum computing, enabling applications such as super-dense coding and telepor-
tation [24]. Measuring an entangled qubit results in the collapse of all qubits in the
group, forcing them to collapse to either state �0⟩ or �1⟩ [23]. Entangled qubits cannot
be factorized into individual states. This means that there are no states of isolated
qubits that can be manipulated to result in an entangled state. Therefore, entangled
qubits are operated on by specific quantum gates that act on the entire set of entan-
gled qubits.

In contrast to classical computing, a qubit cannot be copied without conse-
quence, as this would entail a measurement and thus alter the state of the qubit.
The non-cloning theorem, as explained in [25], asserts that even if we had a
machine with an input of two qubits, one of which is an unknown state ��⟩ and
the other an "inert" state �v⟩ , we cannot discover a unitary operator T that would
output the state �𝜙⟩⊗ �𝜙⟩ without altering the initial state of the qubits. The ten-
sor product operation is denoted by ⊗ . The hypothetical operator T would need to
reproduce the state of ��⟩ in �v⟩ , regardless of the state of ��⟩ . However, the usual

(1)
T�v⟩ = T(��0⟩ + ��1⟩ + ��2⟩ +⋯ + ��2n − 1⟩)

= �T�0⟩ + �T�1⟩ +⋯ + �T�2n − 1⟩.

7033

1 3

Dedicated hardware design for efficient quantum computations…

inner product between ��⟩ and �v⟩ would only be useful if it resulted in either the
state 0 or 1, indicating orthogonality or equality between the states, respectively.
For any other result, the operator T would fail. [25].

When a quantum operation is performed on a state of n qubits, with n ≥ 2 ,
a tensor product would be required, resulting in a column vector of 2n rows. A
quantum operator on such a set of qubits is a 2n × 2n matrix. It is constructed
from basic 2 × 2 quantum operators. The tensor product of 2 matrices of any size
is given by the product of each coefficient of the first matrix by its counterpart
coefficient in the second matrix [23]. Quantum operators allow the execution of
operations on one or more qubits. They have an equal number of inputs and out-
puts, maintaining the equivalence between the energy of the inputs and that of
the outputs. Therefore, there should be no heat dissipation. These operators allow
to know the conditions of the input data, as this information is preserved. With
reversible operators, it possible to return the quantum system to its previous state,
i.e., before applying the quantum operator in question [26].

For this works, we define basic quantum operators as those having dimension
2 × 2 , acting on a single qubit, the controlled NOT (CNOT) and Swap operators,
whose size is 4 × 4 , acting on two qubits, and controlled Swap (CSwap) and Tof-
foli’s operators, whose size is 8 × 8 , acting on three qubits. Complex quantum
operators can act on two or more qubits simultaneously. In this case, the operator
is built using tensor products, as explained earlier. In this way, a quantum opera-
tor, with the exception of CNOT or Toffoli’s gate, can be constructed from tensor
products between basic quantum operators, which allows the state reversibility
characteristic. That is, from a certain quantum state, one can return to the previ-
ous state by applying the inverse operator of the last operator used [27].

Basic unary quantum operators include [23]: (1) The X operator, also known as
the Pauli-X, allows a qubit rotation of � around the x-axis and inverts the ampli-
tudes associated with the base vectors. If applied to a qubit in a collapsed state,
it results in the opposite collapsed state, similar to a classic NOT gate. (2) The Y,
also known as the Pauli-Y, allows a qubit rotation of � around the y-axis. It. (3)
The Z operator, also known as the Pauli-Z, allows a qubit rotation of � around the
z-axis. (4) The I operator is the identity operator that preserves the state of the
qubit it is applied to. (5) The H operator, also known as the Hadamard operator,
transforms a qubit in the collapsed state (�0⟩ or �1⟩) into a superposition of both
states with equal amplitude. The H operator coincides with its adjunct opera-
tor [28]. (6) The P � operator performs a phase shift dependent on the informed
angle � . Operator P �∕4 is known as the T operator and P �∕2 as the S operator. The
formal definition of these operators and their application to �v⟩ = ��0⟩ + ��1⟩ are
shown in Table 11.

Basic binary quantum operators include [29]: (1) The controlled NOT (CNOT)
operator is one of the main operators in quantum computing because it has the abil-
ity to entangle qubits. This operator has two arguments: the control qubit and the tar-
get qubit. The CNOT operator inverts the state of the target qubit when the control
qubit is in state 1. (2) The Swap operator swaps the contents of two qubits. (3) The
controlled phase shift (CZ) operator is a fundamental gate used in quantum comput-
ing for various quantum algorithms and quantum error correction. It introduces a

7034 N. Nedjah et al.

1 3

phase shift to the target qubit based on the state of the control qubit. It. The formal
definition of these operators and their application are shown in Table 21.

Basic ternary quantum operators include: (1) The controlled Swap (CSwap) oper-
ator, also known as the Fredkin operator, exchanges the second and third qubits if
the first qubit, also called the control qubit, is in state �1⟩ [30]. (2) The Toffoli opera-
tor uses three qubits: two qubits for control and third as target. It reverses the state of
the target qubit whenever the two control qubits are in state �1⟩ . The formal defini-
tion of these operators and their application are shown in Table 3.1

It is important to note that there are other unary operators not mentioned here
as well as other multi-qubit quantum operations, supporting arbitrary numbers of
qubits. Operators CNOT, Swap, CSwap and Toffoli are just common examples of
multi-qubit operators. A complete summary of quantum operators and possible
combinations together with their representative symbol, matrix and application can
be found in [31].

3 Related works

Numerous research studies in the field have focused on simulating quantum opera-
tions, utilizing both software and hardware approaches. These works encompass the
development of libraries, the implementation of quantitative circuits using program-
mable or reconfigurable devices and initiatives that extend beyond the use of hard-
ware description languages. Additionally, there are efforts dedicated to designing
modeling tools to facilitate the simulation of quantum operations.

Table 1 Unary quantum
operators: definition and
application

Op Gate symbol Matrix Linear definition

X X
[
0 1

1 0

]
X�v⟩ = ��0⟩ + ��1⟩

Y Y
[
0 − i

i 0

]
Y�v⟩ = i(−��0⟩ + ��1⟩)

Z Z
[
1 0

0 − 1

]
Z�v⟩ = ��0⟩ − ��1⟩

I I
[
1 0

0 1

]
I�v⟩ = �v⟩

H H ⎡⎢⎢⎣

1√
2

1√
2

1√
2

−
1√
2

⎤⎥⎥⎦

H�v⟩ = �+�√
2
�0⟩ + �−�√

2
�1⟩

T T
[
1 0

0 �
i�

4

]
T�v⟩ = ��0⟩ + 1√

2
�(1 + i)�1⟩

S S
[
1 0

0 i

]
S�v⟩ = ��0⟩ + i��1⟩

1 Note that there are other unary, binary and ternary as well as multi-qubit operators not mentioned here.

7035

1 3

Dedicated hardware design for efficient quantum computations…

3.1 Quantum hardware emulators

In the work by Khalid et al. [32], a quantum circuit model is presented, which
describes various quantum algorithms and their corresponding analogies with

Table 2 Binary quantum
operators: definition and
application

Op Gate symbol Matrix Application �q1q0⟩
CNOT Xq1

q0

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦

CNOT�00⟩ = �00⟩
CNOT�01⟩ = �01⟩
CNOT�10⟩ = �11⟩
CNOT�11⟩ = �10⟩

CZ Zq1

q0

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1

⎤
⎥⎥⎥⎦

CZ�00⟩ = �00⟩
CZ�01⟩ = �01⟩
CZ�10⟩ = �10⟩
CZ�11⟩ = − �11⟩

Swap

×

× ⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

Swap�00⟩ = �00⟩
Swap�01⟩ = �10⟩
Swap�10⟩ = �01⟩
Swap�11⟩ = �11⟩

Table 3 Ternary quantum operators: definition and application

Op Gate symbol Matrix Application �q2q1q0⟩
CSwap

×
×

q0

q1

q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

CSwap�000⟩ = �000⟩
CSwap�001⟩ = �001⟩
CSwap�010⟩ = �010⟩
CSwap�011⟩ = �011⟩
CSwap�100⟩ = �100⟩
CSwap�101⟩ = �110⟩
CSwap�110⟩ = �101⟩
CSwap�111⟩ = �111⟩

TOFFOLI Xq0

q1

q2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

TOFFOLI�000⟩ = �000⟩
TOFFOLI�001⟩ = �001⟩
TOFFOLI�010⟩ = �010⟩
TOFFOLI�011⟩ = �011⟩
TOFFOLI�100⟩ = �100⟩
TOFFOLI�101⟩ = �101⟩
TOFFOLI�110⟩ = �111⟩
TOFFOLI�111⟩ = �110⟩

7036 N. Nedjah et al.

1 3

digital circuit models. The authors focus on developing an FPGA-based emulator
for quantum algorithms, with a particular emphasis on novel techniques for mod-
eling quantum circuits. This includes addressing aspects such as qubit entanglement,
probabilistic computation and precision-critical issues.

In the study conducted by Shende et al. [33], the authors analyze the logical effi-
ciency of quantum circuits that perform generic quantum computations and the ini-
tialization of quantum registers.

Guowu et al. [34] propose an approach for synthesizing quantum circuits from
non-commutative quantum gates, such as the controlled square root of not quan-
tum gate (controlled-V). The authors utilize group theory to transform the synthesis
problem into a multiple-valued optimization.

Hashemi et al. [35] explore the use of quantum-dot cellular automata (QCA), a
nanotechnology, to propose a reconfigurable device (FPGA) with efficient, sym-
metric and reliable programmable switch matrix interconnection elements. The
results demonstrate the high efficiency of the proposed designs in QCA-based FPGA
routing.

Vandijk et al. [16] discuss the challenges involved in designing a scalable elec-
tronic interface for real quantum processors. They also highlight the specific require-
ments that vary based on the different existing qubit technologies.

3.2 Quantum software simulators

In Ömer’s work [36], the author explores the application of classical computing con-
cepts, such as hardware abstraction, structured programming, data types, memory
management and control flow, in the context of quantum computing. To facilitate this,
the author introduces a quantum computing language called QCL. QCL includes an
interpreter that enables the execution of quantum programs. It incorporates both quan-
tum and non-quantum instructions, such as irreversible functions, local variables and
conditional branching. By using the provided interpreter, users can experiment with
non-classical features such as the reversibility of unitary transformations and the non-
observability of quantum states within a procedural programming language.

Karafy et al. [37] propose a quantum simulator designed for users with limited
knowledge of quantum mechanics. The simulator is based on the circuit model of quan-
tum computation, where models of quantum gates act on the data structure modeling a
quantum registers composed of multiple internal representation of quantum bits.

In the work by Raedt et al. [38], a massively parallel quantum computer simulator
is presented. It utilizes a software component with portability features to simulate
the behavior of universal quantum computers on parallel computing systems. The
simulator supports various quantum algorithms across different computer architec-
tures. The simulator outputs matrices that represent the quantum register state at
each step of the quantum computation, as well as details regarding the measurement
probabilities of the quantum registers. The well-known Deutsch’s algorithm and the
quantum Fourier transform are demonstrated using the proposed simulator.

Maron et al. [39] focus on optimizing the execution library of a visual pro-
gramming environment designed for the quantum geometric machine model. The

7037

1 3

Dedicated hardware design for efficient quantum computations…

model employs recursive mathematical functions to dynamically generate values
that define quantum transformations, resulting in a significant reduction in memory
consumption.

Nikahd et al. [15] introduce a general direct simulator called OWQS for the one-
way quantum computation (1WQC) model. The simulator incorporates techniques
such as qubit elimination, pattern reordering and implicit simulation of actions to
greatly reduce the time and memory requirements for simulations. Furthermore,
it employs measurement patterns with a generalized flow without calculating the
measurement probabilities. Experimental results confirm the effectiveness and effi-
ciency of the proposed model for quantum computing simulation.

In Willie’s work [40], useful extensions are presented for the programming lan-
guage SyReC (Synthesis of Reversible Circuits), which enables the specification and
automatic synthesis of reversible circuits. The authors also propose algorithms for
optimizing the resulting circuits based on different objectives, such as time delay
and circuit cost.

Fu et al. [41] propose a control architecture for fault-tolerant quantum computing
based on the rotated planar surface code with logical operations. The architecture
incorporates a two-level address mechanism that supports a scalable compilation
model for a large number of qubits. It also includes architectural support for quan-
tum error correction during runtime, significantly reducing the size of the quantum
program and improving its scalability.

4 Macro‑architecture of the proposed EQP

The emulated quantum processor proposed in this work is specifically designed to
execute quantum operations on a set of qubits that constitute the quantum state of
the machine. Acting as an isolated system, this emulator interacts with a host proces-
sor through a dedicated communication channel. The main processor sends format-
ted commands to the processor, instructing it to perform quantum operations on the
qubits and manipulate the quantum state. Until the processor receives a command to
read its state, the quantum state remains enclosed within the quantum machine rep-
resentation, leading to the assumption of a collapsed state for each qubit.

First and foremost, and before we get to the details of proposed design, let us
define the qubit internal representation used by this design. A qubit is represented
internally by two complex numbers: one representing the amplitude of ket �0⟩ and
the other that of ket �1⟩ . Each of the complex numbers are held as two float numbers
of 32 bits. So, a qubit is kept internally as four float numbers using 128 bits. The
sequence of these four float numbers will be made clear, in the next section, when
the structure of the quantum state memory is detailed.

The emulated quantum processor has the capability to execute quantum opera-
tions on one or more qubits of the machine state, utilizing either basic quantum
operators or operators generated dynamically based on the requests from the main
processor. Once a quantum instruction is executed, the processor waits for further
instructions, remaining idle until then. It can provide the most recent machine quan-
tum state upon request. The proposed emulator implements fundamental operators

7038 N. Nedjah et al.

1 3

such as H, X, Y, Z, T, S, I and CNOT, while any other quantum operator can be exe-
cuted if the corresponding basic operator matrix is loaded into the operator memory
[42].

Figure 1 depicts the communication between the main processor (MP) and the
proposed emulated quantum processor (EQP) using a half-duplex channel. The
choice of a half-duplex configuration acknowledges the sequential nature of quan-
tum algorithms, considering the potential dependence of the outcome on one or
more qubits from previous operations. Although a full-duplex configuration is also
feasible, it necessitates additional control mechanisms to manage data dependencies.
Quantum operations are requested by the main processor using descriptive blocks
that specify the desired basic quantum operation and the target qubit(s). For opera-
tions involving multiple qubits, multiple descriptors are needed to define the opera-
tion and the corresponding target qubits.

Figure 2 provides an overview of the macro-architecture of the proposed quantum
processor emulator. The interaction between EQP’s units is done via data, address
and control buses. There are 5 data buses: (1) ODATA is a unidirectional data bus.
It provides the calculation unit with the coefficients of the quantum operators’ matri-
ces; (2) SDATA is a bidirectional data bus. It allows the exchange of intermediate
results during the computation of the tensor products between operators of two or
more bits; (3) QDATA is a bidirectional data bus. It allows the exchange of states
of the qubits addressed by a quantum instruction, as sent by the main processor;
(4) MDATA is a bidirectional data bus. It allows the exchange of the states of the
observed qubits before and after measurements; (5) RANDOM is a unidirectional
data bus of 32 bits. It forwards the generated random number, necessary for state
measurement. The former four buses have 128 bits each.

The control unit of the EQP, referred to as UCO, manages the operation of the
data path within the architecture using a microprogram and dedicated components.
It is responsible for recording, decoding and interpreting quantum descriptors that
contain essential information about the quantum operation code and the target
qubit(s). Processor EQP utilizes three memory components:

1. Memory MQS (Memory for Quantum State) stores the machine quantum state,
which is the quantum state of the qubits.

2. Memory MOP (Memory for basic OPerator) stores the coefficients of basic opera-
tors used in quantum operations.

Emulated

Quantum Processor

EQP

Main Processor

MP
Half duplex channel

Fig. 1 Communication of the host processor and emulated quantum processor

7039

1 3

Dedicated hardware design for efficient quantum computations…

3. Memory MSC (Memory for SCratch computation) is a scratch memory that stores
coefficients of quantum operators for two or more qubits. These coefficients are
calculated based on the basic quantum operators. Further details about the mem-
ory organization can be found in [43].

The calculation unit of EQP is represented by the UCA unit. It performs tensor
products and matrix products, which are essential for various quantum operations.
Tensor product operations are required between qubits, between basic operators, and
between the calculated operator and the basic operator. Matrix product operations,
on the other hand, are necessary for combining an operator and a qubit.

The measurement unit, denoted as UMS, is responsible for performing the
measurement of the quantum state. It utilizes a pseudorandom number generator

Fig. 2 Emulated quantum processor macro-architecture

7040 N. Nedjah et al.

1 3

component called RNG to assist in the measurement process. When requested by the
main processor (MP), the UCO unit provides the measurement result or the prob-
abilities associated with different possible states.

5 Micro‑architecture of the proposed EQP

In this sequel, we describe the detailed micro-architecture of the composing memo-
ries and functional units of the proposed emulated quantum processor.

5.1 Quantum state memory

The quantum state memory (MQS) is a dual-port memory that allows both reading
and writing operations but does not support simultaneous read and write operations
at the same address. MQS is divided into two parts: MQB for qubit state memory
and MQC for qubit control memory. Both parts have an equal number of addresses,
and their contents are linked together for each address, creating a seamless extension
of each other. The purpose of this separation is to enable updating of only one of the
memories in certain situations during the execution of quantum instructions.

The number of addresses in MQS is sufficient to represent all possible states of
the quantum machine. Here, nq represents the maximum number of qubits in the
machine’s quantum state. The first nq addresses are reserved for storing the kets
(quantum states) of non-entangled or the first states of entangled qubits. The remain-
ing 2nq−1 − nq addresses are utilized to store the remaining quantum states regarding
the set of entangled qubits. These entries complement the coefficients of the column
vector stored in some of the nq initial addresses, which are required for the entan-
gled qubits. It is important to note that this memory organization allows the machine
to handle a maximum of nq qubit entanglements.

MQS is designed to hold two kets for each non-entangled qubit in the
machine’s quantum state at each address. It is augmented with additional data
to describe the amplitudes of each possible state relative to sets of two or more
entangled qubits. At each address a in MQS, the data is divided into two parts:

1. The coefficients (real and imaginary parts) for both kets of the qubit are stored
in MQB at address a. The word format in MQB consists of four fields of 32 bits
each (64 bits for each ket), as illustrated in Fig. 3.

2. The addresses of the first and next qubits in the entangled qubit list, to which the
qubit at address a belongs, are stored in MQC at address a. The format of MQC
consists of two fields of nq − 1 bits each and a third field of 1 bit, as depicted in
Fig. 4.

It is important to note that a word at address a − 1 of MQB holds the ath qubit of
the quantum state when it is not yet entangled or one of the possible combinations

7041

1 3

Dedicated hardware design for efficient quantum computations…

regarding an entanglement the ath qubit is part of. So, for instance, let us assume
a quantum machine of nq = 10 qubits. So, MQB and MQC have each 29 locations,
which is enough to store all possible 210 states if the 10 qubits were all entangled.
Recall that a single location in MQB holds the details of two possible states of
an entanglement (see Fig. 3). Initially, the first 10 locations keep the 10 not yet
entangled qubits. Let the three qubits, stored at address 2, 5 and 7, be entangled.
Then, four locations in MQB are required to store all 23 possible states regarding
the entanglement and other four locations in MQC are required to keep control
of this entanglement. So, the entangled states �0⟩ – �5⟩ will be kept in the proper
qubits’ locations, i.e., states �0⟩ and �1⟩ at locations 2, �2⟩ and �3⟩ at location 5 and
�4⟩ and �5⟩ at location 7. The remaining two states �6⟩ and �7⟩ will be stored in an
available extra location in MQB. If these three qubits are the first to be entangled
in the quantum machine, then this extra location will be of address 10. According
to the MQC word format of Fig. 4, at locations 1, we would have the data 2/5/1,
in location 5, the word would be set to 7/10/1, and at location 10, the stored word
would be 10/10/1. This example shows that any possible entanglement, i.e., in
terms of which qubits and/or how many qubits are involved, is fully functional.

Figure 5 illustrates the logic block of MQS, the memory component of the sys-
tem. MQS handles input and output data through the QDATA bus, which is organ-
ized into four parts. These parts represent the real and imaginary components of
the complex numbers that correspond to the amplitudes of the kets �0⟩ (even) and
�1⟩ (odd) of the qubits. This specific organization of data is chosen to facilitate the
design of unit UCA, as will be explained later. In the figure, the input pins for data,
address and control signals are depicted in black, white and gray, respectively. On
the other hand, the output pins for data and control signals are represented with
hatched and dotted patterns, respectively. It is important to note that there are no
output address signals in the design proposed.

The logic block of memory MQB, which stores information about the complex
numbers representing the amplitudes of the kets, is depicted in Fig. 6. In a quantum
algorithm, the non-entangled state of a qubit can be temporary and may change due
to entanglement. Therefore, the address initially assigned to a non-entangled qubit
will be repurposed to store the first two coefficients of the column vector represent-
ing the set of entangled qubits to which it belongs. One coefficient corresponds to

Fig. 3 Word format of memory
MQB

EvenRe EvenIm OddRe OddIm

ket |0〉 ket |1〉

32 bits 32 bits 32 bits 32 bits

Fig. 4 Word format of memory
MQC

FirstReg NextReg Entangled

nq − 1 bits nq − 1 bits 1 bit

7042 N. Nedjah et al.

1 3

�0⟩ (even) and the other to �1⟩ (odd). The even and odd references are essential for
understanding the design of unit UCA, which will be described later.

During the operation of EQP, each position in memory MQB is initialized with
the tuple (1.0, 0.0, 0.0, 0.0) according to the format shown in Fig. 3. This means that
the ket �0⟩ is represented by the values 1.0 in the real part and 0.0 in the imaginary
part, while the ket �1⟩ is represented by 0.0 in both the real and imaginary parts. It is
important to note that all data is stored in the IEEE754 standard floating-point num-
ber format, ensuring compatibility and accuracy.

In order to represent the qubit entanglement, each qubit in the quantum state is
associated with the addresses of the first and next qubits in the sequence of entan-
gled qubits it belongs to (see Fig. 4). Recall that the entanglement bit, included in
the stored word, indicates whether a qubit is entangled or not. For entangled qubits,
the entanglement bit is set to 1. In the case of a non-entangled qubit, both the first
and next qubit addresses are set to the address of the qubit itself. This information is
stored in memory MQC whose logic block is shown in Fig. 7.

It is important to mention that the parameter anq represents the number of bits
required to address a cell in both memories MQB and MQC. The binary decod-
ing output of the address from memory MQS is used as a read/write selector for
both MQB and MQC. To achieve this, two binary address decoders are utilized to
decode nq − 1 bits into the corresponding one-hot code of the address. As a result,
anq is equal to 2nq−1 bits, providing sufficient addressing capability for both MQB
and MQC.

To represent a sequence of e entangled qubits, 2e−1 locations are required in mem-
ory MQB, resulting in a total of 128 × 2e−1 bits. Both the even and odd coefficients
are stored in these locations to capture the entanglement. When performing a quan-
tum operation on a set of qubits, knowing the address of the first qubit is crucial, as

OddReWr 〈32〉
OddImWr 〈32〉
EvenReWr 〈32〉
EvenImWr 〈32〉

AddrRd 〈nq − 1〉
AddrWr 〈nq − 1〉

1

2

3

4

5

6

B
W
r
〈1
〉

B
R
d
〈1
〉

C
W
r
〈1
〉

C
R
d
〈1
〉

C
sW

r
〈1
〉

7 8 9 10 11

CsRd 〈1〉
EntangledWr 〈1〉
FirstRegWr 〈nq − 1〉
NextRegWr 〈nq − 1〉
FirstRegRd 〈nq − 1〉
NextRegRd 〈nq − 1〉

12

13

14

15

16

17

O
dd

R
eR

d
〈3
2〉

O
dd

Im
R
d〈
32

〉
E
ve
nR

eR
d
〈3
2〉

E
ve
nI
m
R
d
〈3
2〉

E
nt
an

gl
ed

R
d
〈1
〉

22 21 20 19 18

Quantum State Memory

(MQS)

Fig. 5 Logic block MQS for the quantum state memory

7043

1 3

Dedicated hardware design for efficient quantum computations…

the operation involves a matrix product that starts with the first row of the column
vector representing the entangled qubits. Since each MQB address contains infor-
mation for two rows of the column vector of e qubits, the number of positions to be
read during a quantum operation is 2e−1 , considering that each MQB address con-
tains four coefficients. Note that when resetting the quantum machine, each address
a in MQC is initially set to the tuple (a, a, 0).

Therefore, the total number of bits in the quantum state memory MQS is the sum
of the bits in memories MQB and MQC. Although both memories have the same
addressable space, ranging from 0 to 2nq−1 , their word sizes differ. Each position in
MQB has a fixed size of 128 bits, while each position in MQC has a variable size
depending on the number of qubits in the coprocessor. Each MQS word consists of
2nq − 1 bits. Hence, for nq qubits, the size of memory MQS in terms of bits can be
calculated as SizeMQS = 2nq(2 × nq + 129).

5.2 Operator memory

The quantum operator memory, MOP, is a read-only memory that stores the coef-
ficients of basic quantum operators. Each MOP address contains the coefficients of
a given row of the operator matrix, organized in the same manner as memory MQB.
For a basic 2 × 2 quantum operator, its coefficients are stored in two consecutive
MOP addresses. The logic block of memory MOP is illustrated in Fig. 8.

In MOP, the coefficients of the operator matrix are represented by the even and
odd columns, which respectively store the real and imaginary parts. For a 2 × 2
operator, the bits are arranged as follows: Bits 0… 31 represent the real part of the

OddReWr 〈32〉
OddImWr 〈32〉
EvenReWr 〈32〉
EvenImWr 〈32〉

BWr 〈1〉
AddrSelWr 〈nq − 1〉

1

2

3

4

5

6 AddrSelRd 〈nq − 1〉
BRd 〈1〉
OddReRd 〈32〉
OddImRd〈32〉
EvenReRd 〈32〉
EvenImRd 〈32〉

7

8

9

10

11

12

Q-Bit Memory

(MQB)

Fig. 6 Logic block MQB for the qubit memory

FirstRegWr 〈anq〉
NextRegWr 〈anq〉
EntangledWr 〈1〉

CsWr 〈1〉
CWr 〈1〉

AddrSelWr 〈anq〉

1

2

3

4

5

6 AddrSelRd 〈anq〉
CRd 〈1〉
CsRd 〈1〉
EntangledRd 〈1〉
FirstRegRd〈anq〉
NextRegRd 〈anq〉

7

8

9

10

11

12

Q-Bit Control Memory

(MQC)

Fig. 7 Logic block MQC for the qubit control memory

7044 N. Nedjah et al.

1 3

coefficient in the odd column, bits 32… 63 represent the imaginary part of the coef-
ficient in the odd column, bits 64… 95 represent the real part of the coefficient in the
even column, and bits 96… 127 represent the imaginary part of the coefficient in the
even column.

The number of bits required to address memory MOP is denoted as aop and is
calculated using the formula Aop = ⌈log2

�
1

2

∑nop

o=1
4noqo

�
⌉ . Here, nop represents the

number of basic operators, and noqo represents the number of qubits required by
operator o. Thus, aop corresponds to half the total number of complex coefficients
of the quantum operators implemented by EQP.

The storage arrangement of two complex numbers within an MOP address is
compatible with the arrangement of ket coefficients in memory MQB. This com-
patibility enables the design of efficient tensor and matrix multipliers, as discussed
in Sect. 5.5. The implemented quantum operators include I, X, Y, Z, H, S, T and
CNOT. It is important to note that for all other existing quantum operators, their cor-
responding matrices can be derived from the implemented ones.

In the quantum program, quantum operators are referenced using a unique code
associated with the initial address of the reserved range for that specific operator in
MOP. Instead of using three bits to represent the eight operators and an additional
lookup table to access the starting address of the operator matrix in MOP, we uti-
lize only four bits to indicate the address of the word associated with the requested
operator as stored in memory MOP.

The total number of bits in the operator memory, MOP, can be calculated
by summing the space required to store all permitted basic operators by the
coprocessor. Therefore, for the total of nop coefficients required for all con-
sidered basic operators, the size of memory MOP in terms of bits is given by:

SizeMOP = 128 × 2

�
⌈log2

�
1

2

∑nop

o=1
4noqo

�
⌉
�
.

5.3 Scratch memory

The scratch memory (MSC) is a dual-port read–write memory designed to store the
coefficients of quantum operators for multiple qubits. These coefficients are gener-
ated dynamically by performing tensor products of basic quantum operators. It is
important to note that MSC has limitations when it comes to simultaneous reading

Addr 〈aop〉
OEn 〈1〉

OddRe 〈32〉 3

2

1

OddIm 〈32〉
EvenRe 〈32〉
EvenIm 〈32〉

7

8

9
Operator Memory

(MOP)

Fig. 8 Logic block MOP for the quantum operator memory

7045

1 3

Dedicated hardware design for efficient quantum computations…

and writing operations at the same address. The logic block of MSC is illustrated in
Fig. 9.

Memory MSC utilizes a word structure similar to that of memory MQB, as
depicted in Fig. 3. In a manner analogous to memory MOP, each MSC address con-
tains two coefficients corresponding to a row of the operator matrix: one for the odd
column and another for the even column. These coefficients serve as inputs to the
two complex number multipliers embedded within the calculation unit UCA, which
facilitate efficient computation of both tensor and matrix products. The total number
of MSC addresses, denoted by a, is determined by the maximum number of qubits
that can be operated simultaneously in the quantum machine, denoted by mq. Conse-
quently, we have a = 4mq∕2 = 22mq−1 , and thus, amq = 2mq − 1 . It should be noted
that mq is limited by the total number of qubits in the quantum machine, denoted as
nq. Therefore, the upper bound on amq is 2nq − 1.

Memory MSC is exclusively employed during the construction and tempo-
rary storage of quantum operators involving more than two qubits, based on
the instructions extracted from the currently executing quantum program. The
total number of bits required by MSC can be calculated as the sum of the space
needed to accommodate the largest operator that the coprocessor can handle.
This is determined by the parameter mq. Consequently, the size of memory MSC
in terms of bits is SizeMSC = 128 × 22mq−1 and its upper bound can be defined as
SizeMSC = 128 × 22nq−1.

5.4 Measurement unit

The measurement unit UMS plays a crucial role in preparing the state of the quan-
tum machine upon request from the main processor. When a quantum state is meas-
ured, each qubit of the coprocessor collapses into either the state �0⟩ or �1⟩ . Many
ways have been proposed to simulate state measurement in quantum computing in
the computational basis of �0⟩ and �1⟩ state, depending on the model used and the
level of interference on the machine quantum state. Among other, we have the fol-
lowing state measurement models:

OddReWr 〈32〉
OddImWr 〈32〉
EvenReWr 〈32〉
EvenImWr 〈32〉

Wr 〈1〉
AddrWr 〈amq〉

1

2

3

4

5

6 AddrRd 〈amq〉
Rd 〈1〉
OddReRd 〈32〉
OddImRd〈32〉
EvenReRd 〈32〉
EvenImRd 〈32〉

7

8

9

10

11

12

Scratch Memory

(MSC)

Fig. 9 Logic block MSC for the scratch memory

7046 N. Nedjah et al.

1 3

• The projective measurement, after which the state collapses [44]. It is a fun-
damental method for performing state measurement in quantum computing. It
allows the extraction of classical information from a quantum system by project-
ing the quantum state onto the specified basis.

• The quantum non-demolition measurement, which is a technique that allows the
extraction of the information about a quantum state without disturbing it [45];

• The weak measurement, which involves performing a weak interaction with the
quantum system, providing partial information about the state without fully col-
lapsing it [46]. The outcome is based on averaging multiple weak measurements
to yield the quantum state’s properties;

• The quantum state tomography, which is a technique used to fully characterize an
unknown quantum state. It involves performing measurements in multiple bases
to reconstruct the density matrix representing the quantum state [47]. Quantum
state tomography is especially useful for verifying the fidelity of quantum opera-
tions and diagnosing errors in quantum circuits;

• The homodyne detection, which used for continuous-variable quantum systems,
such as those in quantum optics. It involves measuring the quadrature amplitudes
of a quantum state [48].

In the proposed design, we use the standard projective measurement model. We
propose a simple yet effective implementation. It is noteworthy to point out that no
specifics about a functional implementation of the measurement process have been
found. In our approach, each of the 2nq possible states for the nq qubits, either entan-
gled or not, in the coprocessor (where nq ≥ 1) is associated with a specific probabil-
ity value, as explained in 2. We adopt the proportional selection model, commonly
known as the “roulette” model, which is widely used in genetic algorithms during
the selection phase of individuals to form the next-generation population [49]. In
this model, the probability interval [0, 1[, which is the range covered by the pseudor-
andom number generator, is divided into n non-overlapping subintervals. The exten-
sion of each subinterval is proportional to the score assigned to the corresponding
individual [49].

Applying the aforementioned concept to the possible quantum states of the
coprocessor, where each state is treated as an individual, the associated probabil-
ity determines the extension of the subinterval representing that quantum state.
So, in the case of the measurement of a single non-entangled qubit defined by
�v⟩ = ��0⟩ + ��1⟩ , there two subintervals

[
0.0, |�|2[for a state outcome of a classi-

cal 0-bit and
[|�|2, |�|2 + |�|2[for a state outcome of a classical 1 bit. Recall that

|�|2 + |�|2 = 1.
Similarly, in the case of n entangled bits, with 1 ≤ n ≤ nq , defined as

�v⟩ = ∑n−1

i=0
�i�i⟩ , there are n subintervals with the first one defined by

[
0.0, |�0|2

[

while the remaining subintervals related to states �i⟩ , for 1 ≤ i ≤ n − 1 , are defined
as
�∑n−2

i=0
��i�2,∑n−1

i=0
��i�2

�
 . Also, recall that

∑n

i=0
��i�2 = 1 . Table 4 summarizes the

subinterval configuration for n qubits. It is fundamental to emphasize that the subin-
tervals re dependent on the qubits that are being observed. So, for every measure-
ment, a new range configuration is yielded by the measurement process.

7047

1 3

Dedicated hardware design for efficient quantum computations…

So, for instance, consider a measurement of quantum register of 2 entangled qubits
and the squared amplitudes presented in the second column of Table 5. The corre-
sponding subintervals are defined based on the values provided in the last column of
the same table. The resulting roulette wheel for this case is illustrated in Fig. 10.

When a state measurement takes place, the range configuration is first set up
based on the amplitudes associated with the specified qubits for which an obser-
vation is required. Then, a pseudorandom number r is drawn. The quantum state
�i⟩ , for which r falls in its associated subinterval, is selected and the classical bit-
wise representation of state �i⟩ is thus the outcome of the measurement process. All
qubits involved in such measurement process are then collapsed to their correspond-
ing state in �i⟩ . For instance, let us assume that the configuration of Table 5 is built
based on the amplitudes of the 2-qubit register �v⟩ = �q0q1⟩ for which a measurement
operation is required. If random number r = 0.25 is drawn, then the observed state
�01⟩ is selected. Hence, qubits q0 and q1 will collapse to quantum states �0⟩ and �1⟩ ,
respectively. So, the measurement process implement in such a way is completely
stochastic and depends on the faithfully on the amplitudes of the observed qubits.

The micro-architecture of the measurement unit UMS is illustrated in Fig. 11. It
consists of a local control unit CUnit, responsible for coordinating the different steps
of a measurement operation. Upon receiving the signal StartMs, UMS obtains the
coefficients from each address in the MQB memory, denoted as OddReRd, Odd-
ImRd, EvenReRd and EvenImRd. Using the functional unit RgCalc, it initiates the
quantum state measurement process. First, it computes the upper limits for each
sub-range based on the given coefficients. The lower limit of the first subinterval

Table 4 Configuration for
quantum state amplitudes for n
entangled qubits

State Squared amplitude Range

�0⟩ |�0|2 [0.0, |�0|2[
�1⟩ |�1|2 [|�0|2, |�0|2 + |�1|2[
… …

�i⟩ |�
i
|2 [i−2

∑

i=0
|�i−1|2,

i−1
∑

i=1
|�i|2

[

… …

�n − 1⟩ |�
n−1|2 [n−2

∑

i=1
|�i|2, 1.0

[

Table 5 Configuration example
of state squared amplitudes for 2
entangled qubits

State Squared amplitude Range

�00⟩ 0.15 [0.0, 0.15[
�01⟩ 0.20 [0.15, 0.35[
�10⟩ 0.25 [0.35, 0.6[
�11⟩ 0.4 [0.6, 1.0[

7048 N. Nedjah et al.

1 3

is always 0, while the subsequent subintervals have the higher limit of the previous
range as their lower limit. The 2nq values corresponding to the sub-ranges, where
nq is the number of qubits in the coprocessor, are then stored in the local memory
LMem, implemented as a lookup table and retrieved when necessary.

Functional unit UMS determines the distribution and extension of the subinter-
vals based on the tensor product of all qubits in MQB and the obtained amplitudes
for each state. It compares these values with the generated pseudorandom number
rand from the RNG unit in parallel, using the Cmp unit. The comparison is per-
formed for all contents of the LMem positions simultaneously. A match is declared
when the 1-bit result of the comparison is set for the state �2i⟩ , while the result for
state �2i−1⟩ is reset. The selected quantum state is then recorded in the MQB memory
by setting the n qubits in MQB accordingly. For �0⟩ qubits, the coefficients (1.0, 0.0,
0.0, 0.0) are used, and for �1⟩ qubits, (0.0, 0.0, 1.0, 0.0) is used, based on the binary
representation of the observed state 2i . It is important to note that all data are stored
in the IEEE754 standard floating-point number format.

Furthermore, after a measurement operation, all qubits are assumed to be in a
collapsed state, and any existing entanglements must cease to exist. Therefore, all
entries in the MQC memory for the observed qubits are reinitialized. The content of
each address a is set as (a, a, 0) according to the MQC word format shown in Fig. 4.
Once this process is complete, the signal EndMs is triggered to indicate the comple-
tion of the measurement operation.

The proposed macro-architecture includes the RNG component, which utilizes
the linear feedback shift register (LFSR) principle to generate pseudorandom num-
bers within the range [0, 1[. The LFSR is a type of shift register where the input
bit is determined by a linear function based on the previous state, as illustrated in
Fig. 12. The XOR operation is the only available linear function in this case. The
register acts as an offset register, with its input bit being influenced by the XOR
operation of certain bits within the register, causing a random change in its value.
The specific bit positions that affect the next state are referred to as taps.

In an LFSR register with n bits, the maximum period of cycles before the
sequence repeats is equal to 2n − 1 . To ensure that the generated numbers fall within
the interval [0, 1[, the function is applied to the eight most significant bits of the
mantissa and the four least significant bits of the exponent. This configuration guar-
antees that the generated numbers remain within the specified interval [50, 51].

Fig. 10 Example roulette wheel
configuration for proportional
selection regarding the setting
of Table 5

|00〉: 15%

|01〉: 20%

|10〉: 25%

|11〉: 40%

7049

1 3

Dedicated hardware design for efficient quantum computations…

5.5 Quantum calculation unit

The calculation unit (UCA) plays a crucial role in computing complex numbers
required for various quantum operations, including the tensor product of quantum
operators, tensor product of qubits, matrix product between operators, quantum reg-
ister of qubits and the summation of complex numbers. It receives data from three
memories: MSC, MQS and MOP. The control unit (UCO) manages the operations
of other components within EQP. The micro-architecture of UCO is depicted in
Fig. 13, illustrating its connections and functions.

The UCA is connected to two input data buses and two output data buses, each
with a width of 128 bits. The first input data bus is responsible for transmitting coef-
ficient pairs from memory MQS, representing the column vector that represents a
single qubit or a set of qubits. The second input data bus carries coefficient pairs
from either memory MOP or MSC. MOP supplies coefficients of basic quantum
operators, while MSC provides coefficients of operators constructed for two or more
qubits.

Additionally, the UCA unit is connected to output data buses dedicated to writing
data in MSC and MQS independently. The data intended for the MSC writing data
bus pertains to intermediate results of the ongoing tensor product calculation. On
the other hand, the data intended for the MQS writing data bus relates to the final
result of the tensor product involving qubits or the matrix product between a quan-
tum operator and a single qubit or a register of qubits.

Fig. 11 Micro-architecture of the measurement unit UMS

S

0 0 1 0 1 1 0 11 001 1...

Exponent Mantissa

Fig. 12 Configuration of the LFSR for the generation of random numbers

7050 N. Nedjah et al.

1 3

In the architecture depicted in Fig. 13, several registers play specific roles in the
computation process. RMC1 and RMC2 are registers that store the coefficients of
the qubit or operator currently undergoing multiplication. RMCTP1 and RMCTP2
hold the coefficients of the second row of basic quantum operators when perform-
ing a tensor product. RMCEX11… n and RMCEX21… n are a set of n registers
designed to store data from the positions in MQS that are involved in the quantum
operation before the operation is executed. The number of these registers is deter-
mined by n = 2p − 2 , where p represents the maximum number of qubits on which
an operator can act. RMCTP11 and RMCTP21 store the coefficients of the first row
of the basic quantum operator, while RMCTP12 and RMCTP22 store the coeffi-
cients of the second row.

The components MULTC1 and MULTC2 function as multipliers of complex
numbers, while SUMC1 and SUMC2 are adders of complex numbers. The first
adder is responsible for summing up two partial products in a matrix multiplication
between an operator and a set of qubits. The second adder accumulates the partial
products of an operator matrix row with the column vector represented by one or
more entangled qubits. This accumulation process is achieved by iteratively using
the complex number register RSC. Register RSP holds the intermediate complex
number resulting from the sum of computed partial products. It temporarily stores
this value in MSC until the corresponding final result is available and can be written
to the appropriate address in MQS.

Fig. 13 Micro-architecture of the calculation unit UCA

7051

1 3

Dedicated hardware design for efficient quantum computations…

The complex number multipliers, MULTC1 and MULTC2, are based on a simple
precision floating-point arithmetic unit (FPU) [52]. Four multipliers, one adder and
one subtractor are employed in this architecture. Considering two complex numbers
as ordered pairs (A, B) and (C, D), where A and C represent the coefficients of the
real part and B and D represent the coefficients of the imaginary part, their multipli-
cation yields a complex number represented by the pair (AC − BD,AD + BC) . The
four multiplications required to obtain the partial products AC, AD, BC and BD are
performed in parallel. Once the products are ready, the sum AD + BC and the differ-
ence AC − BD are computed concurrently. The micro-architecture of the complex
number multiplier is depicted in Fig. 14.

Since the FPU operates continuously, independent of a specific trigger, the com-
plex number multiplier can be serially supplied with data, and the results are sequen-
tially made available. Each FPU considers the data present at its input pins during
the rising transition of the clock and the result is sampled during the rising transition
of the clock as well. The number of clock cycles required to obtain the correct result
is determined by the FPU’s latency parameter. For multipliers, this parameter is set
to 3 clock cycles, while for adders and subtractors, it is set to 2.

To ensure efficient operation, different clock signals are used for the multiplier
and adder/subtractor. This design allows the products to be available for use by the
adder/subtractor before the next transition of the multiplier’s clock signal. Without
this approach, a delay of 1 clock cycle would be introduced for every complex num-
ber multiplication, leading to significant delays when performing quantum opera-
tions involving multiple qubits.

The total number of complex number multiplications in a quan-
tum operation involving n ≥ 2 qubits can be calculated as
2n + 4n + 4n = 2n + 4n+1 = 2n + 22(n+1) = 23n+2 . This total includes the tensor
product of the n qubits, augmented by the tensor product required to obtain the
desired quantum operator from basic ones, and further augmented with the matrix

Fig. 14 Micro-architecture of the complex number multiplier

7052 N. Nedjah et al.

1 3

multiplication between the obtained quantum operator and the result of the tensor
product of the qubits involved in the operation. For example, a single quantum oper-
ation on 3 qubits would require the coprocessor to perform 6,144 clock cycles for
floating-point multiplications.

5.6 Control unit

The control unit UCO plays a vital role in synchronizing the operation of EQP’s
remaining components. It utilizes a microprogram and several auxiliary components
to coordinate and manage the actions of the macro-architecture based on instruc-
tions from the main processor. By employing planned micro-orders and dedicated
controllers, UCO effectively orchestrates the functionality of other components
within EQP. The micro-architecture of UCO, illustrating its internal structure, can
be seen in Fig. 15.

Unit UCO includes one memory, two counters, five registers, five controllers
and two address converters. Their functions are detailed as follows: (1) JumpC-
trl handles conditional and unconditional jumps within the microprogram; (2)
InstCtrl is the instruction controller; (3) MPR is the read-only control memory
wherein the microprogram resides; (4) MPR-AddrReg is the address register
of the control memory; (5) MIR is the micro-instruction register; (6) OpTPC-
trl controls the computation of the tensor product of quantum operator, starting
from basic ones; (7) OpTPRecCtrl manages the recording of tensor product in
MSC; (8) QbNumReg stores the quantity of current qubits regarding the quan-
tum operator in construction; (9) MOP-AddrReg is the address register of coef-
ficients in memory MOP; (10) QbTPCtrl controls the computation of the tensor
product of quantum bits as well as matrix product; (11) MSC-AddrRdCnt and
MSC-AddrWrCnt are the address counters for reading and writing in memory
MSC; (12) MQS-AddrRdReg and MQS-AddrWrReg are the address registers for
reading and writing into memory MQS. (13) MSC-AddrRdConv and MSC-Addr-
WrConv are converters of reading and writing addresses of the tensor product
coefficients in memory MSC, respectively. Moreover, unit UCO handles SADDR-
Rd and SADDR-Wr, which are the address buses for accessing memory MSC in
read and write modes, respectively; OADDR, which is the address bus for reading
form memory MOP; QADDR-Rd and QADDR-Wr, which are the address buses
for accessing memory MQS in read and write modes, respectively; and QDATA,
which is the main data bus for memory MQS.

The main processor interacts with the emulated quantum processor by trans-
mitting quantum operations in a sequential manner, with each operation consist-
ing of a fixed-size instruction. The size of an instruction is predetermined and
remains consistent throughout the communication. The execution of a quantum
operation requires a specific number of instructions, which is determined by
the number of qubits involved. The quantum instruction format comprises three
essential components: the quantum operator code, the target qubit to which the
operation is applied and a flag indicating whether it is the final instruction in
the quantum operation. The structure of a quantum instruction is illustrated in

7053

1 3

Dedicated hardware design for efficient quantum computations…

Fig. 16, where m denotes the total number of available quantum operators and
n represents the number of qubits in the quantum state. Once the last instruc-
tion flag is set to 1, the instruction controller (InstCtrl) ceases to await further
instructions.

The InstCtrl component is responsible for receiving and storing the set of
instructions for a quantum operation transmitted by the main processor. The logic
block of the instruction controller is depicted in Fig. 17. When input control sig-
nals 1 and 2 are activated, the instruction controller can either request the next
instruction of the quantum operation or reset the pointer to the instruction buffer.
The output flags 3–5 indicate the status of any remaining instructions that are
yet to be executed. Output data signals 6–8 provide information about the cur-
rent instruction being executed, the number of qubits in the first instruction and
the total number of instructions in the current quantum operation, respectively.
Output address signal 9 indicates the last address that was read in memory MOP.

Fig. 15 Micro-architecture of the control unit UCO

7054 N. Nedjah et al.

1 3

The input pins for data, address and control signals are represented by black,
white and gray lines, respectively. On the other hand, the output pins for data,
address and control signals are denoted by hatched west, hatched east and dotted
lines, respectively.

The task coordination as performed by the UCO to execute quantum opera-
tions is accomplished through the execution of a microprogram stored in the con-
trol read-only memory MPR. This microprogram comprises a sequence of micro-
instructions, given in the format shown in Fig. 18.

The micro-instruction format consists of three pieces of information. The first
is the Micro-orders field, which contains a set of commands used to activate the
data path components, including units UCA, UMS and the read/write operations
of the different memories.

The second field of the micro-instruction is Flags, which consists of a collec-
tion of status flags used in micro-instructions that require conditional jumps. There
are two conditional jump instructions: One checks whether a specific flag is set to
high, while the other checks whether the flag state is different from high. The cur-
rent design utilizes ten flags: MQBRdAddrZero and MQBWrAddrZero, indicat-
ing whether the address to read from/write to memory MQB is zero, respectively;
NoInst, indicating an empty list of instructions; PlusOp, indicating the presence of
more than one quantum operator in the current quantum operation; LastInst, signify-
ing that the current instruction is the last in the quantum operation; EntangledBit,
indicating the presence of at least one entangled qubit in the specified set of qubits;
MSCRdAddrZero and MSCWrAddrZero, indicating whether the address to read
from/write to memory MSC is zero, respectively; TPOpComplete and TPQbCom-
plete, indicating the completion of the tensor product of the operators listed in the
instructions and the qubits specified in the instructions, respectively.

Fig. 16 Format of a quantum
instruction

Operator code Q-bit number IsLastInstruction

�log2 m� bits n bits 1 bits

InstReq 〈1〉
RstPtrInst 〈1〉

NoInst 〈1〉
YetInst 〈1〉
LastInst 〈1〉

3

2

1

4

5 CurrentInst 〈�log2 m�+ n+ 1〉

NumQbit 〈n〉

NumInst〈�log2 m�〉

MOPLastAddr 〈5〉

7

8

9

6

Instruction Controller

(InstCtrl)

Fig. 17 Logic block of component InstCtrl

Fig. 18 Format of a micro-
instruction

Micro-orders Flags Operand

64 bits 10 bits p bits

7055

1 3

Dedicated hardware design for efficient quantum computations…

The third field of the micro-instruction, termed as Address, serves multiple pur-
poses. It can represent one of four items: the address of a qubit in memory MQB, an
address in memory MOP when accessing the coefficients of a basic quantum opera-
tor, an MPR address to jump to or a specific value to be loaded when required. The
number of bits p allocated for this field is determined by the largest size needed to
accommodate any of the four cases.

The MPR address register is implemented as an up-counter with a preset option,
enabling the sequencing of micro-instructions that do not deviate from the primary
flow of the program. When a jump instruction occurs and the jump condition is met,
the address provided in the micro-instruction is loaded into this counter. The JumpC-
trl component, illustrated in Fig. 19, guarantees the update of the MPR register.

Unit UCO is equipped with specialized components that facilitate the execution
of tensor products between qubits and quantum operators, as well as the computa-
tion of matrix products. One of these components is QbTPCtrl, which is responsible
for managing the read/write addresses for memory MQB, controlling the records of
memory MQC and handling the multiplexers and registers of unit UCA. Component
QbTPCtrl ensures the generation of the desired tensor product. This is detailed in
Sect. 5.6.1. Another essential component is OpPTCtrl, which handles the sequencing
and synchronization of the read/write addresses for memory MSC. It also manages
the multiplexers and registers of unit UCA to produce the required composed opera-
tor from the available basic operators stored in memory MOP. Moreover, component
OpPTCtrl ensures the proper execution and generation of the composed operator.
This is detailed in Sect. 5.6.2. Comprehensive information on these controllers, their
functionality and some illustrated examples of their operation can be found in [42].

5.6.1 Controller of the qubit tensor and matrix products

In order to produce the required tensor product, component QbTPCtrl takes control
of the read/write addresses for memory MQB, the control records of memory MQC,
as well as the multiplexers and registers of unit UCA to produce the requested tensor

Fig. 19 Micro-architecture of
controller JumpCtrl

7056 N. Nedjah et al.

1 3

product. The tensor product of qubits requires not only the appropriate mathemati-
cal operation but also the handling of the control records associated with the qubits
involved. Recall that these control records, depicted in Fig. 7, form a linked list that
contains all the necessary information for the column vector representation of the
entangled qubits.

When performing operations with entangled qubits, the linked records are pro-
cessed sequentially, starting from the first record and following the link order until
the last record. The intermediate results of the tensor product, obtained from the
entangled qubits and the subsequent qubit as indicated in the associated records in
MQC, are generated by multipliers MULTC1 and MULTC2. These results are then
placed on the data bus of memory MQB, ready for a write operation. Component
QbTPCtrl commands the tensor multiplication between the coefficients of the qubit
set specified in the records and the qubit indicated in the next record. The address to
be used in the read operation is stored in register MQS-AddrRdReg. The number of
records needed in MQB to store the coefficients of the column vector representing
the entangled qubits is 2q−1 , where q is the number of qubits referenced in the asso-
ciated records.

Controller QbTPCtrl is triggered to initiate the tensor product by a high-level
input signal. When triggered, it takes control of the coprocessor components. The
controller operates based on the following inputs:

1. Overall number of operators of the current quantum operation;
2. Number of the qubit of the first instruction in the current quantum operation;
3. Number of the qubit of the current instruction;
4. Control record of the qubit referred to in the current instruction;
5. Current micro-instruction;
6. Control register wherein the new control data will be stored in MCQ;
7. Address of the qubits wherein the data will be stored in MQB;
8. Address used to update the qubit number register.

Once the controller receives the flag indicating the completion of the requested ten-
sor product computation, it enables the writing of the result into memory MQS. The
address to be used for this write operation is stored in register MQS-AddrWrReg. It is
important to note that registers MQS-AddrRdReg and MQS-AddrWrReg are imple-
mented as up-counters with a preset option. This allows for sequential reads/writes
during the initialization/measurement of qubits, facilitating the setup and observation
of the quantum state of the machine. Additionally, the preset option enables the regis-
ters to use a target address for isolated read/write operations, as may occur in a tensor
product between qubits or in a matrix product involving two or more qubits.

5.6.2 Controller of operator tensor product

Controller OpPTCtrl is responsible for controlling the sequencing and synchroniza-
tion of the read/write addresses of memory MSC, as well as the multiplexers and
registers of unit UCA, in order to generate the desired composed operator from the

7057

1 3

Dedicated hardware design for efficient quantum computations…

available basic operators stored in memory MOP. When triggered, this controller
uses relative addresses to access the coefficients of the quantum operator stored in
MSC memory, starting from the last pair of coefficients and moving towards the
first pair. The converters MSC-AddrRdConv and MSC-AddrWrConv are utilized
to determine the corresponding absolute addresses based on the relative addresses
managed by OpPTCtrl. The relative address from which the reading starts depends
on the number of qubits handled by the current quantum operator stored in MSC
memory. The total number of addresses occupied in MSC by the operator is given
by 22oq−1 , where oq represents the number of qubits involved in the operator.

During the construction of a two-qubit operator, the two basic operators to be
multiplied are read from memory MOP, and the resulting tensor product is stored in
memory MSC. For operators involving three or more qubits, the operator read from
memory MSC is tensor multiplied with the operator provided by memory MOP. The
resulting operator is then written back into memory MSC. Read and write opera-
tions in MSC may occur simultaneously but always at different addresses. During
the construction of an operator for two or more qubits, OpPTCtrl follows a predeter-
mined address sequence to reference the operator’s coefficients. This sequence starts
from the first pair of coefficients in the first row and ends at the last pair of last row
coefficients.

The address converters, MSC-AddrRdConv and MSC-AddrWrConv, are
responsible for computing the destination address in MSC memory using
Aabs = 2mq−oq

(
Arel − Arel mod 2oq−1

)
+ Arel mod 2oq−1 . Here Aabs represents the

absolute address while Arel relative one. Recall that oq denotes the number of qubits
the operator that is being constructed will operate on while and mq the maximum
number of qubits that the coprocessor can handle simultaneously.

Controller OpTPCtrl is responsible for activating the appropriate control signals
for the multiplexers and registers of UCA in order to correctly input the coefficients
into the multipliers MULTC1 and MULTC2. It also controls the enable signal for
the write operation, which determines when the partial results of the operator tensor
product are stored in memory MSC. This enable signal remains active for a dura-
tion of 4 clock cycles after the start of the tensor product, which corresponds to the
latency of the complex number multiplier.

Additionally, OpTPCtrl provides the recording converters MSC-AddrRdConv
and MSC-AddrWrConv with two signals that play a role in determining the read/
write address in memory MSC. These signals are the column number of the selected
coefficient from the first operator and the row number of the selected coefficient
from the second operator. By utilizing these signals, the address converters can
accurately compute the appropriate address for reading and writing operations in
memory MSC.

Controller OpTPRecCtrl is responsible for recording the tensor product results
in memory MSC. Its main function is to control the sequencing of MSC addresses
where the results of the operator tensor products need to be written. The controller
utilizes two key inputs: the largest relative address of the next quantum operator,
which is obtained from a specific register, and the relative address counter MSC-
AddrWrCnt. To initiate the recording process, OpTPRecCtrl requires a count-
ing enable signal, which is provided by the current micro-instruction. This signal

7058 N. Nedjah et al.

1 3

triggers the controller to start counting clock cycles, considering the latency of the
complex number multiplier needed to compute the product. Once the countdown
reaches its conclusion, the writing enable signal is activated. This signal indicates
that the writing phase of the results has commenced. When the relative address
reaches 0, the counter MSC-AddrWrCnt is reset, preparing it for the next recording
operation.

Register QbNumReg functions as an up-counter and serves as a register. Its pur-
pose is to store the number of qubits in the current operator. Various components,
namely MSC-AddrRdCnt, MSC-AddrWrCnt, MSC-AddrRdConv and MSC-Addr-
WrConv, utilize this register to determine the largest relative address of the opera-
tor being constructed. During the iteration of the tensor product sequence between
operators, QbNumReg is incremented at the end. This ensures that the register holds
the updated value for the subsequent operator construction. When the construction
of an operator commences, the initial value of QbNumReg is set to 2, indicating the
presence of two qubits.

6 Simulation results

This section offers proof of the precise performance of the proposed design of EQP
by showcasing simulations that highlight two specific aspects of its operation during
the execution of a quantum instruction. For more details, refer to the relevant infor-
mation provided in [42].

6.1 Operation on non‑entangled qubits

In this simulation, we demonstrate that a non-entangled quantum operation on n
qubits with n ≥ 2 can be achieved by sequentially applying n quantum operations,
each on a single qubit. Specifically, we apply the quantum operator NOT on two
non-entangled qubits, resulting in the collapse of the qubits into the state �0⟩ . A
quantum NOT operator for 2 qubits that can be obtained from the one for 1 qubit is
shown in Eq. 2:

The column vector formed by the tensor product of 2 qubits, each in state �0⟩ , is
defined as: �0⟩⊗ �0⟩ = [1 0]⊗ [1 0] = [1 0 0 0]T . The matrix-based repre-
sentation of this operation is defined as: (NOT ⊗ NOT)(�0⟩⊗ �0⟩) = [0 0 0 1]T.

The NOT operation is executed on two qubits in two distinct steps, with each
qubit undergoing a separate NOT operation. The time diagram of this process is
illustrated in Fig. 20, showcasing the execution of the two NOT operations on a sin-
gle qubit.

(2)NOT ⊗ NOT =
[

0 1
1 0

]

⊗
[

0 1
1 0

]

=

⎡

⎢

⎢

⎢

⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

7059

1 3

Dedicated hardware design for efficient quantum computations…

For a closer look at the time period encompassing these two operations, a
zoomed-in view is presented in Fig. 21. Figures 22 and 23 show, respectively, the
time diagram of the first and second NOT operation.

The NOT operation on two qubits is accomplished using two descriptive instruc-
tions encoded in the signal CurrentInst. The first instruction, 02 01 1, represents the
NOT operation on qubit #1 and is not the final instruction of this operation. The
second instruction, 02 02 0, signifies the NOT operation on qubit #2 and serves
as the last instruction of this operation. Initially, the signal NoInst is set to a high
level until an instruction is provided by the host processor. Subsequently, the signal
InstReq is activated multiple times until the final instruction in the current quantum
operation is reached, while also verifying if at least one qubit is entangled in the cur-
rent instruction. In the simulated example, this condition occurs twice. If there is no
entangled qubit, the signal RstPtrInst is triggered, enabling the instruction controller
InstCtrl to supply the data of the first instruction the next time the signal InstReq is
issued. Once the final instruction of the quantum operation is selected, the signal
LastInst is set to a high level. The signal InstReq is initially activated after initial-
izing the instruction pointer. In the given example, the quantum NOT operators are
applied to qubits in the collapsed state �0⟩ . The calculations and results presented in
the operation on one qubit are repeated separately for both qubits.

6.2 Operation on entangled qubits

When performing quantum operations on entangled qubits or when the operation
results in entanglement between qubits, a quantum operator needs to be constructed
using tensor product. This section presents three case studies:

1. Constructing a quantum operator for operating with 2 qubits when the memory
MSC can only accommodate operators for 4 qubits.

InstCtrl

{ZZ} {... {02} {01} {1} {02} {02} {0} {02} {01} {1} {02} {02} {0}

MQB

3F80... 3F80...

0000... 0000...

0000... 0000...

0000... 0000...

1 2

0... 0...

0... 0...

3... 3...

0... 0...

1 1 2 2

MOP

0000... 3F800000 0000... 3F800000

00000000 00000000

3F80... 00000000 3F80... 00000000

00000000 00000000

XX 02 03 02 03

InstCtrl

InstReq

RstPtrInst

NoInst

LastInst

CurrentInst {ZZ} {... {02} {01} {1} {02} {02} {0} {02} {01} {1} {02} {02} {0}

MQB

OddReRd 3F80... 3F80...

OddImRd 0000... 0000...

EvenReRd 0000... 0000...

EvenImRd 0000... 0000...

BRd

AddrRd 1 2

OddReWr 0... 0...

OddImWr 0... 0...

EvenReWr 3... 3...

EvenImWr 0... 0...

BWr

AddrWr 1 1 2 2

MOP

OddRe 0000... 3F800000 0000... 3F800000

OddIm 00000000 00000000

EvenRe 3F80... 00000000 3F80... 00000000

EvenIm 00000000 00000000

Addr XX 02 03 02 03

OEn

Fig. 20 Matrix product of a NOT operation on two non-entangled qubits

7060 N. Nedjah et al.

1 3

2. Constructing a quantum operator for operating with 3 qubits when memory MSC
can only store operators for 4 qubits.

InstCtrl

InstReq

RstPtrInst

NoInst

LastInst

CurrentInst {... {02} {01} {1} {02} {02} {0}

MQB

OddReRd 3F800000 3F800000

OddImRd 00000000 00000000

EvenReRd 00000000 00000000

EvenImRd 00000000 00000000

BRd

AddrRd 1 2

OddReWr 00... 00...

OddImWr 00... 00...

EvenReWr 3F... 3F...

EvenImWr 00... 00...

BWr

AddrWr 1 1 2 2

MOP

OddRe 00000000 3F800000 00000000 3F800000

OddIm 00000000 00000000

EvenRe 3F800000 00000000 3F800000 00000000

EvenIm 00000000 00000000

Addr ... 02 03 02 03

OEn

Fig. 21 Amplified view of the two NOT operation on the qubit

InstCtrl

InstReq

RstPtrInst

NoInst

LastInst

CurrentInst {... {02} {01} {1}

MQB

OddReRd 3F800000

OddImRd 00000000

EvenReRd 00000000

EvenImRd 00000000

BRd

AddrRd 1

OddReWr 00...

OddImWr 00...

EvenReWr 3F...

EvenImWr 00...

BWr

AddrWr 1 1

MOP

OddRe 00000000 3F800000

OddIm 00000000

EvenRe 3F800000 00000000

EvenIm 00000000

Addr ... 02 03

OEn

Fig. 22 Detailed view of the first NOT operation

7061

1 3

Dedicated hardware design for efficient quantum computations…

3. Constructing a quantum operator for operating with 3 qubits when memory MSC
can handle operators for 4 qubits.

In the case where the scratch memory MSC can only hold an operator for 4 qubits
with 128 addresses, the example utilizes only 8 addresses to store the 16 coefficients
of the NOT operator for 2 qubits, which is constructed from two NOT operators for
1 qubit.

The process begins by obtaining the coefficients of the first row from mem-
ory MOP, followed by retrieving the coefficients of the second row for the NOT
operator on 1 qubit, which are stored in the registers of the calculation unit UCA.
Subsequently, the coefficients of the second basic quantum operator are read from
memory MOP and temporarily stored in the registers of unit UCA. The tensor
product operation between these operators generates 8 coefficients, which are
then stored in memory MSC. The timing diagram illustrating this process is pre-
sented in Fig. 24.

When qubits are entangled or targeted by an operation that results in entangle-
ment, a total of 2n memory positions are required to store the coefficients of the

InstCtrl

InstReq

RstPtrInst

NoInst

LastInst

CurrentInst ... {02} {02} {0}

MQB

OddReRd 3F800000

OddImRd 00000000

EvenReRd 00000000

EvenImRd 00000000

BRd

AddrRd 2

OddReWr 00...

OddImWr 00...

EvenReWr 3F...

EvenImWr 00...

BWr

AddrWr 2 2

MOP

OddRe 00000000 3F800000

OddIm 00000000

EvenRe 3F800000 00000000

EvenIm 00000000

Addr ... 02 03

OEn

Fig. 23 Detailed view of the second NOT operation

7062 N. Nedjah et al.

1 3

column vector representing the entangled qubits, where n represents the number
of qubits involved in the operation. Each memory address can hold two coeffi-
cients. As a result, the first 2nq−1 memory positions of memory MQB, which were
initially designated for tracking the kets of each non-entangled qubit, are now
utilized to store the initial pairs of coefficients that constitute the entangled col-
umn vector. If more than two qubits are involved, additional memory positions
are allocated to store the remaining coefficients.

For instance, consider nq = 4 and the tensor product on two qubits (n = 2) that
are in the collapsed state �0⟩ : [1 0]T ⊗ [1 0]T = [1 0 0 0]T . Table 6 presents the
values of the coefficient pairs stored at each memory address in MQB before and
after the tensor product operation. In this particular example, the same two mem-
ory positions are sufficient to store the four coefficients of the resulting column
vector.

Figure 25 shows the timing diagram regrading to the aforementioned tensor prod-
uct. Markers READ and WRITE are separators of the signal groups, associated with
the read and write operation of memory MQB, respectively.

MOP

Addr 2 3 2 3

OEn

ODATA

OddRe 00000000 3F80... 00000000 3F80...

OddIm 00000000 00000000

EvenRe 3F800000 0000... 3F800000 0000...

EvenIm 00000000 00000000

MSC

AddrRd 0

Rd

OddReWr 00000000 3F80... 00000000 3F80... 00...

OddImWr ... 00000000

EvenReWr ... 00000000 3F80... 00000000 3F80... 00000000

EvenIm wr ... 00000000

addr wr 0 32 0 1 8 9 16 17 24 25

wr

Fig. 24 Building a NOT operator for 2 qubits when the design can handle quantum operations that
involve at most 4 qubits

Table 6 Contents of the first
four addresses of memory MQB
before and after performing the
tensor product

Address Part Original value Computed value

0 Even 1.0000 1.0000
0 Odd 0.0000 0.0000
1 Even 1.0000 0.0000
1 Odd 0.0000 0.0000
2 Even/odd Unused Unused
3 Even/odd Unused Unused

7063

1 3

Dedicated hardware design for efficient quantum computations…

7 Performance evaluation

In order to evaluate the performance of the proposed design, we synthesized the
design of EQP for the Xilinx Virtex UltraScale FPGA XCVU095-2FFVA2104E.
The system maximum frequency yielded is 52.0 MHz. With these characteristics,
we run the quantum search algorithm, known as Grover’s algorithm. It is a well-
known quantum search algorithm to speedup search in unsorted database [53]. The
algorithm is designed to search an unsorted database of N = 2n entries to find a
specific target item. The items of the database are the possible states formed by n
qubits, i.e., �i⟩ , for 1 ≤ i ≤ n − 1 , and the target is one of these states. Grover’s algo-
rithm can also be used to search for more than one target.

The steps of the algorithm depend on the number of qubits n and the configu-
ration of procured target state. It offers a quadratic speedup compared to classical
search algorithms that require linear time in terms of N. The algorithm involves
applying a series of quantum operations iteratively. There are many circuit designs
for this algorithm. The used version of Grover’s algorithm for n qubits is depicted in
Fig. 26 [44, 54].

Grover’s algorithm consists of three main steps: (1) input state preparation, which
allows to yield the quantum states representing the searched database items; (2) ora-
cle, which allows the identify the target items within the input data changing distinc-
tively the amplitude of the corresponding quantum state with respect to the remain-
ing items of the database; (3) target’s amplitude amplification, also known as the
diffuser, which allows to increase the amplitude of the amplitudes of the targets’
states while decreasing that of the remaining states (4) output state measurement,
which allows to observe the final results of the search, wherein amplitudes associ-
ated with the target states should be significantly high with respect to that associated
with the remaining states. Of course, the sum of the squared amplitudes for all states
must be equal to 1. Steps 2 and 3 are iterated to achieve satisfactory identification of
the targets via the corresponding high amplitudes. In each iteration, the state under-
goes specific quantum gates that allow marking the target and others that amplify its
amplitude and reduce that of the remaining items.

For the preparation of the input states, a set of Hadamard operators, implements
the first step of the algorithm, allowing the generation of a uniform state superpo-
sition with an amplitude do 1∕

√
2n . A controlled Z operator is included in the

READ

OddRe 3F800000 3F800000

OddIm 00000000 00000000

EvenRe 00000000 00000000

EvenIm 00000000 00000000

AddrRd 0 0

Rd

WRITE

OddRe 3F800000 00000000

OddIm 00000000 00000000

EvenRe 00000000 00000000

EvenIm 00000000 00000000

AddrWr 0 1

Wr

Fig. 25 Memory MQB contents before and after a tensor product regarding the example of NOT opera-
tor and Table 6

7064 N. Nedjah et al.

1 3

implementation of the second and third steps. The number of control qubits is n − 1
so that the amplitude of state �2n−1⟩ is inverted to −1∕

√
2n while that of the remaining

state remain unchanged. It is noteworthy to emphasize that this operator has not been
constructed by the processor. Instead, we stored the adequate matrix of the controlled
Z operator according to the required controls in MOP as a basic operator. The con-
struction of this operator from basic ones, as described in Sect. 2, is not a straightfor-
ward process, as it needs a complex transpilation process to be converted to simpler
basic operators [55, 56], which is clearly out of the scope of this work. The third step
is implemented by a state reflection around the average amplitude by a set of Had-
amard operators, a set of X operators and a controlled Z operator with n − 1 control
qubits.

The iterations create constructive interference, which leads to the desired state
where the probability of measuring the target item is higher. The main steps of
Grover’s algorithm need to be iterated both real and simulated quantum computers.
In a simulated quantum processor, these iterations are still necessary because they
are a fundamental part of how Grover’s algorithm works [53]. The ideal number of
iteration is defined in [57] as �∕4

√
N∕m , wherein N = 2n represents the number of

entries in the searched unsorted database and m is the number of targets.
The simulations are executed on a personal computer equipped with 4GB RAM

memory, using the ModelSim program on the Windows 7 operating system. In this
case, the coprocessor is capable of handling operations on up to 6 qubits simultane-
ously. Of course, if we run the simulation on better equipped computer, we would
be able to run operations that act on more qubits. So, for the processor performance
evaluation, we run Grover’s algorithm, described in Fig. 26, for two to six qubits.
Table 7 shows the memory and time requirements for the execution of Grover’s
algorithm for quantum search in a unsorted database of n input qubits. The results
are averages of 100 shots.

For each case, we provide the number of qubits n, the bit configuration of the tar-
get state, the number of required iterations, the required memory, the overall execu-
tion time, the measured target amplitude (TA) and the average amplitudes of the
nontarget states (NTAA). Note that the reported memory size is customized for the

H

H

H

...

H

(1)

q0 = |0〉

q1 = |0〉

q2 = |0〉

...

qn−1 = |0〉

Z

•

•

...

•

(2)

H

H

H

...

H

X

X

X

...

X

Z

•

•

...

•

(3)

X

X

X

...

X

H

H

H

...

H

...

(4)

Fig. 26 Steps of Grover’s quantum algorithm for n qubits searching for target �n − 1⟩

7065

1 3

Dedicated hardware design for efficient quantum computations…

case, i.e., exactly what is required for the circuit. Memories MQS, MOP and MOP
as well as the local memory used in UMS are set to the fit the qubits and operators,
used in the circuit. The processor with a maximum quantum state of 6 qubits that
can be handled simultaneously via all basic operators described in Sect. 2 requires
7,6204 Bytes, all memories included.

For comparison purposes, we focus on different ways to implement Grover’s
algorithm. We compare the results regarding software simulation, hardware emula-
tion and direct execution on real quantum hardware. For simulation, we consider
a dedicated software implementation of the algorithm (GDSS) [21] and a general-
purpose software implementation of Grover’s algorithm via a simulation (GPSS)
[58]. For emulation, we consider a dedicated hardware, which is custom-designed
for Grover’s algorithm (GDHE) [21] and a general-purpose hardware emulation of
the algorithm using EQP, presented in this work. Finally, for real quantum hard-
ware, we consider the execution of Grover’s algorithm on quantum computers IBM
Q (GIBMQ) and IonQ (GIonQ) [59]. For each of the considered implementations,
Table 8 shows the execution time of Grover’s algorithm for n input qubits. Note that
for a more concise presentation of the timing figures, we opted to use different time
unit: nanoseconds (×10−9s), microseconds (×10−6s) or seconds. Note that the tim-
ings are sourced from their respective cited works. Also, due to the variations in
system configurations among the compared implementations, the comparability of
the results is limited.

Before, we get to further details about the comparison, it is fundamental to note
that the performance of implementations based on real quantum hardware are
included here only for completeness. State-of-the-art real quantum hardware are

Table 7 Performance of the
Grover search algorithm for
different state number of qubits

n Target Iteration Memory (B) Time (ns) TA NTAA

2 �11⟩ 1 4,273 1.688 0.9101 0.1381
3 �111⟩ 2 5,411 14.891 0.8223 0.1242
4 �1111⟩ 3 8,711 91.591 0.8505 0.0784
5 �11111⟩ 4 21,458 491.907 0.8096 0.0609
6 �111111⟩ 6 71,532 2,821.748 0.7996 0.0437

Table 8 Performance comparison of software-based simulation and hardware-based emulation of quan-
tum computations

n GDSS (�s) GPSS (ms) GDHE (ns) GPDP (ns) GIBMQ (s) GIonQ (s)
 [21] [58] [21] EQP [59] [59]

2 29.6 5.0 4.6 1.7 2.0 13.0
3 74.0 6.0 12.0 14.9 3.0 23.0
4 220.7 7.0 21.4 91.6 5.0 54.0
5 398.8 10.0 36.7 491.9 12.0 65.0
6 1069.6 13.1 62.7 2821.7 – –
7 2771.4 29.7 96.8 – – –

7066 N. Nedjah et al.

1 3

slower than emulated quantum hardware for many reasons. Among these reasons,
we can cite (1) error-proneness due to decoherence and gate imperfections, among
other forms of noise, requiring error correction techniques to mitigate the effects
of noise; (2) limited qubit connectivity, requiring additional operations and/or extra
qubits to implement correct interactions; (3) high measurement time due to physical
constraints; and (4) device calibration and initialization procedures to ensure proper
operation. All these reasons lead to slower execution times in real quantum hard-
ware when compared to an ideal simulation or emulation [60].

Considering the time unit by kind of implementations, it is clear that the hard-
ware-based solutions of Grover’s algorithm (GDHE [21] and the one proposed in
this work GPDP) are a way faster (of the order of 103× than GDSS [21] and 106×
than GPSS [58]) than the software-based ones. Also, considering the same basis, it
is clear that the dedicated software implementation of the algorithm GDSS [21] is
103× faster than the one implemented on a general-purpose emulated quantum pro-
cessor GPSS [58]. Moreover, the dedicated hardware GDHE [21] scales better than
the one implemented on the emulated quantum processor, proposed in this work.
The former allows to run the algorithm for 7 qubits while the proposed implementa-
tion does not. Also, except for the cases of 2 qubits, for which both designs the latter
is 2.7× faster, the former performs better. The speedups for 3, 4, 5 and 6 qubits are
about 1.3× , 4 × , 13× and 45× , respectively. Nonetheless, it is important to note that
GDHE can only run Grover’s algorithm, and a new hardware needs to be designed
for another quantum algorithm. In contrast, the same hardware processor that is used
to get GDPE, can also be simply programmed to run any other quantum algorithm.
The proposed solution trades speedup for higher versatility.

8 Conclusions

This paper introduces an adaptive hardware design of an emulated quantum proces-
sor that can be customized for various applications. The proposed design utilizes
a completely parallel pipelined approach to perform the tensor product operation,
which is a fundamental operation in quantum computing. The design operates on
complex numbers and is expected to be highly efficient. The effectiveness of the
design is demonstrated through simulations of representative quantum instructions.

The main units of the proposed macro-architecture consist of the calculation unit,
the control unit and the measurement unit. The calculation unit plays a critical role
in executing the extensive and computationally intensive complex number products
and sums required by the coprocessor. The modular nature of the proposed micro-
architecture of this unit allows for scalability, enabling the design to be expanded to
achieve the desired level of parallelism. However, this expansion entails increased
control complexity, widening of the data path, and potentially, the buses. The con-
trol unit is micro-architecture is optimized. It utilizes control memory and auxiliary
components to handle various tasks. The control path automates elementary opera-
tions and contributes to simplifying the microprogram.

Simulations of typical computations are provided to validate the correct function-
ing of the coprocessor using typical quantum operations and instructions involving

7067

1 3

Dedicated hardware design for efficient quantum computations…

matrices and tensor products. The simulations utilize scalable and parameterizable
code, executed on a personal computer equipped with 4GB RAM memory, using the
ModelSim program on the Windows 7 operating system. In this particular case, the
coprocessor is capable of handling operations on up to 6 qubits simultaneously.

The performance of the proposed processor is presented for Grover’s algorithm for
unsorted database search. The time and memory requirements are shown for a given
item search in databases of 4, 8, 16, 32 and 64 items, i.e., testing with Grover’s algo-
rithm for 2, 4, 5 and 6 qubits. We also compare the performance of the proposed pro-
cessor regarding execution time to a dedicated implementation of Grover’s algorithm:
using a simulated quantum processor and via emulation using a dedicated hardware.
For completeness, we also provide the algorithm execution times on two real quan-
tum hardware. We establish clearly that proposed hardware design of the proposed
emulated quantum processor is far faster than the software solution but somehow
slower than the dedicated hardware implementation, which scales better than the pro-
posed processor design. Nonetheless, the proposed processor is versatile and allows
the implementation of any quantum algorithm by simply programming while the
dedicated hardware is designed specifically for Grover’s algorithm. Another design,
built from scratch, is required to implement another quantum algorithm.

There are several avenues for future work that can be explored to enhance the
coprocessor design: (1) Increasing the number of multipliers in the calculation unit,
always in powers of 2, would allow for the simultaneous execution of more matrix
and tensor products. This would leverage the coprocessor’s capabilities and improve
its overall performance. (2) Implementing a pipeline organization in the architecture
could optimize quantum operations by utilizing auxiliary complex number multipli-
ers. This approach would facilitate the matrix product calculation by performing it
on already computed lines, reducing the waiting time for the required calculations.
(3) Enhancing the scratch memory by incorporating additional read and write ports,
along with a larger number of complex number multipliers, would accelerate the
construction of quantum operators. This would enable faster processing and improve
the efficiency of the coprocessor. (4) Introducing a new auxiliary scratch memory
dedicated to storing operators constructed for multiple qubits could save time by
avoiding the need for recalculating larger operators repeatedly. This would enhance
performance and efficiency by eliminating redundant calculations.

The proposed future directions to improve the design efficiency will certainly
increase the design size. However, it is expected that the increase would further
accelerate the emulation of quantum operations, allowing the execution of bigger
instances of quantum algorithms. Of course, based on state-of-the-art science and
technology, it would be always true that such an emulator whose design cost does
not exponentially scale with the number of handled qubits will be certainly not capa-
ble of universal quantum emulation. Nonetheless, the general idea for future work
is to increase the level of parallelism during execution, finding a good trade-off
between cost (hardware area) and throughout (execution time). This will always be
sought during the design improvement. Exploring these directions in future research
and development efforts would contribute to the ongoing improvement and optimi-
zation of the coprocessor design.

7068 N. Nedjah et al.

1 3

Acknowledgements The authors are grateful to the reviewers whose comments, recommendations and
suggestions improved enormously the contents of this manuscript.

Author Contributions NN and LM validated the design and wrote the manuscript; and SR implemented
the design

Funding This research work received funding from FAPERJ: Fundação Carlos Chagas Filho de Amparo
à Pesquisa do Estado do Rio de Janeiro (https:// www. faperj. br/) in Brazil: Grant No. 201.013/2022.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

Ethical approval Not applicable.

References

 1. Brumatto HJ (2010) Introdução à computação quântica. Ph.D. dissertation. http:// www. ic. unica mp.
br/ ~ducat te/ mo401/ 1s2010/ T2/ 096389- t2. pdf

 2. Möller M, Vuik C (2019) A conceptual framework for quantum accelerated automated design opti-
mization. Microprocess Microsyst 66:67–71

 3. Möller M, Vuik C (2020) A full quantum eigensolver for quantum chemistry simulations. Res A Sci
Partner J 1486935:1–11

 4. Friis N, Marty O, Maier C, Hempel C, Milan Holzäpfel PJ, Plenio MB, Huber M, Roos C, Blatt R,
Lanyon B (2018) Observation of entangled states of a fully controlled 20-qubit system. Phys Rev X
8(2)

 5. D-Wave (2012) The d-wave one system. http:// www. dwave sys. com/ en/ produ cts- servi ces. html
 6. Boothby K, Bunyk P, Raymondand J, Roy R (2019) Next-generation topology of d-wave quantum

processors. The Quantum Computing Company, Technical Report, D-Wave
 7. Ömer B (1998) A procedural formalism for quantum computing. Master’s thesis, Technical Univer-

sity of Vienna
 8. Barbosa ADA (2007) Um simulador simbólico de circuitos quânticos,” Mestrado, Universidade

Federal de Campina Grande
 9. Vizzotto JK, da Rocha Costa AC (2006) Linguagens de programação quântica-um apanhado geral.

WECIQ
 10. Marquezino ACL (2006) A transformada de fourier quântica aproximada e sua simulação. Master’s

thesis, LNCC-Laboratörio Nacional de Computação Científica
 11. Orús R (2019) Tensor networks for complex quantum systems. Nat Rev Phys 1:538–550
 12. Wille R, Hillmich S, Burgholzer L (2022) Tools for quantum computing based on decision dia-

grams. ACM Trans Q Comput 3(3)
 13. Quantum I (2021) IBM quantum composer. https:// quant um- compu ting. ibm. com/
 14. Wille R, Hillmich S, Burgholzer L (2022) Mqt: The munich quantum toolkit. In: Gesellschaft für

Informatik Quantum Computing Workshop (GI QC) https:// www. cda. cit. tum. de/ resea rch/ quant um/
mqt/

 15. Nikahd E, Houshmand M, Saheb Zamani M, Sedighi M (2015) One-way quantum computer simula-
tion. Microprocess Microsyst 39(3):210–222

 16. van Dijk J, Charbon E, Sebastiano F (2019) The electronic interface for quantum processors. Micro-
process Microsyst 66:90–101

 17. Arute F, Arya K, Babbush R et al (2019) Quantum supremacy using a programmable superconduct-
ing processor. Nature 574:505–510

 18. Friis N, Marty O, Maier C et al (2018) Observation of entangled states of a fully controlled 20-qubit
system. Phys Rev X 8:021012

https://www.faperj.br/
http://www.ic.unicamp.br/%7educatte/mo401/1s2010/T2/096389-t2.pdf
http://www.ic.unicamp.br/%7educatte/mo401/1s2010/T2/096389-t2.pdf
http://www.dwavesys.com/en/products-services.html
https://quantum-computing.ibm.com/
https://www.cda.cit.tum.de/research/quantum/mqt/
https://www.cda.cit.tum.de/research/quantum/mqt/

7069

1 3

Dedicated hardware design for efficient quantum computations…

 19. Kitaev A (2003) Fault-tolerant quantum computation by anyons. Ann Phys 303(1):2–30
 20. Hor-Meyll M, Tasca DW et al (2015) Deterministic quantum computation with one photonic qubit.

Phys Rev A 92:012337
 21. Lee YH, Khalil-Hani M, Marsono MN (2016) An FPGA-based quantum computing emulation

framework based on serial-parallel architecture. Int J Reconfig Comput 2016
 22. Oriols X, Nikolic H (2019) Three types of Landauer’s erasure principle: a microscopic view. Eur

Phys J Plus 138(250):538–550
 23. Portugal R, Lavor C, Carvalho LM, Maculan N (2004) Introdução a computação quantica, Notas de

Matematica Aplicada, vol 8. SBMAC, São Carlos
 24. Rigolin G (2008) Emaranhamento quântico. Revista Phisicae 7
 25. Wooters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature
 26. Watanabe MSM (2003) O algoritmo polinomial de shor para fatoração em um computador quântico.

Master’s thesis, Universidade Federal de Pernambuco
 27. Ömer B (2000) Quantum programming in qcl. Master’s thesis, Technical University of Vienna
 28. Yanofsky NS (2007) An introduction to quantum computing, pp 1–33. arXiv: 0708. 0261
 29. Portugal R, Cosme CMM, Gonçalves DN (2006) Algoritmos Quânticos
 30. Lee J, Huang X, sheng Zhu Q (2010) Decomposing fredkin gate into simple reversible elements

with memory. Int J Digital Content Technol Appl 4(5)
 31. Lee J, Huang X, Sheng ZQ (2021) Qiskit Development Team. Summary of quantum operations.

https:// qiskit. org/ docum entat ion/ tutor ials/
 32. Khalid AU, Zilic Z, Radecka K (2004) Fpga emulation of quantum circuits. In: IEEE International

Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceed-
ings, pp 310–315

 33. Shende VV, Bullock SS, Markov IL (2006) Synthesis of quantum-logic circuits. IEEE Trans Com-
put Aided Des Integr Circuits Syst 25(6):1000–1010

 34. Yang G, Hung WN, Song X, Perkowski MA (2010) Exact synthesis of three-qubit quantum circuits
from non-binary quantum gates. Int J Electron 97(4):475–489

 35. Hashemi S, Azghadi MR, Zakerolhosseini A, Navi K (2015) A novel fpga-programmable switch
matrix interconnection element in quantum-dot cellular automata. Int J Electron 102(4):703–724

 36. Ömer B (2005) Classical concepts in quantum programming. Int J Theor Phys 44(7):943–955
 37. Karafyllidis IG (2005) Quantum computer simulator based on the circuit model of quantum compu-

tation. IEEE Trans Circuits Syst I Regul Pap 52(8):1590–1596
 38. De Raedt K, Michielsen K, De Raedt H, Trieu B, Arnold G, Richter M, Lippert T, Watanabe H, Ito

N (2007) Massively parallel quantum computer simulator. Comput Phys Commun 176(2):121–136
 39. Maron A, Avila ABD, Reiser RHS, Pilla ML (2011) Introduzindo uma abordagem para simulação

quântica com baixa complexidade. In: X Brazilian Conference on Dynamic, Control and Applica-
tions, pp 1–4

 40. Wille R, Schönborn E, Soeken M, Drechsler R (2016) Syrec: a hardware description language for
the specification and synthesis of reversible circuits. Integration 53:39–53

 41. Fu X, Lao L, Bertels K, Almudever C (2019) A control microarchitecture for fault-tolerant quantum
computing. Microprocess Microsyst 70:21–30

 42. Nedjah N, Mourelle LM (2023) Customizable and adaptive quantum processors: theory and appli-
cations. Taylor & Francis, New York

 43. Nedjah N, Raposso S, Mourelle LM (2023) Concise memory organization for a customizable hard-
ware design of a quantum coprocessor. In: Proceedings of the IEEE 14th Latin American sympo-
sium on circuits and systems. IEEE, pp 1–4

 44. Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge Univer-
sity Press, Cambridge

 45. Unnikrishnan CS (2015) Quantum non-demolition measurements: concepts, theory and practice.
Curr Sci 109(11):2052–2060

 46. Clerk AA, Devoret MH, Girvin SM, Marquardt F, Schoelkopf RJ (2010) Introduction to quantum
noise, measurement, and amplification. Rev Mod Phys 82:1155–1208

 47. D’Ariano GM, Paris MG, Sacchi MF (2004) Quantum tomographic methods. In: Paris M, Rehacek J
(eds) Quantum state estimation, LPN 649, ch. 2. Springer, pp 7–58

 48. Mahler DH, Raffaelli F, Ferranti G, et al (2017) An on-chip homodyne detector for measuring quan-
tum states. In: Conference on Lasers and Electro-Optics. Optica Publishing Group, p JTh3E.6

 49. Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wes-
ley Professional, Reading

http://arxiv.org/abs/0708.0261
https://qiskit.org/documentation/tutorials/

7070 N. Nedjah et al.

1 3

 50. Nedjah N, Mourelle L (2007) An efficient problem-independent hardware implementation of genetic
algorithms. Neurocomputing 71(1):88–94

 51. Calazan RM, Nedjah N, de Macedo Mourelle L (2012) A massively parallel reconfigurable co-pro-
cessor for computationally demanding particle swarm optimization. In: LASCAS (2012)—interna-
tional symposium of IEEE circuits and systems in Latin America

 52. Marcus G (2004) Floating point unit, 2004. https:// openc ores. org/ proje cts/ fpuvh dl
 53. Ambainis A (2004) Quantum search algorithms. SIGACT News 35(2):22–35
 54. Karlsson VB, Sjöborg P (2018) 4-Qubit grover’s algorithm implemented for the ibmqx5 architec-

ture. Bachelor’s Thesis, KTH Royal Institute of Technology School of Engineering Science, Stock-
holm, Sweden. https:// urn. kb. se/ resol ve? urn= urn: nbn: se: kth: diva- 229797

 55. Younis E, Iancu C (2022) Quantum circuit optimization and transpilation via parameterized cir-
cuit instantiation. In: 2022 IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE Computer Society, pp 465–475

 56. Diao Z, Zubairy MS, Chen G (2002) A quantum circuit design for Grover’s algorithm. Zeitschrift
für Naturforschung A, 57(8): 701–708. https:// doi. org/ 10. 1515/ zna- 2002- 0810

 57. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing, 1st edn. Oxford Uni-
versity Press, Oxford

 58. Sjöborg M, Linn H (2018) Simulating a quantum computer: Grover’s search algorithm with error
correction, Bachelor’s Thesis, KTH Royal Institute of Technology School of Engineering Science,
Stockholm, Sweden. http:// urn. kb. se/ resol ve? urn= urn: nbn: se: kth: diva- 231739

 59. Ferrazzo NC (2022) Algoritmo de busca de grover: estudo comparativo de desempenho dos hard-
wares quânticos disponibilizados pela ibm, microsoft e amazon,” Bachelor’s Thesis, Physics Insti-
tute, Federal University of Rio Grande do Sul, Brazil, 2022. https:// www. lume. ufrgs. br/ handle/
10183/ 252806

 60. Swayne M (2023) What are the remaining challenges of quantum computing? https:// thequ antum
insid er. com/ 2023/ 03/ 24/ quant um- compu ting- chall enges/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Nadia Nedjah1 · Sérgio Raposo2 · Luiza de Macedo Mourelle3

 * Nadia Nedjah
 nadia@eng.uerj.br

 Sérgio Raposo
 raposo@eng.uerj.br

 Luiza de Macedo Mourelle
 ldmm@eng.uerj.br

1 Department of Electronics Engineering and Telecommunications, Engineering Faculty, State
University of Rio de Janeiro, Rio de Janeiro, Brazil

2 Post-Graduate Program of Electronics Engineering, Engineering Faculty, State University
of Rio de Janeiro, Rio de Janeiro, Brazil

3 Department of Systems Engineering and Computation, Engineering Faculty, State University
of Rio de Janeiro, Rio de Janeiro, Brazil

https://opencores.org/projects/fpuvhdl
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229797
https://doi.org/10.1515/zna-2002-0810
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231739
https://www.lume.ufrgs.br/handle/10183/252806
https://www.lume.ufrgs.br/handle/10183/252806
https://thequantuminsider.com/2023/03/24/quantum-computing-challenges/
https://thequantuminsider.com/2023/03/24/quantum-computing-challenges/

	Dedicated hardware design for efficient quantum computations using classical logic gates
	Abstract
	1 Introduction
	2 Quantum computations
	3 Related works
	3.1 Quantum hardware emulators
	3.2 Quantum software simulators

	4 Macro-architecture of the proposed EQP
	5 Micro-architecture of the proposed EQP
	5.1 Quantum state memory
	5.2 Operator memory
	5.3 Scratch memory
	5.4 Measurement unit
	5.5 Quantum calculation unit
	5.6 Control unit
	5.6.1 Controller of the qubit tensor and matrix products
	5.6.2 Controller of operator tensor product

	6 Simulation results
	6.1 Operation on non-entangled qubits
	6.2 Operation on entangled qubits

	7 Performance evaluation
	8 Conclusions
	Acknowledgements
	References

