
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:5979–6016
https://doi.org/10.1007/s11227-023-05676-4

1 3

MOBRO: multi‑objective battle royale optimizer

Sait Alp1 · Rahim Dehkharghani2 · Taymaz Akan3,4 · Mohammad A. N. Bhuiyan3

Accepted: 18 September 2023 / Published online: 16 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Battle Royale Optimizer (BRO) is a recently proposed optimization algorithm that
has added a new category named game-based optimization algorithms to the existing
categorization of optimization algorithms. Both continuous and binary versions of
this algorithm have already been proposed. Generally, optimization problems can
be divided into single-objective and multi-objective problems. Although BRO has
successfully solved single-objective optimization problems, no multi-objective
version has been proposed for it yet. This gap motivated us to design and implement
the multi-objective version of BRO (MOBRO). Although there are some multi-
objective optimization algorithms in the literature, according to the no-free-lunch
theorem, no optimization algorithm can efficiently solve all optimization problems.
We applied the proposed algorithm to four benchmark datasets: CEC 2009, CEC
2018, ZDT, and DTLZ. We measured the performance of MOBRO based on three
aspects: convergence, spread, and distribution, using three performance criteria:
inverted generational distance, maximum spread, and spacing. We also compared
its obtained results with those of three state-of-the-art optimization algorithms: the
multi-objective Gray Wolf optimization algorithm (MOGWO), the multi-objective
particle swarm optimization algorithm (MOPSO), the multi-objective artificial
vulture’s optimization algorithm (MOAVAO), the optimization algorithm for multi-
objective problems (MAOA), and the multi-objective non-dominated sorting genetic
algorithm III (NSGA-III). The obtained results approve that MOBRO outperforms
the existing optimization algorithms in most of the benchmark suites and operates
competitively with them in the others.

Keywords  Optimization · Battle-royale-game-based optimization algorithms · Battle
royale optimization algorithm · Multi-objective problems

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05676-4&domain=pdf

5980	 S. Alp et al.

1 3

1  Introduction

Many optimization algorithms have been proposed for different types of problems;
however, according to the “No free launch” theorem [1], no optimization algorithm
can be appropriate for solving all types of problems. That is why new algorithms are
still being proposed in the literature. Until 2021, optimization algorithms could be
classified into three main categories: Evolutionary Algorithms (EA) such as Genetic
algorithm [2], and Bird mating optimizer [3], Swarm Intelligence (SI) algorithms such
as Particle Swarm Optimization (PSO) algorithm [4], Artificial Bee Colony algorithm
[5], and Chimp optimization algorithm, and Physical Phenomena (PP) algorithms such
as Passing Vehicle search [6], and Gravitational Search algorithm [7].

In 2021, a new optimization algorithm named Battle Royale Optimization (BRO)
[8] added a new category named “Game-based” optimization algorithms [9] to the
literature. The original version of the BRO algorithm was designed only for solving
problems of a continuous nature, and it was incapable of solving problems of a
discrete nature. Later, the Binary Battle Royale algorithm (BinBRO) was proposed
for solving binary optimization problems. Still, all those algorithms can only solve
single-objective problems. However, some problems have a multi-objective nature,
in which there is more than one objective to be satisfied (minimized or maximized).
As most real-world problems are multi-objective, tackling multi-objective problems
is essential. For example, when making a trade, the trader is usually interested in
low prices and high quality, while these two objectives are conflicting, i.e., achieving
one goal may compromise another. Therefore, there is no universal solution that can
minimize/maximize all objective functions for all problems; instead, there are Pareto
optimal solutions, which offer the best trade-offs between conflicting objectives [10].
Multi-objective problems may have two or more objectives. Multi-objective problems
with three or more objectives are known as “many-objective problems” [11].

In this paper, we propose the multi-objective version of the Battle Royale Optimiza-
tion algorithm for the first time in the literature and compare its performance with the
multi-objective version of five state-of-the art algorithms: the Gray Wolf optimization
algorithm (MOGWO), the Multi-Objective Particle Swarm Optimization algorithm
(MOPSO), the Multi-Objective Artificial Vultures Optimization algorithm (MOAVAO),
the Arithmetic Optimization Algorithm for Multi-Objective Problems (MAOA), and the
Multi-Objective Non-dominated Sorting Genetic Algorithm III (NSGA-III).

Multi-objective problems can be divided into constrained and unconstrained
groups. In constrained problems, some constraints restrict the values that can be
assigned to variables, while in unconstrained problems, no such restriction exists.
The terminology for multi-objective problems is provided as follows:

•	 Multi-objective problem A quadruple < V, D, F, S > represents a multi-objective
problem, where V is a set of variables V = {v1, v2, …, vm} to be initialized by val-
ues taken from a set of domains D = { d1, d2, …, dm}, so that objectives F = {f1, f2,
…, fp} are minimized (or maximized).

•	 Constrained Multi-objective problem (CMOP) A CMOP is a multi-objective
problem, in which, the goal is to find a vector of solutions, X, which optimizes

5981

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

f(X) subject to a set of inequality and equality constraints while satisfying some
conflicting objectives:

 Where m and k are, respectively, the number of inequality and equality constraints.
These constraints can be linear or nonlinear [12].

The feasible and infeasible solution A solution for CMOPs would be named as
feasible if it satisfies all constraints, or infeasible otherwise.

On the other hand, S = {s1,s2,…,sp} as a set of candidate solutions can be divided
into two subsets: population (dominated) and repository (non-dominated) candidate
solutions. The non-dominated solutions are placed on a border so-called the Pareto
front (PF).

•	 Domination Solution x dominates solution y if x is as good as y for all objectives
and better than it at least in one objective: x < y⇔∀i ∈ {1,…,p}fi(x) ≤ fi(y) and
∃i ∈ {1,…,p}fi(x) < fi(y).

•	 Pareto optimal A candidate solution x is called Pareto optimal (PO) if there
exists no other candidate solution y that can dominate x: x is PO⇔ ∃y ∈ S, such
that y ≺ x.

•	 Pareto Optimal set (PS) This set includes all Pareto optimal solutions: PS* = {si|si
is PO}.

•	 Pareto optimal front Given the Pareto Optimal set and objective function F,
Pareto optimal front (POF) is the output values obtained by applying the objec-
tive functions to solutions in Pareto Optimal set: POF = {F(x) = (f1(x), f2(x), …,
fp(x)) | x ∈ PS*}.

There are different categorizations of methods for solving multi-objective prob-
lems. Those categorizations generally differ in the way they choose the next move
to achieve the global optima, i.e., they use different preference methods to find the
preferred solutions. So, preference information is required to guide the search to the
Pareto front area. The ultimate goal is to find a solution that is approved by a deci-
sion-maker. The decision-makers are either individual experts regarding the matter
at hand or methods automatically applied to the selection procedure for choosing the
next move. Hwang and Masud [13] classify the existing approaches for solving multi-
objective problems into four different groups based on preference methods:

•	 No-preference method In this approach, the MO problem is solved by employing
a relatively straightforward method (classical single-objective optimization algo-
rithms), and the obtained solution is delivered to the decision-maker; however,
the suggestions of the decision-maker are not taken into consideration.

•	 Posteriori methods In this approach, a decision-maker indicates its preferences
a posteriori after receiving information about the trade-offs among the non-
dominated solutions. Specifically, the decision-maker indicates which solution
is the optimal one found so far. Our proposed algorithm, MOBRO, belongs to

gi(X) ≤ 0, i = 1,… ,m

hi(X) = 0, i = 1,… , k

5982	 S. Alp et al.

1 3

this category and determines the optimal solution in each iteration using the
Roulette Wheel selection method. Like MOPSO [14], we use a grid mechanism
for measuring the density of the PF area. The sparser areas in the PF have a
higher probability of including the optimal solution(s). If more than one solution
exists in the sparsest grid, one of them is randomly chosen as optimal.

•	 Priori methods The objectives may be converted into a single objective by
assigning a weight to each objective and then combining them. The associated
weights should be defined in advance by the decision-makers.

•	 Interactive methods In this approach, the objective functions, constraints, and
their respective priorities are updated by getting user feedback on preferences
several times throughout the optimization process.

Several research works have solved multi-objective problems using different
methods. According to [15], multi-objective optimization algorithms generally
rely either on non-dominated sorting methods or archive-based methods when
searching for optimal solutions [14, 16]. The proposed approach, MOBRO, lies
in the latter group (archive-based methods). One of the archive-based approaches
has been proposed in [16], in which the authors propose a multi-objective version
of the Gray Wolf optimization (GWO) algorithm, so-called MOGWO, by using a
grid mechanism to detect and store the non-dominated solutions (in the archive) and
choosing three solutions as leaders—global optima found so far—to guide other
solutions in the population toward regions that may contain the global optimum.
Social leadership was the main inspiration for GWO. As mentioned already, in
archive-based multi-objective optimization algorithms, those solutions that are
closer to the global optima are also stored in a separate set named a repository
or archive. Despite its success in solving some single-objective problems, due to
the nature of the original GWO algorithm, MOGWO suffers from a shortage of
candidate leaders in the Pareto front as it requires three leaders (alpha, beta, and
gamma), instead of one to solve the optimization problems. In other words, in some
cases, the GWO algorithm is unable to provide more than one or two leaders. The
most popular archive-based algorithm in the literature, a multi-objective version
of the PSO algorithm (MOPSO), was proposed in [14]. In this work, the authors
add a constraint-handling mechanism and a mutation operator to the original
PSO algorithm to achieve a better exploration mechanism. ε-MOABC [11], as
another archive-based algorithm, a multi-objective version of the Artificial Bee
Colony algorithm uses a relaxed form of Pareto-dominance, named ε-dominance.
A combined mutation operator is suggested in MOABC to prevent the basic ABC
algorithm from being trapped in a local Pareto front. In [17], Mirjalili et al. adapt
the Grasshopper optimization algorithm (GOA) for multi-objective optimization
problems by using an archive and target selection technique to estimate the optimal
solutions. The authors believe that GOA benefits from high exploration while
showing a very fast convergence speed, and its balance between exploration and
exploitation makes it an appropriate algorithm for multi-objective problems. The
Ant colony algorithm has also been adapted to solve multi-objective problems [18].
This algorithm creates a pheromone matrix as an archive and stores the best N
solutions in it. In [19], the authors propose a multi-objective version of the artificial

5983

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

vultures optimization algorithm (AVOA) for solving multi-objective optimization
problems, so-called MOAVOA. The archive and grid mechanisms are also used
in this algorithm. Another archive-based multi-objective arithmetic optimization
algorithm (MAOA) is proposed in [20] for solving industrial engineering problems.
The original AVOA is based on the distribution behaviour of four arithmetic
operators. The most popular multi-objective algorithm among the sorting-based
algorithms is probably NSGA III, proposed in [21], which is an evolutionary many-
objective optimization algorithm using a reference-point-based non-dominated
sorting approach based on the Genetic Algorithm for solving unconstrained multi-
objective problems. This algorithm, as an extension of its previous version, NSGA
II [22], attempts to preserve diversity among the solutions using a set of reference
directions. There exist also other algorithms in the literature proposed for solving
multi-objective problems [23–26]

It is very difficult to measure the performance of an optimization algorithm
in theory; therefore, researchers apply their proposed optimization algorithms to
benchmark datasets and compare them with other algorithms [27]. We evaluated the
proposed algorithm, MOBRO, by applying it to four benchmark datasets: the CEC
2009 [28], CEC 2018 [29], ZDT [30], and DTLZ [31] datasets. The obtained results
prove that MOBRO can solve unconstrained multi-objective problems; it also competes
with other state-of-the-art MO optimization algorithms and, in most of the benchmark
suites, surpasses them.

The remaining sections of the paper are designed as follows: Sect. 2 explains
the proposed multi-objective version of the Battle Royale Optimization algorithm.
Section 3 provides an experimental evaluation of the proposed method, and Sect. 4
provides conclusions and future works.

2 � MOBRO: multi‑objective battle royale algorithm

The original version of the Battle Royale optimization algorithm was recently proposed
by Farshi (2020). This optimization algorithm, which drew inspiration from the
Battle Royale video game, added a new category to optimization algorithms: “game-
based” optimization algorithms. In this category, each solution competes with its
nearest neighbor, and better solutions, according to fitness value (stronger soldiers in
the game), attempt to overcome the worse ones (weaker soldiers). If a solution loses
a specified number of times when competing with other solutions, it will be removed
from the problem space and will be regenerated using Eq. 1. If the number of losses
for a solution does not reach a threshold, it will be updated by Eq. 2, hoping that it will
approach the best solution found so far in dimension d.

In these equations, r is a random number generated using a uniform distribution
in the range [0, 1]; Xdam,d, and Xbest,d are the position of the damaged (looser) and the

(1)xdam.d = r
(
ubd − lbd

)
+ lbd

(2)xdam.d = xdam.d + r(xbest.d − xdam.d)

5984	 S. Alp et al.

1 3

best solution (found so far). The lower and the upper bounds of dimension d in the
problem space are denoted by lbd and ubd.

To move a solution toward the best one, Akan and Akan [32] updated Eq. 2 as
follows:

(3)
�dam, d = r1xbest, d + r2

(
�dam, d − xdam, d

)
,

xdam, d = �dam, d + xdam, d

Fig. 1   The proposed algorithm, MOBRO, as a flowchart

5985

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

where r1 and r2 are independent numerical values randomly chosen from the interval
[0, 1], and �dam,d is also a combination of randomly generated values taken from
a uniform distribution [0, 1] that will be updated in each iteration. The updated
movement strategy is more stochastic in exploration and exploitation.

The key point of this algorithm is that the safe zone (game field) shrinks down
by Δ = Δ + round(Δ/2), where Δ is initialized by log10(MaxCircle); MaxCicle is
the maximum number of generations. This space restriction will force all solutions
to move toward the best one found so far. Diminishing the space is done based on
Eq. 4, in which, SD(xd) is the standard deviation of the population in dimension d.

The overall methodology of MOBRO is provided as a pseudo-code in Algo-
rithm 1 and also as a flowchart in Fig. 1. As seen in this algorithm, in the beginning,
some solutions are randomly generated (initialized). As mentioned in the introduc-
tion, an attribute of the multi-objective version of BRO is using a set named archive
(or repository). This set stores copies of non-dominated solutions. If a solution is not
dominated by any other solution, it should be added to the archive. If any candidate
solution inside the archive gets dominated by a new solution, the dominated solution
will be replaced by a new (dominating) one. Solutions can remain in the archive as
long as they are non-dominated [16]. In the MOBRO algorithm, the non-dominated
solutions are determined, and a copy of them is added to the archive after evaluating
the solutions.

Then, the whole process is repeated for a predefined number of iterations. As
the first task in each iteration, a flag solution (assumed to be the global optimum)

(4)
lbd = xbest,d − SD

(
xd
)

ubd = xbest,d + SD
(
xd
)

5986	 S. Alp et al.

1 3

is chosen out of solutions in the repository using a selection strategy based on the
roulette wheel selection method [14]. Concretely, the Pareto Front region is divided
into grids using a gridding mechanism, and one of the solutions in the least crowded
region of the Pareto Front is selected as the flag (leader). The gridding mechanism
keeps the candidate solutions in the archive as diverse as possible. Gridding
recursively divides the Pareto front apace into grids and covers all solutions. If any
solution lies outside the gridding region, gridding should be repeated. The solutions
belonging to each grid are recorded, so the number of solutions in each grid can
be easily calculated [16]. The advantages of this mechanism are twofold: (1) low
computational cost; and (2) no need for a niche-size parameter setting [34].

Then the following process is repeated for all solutions in the population: Each
solution is compared to its neighbors, starting from the nearest to the farthest.
This comparison stops when one solution (the winner) dominates the other (the
damaged one). If no solution could dominate the other, the winner and the loser tags
are randomly assigned to a solution and its nearest neighbor. When a solution gets
damaged, its fault counter will be incremented by one, while the same counter will
be set to zero for the winner. If the fault counter does not reach a threshold value,
a crossover task [32], given in Eq. 3, will be applied to the loser, hoping to make
it closer to the best solution. The intuition behind this policy is that the loser is not
in an appropriate state (the soldier is in danger) and should be updated to move to
a better position. If this cross-over causes the loser to leave the safe zone, it will
be brought back to the edge of the safe zone. However, if the fault counter of the
loser reaches a threshold (one of the parameters of MOBRO), this solution will be
deleted and regenerated as another one with new values (as a soldier is respawned
in a random area inside the safe zone). In each iteration, a mutation task [14, 33] is
also applied to the flag. The flag will be updated if this mutation improves it or will
remain unchanged, otherwise. Note that, similar to the original BRO algorithm, the
search space shrinks once in Δ iterations based on Eq. 4. In all cases, the leader will
be updated if the recently updated damaged solution dominates it. At the end of each
iteration, a flag is chosen from the repository and is compared to the current flag.
The current flag will be replaced by a new one if it dominates the current one.

As mentioned already, the search strategy explained above is repeated for
all n solutions in the population, and again, the newly found non-dominated
solutions, as well as the flag solution, are added to the repository (archive). If the
repository becomes full, one of the existing solutions in its most crowded region
will be removed. There are two reasons for removing the surplus solution from the
repository: (1) newly added solutions might dominate the existing ones, and (2)
the capacity of the repository becomes full. Finally, at the end of each iteration, a
selection mechanism will be performed on the repository to update the flag.

5987

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

3 � Experimental results and performance evaluation

In this section, we first introduce the datasets and performance metrics used for
evaluating the proposed algorithm and then provide the obtained results as well as a
detailed discussion on them.

3.1 � Dataset

As the theoretical evaluation of optimization algorithms in terms of their
performance is difficult, benchmark datasets are used for this purpose. The
benchmark multi-objective optimization problems of the competitions on
evolutionary computation (CEC), CEC 2009 [28], and CEC 2018 [29] as well as
two other datasets, ZDT [30] and DTLZ [31] have been used for the evaluation of
the proposed algorithm and its comparison with five state-of-the-art algorithms.
Tables 1 and 2, respectively, list the mathematical presentation of different test
problems in the CEC 2009, ZDT, and DTLZ datasets, including 10, 6, and 7 test
problems. Due to the long equations, the mathematical presentation of CEC 2018 is
provided in Table S1 in the Appendix file. It is worth noting that the crossover task
for the DTLZ dataset is performed by Eq. 2, but the same task is performed by Eq. 3
for other datasets.

3.2 � Performance metrics

Different performance metrics have been proposed in the literature for evaluating
different aspects of a multi-objective optimization algorithm [35]. These aspects
include convergence, spread, and distribution. The proposed metrics in the literature
do not directly measure one aspect in isolation; instead, they measure different
aspects while assigning different weights to each one. We evaluated the proposed
algorithm using three metrics: Inverted Generational Distance (IGD) [35], Spacing
(SP) [36], and Maximum spread [21] or spread in short. These metrics are provided
in Eqs. 5–7, respectively.

where m is the number of true solutions in the Pareto optimal set, ri and ei are,
respectively, the real and closest found solutions to the true one. This metric is
calculated for m times, which is the number of true solutions. IGD is sensitive to the
number of points found by the algorithm [37]. This metric favors those algorithms
providing a denser area for the solutions than those providing a more distributed
version of the Pareto front. IGD is the most commonly used metric for evaluating
the performance of many-objective optimization algorithms [35]. Furthermore, it is
cheaper to compute, i.e., its time complexity is lower than some other metric’s such
as hyper volume [38].

(5)
IGD =

�∑m

i=1
(ri − ei)

m

5988	 S. Alp et al.

1 3

Table 1   The mathematical representation of different test cases in CEC 2009 dataset

Name Mathematical formulation

UF1
f1 = x1 +

2

�J1�
∑
j∈J1

�
xj − sin

�
6�x1

�
+

j�

n

�2
, f2 = 1 −

√
x1 +

2

�J2�
∑
j∈J2

�
xj − sin

�
6�x1

�
+

j�

n

�2

j1 = {j|j is odd and 2 ≤ j ≤ n} and j2 = {j|j is even and 2 ≤ j ≤ n}

UF2 f1 = x1 +
2

�J1�
∑

j∈J1
yj2, f2 =

√
x1 +

2

�2�
∑

j∈J2
yj2

1 = {j|j is odd and 2 ≤ j ≤ n} and j2 = {j|j is even and 2 ≤ j ≤ n} , and

yj =

⎧
⎪
⎨
⎪
⎩

x
j−
�
0.3x2

1
cos

�
24�x1+

4j�

n

�
+0.6x1

�
���

�
6�x1+

j�

n

�
j�J1

x
j−
�
0.3x2

1
cos

�
24�x1+

4j�

n

�
+0.6x1

�
���

�
6�x1+

j�

n

�
j�J1

UF3 f1 = x1 +
2

�J1� (4
∑

j∈J1
y2
j
− 2

∏
j∈J1

�
20yj�√

j

�
+ 2)

,
f2 = 1 −

√
x1 +

2

�J2� (4
∑

j∈J21
y2
j
− 2

∏
j∈J2

cos
�

20yj�√
j

�
+ 2)

J1 and J2 are the same as those of UF1, and yj = xj − x
0.5

(
1.0+

3(j−2

n−2

)

1
, j = 2,⋯ , n

UF4 f1 = x1 +
2

�J1� (
∑

j∈J1
h(yj), f2 = 1 − x2 +

2

�J2� (
∑

j∈J2
h(yj)

J1 and J2 are the same as those of UF1, and yi = xj

(
6�x1 +

j�

n

)
, j = 2,⋯ , n

UF5 f1 = x1 +
�

1

2n
+ �

�
�sin(2N�x1)� +

2

�J1�
∑

j∈J1
h(yj) ,

f2 = 1 − x1 +
�

1

2n
+ �

�
�sin(2N�x1)� +

2

�J2�
∑

j∈J2
h
�
yj
�

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n} . N is an integer, 𝜀 < 0,

yj = xj − ���

(
6�x1 +

j�

n

)
, j = 2,⋯ , n and h(t) = 2t2 − cos(4�t) + 1

UF6 f1 = x1 + max
�
0, 2(

1

2N
+ �)sin(2N�x1)

�
+

2

�J1� (4
∑

∈J1
y2
j
− 2

∏
j∈J1

cos
�

20yj�√
j

�
+ 2))

f2 = 1 − x1 + max
�
0, 2(

1

2N
+ �)sin(2N�x1)

�
+

2

�J2� (4
∑

∈J2
y2
j
− 2

∏
j∈J2

cos
�

20yj�√
j

�
+ 2))

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.yj = xj − ���

(
6�x1 +

j�

n

)
,

j = 2,⋯ , n

UF7 f1 = 5
√
x1 +

2√
J1

∑
j∈J1

y2
j
 , f2 = 5

√
x1 +

2√
J2

∑
j∈J2

y2
j

J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.yj = xj − ���

(
6�x1 +

j�

n

)
,

j = 2,⋯ , n

UF8 f1 = cos
�
0.5x1�

�
cos

�
0.5x2�

�
+

2

�J1�
∑

j∈J1
(xj − 2x2sin(2�x1 +

j�

n
))
2

f2 = cos
�
0.5x1�

�
cos

�
0.5x2�

�
+

2

�J2�
∑

j∈J2
(xj − 2x2sin(2�x1 +

j�

n
))
2

f3 = cos
�
0.5x1�

�
+

2

�J2�
∑

j∈J2

∑
j∈J1

(xj − 2x2sin(2�x1 +
j�

n
))
2

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}.

5989

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

where |S| is the number of solutions in the Pareto optimal set (S), d is the mean of all
dis, and.(

d = min(
|||f

i
1

(
x
)
− f

j

1
(x)

||| +
|||f

i
2

(
x
)
− f

j

2
(x)

|||
)
) , i,j = 1,2,…|S|, and x ∈ |S|. The spac-

ing metric considers the distance between a point and its closest neighbor in the
Pareto front generated by the optimization algorithm to measure how evenly the
estimated solutions are distributed. The value 0 for this metric indicates that the
estimated solutions are spaced at equal distances [37].

where ED is the Euclidean distance; ai and bi are, respectively, the maximum and
minimum values in the ith objective; and |F| is the number of objectives. This metric
measures the extent of the points along the Pareto front; it calculates the diversity
of estimated points. In other words, it indicates the range of values covered by the
solutions. Generally, a wider area including the estimated solutions in the Pareto
front is desired, i.e., the larger the value of MS, the better it is. This metric is also
known as the “extent metric” in literature.

(6)SP(S) =

√√√√ 1

|S| − 1

|S|∑

i=1

(d−di)
2

(7)MS =

√
∑|F|

k=1
max(ED(ai − bi))

Table 1   (continued)

Name Mathematical formulation

UF9
f1 = 0.5

[
max

{
0, (1 + �)(1 − 4

(
2x1 − 1

)2
)

}
+ 2x1

]
x2+

2

�J1�
∑

j∈J1
(xj − 2x2sin(2�x1 +

j�

n
))
2

f2 = 0.5
[
max

{
0, (1 + �)

(
1 − 4

(
2x1 − 1

)2)}
+ 2x1

]
x2+

2

�J2�
∑

j∈J2
(xj − 2x2sin(2�x1 +

j�

n
))
2

f3 = 1 − x2 +
2

�J3�
∑

j∈J3
(xj − 2x2sin(2�x1 +

j�

n
))
2

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j|3 ≤ j ≤ n, and j − 2

is a multiplication of 3},

J3 = {j|3 ≤ j ≤ n, andjis a multiplication of 3}.

F10 f1 = cos
�
0.5x1�

�
cos

�
0.5x2�

�
+

2

�J1�
∑

j∈J1

�
4y2

j
− cos

�
8�yj

�
+ 1

�

f1 = cos
�
0.5x1�

�
cos

�
0.5x2�

�
+

2

�J2�
∑

j∈J2

�
4y2

j
− cos

�
8�yj

�
+ 1

�

f1 = cos
�
0.5x1�

�
cos

�
0.5x2�

�
+

2

�J3�
∑

j∈J3

�
4y2

j
− cos

�
8�yj

�
+ 1

�

J1 = {j|3 ≤ j ≤ n, and j − 1 is amultiplication of3}, J2 = {j|3 ≤ j ≤ n, and j − 2

is amultiplication of3},

J3 = {j|3 ≤ j ≤ n, andj is amultiplication of 3}.

5990	 S. Alp et al.

1 3

Table 2   The mathematical representation of different test cases in the ZDT and DTLZ datasets

Name Mathematical formulation d

ZDT1 f1 = x1, f2 = g
�
1 −

√
F1∕g

�
, g = 1 +

9

d−1

∑d

i=2
xi

30

ZDT2 f1 = x1, f2 = g
�
1 −

�
f1∕g

�2�
, g = 1 +

9

d−1

∑d

i=2
xi

30

ZDT3 f1 = x1, f2 = g
�
1 −

√
f1∕g − f1∕gsin

�
10�f1

��
, g = 1 +

9

d−1

∑d

i=2
xi

30

ZDT4 f1 = x1, f2 = g
�
1 −

√
f1∕g

�
, g = 1 + 10(d − 1) +

∑d

i=2

�
x2
i
− 10cos

�
4�xi

�� 10

ZDT6
f1 = 1 − exp

�
−4x1

�
sin6

�
6�x1

�
, f2 = g

�
1 −

�
f1∕g

�2�
,−g = 1 + 9

�∑d

i=2
xi

d−1

�
10

DTLZ1 f1(x) =
1

2
x1x2 ⋯ xM−1

(
1 + g

(
xM

))
, 30

f2(x) =
1

2
x1x2 ⋯

(
1 − xM−1

)(
1 + g

(
xM

))
,⋯ ,

fM−1(x) =
1

2
x1
(
1 − x2

)(
1 + g

(
xM

))
,

fM(x) =
1

2

(
1 − x1

)(
1 + g

(
xM

))

g
�
xM

�
= 100

�
��xM�� +

∑
xi∈xM

�
xi − 0.5

�2
− cos

�
20�

�
xi − 0.5

���

DTLZ2 f1(x) =
(
1 + g

(
xM

))
cos

(
x1�

2

)
⋯ cos

(
xM−2�

2

)
cos

(
xM−1�

2

)
,

30

f2(x) =
(
1 + g

(
xM

))
cos

(
x1�

2

)
⋯ cos

(
xM−2�

2

)
sin

(
xM−1�

2

)
,

f3(x) =
(
1 + g

(
xM

))
cos

(
x1�

2

)
⋯ sin

(
xM−2�

2

)
,⋯ ,

fM(x) =
(
1 + g

(
xM

))
sin

(
x1�∕2

)
,

g
�
xM

�
=
∑

xi∈xM

�
xi − 0.5

�2

DTLZ3 DTLZ2 can be made harder by making a modification to the g function

g
�
xM

�
= 100

�
��xM�� +

∑
xi∈xM

�
xi − 0.5

�2
− cos

�
20�

�
xi − 0.5

��� 30

DTLZ4 f1(x) =
�
1 + g

�
xM

��
cos

�
x�
1
�∕2

�
⋯ cos

�
x�
M−2

�∕2
�
cos

�
x�
M−1

�∕2
�

f2(x) =
�
1 + g

�
xM

��
cos

�
x�
1
�∕2

�
⋯ cos

�
x�
M−2

�∕2
�
sin

�
x�
M−1

�∕2
�

f3(x) =
�
1 + g

�
xM

��
cos

�
x�
1
�∕2

�
⋯ sin

�
x�
M−2

�∕2
�

⋮

fM(x) =
�
1 + g

�
xM

��
sin

�
x�
1
�∕2

�

g
�
xM

�
=
∑

xi∈xM

�
xi − 0.5

�2

30

DTLZ5 f1(x) =
�
1 + g

�
xM

��
cos

�
�1�∕2

�
⋯ cos

�
�M−2�∕2

�
cos

�
�M−1�∕2

�
,

f2(x) =
�
1 + g

�
xM

��
cos

�
�1�∕2

�
⋯ cos

�
�M−2�∕2

�
sin

�
�M−1�∕2

�
,

f3(x) =
�
1 + g

�
xM

��
cos

�
�1�∕2

�
⋯ sin

�
�M−2�∕2

�

⋮

fM(x) =
�
1 + g

�
xM

��
sin

�
�1�∕2

�
,

�i =
�

4(1+g(xM))

�
1 + 2g

�
xM

�
xi
�
, for i = 2, 3,… , (M − 1)

g
�
xM

�
=
∑

xi∈xM

�
xi − 0.5

�2
,

30

DTLZ6 DTLZ5 can be made harder by making a modification to the g function
g
�
xM

�
=
∑

xi∈xM
x0.1
i

30

5991

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

Note that in all experiments on the CEC 2009, ZDT, and DTLZ benchmarks, we
have utilized 100 solutions and a maximum of 1000 iterations. The main criterion
in these benchmarks was the number of iterations. However, we used the Maximum
Number of Function Evaluations (MNFE) as the termination criterion rather than
relying on a ’Maximum Iteration Number for the CEC 2018 dataset. In CEC 2108
experiments, the number of objectives (M) in MaOP1-MaOP10 is set to 3. The num-
ber of variables (N) in all ten test problems is 20. The population size in each algo-
rithm is pop = 100 × M and finally, the total number of function evaluations is set to
pop × 500. Besides, the general parameters of the proposed algorithm as well as five
other algorithms are listed in Table 3. We have run experiments with different values
for the parameters used in MOBRO and concluded that MOBRO achieves its high-
est performance when using the values shown in Table 3. The parameter values of
other algorithms have been taken from their publications. Note that four optimiza-
tion algorithms (MOBRO, MOGWO, MOPOS, and NSGA-III) have been applied
to the CEC 2009, ZDT, and DTLZ datasets, but all algorithms, including MOAVOA
and MAOA, have been tested on the CEC 2018 dataset.

3.3 � Results

All the experiments have been conducted on MATLAB R2019b, installed on Win-
dows 10, on a computer with a Core i7-7700HQ processor running at 2.80 GHz and
32 GB of RAM. Since heuristic algorithms are inherently stochastic, they may gen-
erate relatively diverse results. Therefore, for each dataset, an average of 25 sepa-
rate runs have been used. As the theoretical evaluation of optimization algorithms
is difficult, benchmark datasets are used for this purpose. We calculated the value of
three performance metrics explained in Sect. 3.1 and provided them in Tables 4, 6
and 8 separately for different datasets. For the sake of fair comparison, the obtained
results are compared with five state-of-the-art algorithms: the non-dominated sort-
ing genetic algorithm (NSGA-III), multi-objective particle swarm optimization
(MOPSO), multi-objective gray wolf optimization (MOGWO), multi-objective
arithmetic optimization algorithm (MAOA), and the multi-objective version of
the artificial vulture optimization algorithm (MOAVOA). Note that the first three

Table 2   (continued)

Name Mathematical formulation d

DTLZ7 f1
�
x1

�
= x1

f2
�
x2

�
= x2

⋮

fM−1

�
xM−1

�
= xM−1

fM(x) =
�
1 + g

�
xM

��
h
�
f1, f2,… , fM−1, g

�

g
�
xM

�
= 1 +

9

�xM�
∑

xi∈xM
xi

h
�
f1, f2,… , fM−1, g

�
= M −

∑M−1

i=1

�
fi

1+g

�
1 + sin

�
3�fi

���

30

5992	 S. Alp et al.

1 3

algorithms have been applied to three datasets (CEC 2009, ZDT, and DTLZ), but
all five algorithms have been tested on the CEC 2018 dataset. As the number of runs
for obtaining these results is 25, the best, worst, average, and standard deviations of

Table 3   The initial values of the parameters in optimization algorithms

Algorithms Parameter Value

MOBRO Maximum Damage 6
Number of Grid 10
Archive size 100
Alpha 0.1
Beta 1
Gamma 2
Mutation rate (1-(iteration-1)/ (maximum number of iteration-1))

NSGA-III Crossover Percentage 0.5
Number of crossovers 2 × round (Crossover Percentage × Population size/2)
Mutation Percentage 0.5
Number of Mutation round (Mutation Percentage × Population size)
Mutation Rate 0.02
Selection mechanism Roulette wheel

MOPSO C1 1
C2 2
Inertia weights range [0.1, 0.5]
acceleration coefficients 2 and 2
Number of Grid 10
Archive size 100
Alpha 0.1
Beta 2
Gamma 2
Mutation rate 0.1

MOGWO Number of Grid 10
Archive size 100
Alpha 0.1
Beta 4
Gamma 2

MAOA a⃗ linearly decreased from 2 to 0 over the iterations
Archive size 100
Number of adaptive Grid 30
Beta 4
Gamma 2

MOAVOA Archive size 100
Number of adaptive Grid 30
Beta 4
Gamma 2

5993

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

these runs are also provided in these tables, i.e., according to, for example, IGD, the
average case shows the average IGD value across a set of runs of each algorithm on
the problem. The best case shows the lowest IGD value achieved by any run of the
algorithm on the problem, and the worst case shows the highest IGD value achieved
by any run of the algorithm on the problem. The SD shows the standard deviation of
the IGD values across the set of runs for each algorithm. The rank of each optimiza-
tion algorithm among others is also provided in Tables 5, 7 and 9.

Based on the results in Table 4, UF1 function, the MOBRO algorithm achieves
competitive results with state-of-the-art According to the obtained results on the CEC
2009 dataset, MOBRO has the lowest average IGD value among the four algorithms,
followed by NSGA-III, MOGWO, and MOPSO. MOBRO also has the lowest best
and worst IGD values and the lowest standard deviation. This suggests that MOBRO
may be the most consistent and efficient algorithm among the four in terms of achiev-
ing good solutions. All four algorithms have small and consistent average values for
the SP indicator, with an average value of around 0.02 and a standard deviation of
around 0.03. A notable aspect of Table 4 is the best values for each algorithm, which
are all very small. The best value for MOBRO is 0, indicating that the solutions in
the Pareto front approximation are evenly spaced and perfectly distributed. This sug-
gests that the algorithms can find a set of solutions that are very diverse and evenly
distributed, covering a wide range of the objective space. Also, NSGA-III outper-
forms others in the worst case; however, other algorithms provide competitive results.
The average values for the spread metric for all four algorithms are close to 1, with
a standard deviation of around 0.01. This indicates that the algorithms have similar
performance in terms of the average spread or dispersion of the solutions. The best
values for the spread metric obtained by each algorithm are very close to 1, while
MOGWO achieves the best value of 1.115994. Also, MOBRO provides the best
value in terms of the worst case. Figure 2 (UF1) shows that MOBRO provides an
accurate approximation of the true Pareto Optimal Front with the highest diversity as
it is evenly spaced and distributed over the true Pareto Front. For the remaining func-
tions (U2-U10), according to the results given in Table 4, all the algorithms provide
satisfactory results. Nonetheless, as shown in Fig. 2 (UF2-UF10), MOBRO provides
a more accurate approximation of the true Pareto optimal front with the highest diver-
sity where its solutions are equally spaced and dispersed across the true Pareto front.

By inspecting the obtained results on the CEC 2009 dataset, which are
summarized in Table 5, the MOBRO algorithm ranks first according to the average,
best, worst, and SD values of the IGD metric. Meanwhile, MOBRO ranks third,
first, third, and third in average, best, worst, and SD, respectively, in terms of the
spacing metric. Also, MOBRO ranks first, second, first, and fourth in average, best,
worst, and SD, respectively, in terms of the spread metric. Finally, MOBRO ranks
first alongside NSGA-III over the average on all metrics’ ranks.

Table 6 provides the results obtained by the four different multi-objective opti-
mization algorithms on the ZDT benchmark functions, while the ranks of the algo-
rithms are summarized in Table 7. On the ZDT1 problem, in terms of average IGD,
MOPSO has the lowest value, followed by MOBRO, NSGA-III, and MOGWO.
Also, the best IGD values show a similar trend. The worst IGD values are some-
what lower for MOPSO and MOBRO compared to NSGA-III and MOGWO, but the

5994	 S. Alp et al.

1 3

Table 4   Obtained results for the CEC 2009 dataset by MOBRO and three state-of-the-art optimization
algorithms (UF)

Indicators MOBRO NSGA-III MOPSO MOGWO

UF1 IGD Average 1.058879e-01 1.190825e-01 1.294765e-01 1.126504e-01
Best 8.041294e-02 7.938359e-02 1.013040e-01 7.428851e-02
Worst 1.282778e-01 1.850927e-01 2.419845e-01 1.533307e-01
SD 1.267987e-02 2.477559e-02 3.158483e-02 1.285874e-02

Spacing Average 2.074686e-02 3.228779e-02 2.343677e-02 2.042699e-02
Best 0 1.310436e-05 9.850322e-03 6.170633e-04
Worst 1.188528e-01 7.356352e-02 1.189510e-01 1.505613e-01
SD 3.170980e-02 2.668677e-02 2.330571e-02 3.567157e-02

Spread Average 1.008284 1.001394 9.972661e-01 1.006243
Best 1.039642 1.010989 1.000815 1.115994
Worst 1 9.999997e-01 9.919703e-01 9.940015e-01
SD 1.418461e-02 2.273553e-03 2.624179e-03 2.357498e-02

UF2 IGD Average 3.807625e-02 6.477508e-02 1.439172e-01 6.663130e-02
Best 3.074160e-02 3.202552e-02 1.072780e-01 5.428564e-02
Worst 5.506947e-02 1.138059e-01 1.772986e-01 8.090885e-02
SD 5.846266e-03 2.430804e-02 2.040275e-02 6.814360e-03

Spacing Average 2.360691e-02 2.168966e-02 2.093645e-02 1.619863e-02
Best 8.020962e-03 6.356538e-03 1.306679e-02 9.418330e-03
Worst 5.183141e-02 5.369421e-02 3.194228e-02 2.637573e-02
SD 1.033737e-02 1.413747e-02 4.662564e-03 5.438637e-03

Spread Average 1.046580 1.001036 9.924647e-01 9.966049e-01
Best 1.011413 9.884833e-01 9.746364e-01 9.595267e-01
Worst 2.952298e-02 6.554787e-03 4.671885e-03 1.373376e-02
SD 1.128760 1.018981 9.979203e-01 1.017377

UF3 IGD Average 2.702032e-01 3.094566e-01 5.515161e-01 2.833685e-01
Best 1.288660e-01 2.137218e-01 4.304273e-01 1.463563e-01
Worst 3.903488e-01 3.318596e-01 7.062751e-01 3.834633e-01
SD 8.585441e-02 2.638603e-02 6.612060e-02 5.786431e-02

Spacing Average 3.787285e-03 2.118774e-03 3.002797e-02 6.575234e-02
Best 0 3.028966e-06 7.993507e-03 1.619912e-02
Worst 5.311535e-02 4.409929e-02 6.207261e-02 1.207440e-01
SD 1.314808e-02 8.811720e-03 1.439819e-02 2.785524e-02

Spread Average 1.001759 1.000057 9.983732e-01 1.019559
Best 1.040307 1.001287 1.000034 1.055983
Worst 1 9.999996e-01 9.903914e-01 9.908404e-01
SD 8.064068e-03 2.570035e-04 2.274009e-03 1.691203e-02

5995

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

Table 4   (continued)

Indicators MOBRO NSGA-III MOPSO MOGWO

UF4 IGD Average 6.236254e-02 6.384848e-02 7.870343e-02 6.399682e-02

Best 5.821814e-02 5.462501e-02 7.228058e-02 4.921678e-02

Worst 7.482343e-02 8.077696e-02 8.711760e-02 8.473269e-02

SD 4.843749e-03 6.811379e-03 4.090672e-03 9.822848e-03

Spacing Average 5.817968e-02 1.805360e-02 1.024719e-02 1.223679e-02

Best 2.291433e-02 5.290659e-10 8.610813e-03 7.121168e-03

Worst 1.352620e-01 3.366050e-02 1.274377e-02 1.928826e-02

SD 2.425651e-02 9.763574e-03 9.525431e-04 3.764147e-03

Spread Average 1.053060 1.004539 9.958688e-01 9.973942e-01

Best 1.217261 1.016587 9.983493e-01 1.002877

Worst 9.812560e-01 1 9.929963e-01 9.931065e-01

SD 4.914117e-02 3.795481e-03 1.244437e-03 2.694213e-03
UF5 IGD Average 5.148433e-01 2.600057e-01 1.083485 1.032972

Best 2.921407e-01 1.631642e-01 5.967223e-01 5.460534e-01
Worst 7.071068e-01 4.337244e-01 2.468638 2.337737
SD 1.160190e-01 6.335942e-02 5.574357e-01 5.038715e-01

Spacing Average 0 1.970091e-02 6.568606e-02 2.609233e-01
Best 0 4.525583e-03 1.206815e-06 1.354659e-05
Worst 0 3.460013e-02 3.346846e-01 1.011886
SD 0 8.519111e-03 1.019496e-01 2.561727e-01

Spread Average 1 1.038523 9.931861e-01 1.016944
Best 1 1.077282 1.011658 1.082921
Worst 1 1.007663 9.335478e-01 9.691344e-01
SD 0 1.928604e-02 1.731291e-02 2.593242e-02

UF6 IGD Average 3.545686e-01 2.988375e-01 6.138773e-01 3.729353e-01
Best 1.168526e-01 1.697471e-01 3.966720e-01 3.153002e-01
Worst 6.449754e-01 4.979779e-01 1.002562 5.675313e-01
SD 1.397700e-01 7.700448e-02 1.695441e-01 5.044658e-02

Spacing Average 2.630257e-02 2.115380e-02 5.813419e-02 2.635353e-02
Best 0 4.703457e-03 0 2.026554e-03
Worst 6.575644e-01 4.285737e-02 1.185145 1.269807e-01
SD 1.315129e-01 1.132747e-02 2.351311e-01 3.097434e-02

Spread Average 1.002551 1.000649 1.000129 1.000200
Best 1.063784 1.001707 1.005313 1.002104
Worst 1 1.000166 9.994161e-01 9.998040e-01
SD 1.275679e-02 3.925596e-04 1.089432e-03 4.606180e-04

5996	 S. Alp et al.

1 3

Table 4   (continued)

Indicators MOBRO NSGA-III MOPSO MOGWO

UF7 IGD Average 1.935032e-01 2.840046e-01 1.345812e-01 8.829407e-02

Best 4.491640e-02 2.570611e-02 5.881359e-02 6.221430e-02

Worst 4.106740e-01 6.183849e-01 3.657388e-01 3.510646e-01

SD 1.483561e-01 1.925225e-01 7.675563e-02 5.842972e-02

Spacing Average 2.124306e-02 1.516826e-02 1.929874e-02 1.535620e-02

Best 0 7.283484e-07 8.235993e-04 4.478326e-03

Worst 5.136007e-02 6.477584e-02 3.616026e-02 4.741173e-02

SD 1.811356e-02 1.502914e-02 8.743771e-03 9.870987e-03

Spread Average 1.222007 1.003851 9.927430e-01 9.926709e-01

Best 1.493219 1.045802 9.999951e-01 1.004355

Worst 1 9.688524e-01 9.753168e-01 9.669770e-01

SD 2.204172e-01 1.709751e-02 5.128329e-03 9.361485e-03
UF8 IGD Average 1.847130e-01 4.305215e-01 7.967083e-01 1.852416

Best 1.551407e-01 2.530296e-01 4.808991e-01 2.596214e-01
Worst 2.020404e-01 4.420496e-01 1.281790 3.293377
SD 7.980226e-03 3.748258e-02 1.561078e-01 1.002490

Spacing Average 5.931855e-02 1.325272e-02 3.049455e-01 2.412446e-02
Best 3.758080e-02 9.009516e-03 1.961534e-01 8.258467e-03
Worst 8.260748e-02 4.334506e-02 4.403492e-01 5.322328e-02
SD 1.024589e-02 6.584966e-03 7.373366e-02 1.150028e-02

Spread Average 9.798638e-01 9.993291e-01 9.984394e-01 9.999478e-01
Best 1.006017 9.998775e-01 9.992794e-01 1.000015
Worst 9.568720e-01 9.976321e-01 9.973884e-01 9.996560e-01
SD 1.349235e-02 4.766431e-04 4.383336e-04 9.325745e-05

UF9 IGD Average 1.870647e-01 2.925822e-01 1.094135 2.411257e-01
Best 9.536503e-02 1.198416e-01 7.240413e-01 1.141366e-01
Worst 2.978038e-01 5.178909e-01 1.469235 7.388227e-01
SD 6.913882e-02 7.032754e-02 2.019914e-01 1.631921e-01

Spacing Average 7.537386e-02 1.697862e-02 3.824521e-01 3.191370e-02
Best 4.113810e-02 7.449715e-03 1.718706e-01 4.964488e-03
Worst 1.447432e-01 4.130173e-02 6.070866e-01 8.786275e-02
SD 2.689333e-02 8.102589e-03 1.175569e-01 1.715532e-02

Spread Average 1.008118 9.989047e-01 9.985149e-01 9.999034e-01
Best 1.027527 1.000104 9.991865e-01 1.000171
Worst 1.002171 9.973850e-01 9.972399e-01 9.995532e-01
SD 5.619450e-03 7.908437e-04 4.504668e-04 1.565576e-04

5997

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

difference is not as large as it is for the average and best values. This suggests that
the worst solutions found by MOPSO and MOBRO were not as far from the true
Pareto front as the worst solutions found by NSGA-III and MOGWO are. Finally,
the standard deviation values show that the IGD values for MOPSO and BRO had
smaller variations across the set of runs compared to NSGA-III and MOGWO. This
indicates that the performance of MOPSO and MOBRO was more consistent across
the runs, while the performance of NSGA-III and MOGWO was more variable.
Based on the average spacing values provided in the table, MOBRO has the lowest
average spacing value, followed by MOPSO, NSGA-III, and MOGWO. This ranking
means that MOBRO outperforms the other algorithms in terms of producing a more
focused set of solutions on the Pareto front, followed by MOPSO, NSGA-III, and
MOGWO. Based on the best and worst spacing values, MOBRO has the narrowest
range of spacing values, followed by MOPSO, NSGA-III, and MOGWO. This could
indicate that MOBRO produces a more focused set of solutions on the Pareto front,
while the other algorithms produce a more diverse set of solutions. The standard
deviation of the spacing values also suggests that MOBRO has the most consistent
set of spacing values, followed by MOPSO, NSGA-III, and MOGWO. This could
further support the idea that MOBRO produces a more focused set of solutions.

Based on the values given in Table 6, MOBRO outperforms the other algorithms
in terms of the spread metric for the ZDT1 optimization problem, with the great-
est average, best, and worst values. However, MOPSO, although ranked 4th in
the spread metric, has the lowest standard deviation, indicating that it has a more
consistent set of values and potentially a smaller range of solutions. As mentioned
already, due to the nature of the original GWO algorithm, in some cases MOGWO
suffers from a shortage of candidate leaders in the Pareto front as it requires three
leaders to find the optimal solution. For example, MOGWO is unable to provide any

Table 4   (continued)

Indicators MOBRO NSGA-III MOPSO MOGWO

UF10 IGD Average 6.437072e-01 5.291184e-01 5.747524 1.720505

Best 2.192057e-01 3.188761e-01 3.451154 4.613242e-01

Worst 1.043141 7.689212e-01 7.860392 3.375046

SD 2.466995e-01 9.744921e-02 1.013933 8.853796e-01

Spacing Average 1.985429e-02 2.968321e-02 1.338813 1.656022e-01

Best 0 2.878160e-05 8.381262e-01 0

Worst 3.347792e-01 1.191497e-01 2.938443 4.927139e-01

SD 6.845717e-02 3.284048e-02 4.239808e-01 1.469929e-01

Spread Average 9.985482e-01 1.000048 9.993924e-01 9.997736e-01

Best 1.002403 1.000217 9.997581e-01 1.000097

Worst 9.756552e-01 9.999930e-01 9.991681e-01 9.991277e-01

SD 5.657893e-03 5.875331e-05 1.530178e-04 2.191258e-04

5998	 S. Alp et al.

1 3

Fig. 2   The Pareto fronts obtained by the applied algorithms on the all test problems

5999

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

Fig. 2   (continued)

6000	 S. Alp et al.

1 3

solution for the ZDT2 and ZDT3 test suits as it could not provide more than one or
two candidate leaders in the Pareto Front. Moreover, it can be seen in Table 5 that
the MOBRO algorithm outperforms its competitors in terms of spacing and spread
indicators and ranks first according to average, best, and worst values. Consider-
ing all ZDT functions, MOBRO ranks second, third, second, and second in average,
best, worst, and SD, respectively, in terms of the IGD metric. Finally, by taking the
average over all metrics ranks on all ZDT datasets, MOBRO ranks first, followed by
MOPSO, NSGA-III, and MOGWO. Figure 2 for ZDT1-ZDT6 shows that in most
cases, the algorithms can find a very accurate approximation of the true Pareto opti-
mal solutions with a good diversity that is evenly spaced and perfectly distributed.
However, MOGWO is unable to provide solutions for ZDT2 and ZDT3.

Fig. 2   (continued)

6001

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

Tables 8 and 9, respectively, represent the obtained results and the rankings
of the four algorithms on the DTLZ dataset. Based on the average IGD value for
the DTLZ1, NSGA-III ranks first by a large margin, and the following algorithms
are MOGWO, MOBRO, and MOPSO, respectively, from second to last. Moreo-
ver, based on the spacing metric, the NSGA-III algorithm again ranks first in all
cases (best, worst, average, and SD) on DTLZ1. However, according to Spread, the
MOBRO algorithm ranks first in “average”, “best,” and “worst,” while MOPSO
ranks first in “SD”. According to the obtained results, the DTLZ dataset appears to
be more challenging than the other two datasets. As is shown in Table 8, MOGWO
could not provide any solutions for the DTLZ7 test function in some runs of the
algorithm. However, the best Pareto Front of all success runs for MOGWO have
been plotted in Fig. 2 (DTLZ1).

In a nutshell, according to all DTLZ functions, MOBRO ranks second, third,
fourth, and third in average, best, worst, and SD, respectively, in terms of the IGD
metric. Also, it ranks fourth, third, fourth, and fourth in average, best, worst, and
SD, correspondingly, in terms of the spacing metric. According to the Spread met-
ric, MOBRO ranks first in average, best, worst and ranks second in SD. Finally, by
taking the average over all metrics’ ranks, the overall ranking of the four algorithms
is NSGA-III, MOPSO, MOBRO, and MOGWO from best to worst. These results
show that the distance between MOBRO’s solutions for DTLZ and the true Pareto
Front is not as close as others. Also, a higher spacing value for MOBRO indicates
that the solutions are more evenly distributed within the set, while a lower spacing
value for the competitors suggests that the solutions are more densely clustered. The
spacing value depends on the optimization problem’s context and goals. In some

Table 5   The ranks of each algorithm among others according to CEC 2009 dataset

Metrics MOBRO NSGA-III MOPSO MOGWO

Average Overall Average Overall Average Overall Average Overall

IGD Average 1,50 1 2,20 2 3,70 4 2,60 3
Best 1,60 1 2,00 2 3,90 4 2,50 3
Worst 1,80 1 2,00 2 3,70 4 2,50 3
SD 2,00 1 2,30 2 3,20 4 2,50 3

Spacing Average 2,60 3 1,90 1 3,10 4 2,40 2
Best 1,80 1 2,30 2 3,20 4 2,50 3
Worst 2,60 2 1,90 1 2,90 4 2,60 2
SD 2,70 3 1,90 1 2,60 2 2,80 4

Spread Average 2,00 1 2,10 2 3,60 4 2,30 3
Best 1,50 1 2,60 3 3,60 4 2,30 2
Worst 3,40 4 1,60 1 2,90 3 2,10 2
SD 3,50 4 2,20 2 1,80 1 2,50 3

Average 1.92 1.75 3.50 2.75
Rank 2 1 4 3

6002	 S. Alp et al.

1 3

Table 6   Obtained results for the ZDT dataset by MOBRO and three state-of-the-art optimization algo-
rithms (ZDT)

Indicators MOBRO NSGA-III MOPSO MOGWO

ZDT1 IGD Average 1.327705e-02 1.474600e-02 9.336466e-03 2.995821e-02
Best 1.056102e-02 6.995229e-03 7.507571e-03 1.542783e-02
Worst 1.960878e-02 5.095734e-02 1.186242e-02 1.089518e-01
SD 2.261685e-03 8.693213e-03 1.180501e-03 1.877269e-02

Spacing Average 1.151922e-02 1.398349e-02 1.153518e-02 1.578788e-02
Best 7.405108e-03 8.326846e-03 9.803473e-03 8.971108e-03
Worst 1.352383e-02 2.033908e-02 1.406406e-02 2.976003e-02
SD 1.753412e-03 3.300849e-03 1.204771e-03 5.668460e-03

Spread Average 1.026903 9.921211e-01 9.850165e-01 1.009012
Best 1.090888 1.003418 9.991394e-01 1.064891
Worst 1.003829 9.286323e-01 9.310711e-01 1.000285
SD 2.134775e-02 1.442679e-02 1.430293e-02 1.451846e-02

ZDT2 IGD Average 1.570948e-01 3.860709e-01 8.954065e-03 –
Best 1.152778e-02 1.436772e-02 7.864588e-03 –
Worst 6.102383e-01 8.168218e-01 1.061456e-02 –
SD 2.599017e-01 1.773057e-01 6.711798e-04 –

Spacing Average 9.300668e-03 8.917949e-03 1.146621e-02 –
Best 0 1.927686e-05 9.445561e-03 –
Worst 1.500097e-02 3.144561e-02 1.436123e-02 –
SD 5.512555e-03 7.124149e-03 1.159716e-03 –

Spread Average 1.042487 1.063120 9.585570e-01 –
Best 1.143705 1.467445 1.015588 –
Worst 1 9.956852e-01 8.600362e-01 –
SD 3.561635e-02 1.352227e-01 3.795278e-02 –

ZDT3 IGD Average 1.237738e-02 1.272082e-02 9.248437e-03 –
Best 9.626243e-03 8.998238e-03 7.864033e-03 –
Worst 1.624695e-02 1.726821e-02 1.106055e-02 –
SD 1.761015e-03 2.544873e-03 8.863464e-04 –

Spacing Average 1.238916e-02 1.523259e-02 1.074315e-02 –
Best 1.001622e-02 7.877873e-03 8.045306e-03 –
Worst 1.444268e-02 2.306351e-02 1.415532e-02 –
SD 1.246359e-03 4.309461e-03 1.522289e-03 –

Spread Average 1.020829 9.987427e-01 9.174001e-01 –
Best 1.071257 1.007409 9.749227e-01 –
Worst 1.001514 9.843139e-01 7.633056e-01 –
SD 1.643803e-02 5.400559e-03 4.021701e-02 –

6003

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

cases, a diverse or evenly distributed set of solutions is desired, while in others, a
tightly clustered set is more appropriate.

Also, MOBRO ranks first based on the Spread metric in all the datasets. It proves
that the obtained results by MOBRO can cover the true Pareto Front through hyper
cubes better than its competitors.

Unlike other datasets (CEC 2009 ZDT and DTLZ), we used the number of
function evaluation criterion instead of the number of iterations for measuring
the performance of MOBRO on the CEC 2018 dataset. Tables 10 and 11, respec-
tively, provide the obtained results for four different algorithms according to per-
formance metrics and the rank of each algorithm, among others. The reason for
not listing MOGWO in these tables is that MOGWO is unable to find an optimal
solution for any of the datasets in CEC2018, as it requires three solutions in the

Table 6   (continued)

Indicators MOBRO NSGA-III MOPSO MOGWO

ZDT4 IGD Average 2.260567 2.848878e-01 4.069619 3.248467

Best 1.220899e-01 1.252948e-02 3.907178e-01 8.392923e-01

Worst 2.232986e + 01 5.955614e-01 1.414372e + 01 1.098995e + 01

SD 4.802797 1.893033e-01 3.420569 2.220592

Spacing Average 5.743109e-04 1.563621e-02 8.300782e-02 2.655381e-01

Best 0 3.105363e-03 1.097073e-02 0

Worst 8.097027e-03 4.703317e-02 1.624314 4.504345

SD 1.573267e-03 9.827947e-03 3.211379e-01 9.382259e-01

Spread Average 1.010865 1.002466 9.997825e-01 1.000196

Best 1.079330 1.043152 1.000206 1.004563

Worst 9.895047e-01 9.885998e-01 9.988924e-01 1

SD 1.989874e-02 1.009507e-02 2.567855e-04 9.105199e-04
ZDT6 IGD Average 1.388264e-02 1.084263e-01 7.622778e-03 2.020376e-02

Best 7.282946e-03 6.998088e-03 6.120972e-03 5.691615e-03
Worst 2.785515e-02 5.210060e-01 9.095217e-03 4.747065e-02
SD 5.033109e-03 1.589206e-01 7.734070e-04 1.488173e-02

Spacing Average 1.383537e-02 2.868863e-02 1.518930e-02 2.295072e-02
Best 7.949431e-03 1.599477e-09 8.154275e-03 4.925987e-03
Worst 4.592198e-02 1.313652e-01 5.116604e-02 7.237843e-02
SD 7.545012e-03 2.922671e-02 1.132442e-02 2.325584e-02

Spread Average 1.220917 1.326404 9.763627e-01 1.041479
Best 1.533949 1.882441 1.177151 1.339947
Worst 1.018183 9.739449e-01 8.248366e-01 8.424521e-01
SD 1.348425e-01 3.173127e-01 8.605875e-02 1.207655e-01

6004	 S. Alp et al.

1 3

Pareto Front, and when it cannot find these three, a runtime error occurs in this
algorithm.

According to Table10 and consequently Table 11, NSGA-III ranks first and
MOBRO ranks second in terms of the IGD measure, followed by MOPSO,
MOAVOA, and MAOA ranking from third to fifth. This superiority suggests that
MOBRO and NSGA-III offer a better balance between convergence and diversity.
This balance can be seen in their ability to approximate the true Pareto Front
effectively. When looking at the Spacing measure, again, NSGA-III and MOBRO
respectively rank the first and second, but this time, MOBRO obtains very
competitive results to NSGA-III. The MOPSO, MAOA, and MOAVOA respectively
rank from third to fifth. These ranks indicate that the estimated solutions by
MOBO and NSGA-III are spaced at almost equal distances. In terms of the spread,
MOBRO surpasses all other algorithms and ranks first. The second to fifth ranks
are respectively achieved by NSGA-III, MOAVOA, MAOA, and MOPSO. Obtained
results on this measure suggest that MOBRO and NSGA-III spread the obtained
solutions with a higher distance over the Pareto Front. Note that for the first two
factors, IGD and SP, lower values but for the third one, spread, higher values are
desired. In summary, MOBRO and NSGA-III emerged as prominent candidates,
providing a high solution quality and diversity, which can be chosen as trustable
algorithms for solving multi-objective optimization problems in a specific domain.

We also measured the runtime for each algorithm when applied to the CEC
2018 dataset, provided in Table 12. According to this table, the fastest algorithm
among the five is MAOA, while the slowest one is NSGA-III. This low speed can
be assumed to be a disadvantage for the NSGA-III algorithm, despite its success in
finding optimal solutions for many multi-objective problems. Finally, the Wilcoxon

Table 7   The ranks of each algorithm among others according to the ZDT dataset

Indicators MOBRO NSGA-III MOPSO MOGWO

Average Overall Average Overall Average Overall Average Overall

IGD Average 2.00 2 2.80 3 1.60 1 3.60 4
Best 2.80 3 2.00 2 1.80 1 3.40 4
Worst 2.40 2 2.80 3 1.40 1 3.40 4
SD 2.60 2 2.60 2 1.40 1 3.40 4

Spacing Average 1.40 1 2.60 3 2.20 2 3.80 4
Best 1.80 1 1.80 1 3.40 4 2.80 3
Worst 1.40 1 3.00 3 1.80 2 3.80 4
SD 1.40 1 3.00 3 1.80 2 3.80 4

Spread Average 1.40 1 1.80 2 3.60 4 3.20 3
Best 1.40 1 1.80 2 3.60 4 3.20 3
Worst 1.60 1 2.40 2 2.60 3 3.40 4
SD 2.80 3 2.60 2 1.60 1 3.00 4

Average 1.58 2.33 2.17 3.75
Rank 1 3 2 4

6005

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

Table 8   Obtained results for MOBRO as well as state-of-the-art optimization algorithms (DTLZ)

Indicators MOBRO NSGA-III MOPSO MOGWO

DTLZ1 IGD Average 2.178377e + 02 1.989607e + 01 2.248275e + 02 1.482031e + 02
Best 8.867041e + 01 1.448727e + 01 1.943567e + 02 1.155510
Worst 3.397415e + 02 2.745007e + 01 2.801124e + 02 2.520651e + 02
SD 6.530199e + 01 6.170282 1.897980e + 01 9.929580e + 01

Spacing Average 8.573991e + 01 1.838074 1.991931e + 01 4.154402e + 01
Best 5.531672e + 01 1.199141 1.399390e + 01 1.827708
Worst 1.255793e + 02 2.593933 2.562060e + 01 1.874294e + 02
SD 1.829162e + 01 6.068766e-01 3.390659 4.456018e + 01

Spread Average 1.002699 9.984609e-01 9.968741e-01 1.002316
Best 1.006805 9.988149e-01 9.977757e-01 1.025457
Worst 1.000580 9.982124e-01 9.959078e-01 9.947683e-01
SD 1.398521e-03 2.874206e-04 3.938505e-04 7.565210e-03

DTLZ2 IGD Average 1.005500e-01 6.476109e-02 2.073697e-01 5.713183e-01
Best 7.937740e-02 6.177356e-02 1.826352e-01 5.106208e-01
Worst 1.477560e-01 6.780235e-02 2.311046e-01 6.389609e-01
SD 1.537643e-02 2.479877e-03 1.454946e-02 4.417254e-02

Spacing Average 1.789629e-01 5.826382e-02 6.913781e-02 6.475407e-03
Best 7.584949e-02 4.402854e-02 5.567645e-02 2.509956e-03
Worst 3.352709e-01 6.712978e-02 8.871255e-02 1.725288e-02
SD 8.273272e-02 1.027538e-02 8.273844e-03 3.319916e-03

Spread Average 9.999725e-01 9.986632e-01 9.991850e-01 9.999950e-01
Best 1.000339 9.994767e-01 9.995129e-01 1.000001
Worst 9.988879e-01 9.980401e-01 9.987365e-01 9.999899e-01
SD 2.426292e-04 6.292910e-04 2.000685e-04 2.378849e-06

DTLZ3 IGD Average 4.921215e + 02 5.898786e + 01 6.829964e + 02 5.060796e + 02
Best 2.981213e + 02 5.102605e + 01 6.285669e + 02 1.112847
Worst 7.401399e + 02 6.763263e + 01 7.239966e + 02 7.005583e + 02
SD 1.138689e + 02 6.798626 3.128210e + 01 3.023669e + 02

Spacing Average 1.970807e + 02 8.596885 4.824420e + 01 7.813303e + 01
Best 1.003343e + 02 5.025303 3.594191e + 01 1.984952
Worst 3.488462e + 02 1.910082e + 01 9.894461e + 01 2.915591e + 02
SD 5.302519e + 01 7.003038 1.660402e + 01 7.666201e + 01

Spread Average 1.001624 9.995634e-01 9.988652e-01 1.005875
Best 1.002761 1.000111 9.995921e-01 1.122472
Worst 1.000756 9.992329e-01 9.986239e-01 9.919322e-01
SD 5.817455e-04 3.985468e-04 2.436799e-04 2.567592e-02

6006	 S. Alp et al.

1 3

Table 8   (continued)

Indicators MOBRO NSGA-III MOPSO MOGWO

DTLZ4 IGD Average 3.335352e-01 6.311718e-01 2.346459e-01 1.743404e-01

Best 1.226681e-01 1.031362e-01 1.557574e-01 8.031445e-02

Worst 5.565818e-01 9.311345e-01 3.636732e-01 5.611295e-01

SD 7.217549e-02 3.932534e-01 5.555505e-02 1.389910e-01

Spacing Average 3.642655e-02 2.314514e-02 8.112420e-02 5.141468e-02

Best 1.243270e-02 1.219790e-11 5.968847e-02 2.073659e-02

Worst 8.447894e-02 8.155942e-02 1.221101e-01 8.311583e-02

SD 1.769809e-02 3.928789e-02 1.417447e-02 1.355924e-02

Spread Average 9.996940e-01 9.988649e-01 9.958179e-01 9.947957e-01

Best 1.000431 1.000000 9.981170e-01 1.000133

Worst 9.948489e-01 9.954818e-01 9.938403e-01 9.870560e-01

SD 1.297369e-03 2.255460e-03 1.173813e-03 3.509239e-03
DTLZ5 IGD Average 1.641832e-02 1.343846e-01 9.823208e-02 5.789609e-02

Best 1.080152e-02 8.110197e-03 6.073218e-02 3.501886e-02
Worst 2.427658e-02 4.968867e-01 1.482071e-01 9.632784e-02
SD 3.308058e-03 2.417796e-01 1.895655e-02 1.681788e-02

Spacing Average 1.442703e-02 1.528519e-02 2.970802e-02 1.882588e-02
Best 8.057921e-03 1.327747e-02 2.403535e-02 9.132885e-03
Worst 1.886809e-02 1.950345e-02 5.444988e-02 3.396901e-02
SD 2.249722e-03 2.846769e-03 7.476184e-03 6.090413e-03

Spread Average 1.002221 9.823109e-01 9.978601e-01 1.000093
Best 1.011890 1.000013 9.986370e-01 1.000363
Worst 9.987108e-01 9.721332e-01 9.966008e-01 9.999465e-01
SD 2.973230e-03 1.221257e-02 4.178853e-04 9.262710e-05

DTLZ6 IGD Average 1.817637e + 01 5.110904e-01 8.672638e-03 2.044580e-02
Best 1.714688e + 01 1.125814e-02 7.190239e-03 1.053539e-02
Worst 1.916421e + 01 1.773498 1.032295e-02 4.643289e-02
SD 5.234625e-01 8.480715e-01 7.846861e-04 1.187041e-02

Spacing Average 2.127344 1.092193e-01 1.310135e-02 1.683930e-02
Best 1.651504 1.328278e-02 9.638915e-03 9.812509e-03
Worst 2.378556 3.033813e-01 1.563092e-02 3.437028e-02
SD 1.775371e-01 1.317103e-01 1.355862e-03 6.051766e-03

Spread Average 9.999731e-01 1.000368 8.807755e-01 1.000399
Best 1.000073 1.001207 1.003490 1.006908
Worst 9.998856e-01 9.999731e-01 7.533910e-01 9.996811e-01
SD 5.136830e-05 5.651200e-04 5.791286e-02 1.394143e-03

6007

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

signed-rank test, which is widely used in the literature [39, 40], was used for a
more accurate comparison of five optimization algorithms. Table 13 lists the sta-
tistical results obtained by this test. As can be seen in this table, MBRO overcomes
MOPSO, MAOA, and MOAVOA in all benchmarks, but it could overcome NSGA-
III in only 7 out of 10 datasets.

Table 8   (continued)

Indicators MOBRO NSGA-III MOPSO MOGWO

DTLZ7 IGD Average 8.926492e-01 2.152397e-01 9.468594e-02 –

Best 2.970584e-01 7.169967e-02 6.847490e-02 –

Worst 1.329984 3.588205e-01 1.195888e-01 –

SD 2.833406e-01 1.634459e-01 1.184403e-02 –

Spacing Average 3.796102e-01 5.280027e-02 6.790844e-02 –

Best 2.109674e-02 3.700353e-02 5.463724e-02 –

Worst 1.008876 7.142480e-02 7.983412e-02 –

SD 2.666095e-01 1.811141e-02 5.835539e-03 –

Spread Average 1.001936 9.894380e-01 9.906941e-01 –

Best 1.007610 9.969709e-01 9.955179e-01 –

Worst 1.000084 9.713501e-01 9.339576e-01 –

SD 1.820868e-03 1.210718e-02 1.202882e-02 –

Table 9   The ranks of all algorithms among others according to DTLZ dataset

Indicators MOBRO NSGA-III MOPSO MOGWO

Average Overall Average Overall Average Overall Average Overall

IGD Average 2.57 2 2.29 1 2.57 2 2.57 2
Best 2.86 3 1.86 1 3.00 4 2.29 2
Worst 2.86 4 2.29 2 2.14 1 2.71 3
SD 2.57 3 2.43 2 1.71 1 3.29 4

Spacing Average 3.14 4 1.57 1 2.57 2 2.71 3
Best 2.86 3 2.00 1 3.00 4 2.14 2
Worst 3.14 4 1.57 1 2.57 2 2.71 3
SD 3.00 4 2.29 2 2.00 1 2.71 3

Spread Average 1.57 1 3.00 3 3.29 4 2.14 2
Best 1.71 1 3.00 2 3.43 4 1.86 2
Worst 1.57 1 2.59 3 3.14 4 3.00 3
SD 2.29 2 2.71 3 2.00 1 3.00 4

Average 2.67 1.83 2.50 2.75
Rank 3 1 2 4

6008	 S. Alp et al.

1 3

Table 10   Obtained results for the CEC 2018 dataset by MOBRO and four state-of-the-art optimization
algorithms (UF)

Indicators MOBRO NSGA-III MOPSO MAOA MOAVOA

MaOP
1

IGD Average 1.280689e + 01 1.179722e + 01 2.315855e + 01 2.300571e + 01 2.285252e + 01
Best 1.135367e + 01 1.123013e + 01 1.522737e + 01 1.811016e + 01 1.472778e + 01
Worst 1.504236e + 01 1.283912e + 01 2.562928e + 01 2.494138e + 01 2.474117e + 01
SD 8.770155e-01 3.739899e-01 1.894522 1.330027 1.891267

Spacing Average 1.947458 5.651070e-01 2.246525 1.908771e + 02 1.982981e + 02
Best 8.591850e-01 1.601317e-01 1.320829 2.104541e + 01 5.554046e + 01
Worst 3.884274 1.579748 3.639818 3.909873e + 02 5.783126e + 02
SD 7.862528e-01 2.463941e-01 4.814220e-01 9.620660e + 01 1.031690e + 02

Spread Average 1.003457 9.939078e-01 9.911545e-01 9.916539e-01 9.918152e-01
Best 1.005403 9.990573e-01 9.950086e-01 9.940113e-01 9.999442e-01
Worst 1.001724 9.909068e-01 9.892068e-01 9.892618e-01 9.883249e-01
SD 9.130956e-04 1.931461e-03 1.442245e-03 1.339972e-03 2.077654e-03

MaOP
2

IGD Average 1.722710e-01 1.540622e-01 5.773744e + 01 5.675091e + 01 5.849365e + 01
Best 1.158435e-01 9.993969e-02 1.390374e-01 4.042861e + 01 9.986961
Worst 2.634274e-01 2.715598e-01 7.425907e + 01 7.841124e + 01 7.607871e + 01
SD 3.629104e-02 3.781798e-02 1.521253e + 01 8.757226 1.396356e + 01

Spacing Average 8.934147e-01 1.469772e-01 2.701819e + 01 6.911821e + 02 9.280110e + 02
Best 2.685580e-02 2.490764e-02 2.003925e-02 2.622005e + 01 8.249202e + 01
Worst 1.276578e + 01 5.766927e-01 3.633424e + 01 2.757809e + 03 2.331228e + 03
SD 2.942640 1.124026e-01 7.397986 5.882307e + 02 6.332044e + 02

Spread Average 1.068932 1.006759 9.764803e-01 9.728797e-01 9.770036e-01
Best 1.772817 1.115801 9.840966e-01 9.808995e-01 9.878845e-01
Worst 1.005587 9.306922e-01 9.682336e-01 9.642990e-01 9.662391e-01
SD 1.892623e-01 4.398047e-02 3.990531e-03 5.018455e-03 4.575877e-03

MaOP
3

IGD Average 8.188333e + 01 1.105402e + 02 1.583787e + 02 1.617477e + 02 1.608237e + 02
Best 7.174101e + 01 9.872514e + 01 5.715911e + 01 1.356553e + 02 1.200379e + 02
Worst 9.087118e + 01 1.190909e + 02 1.665655e + 02 1.661024e + 02 1.670917e + 02
SD 4.794676 4.755184 2.119335e + 01 5.806676 8.849519

Spacing Average 1.444560e + 01 4.000420 6.941603 5.553844e + 02 6.533492e + 02
Best 8.587770 3.270431 3.493016 3.617218e + 01 6.825776e + 01
Worst 1.817662e + 01 4.544279 7.945202 1.132713e + 03 1.495855e + 03
SD 2.107314 2.754888e-01 8.193652e-01 3.746089e + 02 3.703341e + 02

Spread Average 1.002001 9.879779e-01 9.875193e-01 9.874067e-01 9.870912e-01
Best 1.004999 9.897041e-01 9.996217e-01 9.966737e-01 9.979417e-01
Worst 9.965106e-01 9.858885e-01 9.848358e-01 9.855781e-01 9.847030e-01
SD 1.755562e-03 8.972692e-04 2.656973e-03 2.061380e-03 2.380726e-03

6009

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

Table 10   (continued)

Indicators MOBRO NSGA-III MOPSO MAOA MOAVOA

MaOP
4

IGD Average 4.329582e-01 4.085190e-01 1.523572 1.720857 2.114253

Best 4.107510e-01 4.084269e-01 4.089634e-01 4.089219e-01 4.104431e-01

Worst 5.274832e-01 4.086168e-01 3.652429 3.631260 7.110467

SD 3.188261e-02 5.130346e-05 7.637154e-01 8.649834e-01 1.775775

Spacing Average 9.588202e-03 4.166058e-03 3.883692 1.264878e + 01 9.742255

Best 3.367319e-03 3.592775e-03 9.728628e-03 2.966842e-01 6.674813e-02

Worst 1.348216e-02 5.020481e-03 1.379721e + 01 5.345847e + 01 4.088302e + 01

SD 2.605233e-03 4.424473e-04 3.410873 1.410021e + 01 9.477800

Spread Average 1.000686 9.995028e-01 1.008391 1.029228 1.005893

Best 1.001472 1.000122 1.037784 1.235826 1.018350

Worst 9.997030e-01 9.989275e-01 9.904983e-01 9.940680e-01 9.913539e-01

SD 4.227383e-04 2.924278e-04 1.094725e-02 5.392740e-02 6.597454e-03
MaOP

5
IGD Average 2.826809e-01 2.402887e-01 1.027051e + 01 1.015983e + 01 9.563648

Best 1.496619e-01 1.483356e-01 2.664957e-01 1.108681 2.809953e-01
Worst 8.385730e-01 7.616025e-01 1.349210e + 01 1.494494e + 01 1.282369e + 01
SD 1.414081e-01 1.481920e-01 2.780095 2.585477 2.555060

Spacing Average 7.531275e-02 1.490636e-01 1.541312e + 01 5.578227e + 02 5.045477e + 02
Best 3.049589e-02 2.301076e-02 5.269646e-02 1.648735e + 01 5.705255e + 01
Worst 1.779381e-01 1.944989 2.555967e + 01 8.344497e + 02 1.081950e + 03
SD 3.503398e-02 3.767966e-01 5.472264 1.990904e + 02 2.276011e + 02

Spread Average 1.003370 9.627138e-01 9.860944e-01 9.835977e-01 9.832198e-01
Best 1.014274 1.192530 9.991991e-01 1.005753 1.007057
Worst 9.927690e-01 9.042997e-01 9.660495e-01 9.644006e-01 9.532344e-01
SD 4.880223e-03 5.355973e-02 8.653666e-03 1.049378e-02 1.179231e-02

MaOP
6

IGD Average 3.510181e-01 3.758024e-01 9.418994 1.020563e + 01 1.078723e + 01
Best 2.509052e-01 2.546738e-01 5.904165e-01 2.426727 6.058222e-01
Worst 5.506383e-01 5.530022e-01 1.228594e + 01 1.412972e + 01 1.485629e + 01
SD 8.676948e-02 7.410907e-02 2.409156 2.233431 2.896053

Spacing Average 1.613340e-01 5.468309e-01 1.516025e + 01 1.978512e + 03 1.816432e + 03
Best 3.522512e-02 7.879879e-02 3.550197e-02 4.009158e + 01 1.302055e + 01
Worst 1.303564 2.652046 2.799339e + 01 3.416431e + 03 3.318927e + 03
SD 2.499937e-01 5.911952e-01 5.326254 6.984984e + 02 7.120382e + 02

Spread Average 1.004144 1.002301 9.768345e-01 9.788488e-01 9.804026e-01
Best 1.016549 1.113324 1.000793 1.016835 1.004567
Worst 9.994245e-01 9.781679e-01 9.540067e-01 9.574256e-01 9.210042e-01
SD 4.170024e-03 2.907394e-02 1.245435e-02 1.406736e-02 1.668111e-02

6010	 S. Alp et al.

1 3

Table 10   (continued)

Indicators MOBRO NSGA-III MOPSO MAOA MOAVOA

MaOP
7

IGD Average 6.132975e-01 4.378830e-01 1.558657e + 02 1.512422e + 02 1.641558e + 02

Best 3.369621e-01 2.580641e-01 6.349206e-01 4.362942e + 01 1.002890e + 02

Worst 9.779144e-01 7.763284e-01 2.027908e + 02 1.952029e + 02 2.184096e + 02

SD 1.888476e-01 1.707227e-01 3.944183e + 01 3.120036e + 01 2.428727e + 01

Spacing Average 3.027074e-03 4.732907e-03 6.093181e + 01 4.682714e + 02 3.788739e + 02

Best 7.488660e-06 6.501310e-07 1.632292e-01 1.206568 5.526648e + 01

Worst 1.184185e-02 1.498541e-02 1.493050e + 02 9.081836e + 02 9.760978e + 02

SD 3.397072e-03 3.464717e-03 4.159527e + 01 2.436538e + 02 2.496942e + 02

Spread Average 1.000063 9.988089e-01 9.988031e-01 9.987610e-01 9.988655e-01

Best 1.000501 1.000102 1.001805 1.004583 1.004483

Worst 9.998935e-01 9.962559e-01 9.952689e-01 9.953489e-01 9.960822e-01

SD 1.276309e-04 1.131309e-03 1.672478e-03 2.123810e-03 1.784663e-03
MaOP

8
IGD Average 6.349356e-01 4.966485e-01 1.540216e + 02 1.660478e + 02 1.523310e + 02

Best 2.834544e-01 2.930514e-01 4.781371e-01 1.265571e + 02 8.994681e + 01
Worst 1.106212 7.751063e-01 1.910515e + 02 2.186181e + 02 1.899878e + 02
SD 1.724965e-01 1.903707e-01 3.503142e + 01 2.167131e + 01 2.687339e + 01

Spacing Average 3.359544e-03 2.361138e-02 6.461466e + 01 4.804220e + 02 4.842002e + 02
Best 2.870490e-04 2.259029e-07 0 3.272022e + 01 1.857777e + 02
Worst 1.154178e-02 9.334591e-02 2.256020e + 02 9.695265e + 02 1.113995e + 03
SD 2.585006e-03 2.820890e-02 5.895722e + 01 2.343838e + 02 2.164222e + 02

Spread Average 1.000110 1.000396 9.985036e-01 9.989156e-01 9.994343e-01
Best 1.000966 1.006346 1.004028 1.002674 1.005704
Worst 9.999088e-01 9.973604e-01 9.950597e-01 9.954564e-01 9.957529e-01
SD 2.093556e-04 2.186363e-03 2.217301e-03 1.913629e-03 2.496393e-03

MaOP
9

IGD Average 8.193997e-01 7.227372e-01 1.605672e + 02 1.747336e + 02 1.713531e + 02
Best 4.494889e-01 4.215775e-01 6.186603e-01 7.898503e + 01 1.107470e + 02
Worst 1.599292 1.132909 2.222351e + 02 2.306766e + 02 2.227265e + 02
SD 2.165541e-01 1.950350e-01 4.290435e + 01 3.618456e + 01 2.737988e + 01

Spacing Average 3.382401e-03 4.110654e-03 6.418518e + 01 3.873672e + 02 3.752915e + 02
Best 7.759879e-06 1.078429e-06 1.749655e-02 1.726584e + 01 1.244289e + 01
Worst 1.594789e-02 1.439092e-02 1.738297e + 02 8.379803e + 02 6.500526e + 02
SD 4.043935e-03 4.877706e-03 3.904523e + 01 2.254150e + 02 1.843773e + 02

Spread Average 1.000124 9.997425e-01 9.981249e-01 9.985187e-01 9.983879e-01
Best 1.001644 1.000496 1.000487 1.002704 1.002739
Worst 9.999915e-01 9.982633e-01 9.938710e-01 9.951644e-01 9.967334e-01
SD 3.454144e-04 4.117493e-04 1.632783e-03 1.933038e-03 1.365260e-03

6011

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

4 � Conclusions

We proposed the multi-objective version of the Battle Royale optimization algorithm
for solving unconstrained multi-objective optimization problems. The MOBRO
algorithm is based on the Battle Royale optimization algorithm proposed in 2021,
which is inspired by the Battle Royale games.

MOBRO uses an archive to store non-dominated solutions, and after finishing
its search over the population, it provides several candidate solutions in the Pareto
front. All solutions in the Pareto front are better than or at least as good as all other
solutions in the population in satisfying the objectives. Although MOBRO is an
archive-based optimization algorithm, we compared it with both evolutionary and
swarm-based algorithms, where the former group uses the sorting scheme, but the
latter group uses the archive-based scheme.

We compared the proposed algorithm with five state-of-the-art multi-objective opti-
mization algorithms, MOPSO, NSGA-III, MOAVOA, MAOA, and MOGWO, based
on three performance metrics: inverted generational distance (IGD) for measuring con-
vergence, spacing (SP) for measuring how evenly the estimated solutions are distrib-
uted, and maximum spread for measuring the diversity of estimated points. These algo-
rithms have been tested on four benchmark datasets: CEC 2009, CEC 2018, ZDT, and
DTLZ. According to the obtained results, MOBRO ranked first in the ZDT and CEC
2009 datasets. In the CEC 2009 and DTLZ datasets, MOBRO ranked second and third,
respectively. In terms of performance metrics, MOBRO is more efficient according to
IGD and almost always ranks first based on this metric. This indicates that MOBRO
has the best convergence among its competitors, but it ranks from first to last in differ-
ent datasets based on the spacing metric. This suggests that according to the distribu-
tion of the estimated solutions and their diversity, MOBRO ranks first, second, third,

Table 10   (continued)

Indicators MOBRO NSGA-III MOPSO MAOA MOAVOA

MaOP
10

IGD Average 1.038715 8.173226e-01 1.565097e + 02 1.697243e + 02 1.623744e + 02

Best 3.205402e-01 3.551969e-01 7.747941e-01 1.147632e + 02 9.775422e + 01

Worst 1.666920 1.636740 2.024902e + 02 2.019386e + 02 2.037558e + 02

SD 2.419364e-01 2.910690e-01 3.946067e + 01 2.330661e + 01 2.516184e + 01

Spacing Average 5.799670e-03 5.730607e-03 8.191059e + 01 3.311193e + 02 4.434813e + 02

Best 1.404513e-05 4.485781e-07 4.742880e-02 9.124571 5.684993e + 01

Worst 1.961105e-02 2.013774e-02 2.804029e + 02 8.254944e + 02 1.190714e + 03

SD 5.712601e-03 6.184953e-03 6.706738e + 01 2.301720e + 02 2.485326e + 02

Spread Average 1.000125 9.998092e-01 9.983480e-01 9.984051e-01 9.980910e-01

Best 1.001246 1.000329 1.003685 1.008174 1.004115

Worst 9.999696e-01 9.983956e-01 9.953869e-01 9.953536e-01 9.954202e-01

SD 2.825960e-04 7.227372e-01 2.258001e-03 2.674575e-03 2.092946e-03

6012	 S. Alp et al.

1 3

Ta
bl

e 
11

  
Th

e
ra

nk
s o

f e
ac

h
al

go
rit

hm
 a

m
on

g
ot

he
rs

 a
cc

or
di

ng
 to

 C
EC

 2
01

8
da

ta
se

t

M
et

ric
s

M
O

B
RO

N
SG

A
-I

II
M

O
PS

O
M

A
O

A
M

O
AV

O
A

A
ve

ra
ge

O
ve

ra
ll

A
ve

ra
ge

O
ve

ra
ll

A
ve

ra
ge

O
ve

ra
ll

A
ve

ra
ge

O
ve

ra
ll

A
ve

ra
ge

O
ve

ra
ll

IG
D

A
ve

ra
ge

1.
8

2
1.

2
1

3.
7

3
4.

2
5

4.
1

4
B

es
t

2
2

1.
5

1
2.

9
3

4.
5

5
4.

1
4

W
or

st
1.

7
2

1.
3

1
3.

8
3

4
4

4.
2

5
SD

1.
6

2
1.

4
1

4.
7

5
3.

4
3

3.
9

4
Sp

ac
in

g
A

ve
ra

ge
1.

6
2

1.
5

1
2.

9
3

4.
5

4
4.

5
4

B
es

t
2.

1
2

1.
5

1
2.

4
3

4.
3

4
4.

7
5

W
or

st
1.

7
2

1.
5

1
2.

8
3

4.
4

4
4.

6
5

SD
1.

6
1

1.
6

1
2.

8
3

4.
4

4
4.

6
5

Sp
re

ad
A

ve
ra

ge
1,

4
1

2,
6

3
2,

1
2

3,
6

5
3,

5
4

B
es

t
2,

8
3

3,
2

5
2,

4
1

2,
9

4
2,

5
2

W
or

st
1

1
2,

6
3

2
2

3,
6

4
3,

8
5

SD
1,

6
1

3,
2

3
3,

1
2

3,
5

4
3,

6
5

A
ve

ra
ge

1,
75

1,
83

3,
33

3
2,

75
4,

16
6,

66
7

4,
33

3,
33

3
R

an
k

1
2

3
4

5

6013

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

or last in different test suits. Finally, according to the spread metric, MOBRO ranks
first or second, indicating that its solutions are well distributed along the Pareto Front
border. The limitation of the proposed approach is that it is designed for solving only
the unconstrained multi-objective optimization problems, while some of the real-world
problems are constrained. We aim to address this issue in our future work.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11227-​023-​05676-4.

Author contributions  SA and TA provided core concepts and carried out implementations. RD, SA, and
TA drafted the manuscript. RD and MANB proofread the manuscript and approved the final manuscript.

Funding  No funding for this study.

Table 12   Required CPU time for running each algorithm when applied to the CEC 2018 dataset

Functions MBRO NSGA MOPSO MAOA MOAVOA

MaOP 1 6.016345e + 01 2.683983e + 03 6.057002 2.205209e-01 1.385860
MaOP 2 6.506757e + 01 3.126875e + 03 6.753145 2.397298e-01 1.342538
MaOP 3 5.819457e + 01 2.883762e + 03 4.377854 1.232011 1.655284
MaOP 4 6.074567e + 01 3.097571e + 03 8.877737e-01 1.376394 3.779367
MaOP 5 7.178642e + 01 2.220301e + 03 2.925692 2.995922e-01 5.830067
MaOP 6 8.664028e + 01 2.822965e + 03 5.619126 3.896699e-01 5.676
MaOP 7 8.885593e + 01 2.966547e + 03 1.644399 2.907415e-01 5.184917e-01
MaOP 8 6.443893e + 01 2.987555e + 03 1.686123 3.595861e-01 7.887001e-01
MaOP 9 6.212550e + 01 2.849358e + 03 2.283527 2.887523e-01 5.442233e-01
MaOP 10 5.664245e + 01 2.953737e + 03 2.119449 3.448142e-01 7.435091e-01

Table 13   Pair-wise statistical comparison between MBRO and all competitors by Wilcoxon signed-rank
test (α = 0.05)

Functions NSGA MOPSO MAOA MOAVOA

P H P H P H P H

MaOP 1 0.000032 1 0.000012 1 0.000012 1 0.000012 1
MaOP 2 0.061480 0 0.000014 1 0.000012 1 0.000012 1
MaOP 3 0.000012 1 0.000014 1 0.000012 1 0.000012 1
MaOP 4 0.000012 1 0.000014 1 0.000014 1 0.000014 1
MaOP 5 0.028314 1 0.000012 1 0.000012 1 0.000012 1
MaOP 6 0.150003 0 0.000012 1 0.000012 1 0.000012 1
MaOP 7 0.000493 1 0.000014 1 0.000012 1 0.000012 1
MaOP 8 0.006848 1 0.000014 1 0.000012 1 0.000012 1
MaOP 9 0.051087 0 0.000014 1 0.000012 1 0.000012 1
MaOP 10 0.011876 1 0.000014 1 0.000012 1 0.000012 1

https://doi.org/10.1007/s11227-023-05676-4
https://doi.org/10.1007/s11227-023-05676-4

6014	 S. Alp et al.

1 3

Data availability  The utilized codes and data are available on request to enable the method proposed in
the manuscript to be replicated by readers.

Declarations 

Competing Interests  The authors declare no potential competing interests.

References

	 1.	 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1:67–82. https://​doi.​org/​10.​1109/​4235.​585893

	 2.	 Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, London

	 3.	 Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm inspired by bird mating
strategies. Commun Nonlinear Sci Numer Simul 19:1213–1228. https://​doi.​org/​10.​1016/J.​CNSNS.​
2013.​08.​027

	 4.	 Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intel
1:33–57. https://​doi.​org/​10.​1007/​S11721-​007-​0002-0

	 5.	 Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. J Global Opt. https://​doi.​org/​10.​1007/​
S10898-​007-​9149-X

	 6.	 Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl
Math Model 40:3951–3978. https://​doi.​org/​10.​1016/J.​APM.​2015.​10.​040

	 7.	 Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci
(N Y) 179:2232–2248. https://​doi.​org/​10.​1016/J.​INS.​2009.​03.​004

	 8.	 Rahkar Farshi T (2021) Battle royale optimization algorithm. Neural Comput Appl 33:1139–1157.
https://​doi.​org/​10.​1007/​S00521-​020-​05004-4/​TABLES/​10

	 9.	 Rahkar Farshi TA, Agahian S, Dehkharghani R (2022) BinBRO: binary battle royale optimizer algo-
rithm. Expert Syst Appl 195:116599. https://​doi.​org/​10.​1016/J.​ESWA.​2022.​116599

	10.	 Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhangd Q (2011) Multiobjective evolutionary algo-
rithms: a survey of the state of the art, Swarm. Evol Comput 1:32–49. https://​doi.​org/​10.​1016/J.​
SWEVO.​2011.​03.​001

	11.	 Luo J, Liu Q, Yang Y, Li X, Rong Chen M, Cao W (2017) An artificial bee colony algorithm for
multi-objective optimisation. Appl Soft Comput 50:235–251. https://​doi.​org/​10.​1016/J.​ASOC.​2016.​
11.​014

	12.	 Coello Coello C (1999) A survey of constraint handling techniques used with evolutionary algo-
rithms. Laboratorio Nacional de Informatica Avanzada, Veracruz. Mexico, Technical report
Lania-RI-99-04.

	13.	 Hwang C-L, Masud ASMd (1979) Multiple objective decision making —methods and applications
lecture notes in economics and mathematical systems. Springer, Berlin

	14.	 Coello Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle
swarm optimization. IEEE Trans Evolut Comput 8:256–279. https://​doi.​org/​10.​1109/​TEVC.​2004.​
826067

	15.	 Zhong K, Zhou G, Deng W, Zhou Y, Luo Q (2021) MOMPA: multi-objective marine predator algo-
rithm. Comput Methods Appl Mech Eng 385:114029. https://​doi.​org/​10.​1016/J.​CMA.​2021.​114029

	16.	 Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a
novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://​doi.​org/​10.​
1016/J.​ESWA.​2015.​10.​039

	17.	 Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm
for multi-objective optimization problems. Appl Intell 48:805–820. https://​doi.​org/​10.​1007/​S10489-​
017-​1019-8/​TABLES/9

	18.	 Alaya I, Solnon C, Ghédira K (2007) Ant colony optimization for multi-objective optimization prob-
lems. Proc Int Conf Tools Artif Intel ICTAI 1:450–457. https://​doi.​org/​10.​1109/​ICTAI.​2007.​108

	19.	 Khodadadi N, Soleimanian Gharehchopogh F, Mirjalili S (2022) MOAVOA: a new multi-objective
artificial vultures optimization algorithm. Neural Comput Appl 34:20791–20829. https://​doi.​org/​10.​
1007/​S00521-​022-​07557-Y/​FIGUR​ES/​14

https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/J.CNSNS.2013.08.027
https://doi.org/10.1016/J.CNSNS.2013.08.027
https://doi.org/10.1007/S11721-007-0002-0
https://doi.org/10.1007/S10898-007-9149-X
https://doi.org/10.1007/S10898-007-9149-X
https://doi.org/10.1016/J.APM.2015.10.040
https://doi.org/10.1016/J.INS.2009.03.004
https://doi.org/10.1007/S00521-020-05004-4/TABLES/10
https://doi.org/10.1016/J.ESWA.2022.116599
https://doi.org/10.1016/J.SWEVO.2011.03.001
https://doi.org/10.1016/J.SWEVO.2011.03.001
https://doi.org/10.1016/J.ASOC.2016.11.014
https://doi.org/10.1016/J.ASOC.2016.11.014
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/10.1016/J.CMA.2021.114029
https://doi.org/10.1016/J.ESWA.2015.10.039
https://doi.org/10.1016/J.ESWA.2015.10.039
https://doi.org/10.1007/S10489-017-1019-8/TABLES/9
https://doi.org/10.1007/S10489-017-1019-8/TABLES/9
https://doi.org/10.1109/ICTAI.2007.108
https://doi.org/10.1007/S00521-022-07557-Y/FIGURES/14
https://doi.org/10.1007/S00521-022-07557-Y/FIGURES/14

6015

1 3

MOBRO: multi‑objective battle royale optimizer﻿	

	20.	 Khodadadi N, Abualigah L, El-Kenawy ESM, Snasel V, Mirjalili S (2022) An archive-based multi-
objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE
Access 10:106673–106698. https://​doi.​org/​10.​1109/​ACCESS.​2022.​32120​81

	21.	 Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE
Trans Evol Comput 18:577–601. https://​doi.​org/​10.​1109/​TEVC.​2013.​22815​35

	22.	 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://​doi.​org/​10.​1109/​4235.​996017

	23.	 Wang Z, Zhang W, Guo Y, Han M, Wan B, Liang S (2022) A multi-objective chicken swarm opti-
mization algorithm based on dual external archive with various elites. Appl Soft Comput. https://​
doi.​org/​10.​1016/J.​ASOC.​2022.​109920

	24.	 Cui Y, Meng X, Qiao J (2022) A multi-objective particle swarm optimization algorithm based on
two-archive mechanism. Appl Soft Comput 119:108532. https://​doi.​org/​10.​1016/J.​ASOC.​2022.​
108532

	25.	 Zhang W, Wang S, Zhou A, Zhang H (2022) A practical regularity model based evolutionary algo-
rithm for multiobjective optimization. Appl Soft Comput 129:109614. https://​doi.​org/​10.​1016/J.​
ASOC.​2022.​109614

	26.	 Zhou X, Gao Y, Yang S, Yang C, Zhou J (2022) A multiobjective state transition algorithm based on
modified decomposition method. Appl Soft Comput 119:108553. https://​doi.​org/​10.​1016/J.​ASOC.​
2022.​108553

	27.	 Kumar A, Wu G, Ali MZ, Luo Q, Mallipeddi R, Suganthan PN, Das S (2021) A Benchmark-Suite
of real-World constrained multi-objective optimization problems and some baseline results. Swarm
Evol Comput 67:100961. https://​doi.​org/​10.​1016/J.​SWEVO.​2021.​100961

	28.	 Q Zhang, A Zhou, S Zhao, PN Suganthan, W Liu, S Tiwari (2009) Multi-objective optimization test
instances for the congress on evolutionary computation (CEC 2009) special session & competition

	29.	 H Li, K Deb, Q Zhang, PN Suganthan (2018) Challenging novel many and multi-objective bound
constrained benchmark problems, In: Technical Report, Technical Report

	30.	 Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical
results. Evol Comput 8:173–195. https://​doi.​org/​10.​1162/​10636​56005​68202

	31.	 Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjec-
tive optimization. Evolut Multiobj Opt. https://​doi.​org/​10.​1007/1-​84628-​137-7_6

	32.	 Akan S, Akan T (2022) Battle royale optimizer with a new movement strategy. Stud Syst Decis
Control 212:265–279. https://​doi.​org/​10.​1007/​978-3-​031-​07512-4_​10/​COVER

	33.	 Van Den Bergh F (2001) An Analysis of Particle Swarm Optimizers (PSO). University of Pretoria,
Pretoria, pp 78–85

	34.	 Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived
evolution strategy. Evol Comput 8:149–172. https://​doi.​org/​10.​1162/​10636​56005​68167

	35.	 Bezerra LCT, López-Ibáñez M, Stützle T (2017) An empirical assessment of the properties of
inverted generational distance on multi- and many-objective optimization. Lect Notes Comput Sci.
https://​doi.​org/​10.​1007/​978-3-​319-​54157-0_​3/​FIGUR​ES/9

	36.	 JR Schott (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization
	37.	 N Riquelme, C Von Lücken, B Barán (2015) Performance metrics in multi-objective optimization.

In: Proceedings 2015 41st Latin American Computing Conference, CLEI 2015. https://​doi.​org/​10.​
1109/​CLEI.​2015.​73600​24.

	38.	 Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and
the strength Pareto approach. IEEE Trans Evol Comput 3:257–271. https://​doi.​org/​10.​1109/​4235.​
797969

	39.	 Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,
Swarm. Evol Comput 1:3–18. https://​doi.​org/​10.​1016/J.​SWEVO.​2011.​02.​002

	40.	 Chen MR, Zeng GQ, Di Lu K (2019) A many-objective population extremal optimization algorithm
with an adaptive hybrid mutation operation. Inf Sci (N Y) 498:62–90. https://​doi.​org/​10.​1016/J.​INS.​
2019.​05.​048

https://doi.org/10.1109/ACCESS.2022.3212081
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/J.ASOC.2022.109920
https://doi.org/10.1016/J.ASOC.2022.109920
https://doi.org/10.1016/J.ASOC.2022.108532
https://doi.org/10.1016/J.ASOC.2022.108532
https://doi.org/10.1016/J.ASOC.2022.109614
https://doi.org/10.1016/J.ASOC.2022.109614
https://doi.org/10.1016/J.ASOC.2022.108553
https://doi.org/10.1016/J.ASOC.2022.108553
https://doi.org/10.1016/J.SWEVO.2021.100961
https://doi.org/10.1162/106365600568202
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-031-07512-4_10/COVER
https://doi.org/10.1162/106365600568167
https://doi.org/10.1007/978-3-319-54157-0_3/FIGURES/9
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1109/4235.797969
https://doi.org/10.1109/4235.797969
https://doi.org/10.1016/J.SWEVO.2011.02.002
https://doi.org/10.1016/J.INS.2019.05.048
https://doi.org/10.1016/J.INS.2019.05.048

6016	 S. Alp et al.

1 3

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Sait Alp1 · Rahim Dehkharghani2 · Taymaz Akan3,4 · Mohammad A. N. Bhuiyan3

 *	 Mohammad A. N. Bhuiyan
	 nobel.bhuiyan@lsuhs.edu

	 Sait Alp
	 sait.alp@erzurum.edu.tr

	 Rahim Dehkharghani
	 rahim.dehkharghani@khas.edu.tr

	 Taymaz Akan
	 taymazakan@topkapi.edu.tr; taymaz.akan@lsuhs.edu

1	 Department of Computer Engineering, Erzurum Technical University, Erzurum, Turkey
2	 Department of Computer Engineering, Department of Management Information Systems,

Kadirhas University, Istanbul, Turkey
3	 Department of Medicine, Louisiana State University Health Sciences Center, Shreveport 71103,

USA
4	 Istanbul Topkapi University, Istanbul, Turkey

	MOBRO: multi-objective battle royale optimizer
	Abstract
	1 Introduction
	2 MOBRO: multi-objective battle royale algorithm
	3 Experimental results and performance evaluation
	3.1 Dataset
	3.2 Performance metrics
	3.3 Results

	4 Conclusions
	References

