
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:5815–5831
https://doi.org/10.1007/s11227-023-05671-9

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture
for secure deep learning

Peng Li1,2 · Cheng Che1,2 · Rui Hou1,2

Accepted: 15 September 2023 / Published online: 7 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Recent breakthroughs in artificial intelligence and deep neural networks (DNNs)
have produced an explosive demand for computing platforms equipped with cus-
tomized domain-specific accelerators. However, DNN accelerators have security
vulnerabilities. Researchers have previously explored DNN attack and defense
technologies that mainly focus on training and inference algorithms or model
structure robustness. The problem of how to design a secure accelerator architec-
ture has received relatively little attention, especially with the rapid development of
FPGA-based heterogeneous computing SoCs. To mitigate this bottleneck, we pro-
pose Nacc-Guard, a lightweight DNN accelerator architecture which can effectively
defend against neural network bit-flip attacks and memory Trojan attacks. By utiliz-
ing a linear randomization encryption algorithm based on stream cipher Trivium,
interrupt signal confused coding, and hash-based message authentication code,
Nacc-Guard can not only guarantee the integrity of the uploaded DNN file but also
ensure buffer data confidentiality. To evaluate Nacc-Guard, NVDLA and a SIMD
accelerator coupling with a RISC-V Rocket and ARM processor is implemented
at RTL. Experimental evaluation shows that Nacc-Guard has a 3 × hardware over-
head reduction compared with conventional AES. Experiments on VGG, ResNet50,
GoogLeNet, and YOLOv4-tiny validate that this framework can successfully ensure
secure DNN inference with negligible performance loss. It achieves a 3.63× speedup
and 35% energy reduction over the AES baseline.

Keywords DNN accelerator · Security · Trivium · RISC-V

 * Peng Li
 lipeng0629@iie.ac.cn

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 10093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 10049, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05671-9&domain=pdf

5816 P. Li et al.

1 3

1 Introduction

In the post-Moore era, deep learning technology has achieved great break-
throughs in various application fields, such as computer vision, NLP, and autono-
mous driving [1–3]. As the main component of deep learning, deep neural net-
works (DNNs) can address a wide range of AI challenges and even perform better
than human beings in some specific domains [4]. The strong feature extraction
and learning abilities are attributed to a DNN’s robust network structure and high
computational cost. The amount of floating-point operations can reach the order
of ten billion or more [5].

To reduce the DNNs computational complexity and improve its training or
inference speed, some algorithm-based optimization techniques have been pro-
posed. These techniques include sparse neural network by dropout compression
[6] and layer pruning [7–10]. Although these approaches have achieved great
success in some specific networks, they still cannot meet the high computational
requirement for some new and complex neural network structures, such as the
transformer. In order to fundamentally solve this problem, the DNN accelerator
was proposed. By quantizing long floating-point weight files to a short fixed-point
format and mapping this to highly parallel PE arrays, a DNN accelerator can
improve the throughput of data parallel processing.

However, DNN accelerators have crucial security vulnerabilities [11–13].
Attackers can capture the model structure or weight parameters through monitor-
ing sensitive data or snooping the accelerator interrupt patterns [12, 13]. They
can also conduct bit-flip attacks on the neural network weight files and this can
significantly decrease a DNN model’s inference accuracy [14].

Tackling these challenges requires hardware and software co-design, unifying
the theoretical privacy algorithms with secure hardware architecture. In terms
of software, researchers have tried their best to design robust network structures
or planning more complicated training algorithms, such as adversarial training
and GAN-aided training [15]. In parallel, hardware designers also design secure
DNN accelerators by means of encrypting sensitive data or using trusted execu-
tion environment (TEE) technology [16, 17]. For example, Wang et al. proposed
NPUFort which inserted a security unit into the existing FPGA-based heterogene-
ous computing accelerator by using the AES block cipher method [16]. Hanieh
et al. presented DarKnight which utilized a customized data encoding strategy
based on matrix masking to achieve data obfuscation on a TEE. DarKnight can
guarantee data privacy and integrity in conventional GPUs [17].

However, these protection techniques have inherent performance limitations.
For block cipher AES, the complex iterative mode (ECB, CTC, and CTR) can
bring about heavy computing latency and lead to the potential risk of data con-
version error [18]. Furthermore, to convert the long plaintext message to fixed-
size blocks, AES needs some padding data and this can involve extra memory
resource overhead. Third, to achieve accurate decision-making, a DNN requires
extensive memory and computing resources which does not operate well in a TEE
enclave with restricted memory space [19].

5817

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

To address the above challenges, we propose Nacc-Guard, a lightweight security-
enhanced DNN accelerator architecture. In Nacc-Guard, an improved stream cipher
algorithm Trivium is adopted in DNN inference accelerators. With its less hardware
consumption, Trivium is more suitable for encrypting resource-limited systems.
Furthermore, the interrupt signals from the accelerator to a host CPU are refused.
Conventional high and low level interrupt signals are recoded to two positive edge
latency by 1B/4B algorithm; this confusion can avoid attacks based on monitoring
interrupt signal patterns. Third, to ensure the integrity of the uploaded DNN weight
file and achieve authentication, hash-based message authentication code (HMAC) is
used.

The main contributions are summarized as follows:

• We propose a novel secure DNN accelerator architecture named Nacc-Guard
which can defend DNNs against memory Trojan and neural network bit-flip
attacks.

• Different from conventional AES, an improved linear randomization algorithm
Trivium is first adopted in DNN accelerators. Experiments show that Trivium is
more suitable for encrypting hardware resource-limited DNN accelerators.

• Interrupt signals from the accelerator to the host CPU are recoded from the high/
low level to positive edge latency; this can help to avoid attacks from monitor-
ing the interrupt signal patterns. Furthermore, hash-based message authentica-
tion code is involved to ensure the integrity of the uploaded DNN weight file and
achieve authentication.

• The Nacc-Guard prototype is implemented in NVDLA and SIMD DNN accel-
erator coupling with RISC-V Rocket and ARM CortexA9 at the RTL level.
Runtime evaluation shows that this architecture can successfully ensure secure
DNN inference. Experiments on VGG, ResNet50, GoogLeNet, and YOLOv4-
tiny shows that Nacc-Guard can bring about 3 × hardware overhead reduction
and 3.63× performance improvement over the AES baseline with negligible extra
power consumption.

The rest of this paper is organized as follows. Section 2 discusses related work and
motivation. Section 3 introduces the design. In Sect. 4, the experimental evaluation
and result analysis are presented. In Sect. 5, we conclude the paper.

2 Related work and motivation

2.1 DNN accelerator

The DNN accelerator was first invented to mitigate the bottleneck between a neu-
ral network’s heavy computational requirements and its training and inference
speed [20]. DNN accelerators (such as GPU, FPGA, and CGRA) have denser
parallel computing micro-architectures and can offer higher data throughput
bandwidth without significant accuracy loss. It can result in orders of magnitude

5818 P. Li et al.

1 3

improvement of computational density with higher power efficiency. Several typi-
cal DNN accelerators are shown in Table 1.

In terms of DNN stage, there are training and inference accelerators. For exam-
ple, the Graphics Processing Unit (GPU) is a DNN accelerator which is used for
neural network training. A GPU is designed to provide a high-performance com-
puting platform with large data throughput. In parallel, the DNN inference accel-
erator is also a young but quickly developing technology. In order to meet the
fast changing and flexible characteristics of deep neural networks, an inference
accelerator’s micro-architecture should always be designed to be both scalable
and reconfigurable. This requirement makes FPGA the best choice. Furthermore,
with the development of heterogeneous computing technology of a CPU coupling
with FPGA in one SoC, FPGA-based DNN inference accelerators are becoming
more and more popular. FPGA-based DNN accelerator can be shown in Fig. 1.

A well-trained DNN model can be mapped onto an inference accelerator to
realize real-time prediction. A pre-trained network weight file always contains
long floating-point types. FPGA is better at fixed-point and bit-shift calculations.
To deploy a DNN model on FPGA-based inference accelerators, the weight file
should be first converted to a fixed-point type (such as 8-bit or 16-bit) through

Table 1 Several typical DNN
accelerators

DNN accelerator Stage Year

DianNao [21] Inference 2014
Graphcore [22] Inference/Training 2017
TPU [23, 24] Training 2018
NVDLA [25] Inference 2018
Equinox [26] Inference/Training 2021
Transformer accelerator [27] Inference/Training 2022

Fig. 1 DNN accelerator architecture

5819

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

quantization strategies [28, 29]. Short fixed-point representations of weights
and feature maps can significantly reduce the computational cost with negligible
accuracy loss [30–32].

2.2 Trivium and message authentication code

In general, cryptography involves symmetry cryptograms and public key crypto-
grams. Public keys are often used for key distribution while symmetric cryptogra-
phy is used for sensitive data encryption. Block ciphers and stream ciphers are the
main components of symmetric cryptography [18, 33].

A block cipher algorithm encrypts a fixed size of data (such as 128 bits as a
block) at one time. The 128-bit and 256-bit are the most widely used cipher blocks
[18]. For example, a 128-bit plaintext will be encrypted into a 128-bit ciphertext. In
cases where the plaintext data is shorter than the block size, a bit padding scheme
will be called into use. Advanced Encryption Standard (AES, Rijndael) is now the
most commonly used block encryption algorithm. Specifically, AES treats the 128-
bit plaintext block as 16 bytes, and these 16 bytes are arranged in four columns and
four rows for the next step of processing as a matrix. For the processing, AES uses
10 transformation rounds for 128-bit keys and 14 transformation rounds for 256-bit
keys. Each round involves four transforming steps: SubBytes, ShiftRows, MixCol-
umns, and AddRoundKey.

In this paper, an improved linear randomization Trivium algorithm is deployed for
buffer data encryption and decryption. Trivium consists of three interconnected nonlin-
ear feedback shift registers (NLFSR) of length 93, 84, and 111 bits [34]. First, Trivium

Fig. 2 Register framework of the stream cipher Trivium

5820 P. Li et al.

1 3

requires a pre-owned 80-bit key and an 80-bit initialization vector (IV). This key and
vector are used to pad the above state registers. Then, 1152 steps of the clocking shift
procedure are required before Trivium keystream generation. Finally, we can encrypt
the plaintext data by the bitwise exclusive or operation (XOR) with the generated key-
stream. The register structure and keystream generation process are illustrated in Fig. 2.
Trivium was originally designed to meet the high data throughput requirement in hard-
ware resource-limited systems. For its deployment, it can guarantee data confidentiality
without an undue increase in the hardware resource overhead. For this reason, Trivium
is more suitable for DNN inference accelerators than conventional AES techniques.

Message Authentication Code (MAC) is a tag which can be attached to the original
files to ensure the integrity and authenticity of the pre-transmitted data. To protect the
integrity of the DNN weight files and the DNN model authentication, a hash-based
MAC (HMAC) is used in Nacc-Guard. HMAC is generated by applying a hash func-
tion to the original data message in combination with a key. A one-bit data change will
produce a different HMAC, hence HMAC can guarantee that the DNN weight files are
legitimate and do not contain harmful code.

2.3 Vulnerability and motivation

DNNs have security vulnerabilities [35, 36]. Attackers can intentionally implant back-
door or malicious programs in DNN files. They can steal, modify, or even destroy the
whole neural network system. To be specific, there are algorithm-based and hardware-
based attacks. Algorithm-based attacks include adversarial example attacks [37], model
inversion attacks [38], model extraction attacks [39], and data poisoning attacks [40].
In parallel, hardware-based attacks include memory Trojan attacks [41], side-channel
information leakage attacks [42], and neural network bit-flip attacks [14, 43].

In this paper, we focus on DNN accelerator memory Trojan attacks and bit-flip
attacks. For example: (1) a hacker can change weight file key bit positions that are criti-
cal to the DNN model inference accuracy. Malicious programs can also be uploaded
together with files to the accelerator without authentication; (2) an eavesdropper can
capture the neural network structure via snooping interrupt signal patterns [12]; (3)
Trojan attackers can also make an accelerator not work properly through hijacking sen-
sitive data stored in the massive on-chip buffers [40].

To address this challenge, previous approaches used AES encryption in DNN accel-
erators. For example, Wang et al. presented a secure accelerator architecture named
NPUFort [16]. They added AES-based data en/decryption modules and instruction en/
decryption modules into DNN accelerators. To some extent, this offers an alternative
method that can guarantee accelerator security. Unfortunately, this method only ensures
data confidentiality rather than integrity. In addition, AES could bring dramatically
higher hardware overhead and data processing latency. Another defense method is to
build a TEE in the DNN accelerators [17]. However, to achieve accurate predictions, a
DNN requires extensive memory and computing resources which does not operate well
in TEE enclaves which have restricted memory space [19].

5821

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

3 Nacc‑Guard

3.1 Threat model

DNN models reuse accelerator hardware resources layer by layer; after a layer is
finished, the accelerator will give an interrupt to inform the host CPU to dispatch the
next layer. Certain neural network models are accompanied by certain interruption
signal patterns. By monitoring the interrupt signal patterns, an attacker can capture a
DNN model structure.

Furthermore, due to its special memory hierarchy and high parallel micro-archi-
tecture, DNN accelerators have massive on-chip buffers and this makes it more vul-
nerable to buffer Trojan attacks. By monitoring the plaintext buffers, an attacker can
launch hardware Trojan attacks.

3.2 Overview

Nacc-Guard is realized on FPGA-based heterogeneous computing SoC platforms.
Figure 3 depicts the anatomy of the whole architecture and its main functional mod-
ules. In this figure, an on-chip host processor is deployed coupling with the DNN
accelerator. Specifically, the host processor connects the accelerator IP core as an
IO device through the on-chip bus (such as AXI, or AXI to APB bus). The accel-
erator IP core registers are mapped to the Linux process virtual address space via
the mmap function and the accelerator can communicate with DRAM through the
DMA controller. The host processor orchestrates the neural network inference pro-
cess, including uploading the remote DNN model files from DRAM or clouds and
configuring control registers. PE arrays perform feature map matrix multiplication
and addition. By using local on-chip memory access patterns, this tightly coupled
micro-architecture can significantly reduce the latency of data traffic. All neural net-
work layers reuse the accelerator computing systolic arrays. The scheduler executes
the neural network operator layer by layer. Ping-pong buffers are used to alleviate

Fig. 3 Overview of the Nacc-Guard micro-architecture

5822 P. Li et al.

1 3

the bottleneck between the higher parallel computing speed and the lower intermedi-
ate data access speed.

To ensure security, two keys are used for accelerator data encryption and DNN
weight file verification. For the accelerator, key-1 is used for on-chip data encryp-
tion, and for the host processor, key-2 is used for generating the message authentica-
tion code. To be specific, the accelerator IP core should first store an 80-bit secret
key-1 in a register for the improved Trivium engine. Then, we can distribute the
other key-2 for the on-chip processor through public key cryptography. Meanwhile,
the off-chip or remote users who can upload DNN models files to Nacc-Guard
should share the same key-2 with the host processor for generating the message
authentication code.

3.3 Encryption engine

A DNN accelerator has a Domain-Specific Architecture (DSA). The PE has locally
coupled memory structures and decentralized on-chip buffers. Hackers can attack a
DNN accelerator by monitoring the plaintext of intermediate data or inference result
on the massive on-chip buffers through memory Trojans [41]. This characteristic
means that it has crucial security vulnerabilities and we should encrypt sensitive
data in massive on-chip buffers. However, these accelerators often suffer from strin-
gent on-chip hardware resource limitations. This problem is more severe in real-time
systems and mobile devices. This challenge makes the stream cipher Trivium more
suitable for accelerator encryption than the conventional block cipher AES. In Nacc-
Guard, to guarantee the confidentiality of data that are offloaded from the accelerator
to the on-chip SRAM or critical buffers, an improved linear randomization encryp-
tion algorithm Trivium is used for the AXI buses. This design can support parallel
computing in DNN accelerators and can meet the high throughput data requirement.
We deployed the Trivium engine in the AXI bus controller to selectively encrypt
data before it is transmitted to the data write channel and decrypt data that are com-
ing from the data read channel. The linear randomization encryption Trivium imple-
mentation details can be seen in Fig. 4.

Fig. 4 Schematic diagram of linear randomization encryption Trivium algorithm in AXI bus controller

5823

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

According to the AXI protocol, before the master port initiates a data read or
write request in the data channel, a corresponding address value should be sent
to the address read or write channels. First, the address values are captured and
the modulus-8 operation is applied (ADDR mod 8). Then, if the result is 0, the
Trivium engine will encrypt the write data or decrypt the read data from the data
channels. This lightweight encryption scheme will not bring excessive hardware
overhead or performance loss.

For data encryption and decryption, the process can be seen in Eqs. (1) to (4). In (1)
and (2), m and s are the plaintext message and keystream, respectively. As shown
in (3) and (4), the ciphertext can be obtained by applying the XOR operation to
the plaintext and keystream. If the ciphertext applies the XOR operation again to
the keystream, we will recover the plaintext data. As a result, if a malicious mem-
ory Trojan snoops on data from the SRAM or on-chip buffer, they will get the ran-
domized encrypted data and have no ability to launch an attack according to the
pre-set plaintext information. This operation can not only guarantee on-chip data
confidentiality but also can avoid DNN model inversion attacks. The Nacc-Guard
accelerator stores the pre-distributed key-1 in a secure register, while the IV(The 80
bit initialization vector in Trivium nonlinear-feedback shift register) can be gener-
ated by a pseudorandom number generator.

3.4 Interrupt signal confused coding

DNN accelerators have a specific working mode. The CPU scheduler executes
the neural network operator layer by layer, and DNN models reuse accelerator
PE resources layer by layer. After computing a layer, the accelerator will give
an interrupt to inform the host CPU to dispatch the next layer. By monitoring
the interrupt signal pattern through side channels, attackers can capture a DNN
model layer number and structure. To solve this problem, in Nacc-Guard, inter-
rupt signals from the accelerator to the host CPU are recoded; conventional
high/low level interrupt signals are recoded to the positive/negative edge latency
by using the mB/nB coding algorithm (1B/4B). As shown in Fig. 5, a specific
clock cycle delay represents a real interrupt. This confusion can avoid attacks
from snooping the interrupt signal patterns.

(1)plaintext =m = m1m2m3...,

(2)keystream =s = s1s2s3...,

(3)cipher =c = mxor s,

(4)plaintext =c xor s = mxor s xor s,

5824 P. Li et al.

1 3

3.5 Message authentication code

In order to achieve security isolation between the DNN accelerator platform
and the user DNN model files, we build an authentication mechanism by using
the SHA-256 algorithm to verify the uploaded DNN file integrity and make the
authentication. HMAC-SHA256 is a hash-based message authentication code
using the SHA-256 algorithm. Compared with the traditional message digest,
HMAC can not only guarantee the data integrity, but can also ensure that the
DNN model files come from legitimate users.

In Nacc-Guard, the SHA-256 algorithm uses the DNN weight file to generate
a message authentication code HMAC. This process is shown in (5) and (6). In
Equation (5) and (6), H denotes the SHA-256 function and m is the binary bit
data of a DNN weight file.

The HMAC mechanism can make the accelerator computing platform have a
secure channel between the accelerator SoC and off-chip users. To be specific,
before the SoC host processor fetches DNN weight files from off-chip users,
the off-chip user should first calculate a message authentication code HMAC-1
according to the pre-distributed key-2 and the weight file data. This HMAC-1
will be sent to the SoC host processor together with the DNN model weight
file. After file transmission, the host processor will calculate another HMAC-2
according to the shared key-2 and compare it with HMAC-1. If a hacker inserted
poisoned data or malicious programs into the DNN model file, an error will be
reported in the verification process before DNN model inference. The warning
will be issued and be handled by the host processor. As a result, this malicious
or modified DNN file will be forbidden and the accelerator will deny service.
Furthermore, this message authentication code verification scheme can also
avoid weight data loss or error during data transmission. The whole process is
illustrated in Figs. 6 and 7.

Fig. 5 Interrupt signal coding by using the mB/nB algorithm

5825

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

4 Evaluation

4.1 Experiment setup

Nacc-Guard is developed in the SIMD [44] and NVDLA [45] open source DNN
accelerators at RTL. The SIMD accelerator is coupled with an ARM Cortex ®-A9

Fig. 6 Architecture of RISC-V Rocket and DNN accelerator; a RoCC coprocessor is used for accelerat-
ing HMAC generation

Fig. 7 Verification procedure of HMAC in Nacc-Guard

5826 P. Li et al.

1 3

and NVDLA is coupled with an ARM Cortex®-A9 and RISC-V Rocket host proces-
sor. The EDA tool Vivado (version 2019.1) is used to synthesize and implement this
lightweight accelerator prototype. The correctness of Nacc-Guard functionality has
been verified on runtime platform Zedboard (SIMD) and ZCU-102 (NVDLA) on
DNN models of YOLOv2 and ResNet-18. Performance evaluation is made using
ModelSim SE and DNN accelerator simulator MAESTRO [46]. When not specifi-
cally stated, the DNN accelerators are all evaluated under a 100 MHz clock fre-
quency. The detailed information of the two DNN accelerators is shown in Table 2.

4.2 Hardware overhead

The ARM + SIMD and RISC-V Rocket + NVDLA DNN accelerator SoC platforms
are synthesized and implemented on Zedboard and VC709 SoCs. The detailed on-
chip hardware resource consumption of BRAMs (36 Kb Block-RAM Blocks), FF
(CLB Flip-Flops), LUT (Look-Up Tables), and DSP (18x25 MACCs DSP Slices)
are calculated before and after Nacc-Guard is deployed in the two DNN accelerator
platforms. The result is shown in Figs. 8 and 9. From this result, we can clearly see
that Nacc-Guard architecture results in negligible on-chip resource overhead in the
SIMD and NVDLA accelerators.

Furthermore, we also compared the hardware resource consumption of the AES-
based encryption method (AES-128, ECB) in ARM + SIMD and RISC-V Rocket +
NVDLA heterogeneous computing SoCs. The experimental results show that Nacc-
Guard stream cipher-based encryption achieves a 3 × hardware overhead reduction
compared with AES-based encryption for the two DNN accelerators.

4.3 Performance evaluation

An excellent security environment should bring a small performance overhead to
the original DNN accelerator platform. To this end, we evaluate the Nacc-Guard

Table 2 The accelerator
platform configuration
information

DNN accelerator (SIMD) [44]
Clock 100 MHz
MAC units (INT-16) 120
Buffer Size (KB) 220 (Ping-

Pong
buffer)

Memory bandwidth 400 MB/s
NVDLA accelerator [45]
Clock 100 MHz
MAC units (INT-8) 256
Buffer Size (KB) 128
Memory bandwidth 400 MB/s

5827

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

performance overhead through the VGG, ResNet50, and GoogLeNet deep neural
network models.

First, runtime experiments on Zedboard (SIMD) and ZCU-102 (NVDLA) show
that Nacc-Guard can successfully ensure private DNN inferences. Then, the cycle
accurate simulations are made in ModelSim SE and the DNN accelerator simula-
tor MAESTRO [46]. This experimentation shows that the performance overhead
in Nacc-Guard mainly comes from buffer data en/decryption and interrupt signal
recoding. Interrupt signal coding using the mB/nB coding algorithm (1B/4B) will
bring 3 cycles latency for each interrupt signal, and this means each DNN layer
will have a 3 clock cycle delay. The performance results for the VGG, ResNet50,

Fig. 8 Hardware resource consumption before and after Nacc-Guard is implemented in SIMD on Zed-
Board (percentage of total SoC resource)

Fig. 9 Hardware resource consumption before and after Nacc-Guard is implemented in NVDLA on
VC709 (percentage of total chip resource)

5828 P. Li et al.

1 3

and GoogLeNet DNN models are presented in Fig. 10. As a comparison, the
AES(ECB)-128 en/decryption model is also embedded in the original DNN accel-
erator. Through the analysis of the results, we can see that Nacc-Guard has a signifi-
cantly better performance than the conventional AES en/decryption scheme in DNN
accelerators. It achieves a 3.63× performance improvement on average.

4.4 Power consumption

Finally, to evaluate the energy consumption of Nacc-Guard, the SoC power is esti-
mated from the implemented netlists in the Vivado EDA tool 2019.1 after on-chip
synthesis and implementation (place and route). Due to the fact that ARM has a sta-
ble and solidified hardware micro-architecture in Zynq, we chose ARM + NVDLA
on Xilinx ZCU102 as the accelerator power evaluation platform. The increment
rate of SoC dynamic power consumption with the accelerator working frequency
is shown in Fig. 11. We find that the Nacc-Guard encryption engine introduces less
energy overhead than AES-based secure DNN accelerators. From this figure, we can
also see that Nacc-Guard has a more robust power performance in terms of working
frequency. The increasing rate of power with frequency is lower than AES.

5 Conclusion

In this paper, we proposed a lightweight DNN accelerator architecture named Nacc-
Guard. This architecture aims to defend against memory Trojan attacks and neu-
ral network bit-flip attacks. Experimental results show that Nacc-Guard has a 3.63×
performance improvement with 3 × less hardware resource cost than AES-based en/
decryption. Furthermore, the experimental evaluation shows that Nacc-Guard has

Fig. 10 Performance of Nacc-Guard and AES-based accelerator on different DNN models

5829

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

low and robust power consumption. Cryptoanalysis shows that the system is secure
as long as the key is secured.

For the next step and in our future work, we will deploy Nacc-guard in trans-
former accelerators and we will deploy it in the autonomous vehicles, such as a tesla
car.

Data availability The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Declarations

 Conflict of interest The authors have declared that they have no conflicts of interest that are relevant to
the content of this work.

References

 1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
 2. Foote Keith D (2017) A brief history of deep learning
 3. MLK (2019) Brief History of Deep Learning from 1943 to 2019 [Timeline]
 4. Zou Z, Shi Z, Guo Y, Ye J (2019) Object detection in 20 years: a survey. arXiv: 1905. 05055
 5. Ham TJ, Jung SJ, et al. (2020) A3: accelerating attention mechanisms in neural networks with

approximation. In: HPCA, pp 328–341
 6. Mishra R, Gupta HP, Dutta T (2020) A survey on deep neural network compression: challenges,

overview, and solutions. arXiv: 2010. 03954
 7. Chen T, Ji B, Shi Y, Ding T, Fang B, Yi S, Tu X (2020) Neural network compression via sparse

optimization. arXiv: 2011. 04868
 8. Xu S, Huang A, Chen L, Zhang B (2020) Convolutional neural network pruning: a survey. In: Pro-

ceedings of the 39th Chinese Control Conference, pp 7458–7463
 9. Blalock D, Gonzalez Ortiz JJ, Frankle J, Guttag J (2020) What is the state of neural network prun-

ing?. arXiv: 2003. 03033

Fig. 11 Dynamic power consumption of original accelerator, Nacc-Guard, and AES-based accelerator in
different working frequency

http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/2010.03954
http://arxiv.org/abs/2011.04868
http://arxiv.org/abs/2003.03033

5830 P. Li et al.

1 3

 10. Molchanov P, Tyree S, Karras T, Aila T, Kautz J (2016) Pruning convolutional neural networks for
resource efficient inference. arXiv: 1611. 06440

 11. Mittal S, Gupta H, Srivastava S (2021) A survey on hardware security of DNN models and accelera-
tors. J Syst Archit 117:1–30

 12. Hu X, Zhao Y, Deng L, Liang L, Zuo P, Ye J, Lin Y, Xie Y (2020) Practical attacks on deep neu-
ral networks by memory trojaning. In: Proceedings of the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems

 13. Zuo P, Hua Y, Liang L, et al. (2020) Sealing neural network models in secure deep learning accel-
erators. Arxiv: 2008. 03752

 14. Rakin AS, He Z, Fan D (2019) Bit-flip attack: crushing neural network with progressive bit search.
In ICCV, pp 1211–1220

 15. Cai Q, et al. (2018) Curriculum adversarial training. In: IJCAI
 16. Wang X, Hou R, Zhu Y, et al. (2019) NPUFort: a secure architecture of DNN accelerator against

model inversion attack. In: Proceedings of the 16th ACM International Conference on Computing
Frontiers

 17. Hashemi H, Wang Y, Annavaram M (2021) DarKnight: an accelerated framework for privacy and
integrity preserving deep learning using trusted hardware. In: MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture

 18. Stinson DR (2005) Cryptography: theory and practice, 3rd edn. Chapman Hall Press, London
 19. Xu C, Lai S (2021) Accelerating TEE-based DNN inference using mean shift network pruning. In:

17th EAI International Conference on Heterogeneous Networking for Quality, Reliability, Security
and Robustness, pp 25–41

 20. Capra M (2020) Hardware and software optimizations for accelerating deep neural networks: survey
of current trends, challenges, and the road ahead. IEEE Access 8:225134–225180

 21. Chen T, Zidong D, Sun N et al (2014) DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning. ACM SIGARCH Comput Archit News 42:269–284

 22. Graphcore (2019) Introduction to the IPU architecture. [Online]. Available: https:// www. graph core.
ai/. Accessed 6 Aug 2019

 23. Cloud TPU, Accessed: 2018-01-31. [Online]. Available: https:// cloud. google. com/ tpu
 24. Tearing Apart Google’s TPU 3.0 AI coprocessor, Accessed: 2018-05-15. [Online]. Available:

https:// www. nextp latfo rm. com/ 2018/ 05/ 10/ teari ng- apart- googl es- tpu-3- 0- ai- copro cessor
 25. NVIDIA (2018) Hardware architectural specification
 26. Drumond M, Coulon L, Pourhabibi A et al. (2021) Equinox: training (for free) on a custom

inference accelerator. In: MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture

 27. Fengbin T, Zihan W, Yiqi W, et al (2022) A 28 nm 15.59uJ/token full-digital bitline-transpose CIM-
based sparse transformer accelerator with pipeline/parallel reconfigurable modes. In: 2022 IEEE
International Solid-State Circuits Conference (ISSCC)

 28. Shan L, Zhang M, Deng L, et al. (2016) A dynamic multi-precision fixed-point data quantization
strategy for convolutional neural network. In: CCF National Conference on Computer Engineering
and Technology, pp 102–111

 29. Lin D, Talathi S, Sreekanth V (2016) Fixed point quantization of deep convolutional networks. In:
International conference on machine learning

 30. Qiu J, Wang J, Yao S, et al. (2016) Going deeper with embedded FPGA platform for convolutional
neural network. In: Proceedings of the 2016 ACM/SIGDA international symposium on field-pro-
grammable gate arrays

 31. Cong J, Fang Z, Lo M, et al. (2018) Understanding performance differences of FPGAs and GPUs.
In: 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM)

 32. Wang X, Hou R, Zhao B, et al. (2020) DNNGuard: an elastic heterogeneous DNN accelerator archi-
tecture against adversarial attacks. In: Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems

 33. [Online]. Available: https:// www. thess lstore. com/ blog/ block- cipher- vs- stream- cipher/
 34. Cannière C (2006) Trivium: a stream cipher construction inspired by block cipher design principles
 35. Gan Y, Qiu Y, Leng J, Guo M, Zhu Y (2020) Ptolemy: architecture support for robust deep learn-

ing. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp
241–255

http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/2008.03752
https://www.graphcore.ai/
https://www.graphcore.ai/
https://cloud.google.com/tpu
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor
https://www.thesslstore.com/blog/block-cipher-vs-stream-cipher/

5831

1 3

Nacc‑Guard: a lightweight DNN accelerator architecture for…

 36. Rouhani BD, Samragh M, Javaheripi M, Javidi T, Koushanfar F (2018) Deepfense: online acceler-
ated defense against adversarial deep learning. In: 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp 1–8

 37. Szegedy C, Zaremba W, Sutskever I, et al. (2013) Intriguing properties of neural networks. ArXiv:
1312. 6199

 38. Zhang Y, Jia R, Pei H, Wang W, Li B, Song D (2020) The secret revealer: generative model-inver-
sion attacks against deep neural networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp 250–258

 39. Hu X, Liang L, Deng L, Li S, Xie X, Ji Y, Ding Y, Liu C, Sherwood T, Xie Y (2019) Neural net-
work model extracion attacks in edge devices by hearing architectural hints. arXiv: 1903. 03916

 40. Sun G, Cong Y, Dong J, et al. (2020) Data poisoning attacks against federated learning systems.
arXiv: 2004. 10020

 41. Liu Z, Ye J, Hu X, et al. (2020) Sequence triggered hardware trojan in neural network accelerato. In:
2020 IEEE 38th VLSI Test Symposium (VTS)

 42. Lyu Y, Mishra P (2018) A survey of side-channel attacks on caches and countermeasures. J Hardw
Syst Secur 2:33–50

 43. Rakin AS, He Z, Li J, et al. (2021) T-BFA: targeted bit-flip adversarial weight attack. In: Proceed-
ings of the IEEE Transactions on Pattern Analysis and Machine Intelligence

 44. [Online]. Available: https:// github. com/ dhm20 13724/ yolov2_ xilinx_ fpga
 45. [Online]. Available: https:// github. com/ nvdla/
 46. [Online]. Available: https:// maest ro. ece. gatech. edu/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1903.03916
http://arxiv.org/abs/2004.10020
https://github.com/dhm2013724/yolov2_xilinx_fpga
https://github.com/nvdla/
https://maestro.ece.gatech.edu/

	Nacc-Guard: a lightweight DNN accelerator architecture for secure deep learning
	Abstract
	1 Introduction
	2 Related work and motivation
	2.1 DNN accelerator
	2.2 Trivium and message authentication code
	2.3 Vulnerability and motivation

	3 Nacc-Guard
	3.1 Threat model
	3.2 Overview
	3.3 Encryption engine
	3.4 Interrupt signal confused coding
	3.5 Message authentication code

	4 Evaluation
	4.1 Experiment setup
	4.2 Hardware overhead
	4.3 Performance evaluation
	4.4 Power consumption

	5 Conclusion
	References

