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Abstract
In recent years, the combination of deep learning and side-channel analysis has 
received extensive attention. Previous research has shown that the key recovery 
problem can be transformed into a classification problem. The performance of these 
models strongly depends on the size of the dataset and the number of instances in 
each target class. The training time is very long. In this paper, the key recovery prob-
lem is transformed into a similarity measurement problem in Siamese neural net-
works. We use simulated power traces and true power traces to form power pairs to 
augment data and simplify key recovery steps. The trace pairs are selected based on 
labels and added to the training to improve model performance. The model adopts 
a Siamese, CNN-based architecture, and it can evaluate the similarity between the 
inputs. The correct key is revealed by the similarity of different trace pairs. In exper-
iments, three datasets are used to evaluate our method. The results show that the 
proposed method can be successfully trained with 1000 power traces and has excel-
lent attack efficiency and training speed.
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1  Introduction

Artificial intelligence, big data, cloud computing, and smart devices have penetrated 
into all aspects of people’s work and life [1, 2]. It is imperative to adopt new techni-
cal means and tools to deal with new security threats [3, 4]. The cryptographic chip 
is the foundation of the hardware security system. In the past, the security of the 
cryptographic chip was mainly considered in the mathematical design of the encryp-
tion algorithm [5]. In fact, the encryption devices are accompanied by physical 
leakages such as time [6], power consumption [7, 8], and electromagnetic [9]. The 
physical leaks bring hidden dangers to information security [10]. Kocher was the 
first to crack keys using physical information in the encryption process. His research 
subverts the previous perception of information security and opens up new research 
directions.

At this stage, side-channel analysis (SCA) is mainly divided into two categories, 
one is non-profiling SCA. It includes Simple Power Analysis (SPA) [11], Differ-
ential Power Analysis (DPA), Correlation Power Analysis (CPA) [12], and so on. 
Another is profiling SCA which has high attack efficiency and accuracy when the 
model is built successfully. It assumes that the attacker has an encryption device 
identical to the target. The attacker collects the power traces during the encryp-
tion process of the device and constructs a power consumption probability model. 
Then, the key is cracked by feature matching according to this model. Profiling SCA 
includes Template Attack (TA) [13]. However, TA relies on the distribution of tar-
get device power consumption data to obey a multivariate Gaussian distribution. It 
makes the profiling process difficult because the assumption does not always hold.

In recent years, researchers have begun to combine deep learning (DL) with SCA. 
DL can automatically learn features from data and generalize the representation of 
the data. This property of it shines in the SCA field. [14] introduces some research 
on different model structures in SCA. Among DL methods, models based on convo-
lutional neural networks (CNN) seem to be the most effective methods, since they 
exhibit excellent performance in extracting relevant features from raw traces. There-
fore, a large literature explores CNN model structures suitable for SCA [15–17]. At 
the same time, ensemble learning [18] and random convolution kernel [19] technol-
ogy are applied to DL-SCA, and some new ways of combining DL with SCA are 
constantly being proposed in [20, 21]. These studies have confirmed that DL-SCA 
has an overwhelming advantage over traditional SCA in terms of attack capabilities.

1.1 � Related work

Although DL-SCA showed a powerful attack capability, researchers realized that 
the time cost of training an SCA model is expensive compared to traditional meth-
ods. The training time is very long under huge training data. Not providing enough 
data may mean that we are not reaching a method’s full potential. In more extreme 
cases, the method shows very poor performance [22]. Learning good features via 
DL is computationally expensive, and getting good performance can be a challenge 
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if little data are available. In this regard, Picek et al. [23] pointed out that profiling 
attacks should limit the ability of attackers to obtain power traces and build a cor-
responding analysis framework. Specifically, attackers are assumed to always find 
the best possible attack, which rarely happens in practice as in the limited-criteria 
Common Evaluation Method (CEM) of Common Criteria. Wang et al. [24] pointed 
out that if the attack is applied to a specific application, we will not be able to collect 
enough traces due to various constraints such as time, resources, and countermeas-
ures. Specifically, the encryption to be attacked may be a subroutine, or the location 
of the encryption is not fixed. The cost of power trace harvesting at this point is 
expensive. Meanwhile, in the CHES-CTF 2023 competition, the proponents encour-
age attackers to reduce the number of traces used during training and build efficient 
and fast models. Therefore, researchers have done a series of studies to reduce the 
data dependence of the SCA model. Semi-supervised learning was introduced into 
the field of SCA by Picek et al. [25]. Labeling unknown power traces through semi-
supervised learning effectively reduces the model’s need for labeled power traces. 
However, their method cannot achieve the attack effect of the supervised learning 
model, even if the number of labels is increased. Kim et al. [26] augmented the data 
by adding noise to the power traces to reduce the data required for training. How-
ever, low-quality samples added during data augmentation can lead to reduced accu-
racy because the actual probability distribution of the observed data is usually not 
known during augmentation. Wang et al. [24] used DL techniques to enhance power 
traces. They generated a new dataset through Generative Adversarial Networks 
(GAN) for dataset expansion and data augmentation. However, the training of GAN 
networks also requires a sufficient number of power traces. In the case of insufficient 
data, GAN networks cannot generate high-quality power traces. Ito et al. [27] used 
Synthetic Minority Oversampling Technique (SMOTE) and cross-entropy ratio to 
solve the problem of the inconsistent number of instances in each target class. Since 
SMOTE is a data augmentation method based on linear interpolation, the varia-
tion of the augmented data is reduced when the training data are small. It leads to 
rapid overfitting of the model. Hu et al. [28] proposed a cross-subkey DL-SCA. It 
overhauls the traces of non-target subkeys as data augmentation to reduce the data 
required during training. However, this method is currently only available for spe-
cific devices, and the number of power traces in the training set must be greater 
than 5000 to be valid. All of the above studies have focused on data augmentation 
methods to create new samples. This paper provides a new perspective for reducing 
the data dependence of DL-SCA. We start from the model itself and use the unique 
training method of Siamese neural network (SNN) to solve this problem. The SNN 
is a recently proposed idea to solve the problem of overfitting caused by insufficient 
training samples [29]. It uses a pair of samples as input and can evaluate the similar-
ity between input samples. Even with limited training samples, multiple inputs can 
be combined. In Koch’s work, a one-shot image recognition model was built using 
SNN, and it achieved good results with limited training samples [30]. Compared to 
the work on classification models, our approach is more suitable for training models 
based on a small number of datasets. This helps reduce training costs. The SNN 
learns the similarity or difference between two inputs through contrastive learning, 
which makes samples with the same label as close as possible and samples with 
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different labels as far away as possible. Therefore, it focuses on the differences in 
power traces, such as leakage characteristics, which is beneficial for SCA. In other 
literature, only [31] mentioned the combination of SCA and SNN. They used one-
shot learning to combine with SCA and achieved good results in the attack of asym-
metric cryptography. However, they only considered the recovery of the scalar bits 
of the key.

1.2 � Our contribution

In this paper, a Siamese neural network-based side-channel analysis (SNN-SCA) is 
proposed. The method combines the characteristics of CPA and TA. The main con-
tributions of this paper are listed as follows: 

1.	 The key recovery problem is transformed into a similarity measurement problem. 
It leads us to design a network that adopts Siamese, CNN-based architecture.

2.	 A sample combination strategy suitable for SCA is proposed, which can augment 
the data and simplify the key recovery step.

3.	 An adversarial sample selection strategy is proposed to improve model perfor-
mance.

4.	 A series of experiments are performed to analyze the advantages of SNN-SCA 
in the case of limited power samples.

The rest of the study is organized as follows. Section 2 briefly introduces the back-
ground of SCA and DL. The SNN-SCA is explained in detail in Sect. 3. In Sect. 4, 
we specifically explain the structure of the model and the training strategy. The 
experimental verification will be discussed in Sect. 5. Finally, Sect. 6 concludes the 
whole study.

2 � Preliminaries

2.1 � DL‑based profiling attacks

DL-SCA is seen as an extension of TA. The profiling and attack phases in TA are 
very similar to training and testing in DL. Therefore, the recovery key problem is 
transformed into a classification problem in DL. In the training phase, the attacker 
collects Nt power traces T = {ti|i = 0, 1,…Nt} . Each of the power traces ti corre-
sponds to a label with a known key and the label yi can be an intermediate or Ham-
ming weight (HW)/Hamming distance (HD) value. The power traces ti , plaintext mi 
and key ki of each item are organized in pairs, and a so-called concept of training set 
in deep learning is obtained. The training data Dprofiling can be expressed as follows:

The main purpose of the profiling process is to establish a probability distribution 
function between the sensitive intermediate value and power consumption. In DL, 

(1)Dprofiling =
{
(ti, ki,mi), i = 0, 1…Nt

}
.
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this probability function problem can indeed be solved by directly training a classi-
fier, letting the classifier be fc . It can be expressed as follows:

In the attack phase, the power traces generated by each plaintext encryption pro-
cess are collected to form an attack dataset. Unlike the profiling phases, the key is 
unknown and needs to be solved. The classifier fc receives the power traces in the 
attack dataset and outputs a probability vector Pi . Attacks can obtain the key based 
on the probability vector and the plaintext.

2.2 � Convolutional neural network

Convolutional neural network (CNN) is a deep neural network with features such 
as local connection and weight sharing. It includes convolutional layers and pool-
ing layers. The convolutional layers of CNN are linear layers that use filters to con-
volve the input power traces. Different filters extract features from the filter window 
corresponding to the input power traces to obtain feature maps. When the input x 
is convolved by a filter g, the output of the conv layer is y = f (g⊕ x + b) . Define 
z = g⊕ x , fix stride to 1, in 1-D context, set the length of g to m, we have

High-level abstract features of the input data are extracted as the convolution oper-
ation goes deeper. These high-level abstract features are arranged side by side in 
deeper data dimensions. The geometric property makes the CNN very robust to the 
temporal deformation of the power traces.

The pooling layer of CNN is a nonlinear layer, which further processes the fea-
ture map obtained by the convolution operation to reduce the number of elements. 
The pooling layer statistically summarizes feature values at different locations on the 
feature map. In this paper, the power trace is a one-dimensional (1D) tensor. There-
fore, the convolutional layers and filters used in this paper are one-dimensional.

2.3 � Siamese neural networks

The SNN can be understood as an algorithm to measure similarity or correla-
tion. It can be trained to capture features with fewer training samples. The idea 
behind it is not to learn to classify labels, but to learn to distinguish between 
input vectors. It learns an explicit relationship between two inputs. The inputs 
are mapped to a high-dimensional feature space and the corresponding represen-
tation is the output. The similarity of the two inputs is obtained by calculating 
the distance between the two input surface features. It can be trained on small 
sample datasets and is not easily disturbed by false samples, even if the train-
ing category is unknown and the number of training samples for a single class 
is very small [30]. The specific structure of the SNN is shown in Fig. 1, which 

(2)fc(ti) = (Pi|i = yi)

(3)z[i] =

(
m+1∑

k=1

g[k] ⋅ x[i − k + 1]

)
∕m
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has two branches; different branches usually use the same neural network and 
share the weights W. These two neural networks are feed-forward multilayer per-
ceptrons that work in concert and are trained in a back-propagation fashion. Let 
X1 and X2 be two input vectors, and GW (X1), GW (X2) be the two-point mapping 
of X1 and X2 in the generated low-dimensional space. Then the metric function 
EW (X1,X2) is shown in (4).

During the calculation of the metric function, the difference in embedding can use a 
contrastive loss to map samples with similar labels to close positions in the feature 
space and map samples with different labels to distant positions. The Contrastive 
Loss can be expressed as follows:

where y is the label of the sample (0 means similar sample, 1 means dissimilar sam-
ple), d is the Euclidean distance between the feature vectors of two samples, and 
margin is a predefined threshold to control the boundary of similarity.

On the other hand, the difference in embedding is handled by dense layers for 
binary classification, which uses binary cross-entropy (BCE) loss to optimize 
the objective. The BCE loss expression is as follows:

where p represents the binary prediction probability of the model, the value range is 
[0, 1], and y represents the target label.

In this paper, we chose the second option. The L1 distance is used for distance 
measurement, because the calculation of the L1 distance function is simple, and 
it is not easily affected by outliers. The similarity is calculated by the sigmoid 
function.

(4)EW (X1,X2) = ||GW (X1) − GW (X2)||

(5)L = y ∗ d2 + (1 − y) ∗ max(margin − d, 0)2

(6)BCEloss(p, y) = −(y ∗ log(p) + (1 − y) ∗ log(1 − p))

Fig. 1   Siamese neural networks 
architecture
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3 � Proposed method

3.1 � Challenges for DL‑SCA

Both DL-SCA with intermediate values as labels and HW/HD values as labels face 
numerous challenges. It can be summarized as follows: 

1.	 The model is too data-dependent, and the training time is too long.
2.	 The number of training data classes is unbalanced, and the output distribution of 

the model is biased toward the distribution of labels.

First, classification tasks in DL usually assume that a given contains enough data 
for classification, and each class of data has distinct classification criteria. However, 
it is difficult to derive a uniquely identified intermediate or HW/HD value from a 
power trace due to the impact of noise and countermeasures. A power trace may cor-
respond to multiple intermediate values or HW/HD values for parallel implementa-
tions of the algorithm. The number of classifications is 256 when the training data 
are labeled with intermediate values. There are some similarities between adjacent 
intermediate values. Therefore, the model needs more data to learn to complete the 
task. When an attacker builds a deep neural network that requires a large amount of 
data for training, the training time will far exceed traditional attack methods. More 
importantly, some cryptographic chips have control logic, which can only work at a 
fixed speed. The sampling time can be very long. In this case, data-dependent mod-
els will be difficult to train. Models require reduced data dependencies that avoid 
circumventing chip physics constraints. At the same time, overtraining on the same 
dataset can lead to overfitting. Therefore, the model must be forced to focus on the 
detailed differences in different classes of power consumption (distinguishing leak-
age). Second, the model output is 9 when the training data are labeled with HW/HD 
values. The HW distribution of the 256 intermediate values is severely unbalanced 
(e.g., the number of HW of 4 is much higher than the number of HW of 8); the dis-
tribution of HW/HD affects the model prediction distribution, especially when the 
relationship between power traces and HW/HD values is weak. During this time, the 
power traces are independent of the correct label. The neural network output proba-
bility is biased such that the probability of HW = 4 is the highest and the probability 
of HW = 0 or 8 is the lowest. It is likely to be affected by the imbalanced data when 
the label classification rate of the model remains unchanged at 27% ( 70

256
≈ 27% ). 

The above problems limit the practical application of DL-SCA.

3.2 � Framework of the proposed method

The SNN can be trained on a small number of samples and are not easily dis-
turbed by erroneous samples. These characteristics are very suitable for SCA. 
It is worth exploring how the SNN structure can be used in the SCA context. 
According to the traditional SNN, we can combine the true power trace into 
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different data pairs and add them to the model training. However, the ultimate 
purpose of the model in DL-SCA is not to classify but to recover the key. The 
strategy of combining true power traces needs to rely on the known true power 
trace as a template to traverse the power trace with unknown information. For 
example, a model trained based on true power traces pair can classify and inte-
grate the power traces of target devices. However, it is not clear what the inter-
mediate value of the power trace is, because the key information is unknown. We 
expect that the trained model does not need to rely on training data samples as 
templates to analyze keys. Instead, the information of the intermediate state is 
obtained from the plaintext, and the key is obtained by analyzing the information 
of the intermediate state and the true power trace. Therefore, a combination strat-
egy suitable for SCA is proposed.

In this method, we transform the key recovery problem into a similarity meas-
urement problem of intermediate state leakage and power consumption. In classical 
SCA, the attacker can quantify the leakage of intermediate states through the leak-
age model. We call this set v the intermediate operating states of the entire device. 
x consists of the secret key and the input dependent variable on which the leaky 
function L acts. It describes how an implementation can leak information through 
a given side channel. Typically, the leakage model takes the form of an additive 
Gaussian noise function [32].

where N(0, �) is a Gaussian noise, and L(.)d is a deterministic function.
For a flip-flop in a register involved in data processing in the system, the power 

consumption is directly related to the processed data. This relationship is manifested 
at the CMOS gate circuit level as the charge and discharge of the load capacitor. At 
the register level, it is expressed as the flip-flop of 0 and 1 in the register, and at the 
operand level, it is expressed as the HW of the data before and after the execution 
of the instruction. This function is a HW function, so the L(.)d function is usually 
selected as HW, which is expressed as follows:

where l is the number of bits of x.
Therefore, generating simulated power traces based on HW values for intermedi-

ate states is correlated with power traces with the same HW label. We can introduce 
the SNN architecture to establish a similarity evaluation model when the input pairs 
of the same label are significantly differ from those of different labels. In this paper, 
we will generate simulated power traces based on the HW values of the intermedi-
ate states. Simulated and true power traces are used as a set of inputs for the model 
for training. A trained model is able to assess the similarity between inputs. Finally, 
the correct key is solved by the similarity of different power consumption pairs. The 
similarity measurement problem can be expressed as:

For the power traces ti , the learning goal is to acquire an encoder f that meets the 
following conditions:

(7)L(v) = L(v)d +N(0, �)

(8)HW(x) =
∑

0≤i<l

xi
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where hi,t is the simulated power traces for the correct intermediate value, hi,f  is the 
simulated power traces for the incorrect intermediate value, ti is the true power trace, 
and score is a similarity measure function.

We design a combination scheme of SNN and SCA based on the above ideas. 
The overview of SNN-SCA is shown in Fig. 2.

3.3 � SNN for SCA

In this section, we explain the details of the SNN-SCA. The data consisting of a 
simulated power trace and a true power trace are named trace pair for the conveni-
ence of description.

During the profiling (training) phase, the correct key is known. The attacker 
generates labels for simulated power traces and true power traces based on known 
plaintext and key information. The simulated power trace generation process is as 
follows:

where hi,x indicates the simulated power traces for the correct intermediate value 
when x = t , and it indicates the simulated power traces for the wrong intermedi-
ate value when x = f  . We can control the variable N(0, �) by setting the standard 
deviation of Gaussian noise. The noise level difference between the simulated power 
traces and the true power traces will affect the model training effect. Therefore, the 
standard deviation of Gaussian noise should also be used as a hyperparameter to 

(9)score(f (hi,t), f (ti)) >> score(f (hi,f ), f (ti))

(10)hi,x = Hw(vi,x) +N(0, �)

Fig. 2   Overview of SNN-SCA
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debug this method. We verify this in the experimental part and find that the DL 
model is somewhat robust to changes in noise.

The purpose of training the model based on power traces is to be able to iden-
tify traces that have the same label. Let the simulated power traces in training set 
be Hs , Hs = {(xi, yi)}

n
i=1

 and yi ∈ {1, 2… ,C} , and let the true power traces in 
training set be Ts , Ts = {(xj, yj)}

n
j=1

 and yj ∈ {1, 2… ,C} . where n represents the 
number of training samples with labels and C represents the type of labels. Each 
set of trace pairs also corresponds to a label, which represents the similarity 
between the two samples. A label of 1 means that the two inputs are similar, and a 
label of 0 means that the two inputs are not similar. In other words, trace pairs 
with label 1 are also called positive samples, and trace pairs with label 0 are 
called negative samples. Suppose [ xi, xj ] is a trace pair randomly selected from 
the training set. The labels of trace pairs are as follows:

The model can obtain a multidimensional feature when different inputs X1 , X2 enter 
the feature extraction layer w. Then, the units in the final multidimensional feature 
are flattened into a single vector, and their feature distances are calculated by the L1 
distance function. The process is shown in (12).

where �encoding is the parameter of feature layer; wi represents the feature layer of the 
ith channel.

The similarity p between two vectors can be calculated by logistic prediction. 
This step is as follows:

where � is the sigmoid function, �j is the weight share of the jth component of d, 
p ∈ (0, 1) . It is learned by the model during training, weighing the importance of the 
component-wise distance.

During the testing (key recovery) phase, the key is unknown. The attacker enu-
merates all possible intermediate values according to plaintext and generates sim-
ulated power traces H′ , H� = {(xa, ya)}

n
a=1

 . For any power trace ta in the test set, 
it will form a trace pair [xa, ta] with each simulated power trace. The network will 
calculate the similarity pi between them, and the predicted label ŷ is as follow:

Eventually, the similarity of all intermediate values is derived from the similarity of 
different trace pairs. The correct intermediate state value has the greatest similarity, 

(11)label([xi, xj]) =

{
1 yi = yj
0 yi ≠ yj

(12)d = |w1

(
X1, �encoding

)
− w2(X2, �encoding)|

(13)p = �

(
∑

j

�jd
(j)

)

(14)ŷ = {ym|m = argmax
i

(pi)},
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and the key can be deduced from the plaintext and intermediate value information. 
The process is shown in Algorithm 1.

3.4 � Adversarial example selection strategy

The choice of positive and negative samples is crucial for the SNN training pro-
cess. Negative samples with significant differences contribute little to model 
learning, while the negative samples that are very close to each other in the fea-
ture space contribute more to the model training [33]. For tasks such as image 
classification or audio recognition, it is challenging to determine the similarity 
between them based on labels. For example, images labeled as “Jackson” and 
“Jackie” cannot be judged to be similar even if their names are similar. For the 
SCA domain, the correlation between label distance and feature distance is 
much stronger. Trace pairs with closer HW values are more correlated in SCA, 
and the model often misclassifies this set of trace pairs (this result can be seen in 
Sect. 5.1). An adversarial example generation strategy is constructed according 
to this phenomenon. We can divide the effective negative samples according to 
the HW value. The model should choose a simulated power traces adversarial 
sample [ti, h∗j ] whose HW value is different but very close to the HW value cor-
responding to the real traces.

Specifically, for true power traces ti , its corresponding HW value is yi . We 
use yi as the axis to intercept the value of two units within the range of the HW 
value. The values in the selected range as candidate HW values for the simulated 
power traces. This candidate area is Ds = {x|yi − 2 ≤ x ≤ yi + 2, x ≠ yi} . The data 
selection process is shown in Fig. 3.

Finally, the simulated traces h∗
j
 are selected from the interval Ds and com-

bined with the true power trace ti to form an adversarial sample for model 
training.
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3.5 � Advantage of the SNN‑SCA

In this section, we explain how SNN-SCA can reduce data dependencies data. Accord-
ing to the concept of trace pair mentioned in Section 3.3, we know that the proposed 
method uses a combination of simulated power trace and true power trace to augment 
the data. The combination of simulated power trace and simulated power trace does not 
make sense in our method. Let the number of true power traces of class i be 
Ni
t
, i ∈ [0, 8] , and let the number of simulated power traces of class i be Ni

s
, i ∈ [0, 8] . 

Then the total number of combinations will be 
∑8

i=0

∑8

j=0

�
Ni
t
⋅ N

j
s

�
 . When applying 

the adversarial example selection strategy, the total number of generated samples Ntotal 
is as follows:

Therefore, the combination strategy can generate a large number of samples even 
when the power trace is constrained. The generated samples will be used condition-
ally, which will be explained in Sect. 4.2.

Second, SNN is more robust to imbalanced data. It does not directly output the class 
of each power trace, but the relationship (similar and dissimilar) between two input 
samples. The model predicts binary classification. Therefore, the data class distribution 
should obey the ratio of positive and negative samples. We only need to design a class-
balanced data loader, which makes training the same number of positive and negative 
samples to solve the imbalanced data problem. While traditional DL-SCA classifies 
HW, the data class distribution obeys the HW distribution. The imbalance data problem 
becomes more difficult to handle because the HW distribution is more complex.

4 � Design and analysis of SNN‑SCA model

4.1 � Structure of SNN‑SCA model

In this section, we build a network suitable for our task based on the SNN archi-
tecture and CNN network. The CNN network originated in the field of image 

(15)

Ntotal =

2∑

j=0

(N0
t
⋅ Nj

s
) +

3∑

j=0

(N1
t
⋅ Nj

s
) +

6∑

i=2

i+2∑

j=i−2

(Ni
t
⋅ Nj

s
)

+

8∑

j=5

(N7
t
⋅ Nj

s
) +

8∑

j=6

(N8
t
⋅ Nj

s
)

Fig. 3   Overview of the adversarial example selection strategy
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recognition. Its current largest application field is image recognition. The experience 
gained in image recognition is not entirely suitable for the identification of power 
traces in the context of SCA. The useful feature of power consumption data is only a 
very small fluctuation in the operation data value. Its correlation is further weakened 
by the influence of noise and protection measures. It is completely unrecognizable 
to humans and the signal-to-noise ratio of the side-channel data is much lower than 
that of the image. The modeling strategy adopted by DL-SCA should be different.

Fortunately, there are many research papers on CNN applicable to the SCA 
field. We can gain experience building models from it. It is claimed in [16] that for 
synchronous power datasets with uniform distribution of interest points, it is rec-
ommended to use a small number of filters. Because adding convolutional blocks 
increases the risk of entanglement when interest points are temporally close to each 
other, in such datasets, they suggest that attackers can use CNNs with short filters 
(i.e., 1) that help focus their interest on local perturbations and significantly reduce 
the complexity of the network. For the ASCAD and DPAcontest v4 datasets in the 
first-order leakage environment, we refer to this concept and design a lightweight 
model. The model contains only two convolutional layers, each with stride 2 and 
padding 0.

For the SAKURA-AES dataset with a low signal-to-noise ratio, which leaks less 
information, the above strategy is not applicable. We refer to the model used in [17], 
whose core idea is to keep the amount of global information processed by different 
layers as constant as possible. The model is based on the VGG network and con-
tains 5 convolutional layers, each with a stride of 5 and a padding of 1. The spe-
cific parameters of their single channel are shown in Table 1. The mark “FC-n, selu” 
means a fully connected layer of n neurons using selu activation function, “BN” 
means a batch normalization, “Convn-m” refers to m convolutional kernels of size n, 
and “Average pooling, n by n” means an average pooling layer, whose pooling win-
dow size is n and the stride is also n.

The difference in embedding is handled by dense layers for binary classification, 
as shown in Fig. 4. It has two channels, which have the same components and share 
weights. Each channel is divided into three parts; the first part is the feature extrac-
tion layer, which contains 1D convolution, activation function, BatchNorm1d, and 
average pooling layer. Second, the linear layer consists of fully connected layers 
with different parameters. The last layer is the prediction layer. It computes the L1 
distance between each channel and gives an output unit. Finally, the similarity of the 
two inputs is given by the sigmoidal activation function.

4.2 � Training the SNN‑SCA model

Our goal is to optimize network parameters with few power traces. However, the 
problem of unbalanced positive and negative samples needs to be solved. Positive 
and negative samples are generated by (11). The training sample contains a trace 
pair consisting of simulated power traces H, true power traces T, and the similar-
ity between them. Since a true power trace corresponds to only one HW value, 
other HW values are regarded as wrong HW values. It can form 1 positive sample 
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and 8 negative samples with the simulated power traces. The number of negative 
samples is larger than the number of positive samples. This situation is common 
in other fields and is allowed in the training of SNN. It is necessary to control the 
number of positive samples and negative samples for model training. Therefore, 
we train according to the following principles: 

1.	 Each training selects the sample that contributes more to the model training 
according to the adversarial sample strategy.

2.	 Set the probability of adding positive and adversarial examples in training to 50%.

Intermediate  value

Real power traces

W
eig

h
t

sh
arin

g

Simulated power traces

Simulation 

Subtract

Fully connectedFeature extraction layer

Fully connected+sigmoid

similarity

Fig. 4   Model structure

Table 1   Parameter details of 
single-channel model

ASCAD and DPAcontest v4 SAKURA-AES

5 weights layers 7 weights layers
input input
Conv1-4, selu Conv11-64, relu
BN Average pooling, 2 by 2
Average pooling, 2 by 2 Conv11-128, relu
Conv1-8, selu Average pooling, 2 by 2
BN Conv11-256, relu
Average pooling, 2 by 2 Average pooling, 2 by 2
FC-20, selu Conv11-512, relu
FC-20, selu Average pooling, 2 by 2
FC-1, sigmoid Conv11-512, relu
– Average pooling, 2 by 2
– FC-2048, relu
– FC-1, sigmoid
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More specifically, we first need to traverse the power traces T in the training set. 
When the power trace T is selected, we need to match the corresponding simulated 
power trace H according to the label (the probability of label value 0, 1 is evenly 
divided) to form a trace pair. The data sampling process is shown in Fig. 5.

4.3 � Datasets

In this paper, three different datasets are used to evaluate our model. We are more 
concerned with first-order leakage when dealing with the similarity between simu-
lated power traces and true power traces. The masks in the dataset as known values 
and thus are easily converted to unprotected scenes. A brief introduction to the three 
datasets is given below: 

1.	 ASCAD: The ASCAD dataset is dedicated to evaluating the attack efficiency of 
DL models in SCA. It contains the power traces of AES mask implementation 
on ATMega 8518. There are 60,000 traces each with 100,000 sample points. 
The proposer keeps only 700 feature points between 45,400 and 46,100 to avoid 
useless and massive data processing. These feature points correspond to the time 
sample points of the third S-box leakage operation. The datasets are available at 
https://​github.​com/​ANSSI-​FR/​ASCAD.

2.	 DPAcontest v4: The dataset is acquired on an 8-bit ATmega163 smart card con-
trolled by the SASEBO-W board at a sampling rate of 500 MS/s [34]. Each power 
trace consists of 4000 features around the S-box part. In this paper, we only select 
700 features between 550 and 1250 for experiments. The datasets are available at 
http://​www.​dpaco​ntest.​org/​v4/​42_​traces.​php.

3.	 SAKURA-AES: The dataset is unprotected AES-128 implemented on a XilinxS-
pardan-6 FPGA mounted on a SAKURA-G FPGA board designed for hardware 
security research and development. The AES-128 core is written in a round-based 

Fig. 5   The process of sample selection

https://github.com/ANSSI-FR/ASCAD
http://www.dpacontest.org/v4/42_traces.php
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architecture, requiring 11 clock cycles per encryption. The power traces are meas-
ured by monitoring the power waveform of the main FPGA core voltage. Power 
trace contains 10,000 sample points, and we choose to attack the first byte of the 
key. The segment from 1630 to 2330 is selected for analysis. The power trace 
collection process is shown in Fig. 6.

Since the leak point of SAKURA-G is in the last encrypted ciphertext added to 
the current encrypted round key, the sensitive intermediate value is

where zi is the intermediate value, ci is the ciphertext, pi is the plaintext, and ki is the 
key. The data sample used in this paper is shown in Fig. 7.

4.4 � Evaluation metrics

The validation accuracy of model training is a common metric in DL that 
expresses the ability of a model to classify data. This metric is often a direct 
reflection of a model’s ability to achieve its application goals in the traditional 
machine learning domain. However, data classification is not the ultimate goal 
of the model in SCA. Its ultimate goal is to recover the key, and this metric can 
be evaluated by guessing entropy (GE). In this paper, we use the GE metric to 
evaluate the effectiveness of DL-SCA, which is the rank of correct keys. In this 
case, the trace pair with different labels will be added to the model. The similar-
ity of different HW label will be obtained and finally converted to the similarity 
of intermediate values. Multidimensional similarity vectors can be obtained, as 

(16)Z = {zi|zi = ci−1 ⊕ (pi ⊕ ki), i ∈ [1,Nt]}

Control

Power traces

SAKURA-G

Computer

Oscilloscope

Control
Trigger line

SMA line

Visual interface

Fig. 6   Power traces acquisition platform
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the number of power trace increases. The rank metric is obtained through cumu-
lative and sum operations, which is defined as follows:

where K is the key space, k∗ is the correct key, and d is the similarity of 256 guessed 
keys, |{x}| represents the number of elements in the set x.

The similarity of the correct key is the highest when the GE value equals 0. 
The minimum number of power traces required for a model attack is defined as 
NGE . For a good estimation of NGE , the traces in the attacking dataset are ran-
domly shuffled and 20 NGE are computed to give the average value for NGE.

5 � Experimental results

5.1 � Experiment settings

The experiments were conducted on the PC with core intel i9-12900 H, GeForce 
RTX 3060 Ti GPU acceleration and the deep learning architecture PyTorch with 
Python language.

Before model training, it is very important to choose the appropriate hyperpa-
rameters. Different problems require different optimal hyperparameters. In addi-
tion to model parameters, hyperparameters include epoch (number of iterations), 
learning rate, optimizer type (such as SGD, AdaGrad, RMSProp, Adam), and 
batch size. To determine the best combination of parameters, a combination of 
grid search and empirical testing of the parameters can be used. Finally, the best 
parameters are selected for evaluation and combination. The selection of hyper-
parameters for different datasets in this paper is shown in Table 2.

(17)rank = |{k ∈ K|d[k] > d[k∗]}|

Fig. 7   The power traces used in this paper
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5.2 � Effect of sample selection strategies and loss function

In this section, we analyze the impact of different sample selection strategies and 
loss functions on model performance. The datasets used in the experiment are 
ASCAD and DPAcontest v4 datasets. For the DPAcontest v4 dataset, the stand-
ard deviation � of Gaussian noise is set to 3.0 and the number of samples in the 
training set is 1000. For the ASCAD dataset, the standard deviation � of Gaussian 
noise is 2.0 and the number of samples in the training set is 1200. The hyperpa-
rameters of the model are set consistently in the comparison experiments with 
different sample selection strategies.

First, we randomly select the first 500 power traces in DPAcontest v4 to pre-
dict the HW values and compare the predicted values with the labeled values. 
Figure  8 shows the prediction results on DPAcontest v4 using different sample 
selection strategies. It can be seen from Fig.  8 that the model trained with the 
random sampling strategy has a large number of errors in the predicted values. Its 
label classification accuracy is 52.8%. The difference between the predicted val-
ues and the labels is usually within 2 because the similarity between adjacent HW 
values is high and the model can easily misidentify them. This is the reason why 
we designed the adversarial sample selection strategy. Many wrong predictions 
are corrected and the label classification accuracy is improved to 76.4% when the 
model is trained with the adversarial sample selection strategy.

Figure  9 shows the prediction results using different sample selection strate-
gies on ASCAD. It can be seen from Fig. 9 that the model trained with the ran-
dom sampling strategy is prone to misclassify HW labels with an adjacency dis-
tance of 2. Its label classification accuracy is 34.8%. Many wrong predictions are 
corrected and the label classification accuracy is improved to 46.4% when the 
model is trained with the adversarial sample selection strategy. The results show 
that the adversarial sample selection strategy can effectively improve the perfor-
mance of the model.

Then, we further discuss the effect of adopting BCE loss and contrastive loss 
on the attack results. In the experiment of contrastive loss, the margin parameter 
needs to be adjusted. We set the margin between 0.5 and 5.0 and test the attack 
effect. The experimental results are shown in Fig. 10. It can be seen that the mar-
gin setting has a greater impact on the attack results. Especially for the ASCAD 
dataset, the model using contrastive loss is very unstable. It is difficult to achieve 
good attack performance. For DPAcontestv4, the key can be cracked when the 
margin is set to 1, 3, and 5, but the same attack performance as BCE loss cannot 

Table 2   Hyperparameter settings for different datasets

Dataset Learning rate Batch size Epoch Optimizer Weight decay

DPAcontestV4 0.001 256 150 Adam 6e-5
ASCAD 0.01 256 150 Adam 6e-5
SAKURA-G 0.0005 256 200 Adam 6e-5
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(a) Random selection strategy

(b) Adversarial example selection strategy

Fig. 8   Effect of Different Sampling Strategies on Model Performance (DPAcontest v4)

Fig. 9   Effect of Different Sampling Strategies on Model Performance (ASCAD)
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be achieved. Therefore, we recommend handling the difference in embeddings for 
binary classification through dense layers, which are more stable and efficient in 
the face of different datasets.

5.3 � Results on DPAcontest v4 Dataset

In this section, we perform performance testing on the DPAcontest v4 dataset. The 
trace pair is composed of the simulated power trace and the original trace with-
out changing the data value of the original trace. The number of original traces in 
training is set to 300, 500, 700, 1000, respectively, to verify the performance of the 
model under the limited number of original traces. The test set is randomly selected 
to better evaluate the performance of the model.

First, we tested the effect of simulated power traces on NGE for different standard 
deviations � . The simulated power trace is generated by adding Gaussian noise to 
the HW values of the intermediate states. The standard deviation � of the Gaussian 
noise is set to 0.1, 1.0, 2.0, 3.0, 4.0, and 10.0, respectively. This means we retrained 
6 models on Gaussian noise with different standard deviations � . The results evalu-
ated on the testset are shown in Fig. 11. We can see that the simulated power traces 
generated by different noises have some influence on the model prediction results. 
The performance of the model is severely disturbed when the level deviation of the 
noise is set to 10. It cannot obtain effective attack results. Fortunately, DL technol-
ogy can adjust the parameters of the model to adapt to different data in training 
when the level deviation of the noise is set in the range of 0.1–4.0. Table 3 lists the 
NGE values achieved by the models trained by different trace pairs when the number 
of original traces in training is set to 1000. The trained model performs better when 
the standard deviation of the noise is set to 2.0 and 3.0. The NGE of the models is 
reduced to 6, 3.

For the convenience of comparison, we provide the experimental results of SNN-
SCA with 10,000 and 4000 training samples, respectively. Meanwhile, we reproduce 
the state-of-the-art experiments of Zaid et  al. [16] on DPAcontest v4. The result is 
shown in Fig.  12, and Table  4 shows more experimental comparison results. It can 
be seen that our method can find a good balance between training cost and attack 

Fig. 10   Effects of different loss function on guessing entropy
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efficiency. Our method is basically maxed out in its ability to recover keys with 1000 
training samples. This is the advantage of our method, which can achieve better attack 
efficiency with a very small training cost. There is no difference from the GE evalu-
ation index when adding the training set to 4000 and 10,000. The comparison results 
show that our method can achieve excellent results even when the number of training 
samples is small. Compared to state-of-the-art-1 and state-of-the-art-2, the proposed 
method ( � = 3 ) reduces the number of training data requirements by 75% and 90%. It 
achieves the same attack efficiency with limited trace samples. Compared to GAN and 
RF, our method ( � = 3 ) can reduce NGE by 204 and 17 with 1000 original traces. It is 
worth mentioning that the training time of the proposed method only needs 42 s in the 
case of 1000 training samples. These data show that the proposed method has a better 
performance in attack efficiency and attack cost.

Fig. 11   Effects of different Gaussian noises on guessing entropy

Table 3   Attack data in the case 
of Gaussian noise with different 
standard deviations

Number means the number of original traces in training

Standard deviation Number N
GE

� = 0.1 1000 23
� = 1 1000 14
� = 2 1000 6
� = 3 1000 3
� = 4 1000 7
� = 10 1000 >50
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5.4 � Results on ASCAD dataset

In this section, we perform performance testing on the ASCAD dataset. The Gauss-
ian noise standard deviation � of the simulated power traces is set to 2.0. The trace 
pair is composed of the simulated power trace and the original trace without chang-
ing the data value of the original trace. The number of original traces in training is 
set to 600, 800, 1000, and 1200, respectively, to verify the performance of the model 
under the limited number of original traces. The test set is a random selection of 
power traces to better evaluate the performance of the model.

Figure  13 shows the evaluation results of the model with a different number 
of training samples. More detailed results are given in Table 5. From Fig. 13 and 
Table  5, we see that the model needs at least 800 original traces to obtain good 
attack efficiency. The model does not have sufficient ability to recover the key when 

Fig. 12   Comparison results on DPAcontest v4, where “model: n” refers to the model trained under n 
samples

Table 4   Comparison on 
DPAcontest v4 dataset

Number means the number of original traces in training

Model Number N
GE

GAN [24] 1000 207
RF [26] 1000 20
MLP [35] 10,000 35
State-of-the-art-1 [16] 1000 20
State-of-the-art-1 [16] 4000 3
State-of-the-art-2 [23] 10,000 4
Stochastic model [36] 10,000 4
This work ( � = 2) 1000 6
This work ( � = 3) 1000 3
This work ( � = 3) 4000 3
This work ( � = 3) 10,000 3
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the number of original traces in training is 600. It cannot recover the correct key 
within 70 attack traces. As the number of original traces in training increases, the 
model can recover the key when 50, 45, and 28 attack traces are added to the model, 
respectively. Experimental result shows that the proposed method also performs 
well on the ASCAD dataset. At the same time, the proposed method has good per-
formance in terms of time overhead. The model training time is 39  s, 43  s, 47  s, 
respectively, when the training samples are 600, 800, 1200.

5.5 � Results on SAKURA‑AES dataset

In this section, we perform performance testing on the SAKURA-AES dataset. It 
has a lower signal-to-noise ratio compared to the previous two datasets. The Gauss-
ian noise standard deviation � of the simulated power traces is set to 3.0. The trace 
pair is composed of the simulated power trace and the original trace without chang-
ing the data value of the original trace. The number of original traces in training is 
set to 1000, 1200, 1400, and 1600, respectively, to verify the performance of the 
model under the limited number of original traces. The test set is randomly selected 
to better evaluate the performance of the model.

Figure  14 shows the evaluation results of the model with a different number 
of training samples. More detailed results are given in Table 6. From Fig. 14 and 

Fig. 13   The relationship between the number of training samples and guessing entropy ( � = 2)

Table 5   Comparison on 
ASCAD dataset

Number means the number of original traces in training

Model Number N
GE

Training time

This work ( � = 2) 600 >70 36 s
This work ( � = 2) 800 50 39 s
This work ( � = 2) 1000 45 43 s
This work ( � = 2) 1200 28 47 s
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Table 6, we see that the model needs at least 1400 original traces to obtain good 
attack efficiency. The model does not have sufficient ability to recover the key 
when the number of original traces in training is 1000. It is unable to successfully 
recover the key within 300 attack traces. As the number of original traces in train-
ing increases, the model can recover keys under the number of attack traces of 276, 
234, and 197, respectively. Due to the larger amount of model parameters used by 
SAKURA-AES dataset, the model training time is longer than the previous two 
experiments. The model training time is 89  s, 97  s, 105  s, respectively, when the 
training samples are 1200, 1400, 1800. Generally speaking, the running time is still 
within the acceptable range. Experimental result shows that the proposed method 
also performs well on the SAKURA-AES dataset.

5.6 � Discussion

The experimental results in the previous part confirm that the introduction of SNN 
architecture can effectively reduce the data dependence of the model. In this section, 
we further discuss what may cause the attack to fail. Attack failure in SCA can be 
defined as the failure to obtain the expected sensitive information during the attack 
process. It can be expressed in this paper that the ranking of the correct key is not 

Fig. 14   The relationship between the number of training samples and guessing entropy ( � = 3)

Table 6   Comparison on 
SAKURA-AES dataset

Number means the number of original traces in training

Model Number N
GE

Training time

This work ( � = 3) 1200 >300 80 s
This work ( � = 3) 1400 276 89 s
This work ( � = 3) 1600 234 97 s
This work ( � = 3) 1800 197 105 s



4447

1 3

Side‑channel analysis based on Siamese neural network﻿	

the highest among the 256 guessed keys. We discuss the reasons for key recovery 
failure from the following three aspects:

1. Model or hyperparameter selection is unreasonable.
Blindly transferring models from other fields such as images to the SCA field 

may not achieve good results. Attackers need to build reasonable models based on 
the power consumption leakage of the target device. This article recommends the 
use of CNN networks to build SNN single-channel models, which can refer to some 
classic CNN modeling strategies in the SCA field. We propose that the difference in 
embeddings is classified by a binary dense layer, trained with a BCE loss. In addi-
tion, the choice of hyperparameters may also lead to classification failure. Hyperpa-
rameters include learning rate, regularization parameters, etc. Choosing unreason-
able hyperparameters may lead to overfitting or underfitting of the model, making it 
impossible to obtain the correct key.

2. The noise standard deviation setting of the simulated power consumption is 
unreasonable.

In SNN-SCA, the choice of the noise standard deviation of the simulated power 
consumption affects the attack results of the model. Because the noise difference 
between the simulated power trace and the real power trace will affect the model 
training effect, therefore, the standard deviation of the Gaussian noise should also be 
used as a hyperparameter to tune the method. We verified this in the experimental 
section. If the standard deviation of noise selected by the model is too small, SNN-
SCA may overfit the noise, resulting in poor attack effect. On the contrary, if the 
selected noise standard deviation is too large, then SNN-SCA may not be able to 
accurately capture the characteristics of the data, resulting in a complete failure of 
the attack. In addition, we found that the standard deviation setting of 1.0–3.0 is a 
good choice for most cryptographic devices, which is consistent with the noise level 
of general cryptographic devices.

3. The number of power traces is too small.
The SNN architecture can greatly reduce the demand for model training datasets, 

but there is also a limit threshold. If the number of power traces selected during 
training is less than the threshold, the SNN-SCA model cannot learn enough data 
features, resulting in the failure of the attack. Especially for devices with a lower 
signal-to-noise ratio, choosing a small number of power traces for training will limit 
the ability of the model to capture enough information. In the previous experiment, 
we gave the minimum training datasets for DPAcontest v4, ASCAD, and SAKURA-
AES three different datasets to obtain better attack efficiency, which are 1000, 
1200, and 1800, respectively. These data will change with the model structure and 
hyperparameters.

6 � Conclusions

In this paper, we analyze the challenges faced by DL-SCA and show that DL-SCA 
should reduce its dependence on data. Therefore, the key solving problem in SCA 
is transformed into a similarity measurement problem. Unlike previous classifica-
tion models, the purpose of model learning is to distinguish different objects. The 
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simulated power traces and the true power traces form trace pairs to expand the data. 
The best sample is selected based on the HW value of the trace. Experiments show 
that SNN-SCA can be successfully trained in a small number of trace samples and 
can achieve excellent performance. We emphasize that this type of research is not 
designed to force attackers to use a small number of metrics in the analysis phase, 
nor to limit the number of experiments in the hyperparameter tuning phase. Instead, 
it forces the SCA model toward a more lightweight design and reduces its reliance 
on the amount of power traces. In future work, we plan to combine the power con-
sumption characteristics of different devices and use the features of SNN to imple-
ment cross-device attacks. On the other hand, there is a new similarity learning 
method named SimSiam [37] in the image domain. It proposes a new idea, which 
uses the “stop gradient” method to avoid the “collapsing solutions” of the model. It 
does not need to introduce negative samples in training. It will be very interesting to 
explore the combination of SimSiam and SCA.
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