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Abstract
Although there are numerous data modeling tools for relational databases, data 
modeling for NoSQL databases has seen another perspective. These databases (a) do 
not define any explicit schema, (b) store data in a denormalized manner, and (c) give 
many structure alternatives. The decision to structure the data always relies on rules 
of thumb, which do not guarantee an optimal structural solution. Based on this moti-
vation, this paper offers a workload-driven model for the logical schema design of 
a NoSQL document database. It consists of Model input, Intermediate transforma-
tion, and Final schema generation. The proposed model takes the conceptual schema 
(EER model) and application workload (queries and anticipated data volume) as 
input and describes a procedure to convert it into a logical model for NoSQL docu-
ment stores. The conversion process initially converts the application queries into 
query graphs. The query graphs, along with the anticipated data volume, are used 
to generate the query labels. The resulting query labels are assigned on the schema 
graph designed from the EER model. The schema graph and labels are used to trans-
form the EER model into the appropriate logical schema model based on the actions 
defined for each label. We evaluate the model using a case study in the eCommerce 
application domain. The experimental evaluation shows the proposed model out-
performs the existing conventional, optimized, and query path graphs models in 
multiple aspects, including query performance, storage space efficiency, aggregate 
pipeline efficiency, read–write latency, collection-wise performance, scalability, 
throughput and latency. By effectively addressing the challenges associated with 
managing the variety and volume of big data through a well-designed schema, our 
proposed model significantly reduces the time, cost, and effort required for schema 
development and repair.
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1  Introduction

With the rise of big data, the requirement of applications to change their schema is 
more frequent and crucial. This demand has given rise to the emergence of NoSQL 
databases, a new category designed to overcome the limitations of traditional rela-
tional databases in handling big data and real-time applications characterized by 
high-speed data generation (volume) and diverse data formats (variety). NoSQL is 
an umbrella term used for numerous non-relational database types. Four popular 
categories of NoSQL are named document-based, column-based, key-value-based, 
and graph-based [1, 2]. These four categories share similar logical structures: A key 
followed by a value; however, they are distinct in data modeling, data architecture, 
querying languages, and API’s. Typically, the performance of these four categories 
depends on the selection of use cases.

Unstructured data collected from sources like sensors, social media, and natural 
language processing (NLP) holds valuable insights [3]. To extract valuable insights 
from unstructured data, new data storage solutions like Hadoop and NoSQL data-
bases have emerged [4]. These technologies are extensively applied in domains, 
such as the Internet of Things, Facebook, Google, and Netflix [5, 6]. The increasing 
adoption of NoSQL databases in handling big data is driven by their ability to man-
age massive volumes of data without a predefined schema. NoSQL databases, excel 
in handling unstructured and semi-structured data aligning with the variety criterion 
of big data. Horizontal scalability using sharding and replication [7] is another key 
aspect addressed by NoSQL databases, allowing data distribution across multiple 
nodes to accommodate large volumes. The schema flexibility and horizontal scal-
ability properties ensures efficient storage and processing without compromising 
performance. The proposed work is aligned with the variety and volume criteria of 
big data.

Although NoSQL database flexibility enables rapid initial development so that 
the application does not need to define a specific structure in advance [6, 8], the 
decision should be made early because (a) The application’s overall performance 
depends on the schema choice selection. The wrong choices can impact several 
aspects of application quality, like data redundancy, navigation cost, data access 
cost, and maintainability. (b) It is challenging to fix a poorly designed data model 
after the development of an application. (c) For a poorly designed data schema, it is 
possible that some queries require excessive execution time or cannot be executed at 
all. Therefore, it is preferable to spend some time in advance designing a data model 
that is scalable, extensible, and maintainable throughout the application’s lifetime.

The flexibility of NoSQL databases empowers developers and organizations to 
store and manipulate data according to their specific requirements. As a result, there 
can be numerous schema alternatives to model the same information [9]. Analyzing 
and comparing these schema alternatives can be complex and time-consuming using 
manual methods [8, 10]. Thus, there is a need for an automated tool or model that 
can evaluate various factors and can recommend optimal schema solutions from the 
available alternatives. Two existing approaches give automation to perform this task: 
Workload-Agnostic and Workload-Driven.



4002	 N. Bansal et al.

1 3

The Workload-Agnostic approach [11–13] focuses on creating the database 
schema without considering any specific workload or usage patterns. The goal is to 
develop a schema that can handle a variety of queries and workloads. The objective 
is to offer flexibility and adaptability to handle various queries and data. However, 
this approach may not optimize performance for particular query patterns or work-
loads because it does not consider the specific query characteristics. On the other 
hand, in a Workload-Driven approach [10, 14–17], the database schema is created 
for the specific workload or usage patterns. The schema design is influenced by the 
types of queries expected to be executed frequently, the data access patterns, and the 
workload’s performance requirements. The goal is to optimize the schema design 
to improve query performance, reduce latency, and improve the overall system’s 
efficiency. In our study, we have chosen a workload-driven approach to design an 
automated model that considers the workload queries and anticipated data volume 
to provide an optimal schema solution. We intend to design a schema that best meets 
the performance requirements and efficiency goals by analyzing the query character-
istics of the workload.

This paper has proposed an automated model to transform the conceptual model 
into an optimal logical schema design with the aid of labels. It consists of three parts: 
Model input, Intermediate transformation, and Final schema generation. Model 
input consists of the EER model as well as the application workload. The appli-
cation queries and the estimated data volume comprise the application workload. 
The intermediate transformation includes the generation of query graphs and the 
generation of query labels. The application queries are first transformed into query 
graphs, and then the generated query graphs are transformed into query labels using 
data volume. The generation of query labels involves three steps Label Categoriza-
tion, Action Association, and Prioritization. The final schema generation consists of 
two parts: a) the generation of a Schema Graph and Label assignment, b) transfor-
mation into Logical Schema. The EER model is first converted into a graph model 
named schema graph. Then the derived query labels are assigned on the edges of the 
schema graph. Finally, the schema graph and labels are used to transform the EER 
model into an optimized logical schema based on the actions defined for each label. 
The working of the proposed model is evaluated through a case study in the eCom-
merce domain. We have picked MongoDB to work on because it is the most popular 
store among all document stores [18]. In addition, it is used in various applications, 
including eCommerce, mobile applications, and many more.

In this paper, we have made the following significant contributions:

(a)	 The paper uses application workload to generate NoSQL document logical sche-
mas from the conceptual model. The workload information is provided by the 
designer in terms of estimated total data volume and queries.

(b)	 The proposed model uses query graphs, query labels, and schema graphs to 
transform conceptual inputs into logical schemas.

(c)	 Query graphs are generated from workload queries and are used to analyze 
query characteristics. Query labels are used to showcase the investigated query 
characteristics.
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(d)	 The derived query labels and the schema graph are used to design the logical 
schema for NoSQL document stores.

(e)	 To evaluate the proposed model, experiments are conducted through a case study 
in the eCommerce domain to showcase the performance of the proposed model.

(f)	 The results show the proposed model reduces query response time and acceler-
ates the data retrieval time of workload queries.

The remainder of the paper is arranged in the following sections. Section 2 gives 
the related work; Sect. 3 presents the detailed work of the proposed model. Section 4 
presents the experimental evaluation, and Sect. 5 concludes the paper.

2 � Related work and motivation

In the realm of Big Data applications, the large volume, variety, and velocity of data 
often surpass the capabilities of traditional relational databases [19]. NoSQL databases, 
such as MongoDB, Cassandra, HBase, and Neo4j, have emerged as vital technologies 
to overcome these challenges. These databases offer flexible data models, horizontal 
scalability, and high-performance data processing, making them well-suited for manag-
ing massive amounts of data in distributed environments. NoSQL databases are par-
ticularly well-suited for managing heterogeneous data due to their flexible models, large 
volumes’ scalability, and high data retrieval performance [5, 6]. Distributed databases 
support supercomputing by providing the necessary infrastructure and capabilities for 
large-scale data processing and high-performance computing workloads [20–23].

Many tools are available in the market for data modeling of traditional data-
bases (such as relational) [24, 25]. Still, these tools cannot be applied directly to the 
NoSQL database due to data modeling differences (normalized versus denormalized 
format, respectively). Authors [26, 27] comprehensively analyze the design require-
ments of NoSQL databases. Uta et al. [28] have presented various case studies on 
top-down, bottom-up, and reverse engineering approaches for schema management 
in NoSQL databases. According to Paola Gomez et al. [29], the performance of a 
NoSQL system is determined by appropriate schema design selection among all 
the design options. Similarly, Mior [30] stated that the performance of a NoSQL 
database depends on the choice of an appropriate schema design. They proposed a 
manual cost-based model based on workload queries for the physical optimization 
of column-based data stores. However, choosing the best suitable schema among all 
the possible schema alternatives (schema optimization) is difficult to perform manu-
ally. From this initial study, we find the following research gaps:

(a)	 Unlike a relational database, the NoSQL database allows various data structure 
alternatives, which remains an ongoing research problem. Numerous researchers 
are working in this field [9, 16, 17, 31, 32].

(b)	 NoSQL databases inherent flexibility and schema-less nature give rise to multiple 
schema design alternatives. For example, consider a scenario, if there are two 
entities representing student (S) and their faculty (F) related by a one-to-many 



4004	 N. Bansal et al.

1 3

relationship (r1) . Relationship (r1) can be materialized by nesting or referencing 
information from the related entities. Hence there are multiple ways of schema 
design (S1 to S8) to store this information in document stores, as shown in Fig. 1 
(adapted from [9]). The choice among these different schema designs depends 
on many factors, like data retrieval costs, query access patterns, and user needs. 
Manual schema design, typically guided by trial-and-error or ad-hoc methods, 
can be time-consuming and lacks a guarantee of optimal design among the vari-
ous alternatives. A recent study [31] has found that only 9% of the database 
experts identified the optimal design among these possibilities. This evidence 
shows that the current manual way of database design does not yield the expected 
results, even for minimal scenarios taken as an example. Consequently, automa-
tion becomes crucial in streamlining the complex process, reducing time require-
ments, and selecting the most optimal schema design from the available options.

(c)	 Numerous researchers have adopted different methodologies to convert con-
ceptual to logical schema design. We have studied the existing working models 
and made the comparison based on common characteristics named conceptual 
schema, additional inputs, conversion methodology, target model, and auto-
mation, as shown in Table 1. We have categorized the existing work into the 
Workload-Agnostic (WA) and Workload-Driven (WD) approaches. WA does not 
consider the application workload means that the schema is designed without 
considering the specific queries or operations that the application can perform 
on the database. In contrast to WA, WD considers the application workload for 
NoSQL schema design. These methodologies consider the specific workload 
requirements, such as the types of queries, patterns, or operations the applica-
tion is expected to perform on the database. By considering the workload, the 
schema can be optimized to support the application’s specific needs better and 
improve performance.

Fig. 1   Schema design alternatives (S1-S8) in Document stores for ER model
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2.1 � Workload‑agnostic (WA) approach

Li [11] gives the heuristics for converting the relational schema into an HBase 
(NoSQL column Store) schema. Similarly, Authors [12] have designed a heuris-
tics-based method for converting RDB to document stores using relationship types. 
Imam et al. [33, 34] propose a mechanical schema suggestion model for a document 
database. Imam et al. [13] have given manual heuristics-based guidelines to translate 
ER model to Document stores using relationship type and cardinality. The drawback 
of the existing works is that they are workload-agnostic (WA), which means they do 
not consider application workload. Therefore, do not guarantee to give the best opti-
mal schema design solution and can hamper the application’s performance.

2.2 � Workload‑driven (WD) approach

Chebotko [35] offers the first workload-driven (WD) design method for mapping 
the ER model to Cassandra (NoSQL column Store). The mapping was done based 
on the application workflow by taking the ERQL queries. The proposed technique 
improves the performance of reading operations while decreasing the performance 
of write operations. Tianyu Jia et  al. [36] have used graphs and DAGs during 
schema migration from relational schema to MongoDB. The graph is generated with 
the help of some tags, and the relational logs are used to define the tags on the ER 
model. The authors have used a threshold to calculate the tags, which seems bogus 
due to a lack of threshold information. Mior et  al. [10] have proposed a tool for 
schema design recommendations for column stores (C). They use ER model along 
with the workload queries. The query frequencies and volume of data in each can-
didate plan are analyzed to suggest the best solution. However, the work applies to 
column stores only. Authors [14, 37] provide a logical mapping from the concep-
tual model (EER (Extended Entity-Relationship)) using initial workload information 
(in terms of the estimated number of data instances and primary query operations). 
They developed several rules based on workload data to map the entities and rela-
tionships from EER to MongoDB. But the authors have considered workload in the 
form of data volume only, which is insufficient to design an optimal schema. Vincent 
Reniers et al. [38] use the MongoDB schema to generate workload queries and ER 
model. The authors also considered various dimensions while schema generation, 
but the model and methodologies are not given too clearly and are not automated.

Similarly, Ali et  al. [17, 39] have designed the schema recommendation model 
based on query patterns. The authors translate the workload queries into query path 
graphs. The query path graphs are then translated into logical schema using vari-
ous rules designed by the authors. They have performed the embedding in the case 
of document stores and have not considered referencing during denormalization. 
Authors [40, 41] have used canonical representation to suggest the denormalized 
model using application queries. The proposed model only applies to document 
stores and is very complicated to be adopted by novice users due to estimated stor-
age space as an input requirement.
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Similarly, Paola et al. [9] studied various data structuring alternatives using soft-
ware product line strategies and feature models. They developed a set of structural 
metrics to analyze the characteristics of these alternatives. Their work aimed to pro-
pose a model that enables the automatic generation of multiple suitable data struc-
ture alternatives based on an initial UML model. The challenge of the work is accu-
rately analyzing data structuring alternatives and generating a comprehensive set of 
suitable options while considering various factors like performance, scalability, and 
system maintainability.

Based on the current works, as stated in Table 1, both WA and WD approaches 
have advantages and considerations. WA approaches offer flexibility and adaptabil-
ity to varying workloads, but they do not guarantee to optimize the schema among 
various alternatives. Based on the WD approach, the existing work can provide more 
targeted optimal schema solutions but require a good understanding of the appli-
cation workload. The work done so far for the WD approach considers workload 
queries [9, 10, 17, 36, 40] or estimated data volume [14, 37] as input. However, to 
generate an efficient NoSQL schema using a Workload-Driven (WD) approach, it 
is also necessary to consider the application workload in terms of workload queries 
and estimated data volumes. To fill the gap in the literature, we developed a schema 
generation model based on a workload-driven approach that considers application 
workload in the forms of workload queries and data volume to generate the schema, 
especially for document stores.

3 � Schema generation for document stores using workload‑driven 
approach

This section details the proposed schema generation model for document stores 
using the workload-driven approach. As shown in Fig. 2, the proposed model con-
sists of three parts: Model input, Intermediate transformation, and Final schema 
generation. The proposed model begins with a conceptual model and application 
workload as input and produces the logical schema as output using an intermedi-
ate transformation. The graphical flow diagram is shown in Fig. 3, which shows 
how three parts of the model (shown in Fig. 2) work together. It is intended to be 
used for document stores during the early stages of application development.

3.1 � Model input

The proposed model takes a conceptual model in the form of an EER model and 
application workload in the form of workload queries and expected data volume as 
input. The details about model input are mentioned in this section.
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3.1.1 � Conceptual model

The conceptual model comprehensively captures the application requirements and 
workflow and represents the information in a high-level abstraction model in enti-
ties, relationships, and constraints. The conceptual modeling employs numerous 
techniques, including ER (Entity-Relationship), EER (Extended Entity-Relation-
ship), and UML (Unified Modeling Language). However, EER provides a more 
expressive and flexible representation of the relationship between entities in a data-
base than ER and UML[42]. Hence, we have taken EER of a real-time case study as 
the conceptual model shown in Fig. 4.

Definition 1  An EER model is defined as EER = (T ,R) where T = {t1,… , tn} is 
a set of entities, and R = {(ti, tj)|ti, tj ∈ T} is a set of relationships. A relationship 
r = (ti, tj) represents the mutual connection between entities ti, tj . Both entities and 
relationships have a set of attributes.

Fig. 2   Workload-driven approach for Document Stores

Fig. 3   Graphical flow model
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We have taken a case study adapted from [14], based on the eCommerce domain, 
as a sample database. The case study states that customers can place orders for vari-
ous items of different products. Suppliers supply the products and have many cate-
gories. Each order has a payment system through credit card or cash. The taken case 
study is closely related to a real-world scenario, and it’s straightforward to explain 
our work using this sample database. The EER model of the eCommerce case study 
is shown in Fig. 4. The brief about the EER model is given as follows:

(a)	 It consists of eleven entities (T) named {Person, Category, Customer, Product, 
Order, Item, Carrier, Supplier, Bill, CreditCard, Payment}

(b)	 It has eight relationships (R) named {request, delivery, owner, reference, com-
posite, catalog, commitment, and furnishing}. Each relationship has its attributes 
and relationship cardinality (1:1, 1:N, N:1, M: N), indicating how many objects 
of entities can be associated with objects of another entity.

(c)	 It also consists of the relationship of special types such as generalization or 
union. For example, payment consists of two types named Credit Card or Bill. 
The special types of relationships are treated as regular one-to-one types of 
relationships.

(d)	 EER displays the average (avg) access frequencies as estimated data volume by 
the application users.

We have used the EER of the taken case study to illustrate the work throughout 
the paper.

3.1.2 � Application workload

NoSQL databases do not support joins. Embedding or referencing takes the place 
of the joins in the NoSQL database. The selection between embedding and refer-
encing during data modeling of document stores is the most challenging. Deciding 
when to embed a document or instead create a reference between separate docu-
ments in different collections is an application workload consideration. Additionally, 

Fig. 4   The EER schema for an e-commerce application
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if the application workload is known during the early data modeling stage, it results 
in the optimized schema design solution. Hence, the application workload, which 
includes the estimated database volume and queries, is considered the model’s input. 
The authors have taken the most common seven queries to cover two different sce-
narios of any eCommerce platform, a) Customer (Q1 and Q2), b) Seller (Q3-Q7). 
The seven designed queries are shown in Table 2.

3.2 � Intermediate transformation

The intermediate transformation generates Query Graph (QG) and Query Label 
(QL) . It transforms the application queries into query graphs. The query graphs are 
used to generate query labels with the help of the application’s estimated data vol-
ume. We have employed five distinct query labels, OnetoOne Relation, Frequent 
Lookup, Doc Size, Frequent Modify, and Cardinality, to cover all possible data 
modeling scenarios [14]. The detailed work of this phase is discussed in this section.

3.2.1 � Generate query graphs

Each workload query returns information regarding one or more EER model enti-
ties. The derived information from EER is represented as a Query Graph (QG) [43, 
44]. A QG is a sub-graph derived from the EER model.

Definition 2  A Query Graph (QG ⊆ EER) consisting of (N,E) for each query, 
qi ∈ Qn is defined as follows: nodes N where N ⊆ T  corresponds to entities T  of 
EER as mentioned in qi , and edges E = (ni, nj) ⊆ R corresponds to a set of relation-
ships R = (ti, tj) . The procedure to generate a QGi for each query qi ∈ Qn is men-
tioned as follows:

1.	 List all the entities (tn ∈ T) in each query qi ∈ Qn.
2.	 For each qi ∈ Qn , identify the starting entity ti ∈ T  . Add the entity as a node ni 

in QGi . Traverse the relationship r = (ti, tj) ∈ R  in the EER model to determine 
the other entities (tj ∈ tn) that are connected to the starting entity (ti) . Add the 

Table 2   Workload queries

Q_No Query

Q1 Customers place an order having multiple items of different products
Q2 Customers check out orders
Q3 Supplier adds items of a product under a particular category
Q4 Update the details of all orders delivered by a carrier
Q5 Fetch the details of the top-sold products of the year
Q6 Fetch the details of the maximum sold product category-wise
Q7 Fetch the details of customers who purchase a particular product
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relationship as edge (e) and the connected entity as nj to the query graph (QGi) 
along with the cardinalities of the relationship r.

3.	 If any entity ti ∈ T  belongs to relationships of special types, such as generaliza-
tion, adding the entity as a node nj and the relationship r = (ti, tj) ∈ R as an edge 
(e) connecting nodes ni and nj to (QGi) . Add cardinality 1:1 on both sides of the 
edge e = (ni, nj).

4.	 If any of the traversed entities already added to the query graph have relationships 
with other entities (tk ∈ tn) , repeat step 2 to traverse these relationships and add 
the connected entity to the query graph (QGi).

5.	 Continue this process until all the entities (tn ∈ T) are traversed along with the 
relationships.

6.	 Repeat the above steps for each query qi ∈ Qn.

Figure 5 depicts the Query Graphs (QG) for all seven input queries mentioned in 
Table 2.

3.3 � Generate query labels

In document stores, the entities of the EER model are represented by a collec-
tion. In contrast, the documents represent key-value pairs that specify the records 

Fig. 5   Query Graphs generated from workload queries
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contained within the entities. The relationships are replaced by embedding or refer-
encing. There are three types of relationships named one-to-one (1:1), one-to-many 
or many-to-one (1:N or N:1), and many-to-many (M: N) between the entities in the 
EER model. According to the official documentation of MongoDB [45], as shown 
in Table 3, only embedding has to be done during data modeling of document stores 
for a one-to-one (1:1) type of relationship.

However, for the other two types, named one-to-many or many-to-one (1:N or 
N:1) and many-to-many (M: N) relationships, we either embed the related docu-
ments into a single collection or used referencing between distinct documents from 
different collections. Embedding the documents or making a reference across dif-
ferent collections is an application-specific decision that depends on data growth, 
read–write ratio, and query types. Based on these factors, the proposed model 
resolves the trade-off between embedding and referencing in the form of Query 
Labels (QL) . The QG and expected data volume are utilized to determine QL . We 
have used five labels: OnetoOne Relation, Frequent Lookup, Doc Size, Frequent 
Modify, and Cardinality (Table 5).

(a)	 OnetoOne Relation: Each one-to-one relationship belonging to QG is labeled as 
’OnetoOne Relation. ’

(b)	 Frequent Lookup: If two or more entities are accessed frequently together repeat-
edly. So, a ’Frequent Lookup’ label is added to these entities.

(c)	 Doc Size: The expected monthly access frequency of entity pairs in the appli-
cation workload can be used to forecast the future size of a document. If the 
document size is expected to exceed 16 MB, the ’Doc Size’ label is assigned to 
those entity pairs.

(d)	 Frequent Modify: When two or more entities are frequently inserted, updated, 
or deleted, we use ’Frequent Modify’ labels on these entities.

(e)	 Cardinality: If the ratio gap between many-to-many (M: N) types of relationships 
are high, then use ’Cardinality’ labels on these entities.

Table 3   Embed/ Reference 
based on the type of relationship

Type of relationship Embed/Reference

One to one (1:1) Embed
One to many (1: N) or many to one (N:1) Embed or reference
Many to many (M: N) Embed or reference

Fig. 6   Generation of query labels
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The process of query label generation is broken down into three steps: Label Cat-
egorization, Action Association, and Prioritization, as shown in Fig. 6.

Step 1 Label Categorization.
NoSQL databases are designed for high performance and scalability, and one of 

the ways they achieve this is by storing related data together in a single document. 
NoSQL allows for faster data retrieval, as the data needed for a particular query is 
more likely to be in a single location. By analyzing the query characteristics, it is 
possible to determine which entities and attributes need to be accessed together and 
group them in MongoDB. We have represented the query characteristics in the form 
of Query Labels (QL) . The term "entity pairs" are used in the process of Label Cat-
egorization, which refers to the nodes ( ni, nj ) bounded by an edge (e) (relationship) 
within a query graph. The entity pair represents a specific connection or association 
between two entities in the Query Graph and are utilized to label the edges based on 
the relationships among the different nodes.

Definition 3  For QG = (N,E) , an Entity Pair ( ni, nj, r ) is defined as nodes ( ni, nj ) 
where ( ni, nj)∈ N bounded by a relationship r�E is the edge connecting two nodes 
( ni, nj ). The procedure to produce all possible entity pairs from QGi|i = 1… n is 
given below:

1. Initialize an empty list named ’EntityPairs.’
2 For each edge e�E in QGi , let ni , nj be the source and target nodes of e . Create 
an entity pair ( ni, nj, r ) and add the pair to the ’EntityPairs’ list.
3. Repeat for each query graph QGi in the query graph list ( QGn).
4. Return the ’EntityPairs’ list, which contains all the unique entity pairs across 
the query graphs (QGi|i = 1… n).

For the eCommerce case study, eight ’Entity pairs (EP)’ are formed from QG, as 
shown in Fig. 7.

Fig. 7   Entity pairs (EP) based on query graphs
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Along with this, we have taken 40% as the threshold value. This assumption is 
rooted in the 60–40 rule, which states 60% of the profit involves 40% of the data 
[46]. This rule helps identify the most critical data and optimize the database’s per-
formance by focusing on that data. The details of the Label Categorization are given 
in Algorithm 1. The theoretical explanation is given as follows:

(a)	 ’OnetoOne Relation’ label is assigned to all the entity pairs having a one-to-one 
relationship in the query graph 

(
QGi|i = 1,… , 7

)
. For instance, entity pairs, 

Order-Payment, Supplier-Person, Payment-Bill, and Payment-Credit Card have 
a one-to-one relation for the taken case study. So, the ’OnetoOne Relation’ label 
is assigned to the entity pairs, as shown in Fig. 8.

(b)	 ’Frequent Lookup’ labels are assigned to relationships accessed repeatedly in 
the application workload. Calculate the access count for each distinct entity pair 
to assign the label. A threshold value is calculated, which gives the maximum 
number of entity pairs that can be assigned the ’Frequent Lookup’ label. The 
formula to calculate the threshold is 40% of the maximum count of frequently 
accessed entity pairs. The access count is set in ascending order, and the ’Fre-
quent Lookup’ label is assigned to the number of entities pair whose count is 
equal to the number obtained from the threshold beginning from the highest 
value of access count.

For instance, in the preceding case study, we counted the total number of times 
the distinct entity pairs are accessed together. As shown in Fig. 9, the total count of 
frequency accessed entity pairs QG is given as Customer-Order, Product-Category 
is accessed twice, Order-CreditCard, Customer-CreditCard, and Order-Carrier are 
accessed once each, Order-Item is accessed four times, and Item-Product entities are 
accessed together five times. According to the formula, the maximum access count 
of an entity pair is 5, so the threshold (40% of 5) for 5 is 2. Therefore, the label is 
assigned to the upper two values (4 and 5). Hence, the entity pairs named Order-
Item and Item-Product are labeled as ’Frequent Lookup.’

Fig. 8   ‘OnetoOne Relation’ Label
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	 (iii)	 For the ’Doc-Size’ label calculation, two values are needed, one is the esti-
mated data volume on each distinct entity pair in the application workload, 
and the second is the average document size. Among the two, the estimated 
data volume is taken from the EER model, and the average size of a single 
document can be calculated with the help of attributes of an entity. But for 
simplicity, we assume that each document has five attributes (key-value pair) 
with a maximum size of 12 bytes (the maximum key-value size in MongoDB). 
Therefore, the average size of each document is 60 bytes. To calculate the ’Doc 
Size’ label, the expected data volume of each distinct entity pair is multiplied 
by the average document size. From the results, entity pairs with a size of more 
than 16 MB (16 × 106 bytes) are assigned a ’DocSize’ label.

As shown in Table 4, for the taken case study, the distinct entity-pair accessed 
QG is named in the first column, and the expected data volume (as mentioned in 

Fig. 9   ’Frequent Lookup’ Label based on Query graphs

Table 4   The calculation for the ’Doc Size’ Label

Entity pairs from the query 
graph

Expected access 
frequency

Expected size in bytes Expected docu-
ment size in MB

Order-customer 90 5400 0.0054
Order-payment 1 60 0.00006
Order-item 65 3900 0.0039
Item-product 2541 152,460 0.15246
Supplier-product 16 960 0.00096
Product-category 60 3600 0.0036
Payment-customer 35 2100 0.0021
Order-carrier 283,440 17,006,400 17.0064
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Fig. 4) for each distinct entity-pair is shown in column 2. The third and fourth col-
umn shows the expected document size in bytes and MB, respectively, by multiply-
ing the values of the second column by 60 bytes (taken average size). According to 
Table 4, the size of the ’Order-Carrier’ is more than the threshold value; hence, as 
shown in Fig. 10, the entity pair is assigned with the ’Doc Size’ label.

(d)	 For ’Frequent Modify’ Labels, the queries that perform the database’s write 
(insert, delete, update) operations are selected from the application workload. 
From the selected workload queries, fetch the corresponding QG . From the 
selected QG , count distinct entity pairs (related entities) accessed together. The 
threshold value calculated is 40% of the frequently accessed entity pairs fetched 
from QG . Then, from the EER model, the data volume of each entity pair is 
determined. The values of estimated data volume are set in ascending order, 
and the ’Frequent Lookup’ label is assigned to the entity pairs whose count is 
equal to the threshold beginning from the highest value of estimated data volume 
count.

Based on the calculations, the ’Frequently Modify’ Label is assigned. For 
instance, queries Q1, Q2, Q3, and Q4 perform the write operations on the database. 
From the corresponding QGi|i = 1,… , 4 (Fig.  5), Customer-Order, Order-Item, 
Item-Product, Order-Payment, Supplier-Payment, Product-Category, and Order-
Carrier are the total seven entity pairs that are accessed. The threshold value of 7 
is 2. Figure 4 shows that the estimated data volume of the above-listed entity pair 
is given as Order-Customer 90 times, Order-Payment 1 time, Order-Item 65 times, 
Item-Product 2541 times, Supplier-Payment 16 times, Product-Category 35 times, 
Order-Carrier 283,440 times. Therefore, the ’Frequently Modify’ label is assigned to 

Fig. 10   ’Doc Size’ Label

Fig. 11   ’Frequent Modify’ Label
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Item-Product and Order-Carrier entity pairs with the uppermost two values, 283,440 
and 2541, respectively, as illustrated in Fig. 11.

(e)	 Cardinality Labels are affixed to many-to-many types of relationships because the 
ratio of M: N is calculated during logical schema generation of many-to-many 
types of relationships. If the ratio is high, one-way embedding is performed; 
otherwise, two-way embedding is performed. The provided case study does not 
address any M: N type of relationship. But for the sake of understanding, if n 
consists of a maximum of 5 categories for a book and m consists of a maximum 
of 50,000 books in a category because the ratio among M:N is high, then apply 
one-way embedding. If n is a maximum of 3 books written by an author and m 
consists of a maximum of 5 book authors, the M:N ratio is low, so use two-way 
embedding.

Step 2Action Association.
While schema designing of EER models into MongoDB, embedding or referenc-

ing is performed on entity pairs, we have associated the actions to the Query Labels 
with determining when to embed or refer the entity pairs. The association of actions 
has been done considering data modeling described on are designed based on the 
official website of MongoDB [45]. According to the official website, three actions 
can be performed on entity pairs: One-way Embedding, Two-way Embedding, and 
Referencing. The action associated with each Query Label is as follows: (i) For the 
’OnetoOne’ label, the entity pairs must always be embedded together using One-way 
embedding. (ii) For the ’Frequently Lookup’ Label, entity pairs frequently accessed 
together should always be embedded because it involves too many read operations. 
Hence the data must be stored at the same location. (iii) For the ’Doc Size’ label, 
the entities should always be referenced because as the document size exceeds 
16 MB, MongoDB must allocate a new memory location for the growing document 
and copy the old document to the new space. It involves many input/output opera-
tions and could affect MongoDB’s performance. (iv) The ’Frequent Modify’ label 
involves more write operations, including insert, update, and delete operations. The 
write-intensive entities should always be referenced. (v) Two-way embedding is per-
formed for the ’Cardinality’ label, depending on the M: N ratio. The action associ-
ated with each label is displayed in Table 5.

Step 3 Prioritization of Labels.
If a relationship comprises more than one label, label prioritization addresses the 

trade-off between the actions associated with the labels. According to the summary 
outlined [6], among embedding and referencing, the highest priority is assigned to 
referencing because we must first prioritize write-heavy operations and large-size 
documents. Hence, we have assigned a higher priority, i.e., 1, to reference than 
embedding. Among one-way and two-way embedding, one-way embedding is 
assigned priority value 2. In contrast, two-way embedding is assigned priority value 
3, as shown in Table 5.
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3.3.1 � Final schema generation

Final schema generation is further categorized into two parts: (i) generation of 
Schema Graph (SG) and Label assignment, and (ii) Transformation into Logi-
cal Schema, as shown in Fig. 12. In the generation of the Schema Graph (SG) , the 
EER model is converted into a graph named Schema Graph (SG), and then QL are 
assigned onto SG . Based on the defined rules, SG is transformed into MongoDB 
logical schema.

3.3.1.1  Generation of schema graph and label assignment  The EER model is first 
converted into a graph model (SG) by representing EER entities as nodes and rela-
tionships as edges. After that, the Query Labels (QL) are assigned to Schema Graph 
(SG).

Definition 4  A Schema Graph (SG) = (NG,EG) can be represented with the help of 
nodes (NG ∈ T) and edges (EG ∈ R) . Nodes (NG) must always equal the number of 
entities (T) , and Edges (EG) must equal the number of relationships (R) in the EER 
model.

Algorithm 2  gives the detailed procedure of Schema Graph (SG) generation. The 
algorithm iterates through the entities (T) and relationships (R) in the EER model. 
For each entity ( t�T) , a corresponding node ( nG ) is created in the SG. Similarly, for 
each relationship ( r�R ), an edge ( eG ) is added to the SG, connecting the start ( ti ) and 
end entities ( tj ) of the relationship ( r ). This process continues until all entities and 
relationships in the EER model have been processed. The resulting Schema Graph 
provides a visual representation of the EER model. Following creating the Schema 
Graph, the query labels are assigned on the edges of SG . Figure 13 depicts the SG 
generated from the EER model, consisting of 11 nodes and 11 edges along with the 
assigned QL on edges.

3.3.1.2  Transformation into logical schema  A logical schema of document stores is 
derived from SG . The following rules are followed to generate a logical schema:
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(1)	 If a single QL is assigned on the edges of SG , the decision is based on the action 
associated with QL , as discussed in Sect. 3.2.2.

(2)	 If more than one QL is assigned on the edges of SG , the decision is based on the 
priority associated with QL , and based on the priority, action must be taken.

(3)	 If there is no QL between the edges of SG , create a separate collection for each 
entity in SG.

Figure 14 depicts the final logical schema model for the case study after applying 
all phases of the proposed model. Since no label is assigned between entity pairs 
named Supplier-Product, Product-Category, Order-Customer, and Carrier-Customer 
following rule 3, separate collections are created for each entity. For the rest of the 
entities, there is a label between the edges, so by following rules 1 and 2, the entities 
are embedded or referenced among each other.

The procedure of the proposed model that encompasses all the phases is men-
tioned as Algorithm 3. The proposed algorithm designs the schema automatically 
by transforming the model’s inputs into the logical schema of MongoDB. The 
Query Graph (QG) is generated for each query  (qi ∈ Qn) qi ∈ Q of the applica-
tion workload (Line 1). The Query Labels (QL ) is generated using Query Graph 
(QG) (Line 2). The EER model is converted into Schema Graph ( SG ) (Line 3) using 

Fig. 12   Final schema generation

Fig. 13   Schema Graph (SG) with query labels



4022	 N. Bansal et al.

1 3

Algorithm  2. Then, the calculated Query Label (QL ) is assigned to the Schema 
Graph (SG) (Line 4). The (SG) is converted into the logical schema using actions 
performed on the assigned Query Label (QL ) (Line 5–23). Remove edge ei ∈ E from 
(SG) . If it contains any (QL ), if it is OnetoOne Relation, embed entities among one 
another. If the label is Frequent Lookup, for relationship type 1:1 or 1: N, embed the 
child entity into the parent entity; if the relationship is N:1, then embed the child 
into the parent as an array of embedded objects. For Doc Size or Frequent Modify 
label, perform referencing and refer child entity into parent entity. For Cardinality 
Label, perform one-way or two-way embedding depending on the ratio gap among 
M: N. If an edge (ei ∈ E) has more than two query labels and performs actions based 
on the priority of labels. If no label is assigned to the edge, make a new collection. If 
the number of entities is N and the number of relationships is M, then Algorithm 3 
has a time complexity of O(N +M).

Fig. 14   Logical schema generated from Schema Graph (SG)
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4 � Experimental evaluation

We evaluate our approach with an experiment in the e-commerce domain, as 
described in Sect.  3. The experiments are conducted to validate our proposed 
model and demonstrate the model’s positive effects on query processing time. 
The performance of our proposed model is compared with three existing models: 
(i) Conventional [37]: It is workload agnostic, and logical schema is designed 
without taking an application workload by following the relationship constraints 
only as shown in Fig. 15a; (ii) Optimized [37]: As shown in Fig. 15b, it is work-
load-driven but logical schema design, is generated based solely on expected 
data volume of application workload, and (iii) Query Path Graph (QPG) [17]: 
It considers application query patterns for the data modeling transformation of 
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conceptual to logical modeling as shown in Fig. 15c. We chose these three exist-
ing models because they define and explore three distinct ways of MongoDB data 
modeling, and their work is comparable to our proposed work. Table 6 gives the 
qualitative analysis of the four models based on various important factors named 
Query Response Time, Query Speedup, Write Latency, Read Latency, Number of 
Pipeline Stages, Pipeline efficiency, Storage Space, Scalability, Throughput and 
Latency. It has been found that our model works well for all factors. However, 
experiments are conducted to prove the qualitative analysis in numbers. The fol-
lowing section details the experimental setup and results to verify the qualitative 
analysis.

Fig. 15   Existing Logical model used for performance comparison a Conventional model, b Optimized, 
c QPG
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4.1 � Experimental setup

The experimental analysis is performed using an Intel Core i7- 1255U processor 
with 16 GB of RAM, 3-level cache, and 1 TB hard disk. The data is stored using 
MongoDB Atlas, a cloud-based database service provided by MongoDB. The exper-
imental setup utilized a MongoDB Atlas Cluster M20 configuration dedicated to 
4 GB RAM with 20 GB storage and 2vCPUs. The cluster is configured on AWS/
Mumbai (ap-south-1) region  running MongoDB version 6.0.6. It consisted of a rep-
lica set with three nodes to ensure load balancing of read and write operations, data 
availability, and reduced query response time. Studio 3 T, a graphical user interface 
(GUI) based MongoDB IDE [47], is also used. The experimental setup information 
is summarized in Table 7.

To make the query performance comparison, we created four physical databases 
for schema shown in Figs.  14 and 15 in MongoDB and named as conventional, 
optimized, QPG, and proposed. We have populated all four databases with identi-
cal data, as shown in Table  8. The seven queries (Q1-Q4 CRUD queries, Q5-Q7 
aggregate pipeline) outlined in Sect. 3.2 are executed in each database. As stated in 
Table 9, along with the seven queries taken as input, the performance is measured 
on eight additional queries (Q8-Q15) because queries evolve with time, and new 
queries are always added to the system. Hence, to measure the performance of a sys-
tem, it is necessary to measure it on run-time queries.

4.2 � Experimental evaluation

To perform the experimental analysis, we have measured various essential perfor-
mance parameters of a database as listed in Table 6. Based on the parameters, the 
following comparison is made among proposed and existing models: (1) Query 
Response Time and Speedup (Sect. 4.2.1), (2) Read and Write Latency (Sect. 4.2.2), 
(3) Efficiency Improvement using aggregate pipeline (Sect.  4.2.3), (4) Storage 

Table 6   Qualitative analysis of existing and proposed model

Srl. No Factors Conventional Optimized QPG Proposed

1 Query response time High High High Low
2 Query speedup Slow Slow Very slow Fast
3 Write latency High High Very high Low
4 Read latency High High Very high Low
5 No. of pipeline stages Very high High High Low
6 Pipeline efficiency Low Low Low High
7 Storage space Less Less High Least
8 Collection-wise performance Good Good Worst Best
9 Scalability Efficient Efficient Poor Most efficient
10 Throughput Low Moderate Low High
11 Latency Low Low Low Low
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Table 7   Experimental setup Hardware configuration

Processor Intel Core i7- 1255U running at 1.90 GHZ
RAM 16 GB
Cache 3 Level
Storage 256 MB (SSD), 1 TB hard-disk
Software configuration
Database service MongoDB Atlas
Cluster configuration Cluster M20
Cluster RAM 4 GB
Cluster storage 20 GB
Cluster vCPUs 2
Network configuration AWS / Mumbai (ap-south-1)
MongoDB version 6.0.6
Replica set nodes 3

Table 8   A eCommerce dataset, 
along with the number of 
records in each EER table

List of EER tables Number of 
records in each 
table

Dataset Person 100
Order 50,000
Carrier 16
Supplier 149
Customer 10,000
Product 400
Item 70,000
Bill 20,000
Credit card 10,000
Payment 30,000
Category 60

Table 9   Additional run-time queries for performance evaluation

Q_No Query

Q8 Given an order id, return the order and related customer, items and products
Q9 Given an order id, return the order and related customer and payments
Q10 Given a customer id, return all orders and related carriers
Q11 Given a customer id, return all orders and related payments
Q12 Given a product id, return all related items and orders
Q13 Given a supplier id, return the supplier and all related products, including their 

categories
Q14 Add new attributes, city, and country in the Customer Information
Q15 Add a new category of the product
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Space (Sect.  4.2.4), (5) Collection-wise Performance (Sect.  4.2.5), (6) Scalability 
(Sect. 4.2.6), (7) Throughput and Latency (Sect. 4.2.7).

4.2.1 � Query response time and speedup

It refers to the time the database takes to process and respond to a request for infor-
mation. Query response time is an important performance parameter, as it can affect 
the speed and efficiency of the database. In general, faster query response times are 
desirable, as they can lead to better performance and user experience. Also, we have 
calculated a unitless speedup factor calculated by the mean query response time for 
the proposed model divided by the mean query response time for the existing model. 
The overall result is summarized through the Geometric Mean (GM) of all 15 que-
ries. Because GM is the appropriate, meaningful average for normalized unitless 
numbers [48]. GM helps make broad at-a-glance speedup comparisons among exist-
ing and proposed model’s performance. The formula to calculate the query speedup 
factor is:

where Qnis speed up factor for each queryqi

where TiP =  Query execution time of ith query of proposed model, TiEM = Query 
execution time of ith query of existing model, N = total number of workload queries.

We have performed an extensive evaluation of proposed models against existing 
models on MongoDB. We ran each of the 15 queries on four models to conduct the 
experiment. Three runs for each query were made to avoid the distorted results by 
caches in MongoDB. The average value of three runs is taken as query response 
time. The speedup factor for an individual query is then calculated by dividing the 
particular query (qi ∈ Qn,wherei = 1,… , 15) response time of the existing model 
by the query response time of the proposed model. Table 10 details the complete 
numerical figures of query response time and the speedup factor for all 15 queries, 
whereas the graphical representation of query response time is shown in Fig.  16. 
The average speedup factor is shown in the last row of Table  10. The following 
observations are made from Fig. 16.

It can be observed that the response time of the proposed model for queries Q1 
and Q2 is less time than all other models. For queries Q5, Q6, Q8, and Q9, the 
proposed model performs much better than the existing models. The performance 
improvement is due to the reason that these queries access a specific Order, includ-
ing Items. The conventional and optimized schema nests the Orders inside the Cus-
tomer collection, whereas QPG has to make reference for the Orders with other 
collections named Items which is very time-consuming. In contrast, the schema 
generated by our model reads the documents from the Order collection directly. 
For queries Q7, Q10, and Q13 proposed model is better than QPG but performs 

Average Query Speedup Factor =
N

√
n=1

NΠQn

Qn =
TiP

TiEM
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poorly than conventional or optimized because the queries access Customer records, 
including Orders. In both conventional and optimized, the information can be 
directly accessed from the customer-rooted collection. But in QPG and the Proposed 
model, the Customer collection has to be linked with the Order collection. However, 
in QPG, more time is taken because orders are nested inside customers and have a 
separate collection. So, time is taken to perform both nesting and referencing from 
customer to order collection. For Q11, the performance of the proposed model is 
better than conventional but poor than optimized and QPG models, while Q12 per-
forms poorly than all three existing models. For Q4, Q14, and Q15, all three models 
have almost the same performance. Hence, we can conclude that the performance 
of the proposed model is similar to or better than existing models for both input and 
run-time queries.

4.2.2 � Write and read latency

Read latency is the time taken to retrieve data from the database, while write latency 
is the time taken to store data in the database. Latency can be affected by factors 
such as the schema from which data is being read or written, the workload on the 
database, and the type of storage used. In our case, to measure the effect on latency 
due to schema and workload, the queries are divided into two categories named (1) 
Write queries (Q1-Q4, Q14-Q15), and (2) Read queries (Q5-Q13). We have taken 
the average query response time for all underlying categories. The resultant table is 
shown in Table 11, while the graphical representation is shown in Fig. 17. It shows 
that the proposed model reduces the write latency by a factor of 1.14, 1.17, and 
1.33 while read latency by a factor of 1.19, 1.09, and 1.37 than Conventional, Opti-
mized, and QPG, respectively. Hence, the proposed model outperforms all three 
existing models regarding write and read latency, as the lowest latency means better 
performance.

Fig. 16   Query response time comparison among different
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4.2.3 � Efficiency improvement using aggregate pipeline

MongoDB uses an aggregate pipeline framework for complex query process-
ing [49]. The aggregate pipeline processes documents in different collections and 
returns computed results. An aggregate pipeline is a powerful tool for data process-
ing and analysis in MongoDB. It can perform a wide variety of operations on data, 
including data transformation, data aggregation, and data analysis.

The efficiency (�) of the aggregate pipeline in MongoDB depends on several fac-
tors, including the number of pipeline stages and the size and organization of the 
data being processed. Efficiency improvement (�%) measures the performance of the 
aggregate pipeline with a minimum number of aggregate stages. To calculate (�) , 
firstly, the execution plan is analyzed, which shows the total number of stages for 
MongoDB individual query for all four models, as shown in Table 12. Then the total 
number of stages (S =

∑n

i=1
Si) for each query qi ∈ Qn where i = 1,… , 15 is calcu-

lated. The formula used to calculate the efficiency improvement is:

where SEMi
= Total number of stages in ithexistingmodel , SP = Total number of stages in proposed model

As mentioned above, we have nine aggregate queries among a total of fifteen 
queries. Hence, we have taken those aggregate queries to analyze the efficiency 
improvement. Table 12 shows the total number of stages used by each query and the 
total number of stages used by all nine queries. The efficiency improvement of the 

Efficiency improvement (�%) = (� − 100)%, where � =
SEMi

SP
∗ 100|i = 1, 2, 3

Table 11   Write and Read latency for each schema model

Query opera-
tion

Conventional 
(C)

Optimized 
(O)

QPG Proposed (P) Speedup factor

C versus P O versus P QPG

Write 1365.7 1399.3 1597.5 1193.0 1.14 1.17 1.33
Read 34,719.7 31,920.0 39,191.3 29,082.3 1.19 1.09 1.37

Fig. 17   Write and Read Latency among Proposed and existing models
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aggregate pipeline of the proposed method against existing models is calculated by 
the formula mentioned above.

Table 13 illustrates the percentage efficiency improvement of the proposed model 
against the conventional model is given by 17.5%. In contrast, for the optimized 
model, it is given as 15%; for the QPG model, it is given as 10%. This section con-
cludes our method provides better pipeline efficiency than the existing methods. The 
reason for better efficiency is that the aggregate pipeline stages depend on the num-
ber of documents fetched against the application query. A schema designed based 
on the application queries results in fewer documents being scanned during query 
processing. Hence, we can conclude that our model suggests the best logical schema 
for the application workload than the existing models.

4.2.4 � Storage space

In MongoDB, the size of a collection refers to the total amount of disk space con-
sumed by the data within that specific collection. The storage requirements in Mon-
goDB can vary greatly depending on factors, such as data volume, data model, 
and query usage patterns. Due to these factors, the various models, including the 
Conventional, Optimized, QPG, and Proposed, introduce different collections and 
exhibit variations in storage space. Table 14 shows each model’s storage space and 
the total number of documents in each collection. Due to the flexibility property, the 
four models (Conventional, Optimized, QPG, and Proposed) have different collec-
tions, and a collection in one model may or may not be present in another model. 
For example, the "Order" collection is only provided in the QPG and Proposed mod-
els, whereas the "Payment" collection is only in the conventional model.

Figure 18 represents the graphical visualization of storage space variations across 
different models. Figure 18a illustrates the space occupied by each collection indi-
vidually, providing a collection-wise comparison among the models. On the other 
hand, Fig. 18b shows the total storage space occupied by all the collections within a 
specific model.

Figure 18a shows that all four models have the same disk space for the Carrier, 
Supplier, and Category collections, indicating that these collections have almost 
consistent storage requirements across the models.

1.	 The disk space occupied by the Customer collection gradually decreases from 
the Conventional model to the Proposed model, indicating storage optimizations 
in the latter models. This decrease in disk space is caused by a lower level of 
embedding in the proposed models when compared to the Conventional model.

2.	 The Product collection shows variations in disk space among the different models. 
Compared to the Conventional and QPG models, the Optimized and Proposed 
models have more disk space allocated for the Product collection. This differ-
ence in disk space can be attributed to the fact that the Optimized and Proposed 
models include Furnishing and Catalog embedded documents within the Product 
collection. These additional embedded documents contribute to the Optimized 
and Proposed models’ higher disk space utilization when compared to the other 
models.
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3.	 The Order collection is absent in the Conventional and Optimized models but 
present in the QPG and Proposed models, which have significantly more disk 
space.

4.	 17b shows that the total disk space for Conventional, Optimized, and Proposed 
models is relatively similar, with the Proposed model showing a slight reduction. 
The QPG model consumes more total disk space than the other three models, 
owing to the repetition of the Order collection separately and within the customer 
collection, which takes up a significant amount of disk space.

4.2.5 � Collection‑wise performance

Collection-level performance analysis using “MongoTop” is a valuable technique to 
track the time taken by read and write activity of each collection in a MongoDB 
instance. The benefit of this is that it provides insights into the most active col-
lections regarding disk I/O operations, which can help identify performance bot-
tlenecks and optimize database operations. "MongoTop" is a tool provided by 
MongoDB that continuously samples data over a specified duration and provides 
real-time reports on the activity of individual collections. We have analyzed three 
important parameters (Total, Read, Write) to gain insights into a deeper understand-
ing of Collection-wise performance. The "Total" shows the total amount of time, in 
microseconds, spent performing both read and write operations on a particular col-
lection. By examining this metric, we can assess a collection’s overall workload and 
activity level. The "Read" parameter indicates the amount of time, in microseconds, 
desiccated to read operations on a particular collection. The benefits of analyzing 
this metric are to identify heavily read-intensive collections, providing insights into 
the data access patterns and usage characteristics. The "Write" parameter displays 
the amount of time, in microseconds, spent on performing write operations on a col-
lection. By examining this metric, we can identify collections that experience sig-
nificant write activity, enabling us to focus on optimizing write-intensive operations. 
Table 15 provides information on the Total, Read and Write activity for each collec-
tion across the Conventional, Optimized, QPG, and Proposed models.

Figure 19 shows the graphical representation of information shown in Table 15. 
Figure  19 has three parts: 19a, 19b, and 19c. Part ’19a’ compares the four mod-
els (Conventional, Optimized, QPG, and Proposed) based on the total time spent 
on read-and-write operations for each collection. Part ’19b’ compares different col-
lections of a model based on Read time, whereas ’19c’ highlights the write time for 
each collection among four models. A detailed explanation is given below:

Table 13   Aggregate pipeline 
efficiency of the proposed model 
against existing models

C versus P O versus P QPG versus P

Total pipeline 
stages (PS)

47/40 46/40 44/40

η% 17.5% 15% 10%
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1.	 Figure 19a shows the proposed model has the lowest total time across all collec-
tions compared to the other models. The collections in Optimized and Conven-
tional models show slightly higher total times compared to the Proposed model 
but remain relatively close. The QPG model stands out with significantly higher 
total times, primarily due to the Order collection, which substantially impacts the 
overall time.

2.	 Figure 19b shows Customer collection; the Conventional model has the highest 
read time, followed by the Optimized model. The QPG and Proposed models 
have significantly lower read times. Therefore, the overall performance of the 
Conventional and Optimized models depends on the Customer collection only. 
The Proposed model generally shows reduced read times compared to the Con-
ventional and Optimized models, suggesting improved read performance. How-
ever, the QPG model exhibits higher read times for certain collections due to the 
Order collection in multiple locations.

3.	 Figure 19c shows the QPG model has the highest write time for the Customer col-
lection, while the other models have relatively lower write times. Also, the Order 
collection has a high time in QPG. The Proposed model generally demonstrates 
lower write times than the Conventional and Optimized models. Notably, among 
the four, the proposed model performs better than all existing models in terms of 
write operations.

The graphs highlight the performance differences among the Conventional, 
Optimized, QPG, and Proposed models. The Conventional and Optimized mod-
els exhibit similar total, read, and write times, which are higher than those of the 

Fig. 18   Storage Space comparison a Collection-wise storage comparison b Total space occupied by dif-
ferent models
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Proposed model. This is because the Customer collection in both models is heavily 
embedded with Order documents, leading to performance bottlenecks. In contrast, 
the Proposed model addresses this issue by separating the Customer and Order col-
lections, resulting in improved performance. The QPG model stands out with sig-
nificantly higher write and read times, attributed to the repetitive Order collection. 
Overall, the Proposed model consistently demonstrates lower read and write times 
across different collections, indicating its superior schema design compared to the 
existing models.

4.2.6 � Scalability

To evaluate scalability, it is essential to test the model’s ability to handle increased 
data volumes while maintaining acceptable query performance. Expanding the data 
volume in each collection allows us to simulate real-world scenarios with larger 
datasets and observe how the model performs under such conditions. We can deter-
mine if the model scales well with increased data volume by analyzing query perfor-
mance metrics, such as response times and speed up. This information is crucial for 
capacity planning and optimizing the database infrastructure to ensure it can handle 
growing workloads without sacrificing performance. To analyze the scalability, we 
have increased the data volume, as shown in Table 16, which is almost double the 
size compared to Table 14. Then, we run the fifteen workload queries (Tables 2 and 
9) on CPU and GPU to compare the query performance of the proposed model to 
the existing models. GPU is chosen due to its ability to accelerate computations, 
making them vital components of supercomputers.

Fig. 19   Collection-wise performance comparison a Time taken by both read and write operations, b 
Time taken by read operations, and c Time taken by both read operations
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4.2.6.1  Scalability for  CPU  The results for CPU are shown in Table  17, and the 
graphical representation is shown in Fig. 20. Based on the following inferences can 
be drawn:

1.	 For write queries (Q1, Q2, Q3, Q4, Q14, Q15), the Proposed model consistently 
outperforms the other models (conventional, optimized, and QPG) with the lowest 
response times. It demonstrates significant improvements in query performance, 
indicating better optimization and efficiency in handling write operations.

2.	 Regarding read queries Q5, Q8, Q12, and Q13, the Proposed and Optimized mod-
els perform better than the other two. For queries Q6, Q7, and Q9, the conven-
tional QPG and proposed model achieve lower response times than the optimized 
model. For Q10 and Q11, the proposed model shows poor query performance than 
the conventional and optimized but is better than the QPG model. Therefore, the 
proposed model performs better for seven out of ten read queries (Q5, Q6, Q7, 
Q8, Q9, Q12, Q13) than the existing models, indicating improved query optimiza-
tion and data retrieval strategies.

3.	 The proposed model also outperforms the existing models regarding speedup 
(SU) for the increased data volume. Specifically, the proposed model performs 
best against Conventional Model, with SUs of 1.3. It also outperforms Optimized 
and QPG, with SUs of 1.2.

With increased data volume, the Proposed model consistently exhibits the best 
performance across both read and write queries, achieving the lowest response times 
and high speedup factor compared to the Conventional, Optimized, and QPG mod-
els. Therefore, with increased data volume, the Proposed model maintains efficient 
query performance, indicating its ability to handle larger datasets.

4.2.6.2  Scalability for GPU  To conduct the experimental analysis, we have used an 
Amazon EC2 P2.xlarge instance with 1 NVIDIA K80 GPU, four vCPU’s and 63 GB 
of RAM. Amazon EC2 is highly optimized for high-performance computing and 
gives parallel processing capabilities with similar software configurations, as shown 
in Table 7. The results for GPU are shown in Table 18, and the graphical representa-
tion is shown in Fig. 21. Based on the following inferences can be drawn:

1.	 For write queries (Q1, Q2, Q3, Q4, Q14, Q15), the Proposed model consistently 
outperforms the other models (conventional, optimized, and QPG) with the lowest 
response times. It demonstrates significant improvements in query performance, 
indicating better optimization and efficiency in handling write operations.

2.	 Regarding read queries Q5, Q8, Q12, and Q13, the Proposed and Optimized 
models perform better than the other two. For queries Q6, Q7, and Q9, the con-
ventional, QPG, and proposed models achieve lower response times than the 
optimized model. For Q10 and Q11, the proposed model shows poor query per-
formance than the conventional and optimized but is better than the QPG model. 
Therefore, the proposed model performs better for seven out of ten read queries 
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(Q5, Q6, Q7, Q8, Q9, Q12, Q13) than the existing models, indicating improved 
query optimization and data retrieval strategies.

3.	 The proposed model also outperforms the existing models regarding speedup 
(SU) for the increased data volume. Specifically, the proposed model performs 
best against Conventional Model, with SUs of 1.3. It also outperforms Optimized 
and QPG, with SUs of 1.2.

Table 17   Impact of increased data volume on query response time and query speedup factor

Q. No Query operation Conventional Optimized QPG Proposed C/P O/P QPG/P

Q1 Write 810.0 782.0 654.0 510.0 1.6 1.5 1.3
Q2 Write 2505.0 2495.5 2282.3 1996.0 1.3 1.3 1.1
Q3 Write 891.0 971.2 1161.8 705.7 1.3 1.4 1.6
Q4 Write 18,204.2 18,897.0 18,872.5 13,789.0 1.3 1.4 1.4
Q5 Read 21,076.0 17,601.8 20,477.0 12,225.0 1.7 1.4 1.7
Q6 Read 22,510.0 25,471.0 20,317.2 19,040.0 1.2 1.3 1.1
Q7 Read 13,014.0 14,680.0 10,909.3 9963.0 1.3 1.5 1.1
Q8 Read 2067.0 1945.0 2142.0 1511.3 1.4 1.3 1.4
Q9 Read 1689.0 1769.0 1529.3 1650.8 1.0 1.1 0.9
Q10 Read 5684.0 6756.0 13,425.0 8976.9 0.6 0.8 1.5
Q11 Read 2804.0 1743.0 1875.3 2204.0 1.3 0.8 0.9
Q12 Read 7661.0 4022.0 3729.5 3006.0 2.5 1.3 1.2
Q13 Read 7245.0 6646.0 5374.0 5402.0 1.3 1.2 1.0
Q14 Write 1122.5 766.0 991.5 857.0 1.3 0.9 1.2
Q15 Write 698.0 704.0 895.0 776.0 0.9 0.9 1.2
Speedup factor 1.3 1.2 1.2

Fig. 20   Impact of increased data volume on query response time for CPU
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   As the data volume on the GPU increases, the Proposed model consistently 
demonstrates superior performance in both read and write queries. It consistently 
achieves the lowest response times and a substantial speedup factor compared to the 
Conventional, Optimized, and QPG models.

Table 18   Query response time and query speedup factor for GPU

Q. No Query operation Conventional Optimized QPG Proposed C/P O/P QPG/P

Q1 Write 67 57 45 38 1.8 1.5 1.2
Q2 Write 364 356 256 250 1.5 1.4 1.0
Q3 Write 78 87 95 60 1.3 1.5 1.6
Q4 Write 2435 2768 3012 2045 1.2 1.4 1.5
Q5 Read 5978 3856 4536 3746 1.6 0.7 1.2
Q6 Read 10,930 13,426 10,453 8769 1.2 0.4 1.2
Q7 Read 5557 4964 1909 3284 1.7 4.1 0.6
Q8 Read 386 332 450 225 1.7 22.1 2.0
Q9 Read 162 199 156 250 0.6 0.8 0.6
Q10 Read 1050 2103 3425 3323 0.3 0.6 1.0
Q11 Read 408 460 389 378 1.1 1.2 1.0
Q12 Read 1986 1356 1789 1234 1.6 1.1 1.4
Q13 Read 1586 1384 1374 1774 0.9 0.8 0.8
Q14 Write 150 104 91.5 90 1.7 1.2 1.0
Q15 Write 101 160 234 96 1.1 1.7 2.4
Speedup factor 1.2 1.4 1.2

Fig. 21   Query response time for GPU
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4.2.6.3  Throughput and  Latency through  sharding  MongoDB achieves scalability 
by utilizing a horizontal scaling technique named sharding because they are specifi-
cally designed to provide horizontal scalability to meet modern applications’ high 
data volume demands. Sharding [7] is used to partition data horizontally across mul-
tiple servers or shards. It allows distributing the data across the cluster of machines 
to increase data storage capacity and improve query performance. To check the scal-
ability of the proposed model, we have experimented by distributing the data among 
different clusters (nodes), as shown in Table 19. Our proposed model is deployed on 
MongoDB Atlas, which provides sharding capabilities to efficiently distribute the 
data. The general process for distributing data among different clusters in MongoDB:

(a)	 Set up the Clusters: Create individual clusters to host the shards. Each cluster 
should have its own set of servers running MongoDB instances. To experiment, 
we have created 2, 3, and 4 Clusters having 3 nodes each.

(b)	 Enable Sharding: Enable sharding on the clusters by configuring the config serv-
ers and enabling sharding for the relevant databases or collections.

(c)	 Define Sharding Key: The sharding key determines how data is divided across 
the clusters. There are various sharding keys named range-based, hash-based, 
and compound-based. We have chosen hash-based keys for our work because it 
automatically distributes the documents uniformly across the shards.

(d)	 Distribute Data: Insert or migrate data into the sharded collections. MongoDB 
distributes the data across the shards based on the defined sharding key. The 
sharded clusters ensure load balancing of read and write operations and uniform 
data distribution.

After establishing the experimental setup, we proceeded with conducting experi-
ments to evaluate the scalability of the proposed model using sharding on the scaled 
data, as detailed in Table 16. Specifically, we focus on two key parameters across the 
distributed data on different nodes: (a) Throughput (Sect. 4.2.7.1), and (b) Latency 
(Sect. 4.2.7.2).

Table 19   Details of sharded clusters

Parameters 3 nodes 6 nodes 9 nodes 12 nodes

No. of Sharded Clusters 1 2 3 4
Replication 3 3 3 3
Primary Node 1 2 (1 per shard) 3 (1 per shard) 4 (1 per shard)
Secondary Nodes 2 4 (2 per shard) 6 (2 per shard) 8 (2 per shard)
No. of Config servers 1 2 3 4
Shard Key Hash-based Hash-based Hash-based Hash-based
Distributed data Balanced Balanced Balanced Balanced
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4.2.6.4  Throughput  Throughput refers to how much work or data can be processed 
by the database system within a given time frame. It represents the rate at which 
MongoDB can handle and process operations, such as reads, writes, and queries. To 
maximize throughput in MongoDB, it is recommended to carefully design the data-
base schema, optimize queries, utilize appropriate indexes, and scale the deployment 
horizontally by adding more servers or shards as needed. To calculate the throughput 
of the distributed data on different nodes, Apache JMeter—a tool known for meas-
uring metrics like throughput and latency. Various test cases for CRUD operations 
are designed to compare the performance of proposed models against existing ones. 
Table  20 provides the measured throughput (operations per minute(ops/mint)) for 
different models on varying numbers of nodes. The graphical representation is shown 
in Fig. 22. For the Conventional model, the throughput ranges from 510 ops/mint (3 
nodes) to 1003 ops/mint (12 nodes). There is slightly better throughput for the Opti-
mized model than the Conventional model, ranging from 514 ops/mint (3 nodes) to 
1128 ops/mint (12 nodes). For the QPG model, the throughput ranges from 501 ops/
mint (3 nodes) to 1045 ops/mint (12 nodes. For the Proposed model, the throughput 
is highest, ranging from 518 ops/mint (3 nodes) to 1169 ops/mint (12 nodes). Overall, 
the results indicate that the proposed model achieves the highest throughput, followed 
by the optimized and QPG models. Furthermore, as the number of nodes increases, 
there is a general trend of improved throughput across all models, demonstrating the 
benefits of horizontal scaling.

4.2.6.5  Latency  Latency refers to the delay between requesting and receiving a 
response from the server. While sharding can improve scalability and throughput, it 
can introduce additional latency due to the system’s distributed nature. The latency 
(milliseconds(ms)) results for data distribution over different nodes are presented in 
Table 21. Figure 23 provides a graphical representation of the latency. The conven-
tional model demonstrates low latency, ranging from 3.9 ms (3 nodes) to 27 ms (12 
nodes). The optimized model has constant performance across node configurations, 
with latency ranging from 3.5 ms (3 nodes) to 29.7 ms (12 nodes). The latency of the 
QPG model ranges from 4.1 ms (3 nodes) to 29.1 ms (12 nodes), which is equivalent 
to the conventional and optimized models. The proposed model has constant latency 
ranging from 3.3 ms (3 nodes) to 28.4 ms (12 nodes), similar to the other models. 
Overall, there is a modest rising trend in latency as the number of nodes grows, indi-
cating that processing time may increase. In conclusion, all four models demonstrate 
relatively low and comparable latency, with different node variations.

Table 20   Throughput (ops/
mint) comparison on various 
distributed nodes

Nodes Conventional Optimized QPG Proposed

3 510 514 501 518
6 619 635 605 698
9 856 901 845 920
12 1003 1128 1045 1169
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5 � Conclusion

Designing a NoSQL database schema requires not only knowledge of data but also 
an understanding of how the application needs to access the data. This paper pre-
sents an automatic workload-driven model for the logical schema of a document-
based NoSQL database from a conceptual model. The model takes the conceptual 
model and the application workload in estimated data volume and query workload. 
The query graphs are generated from the application workload to study the query 
characteristics. The characteristics are represented using query labels. These labels 
are used to transform the conceptual model into MongoDB logical schema.

This paper has designed a model to minimize data modeling hardships for the 
popular database named MongoDB. The proposed model does not rely on rules of 
thumb to select the appropriate schema or require expert help to design a logical 
schema. Therefore, the proposed work benefits novice programmers and helps them 
to save time for schema design decisions during the early development phase of any 
application’s design.

We employed three state-of-the-art schema generation models termed conven-
tional, optimized, and QPG to validate the performance of the proposed model. Sev-
eral parameters, including query response time, query speedup factor, read and write 

Fig. 22   Throughput (ops/mint) on various distributed nodes

Table 21   Latency on various 
distributed nodes

Nodes Conventional Optimized QPG Proposed

3 3.9 3.5 4.1 3.3
6 14 12.5 15.2 13.8
9 21 20.5 22.2 20.8
12 27 29.7 29.1 28.4
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latency, aggregate pipeline efficiency improvement, storage space, collection-wise 
performance, and scalability, are used to compare the proposed model to existing 
models: Conventional, Optimized, and QPG. The experimental results show the pro-
posed model outperforms conventional, optimized, and QPG models. It achieved a 
1.2, 1.1, and 1.3 speedup factor over the respective models. Additionally, the pro-
posed model improved aggregate pipeline efficiency by 17.5%, 15%, and 10% com-
pared to the conventional, optimized, and QPG models. The proposed model show-
cased advantages in terms of good performance in terms of storage space utilization, 
with lower read and write latencies. It exhibited good performance when scaling the 
volume to double. Furthermore, the proposed model enables the system to efficiently 
handle growing data volumes by implementing horizontal scaling techniques, result-
ing in high throughput and low latency. This highlights the efficiency and effective-
ness of our model in handling distributed data scenarios. Based on these findings, 
it is evident that the proposed model surpasses the existing models (Conventional, 
Optimized, and QPG) in multiple aspects, including query performance, storage 
space efficiency, aggregate pipeline efficiency, read–write latency, collection-wise 
performance, scalability, throughput and latency. Therefore, the proposed model 
effectively tackles the challenges associated with managing the variety and volume 
of big data through the well-designed schema. This schema design significantly 
improves system performance and guarantees scalability for datasets of any size. As 
future work we intend to expand the similar concept to other NoSQL categories, like 
column and graph databases.
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