
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:4000–4048
https://doi.org/10.1007/s11227-023-05613-5

1 3

Schema generation for document stores using
workload‑driven approach

Neha Bansal1 · Shelly Sachdeva1 · Lalit K. Awasthi2

Accepted: 17 August 2023 / Published online: 8 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Although there are numerous data modeling tools for relational databases, data
modeling for NoSQL databases has seen another perspective. These databases (a) do
not define any explicit schema, (b) store data in a denormalized manner, and (c) give
many structure alternatives. The decision to structure the data always relies on rules
of thumb, which do not guarantee an optimal structural solution. Based on this moti-
vation, this paper offers a workload-driven model for the logical schema design of
a NoSQL document database. It consists of Model input, Intermediate transforma-
tion, and Final schema generation. The proposed model takes the conceptual schema
(EER model) and application workload (queries and anticipated data volume) as
input and describes a procedure to convert it into a logical model for NoSQL docu-
ment stores. The conversion process initially converts the application queries into
query graphs. The query graphs, along with the anticipated data volume, are used
to generate the query labels. The resulting query labels are assigned on the schema
graph designed from the EER model. The schema graph and labels are used to trans-
form the EER model into the appropriate logical schema model based on the actions
defined for each label. We evaluate the model using a case study in the eCommerce
application domain. The experimental evaluation shows the proposed model out-
performs the existing conventional, optimized, and query path graphs models in
multiple aspects, including query performance, storage space efficiency, aggregate
pipeline efficiency, read–write latency, collection-wise performance, scalability,
throughput and latency. By effectively addressing the challenges associated with
managing the variety and volume of big data through a well-designed schema, our
proposed model significantly reduces the time, cost, and effort required for schema
development and repair.

Keywords  NoSQL database · Data modelling · Workload-driven approach ·
MongoDB · Schema design

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05613-5&domain=pdf

4001

1 3

Schema generation for document stores using workload‑driven…

1  Introduction

With the rise of big data, the requirement of applications to change their schema is
more frequent and crucial. This demand has given rise to the emergence of NoSQL
databases, a new category designed to overcome the limitations of traditional rela-
tional databases in handling big data and real-time applications characterized by
high-speed data generation (volume) and diverse data formats (variety). NoSQL is
an umbrella term used for numerous non-relational database types. Four popular
categories of NoSQL are named document-based, column-based, key-value-based,
and graph-based [1, 2]. These four categories share similar logical structures: A key
followed by a value; however, they are distinct in data modeling, data architecture,
querying languages, and API’s. Typically, the performance of these four categories
depends on the selection of use cases.

Unstructured data collected from sources like sensors, social media, and natural
language processing (NLP) holds valuable insights [3]. To extract valuable insights
from unstructured data, new data storage solutions like Hadoop and NoSQL data-
bases have emerged [4]. These technologies are extensively applied in domains,
such as the Internet of Things, Facebook, Google, and Netflix [5, 6]. The increasing
adoption of NoSQL databases in handling big data is driven by their ability to man-
age massive volumes of data without a predefined schema. NoSQL databases, excel
in handling unstructured and semi-structured data aligning with the variety criterion
of big data. Horizontal scalability using sharding and replication [7] is another key
aspect addressed by NoSQL databases, allowing data distribution across multiple
nodes to accommodate large volumes. The schema flexibility and horizontal scal-
ability properties ensures efficient storage and processing without compromising
performance. The proposed work is aligned with the variety and volume criteria of
big data.

Although NoSQL database flexibility enables rapid initial development so that
the application does not need to define a specific structure in advance [6, 8], the
decision should be made early because (a) The application’s overall performance
depends on the schema choice selection. The wrong choices can impact several
aspects of application quality, like data redundancy, navigation cost, data access
cost, and maintainability. (b) It is challenging to fix a poorly designed data model
after the development of an application. (c) For a poorly designed data schema, it is
possible that some queries require excessive execution time or cannot be executed at
all. Therefore, it is preferable to spend some time in advance designing a data model
that is scalable, extensible, and maintainable throughout the application’s lifetime.

The flexibility of NoSQL databases empowers developers and organizations to
store and manipulate data according to their specific requirements. As a result, there
can be numerous schema alternatives to model the same information [9]. Analyzing
and comparing these schema alternatives can be complex and time-consuming using
manual methods [8, 10]. Thus, there is a need for an automated tool or model that
can evaluate various factors and can recommend optimal schema solutions from the
available alternatives. Two existing approaches give automation to perform this task:
Workload-Agnostic and Workload-Driven.

4002	 N. Bansal et al.

1 3

The Workload-Agnostic approach [11–13] focuses on creating the database
schema without considering any specific workload or usage patterns. The goal is to
develop a schema that can handle a variety of queries and workloads. The objective
is to offer flexibility and adaptability to handle various queries and data. However,
this approach may not optimize performance for particular query patterns or work-
loads because it does not consider the specific query characteristics. On the other
hand, in a Workload-Driven approach [10, 14–17], the database schema is created
for the specific workload or usage patterns. The schema design is influenced by the
types of queries expected to be executed frequently, the data access patterns, and the
workload’s performance requirements. The goal is to optimize the schema design
to improve query performance, reduce latency, and improve the overall system’s
efficiency. In our study, we have chosen a workload-driven approach to design an
automated model that considers the workload queries and anticipated data volume
to provide an optimal schema solution. We intend to design a schema that best meets
the performance requirements and efficiency goals by analyzing the query character-
istics of the workload.

This paper has proposed an automated model to transform the conceptual model
into an optimal logical schema design with the aid of labels. It consists of three parts:
Model input, Intermediate transformation, and Final schema generation. Model
input consists of the EER model as well as the application workload. The appli-
cation queries and the estimated data volume comprise the application workload.
The intermediate transformation includes the generation of query graphs and the
generation of query labels. The application queries are first transformed into query
graphs, and then the generated query graphs are transformed into query labels using
data volume. The generation of query labels involves three steps Label Categoriza-
tion, Action Association, and Prioritization. The final schema generation consists of
two parts: a) the generation of a Schema Graph and Label assignment, b) transfor-
mation into Logical Schema. The EER model is first converted into a graph model
named schema graph. Then the derived query labels are assigned on the edges of the
schema graph. Finally, the schema graph and labels are used to transform the EER
model into an optimized logical schema based on the actions defined for each label.
The working of the proposed model is evaluated through a case study in the eCom-
merce domain. We have picked MongoDB to work on because it is the most popular
store among all document stores [18]. In addition, it is used in various applications,
including eCommerce, mobile applications, and many more.

In this paper, we have made the following significant contributions:

(a)	 The paper uses application workload to generate NoSQL document logical sche-
mas from the conceptual model. The workload information is provided by the
designer in terms of estimated total data volume and queries.

(b)	 The proposed model uses query graphs, query labels, and schema graphs to
transform conceptual inputs into logical schemas.

(c)	 Query graphs are generated from workload queries and are used to analyze
query characteristics. Query labels are used to showcase the investigated query
characteristics.

4003

1 3

Schema generation for document stores using workload‑driven…

(d)	 The derived query labels and the schema graph are used to design the logical
schema for NoSQL document stores.

(e)	 To evaluate the proposed model, experiments are conducted through a case study
in the eCommerce domain to showcase the performance of the proposed model.

(f)	 The results show the proposed model reduces query response time and acceler-
ates the data retrieval time of workload queries.

The remainder of the paper is arranged in the following sections. Section 2 gives
the related work; Sect. 3 presents the detailed work of the proposed model. Section 4
presents the experimental evaluation, and Sect. 5 concludes the paper.

2 � Related work and motivation

In the realm of Big Data applications, the large volume, variety, and velocity of data
often surpass the capabilities of traditional relational databases [19]. NoSQL databases,
such as MongoDB, Cassandra, HBase, and Neo4j, have emerged as vital technologies
to overcome these challenges. These databases offer flexible data models, horizontal
scalability, and high-performance data processing, making them well-suited for manag-
ing massive amounts of data in distributed environments. NoSQL databases are par-
ticularly well-suited for managing heterogeneous data due to their flexible models, large
volumes’ scalability, and high data retrieval performance [5, 6]. Distributed databases
support supercomputing by providing the necessary infrastructure and capabilities for
large-scale data processing and high-performance computing workloads [20–23].

Many tools are available in the market for data modeling of traditional data-
bases (such as relational) [24, 25]. Still, these tools cannot be applied directly to the
NoSQL database due to data modeling differences (normalized versus denormalized
format, respectively). Authors [26, 27] comprehensively analyze the design require-
ments of NoSQL databases. Uta et al. [28] have presented various case studies on
top-down, bottom-up, and reverse engineering approaches for schema management
in NoSQL databases. According to Paola Gomez et al. [29], the performance of a
NoSQL system is determined by appropriate schema design selection among all
the design options. Similarly, Mior [30] stated that the performance of a NoSQL
database depends on the choice of an appropriate schema design. They proposed a
manual cost-based model based on workload queries for the physical optimization
of column-based data stores. However, choosing the best suitable schema among all
the possible schema alternatives (schema optimization) is difficult to perform manu-
ally. From this initial study, we find the following research gaps:

(a)	 Unlike a relational database, the NoSQL database allows various data structure
alternatives, which remains an ongoing research problem. Numerous researchers
are working in this field [9, 16, 17, 31, 32].

(b)	 NoSQL databases inherent flexibility and schema-less nature give rise to multiple
schema design alternatives. For example, consider a scenario, if there are two
entities representing student (S) and their faculty (F) related by a one-to-many

4004	 N. Bansal et al.

1 3

relationship (r1) . Relationship (r1) can be materialized by nesting or referencing
information from the related entities. Hence there are multiple ways of schema
design (S1 to S8) to store this information in document stores, as shown in Fig. 1
(adapted from [9]). The choice among these different schema designs depends
on many factors, like data retrieval costs, query access patterns, and user needs.
Manual schema design, typically guided by trial-and-error or ad-hoc methods,
can be time-consuming and lacks a guarantee of optimal design among the vari-
ous alternatives. A recent study [31] has found that only 9% of the database
experts identified the optimal design among these possibilities. This evidence
shows that the current manual way of database design does not yield the expected
results, even for minimal scenarios taken as an example. Consequently, automa-
tion becomes crucial in streamlining the complex process, reducing time require-
ments, and selecting the most optimal schema design from the available options.

(c)	 Numerous researchers have adopted different methodologies to convert con-
ceptual to logical schema design. We have studied the existing working models
and made the comparison based on common characteristics named conceptual
schema, additional inputs, conversion methodology, target model, and auto-
mation, as shown in Table 1. We have categorized the existing work into the
Workload-Agnostic (WA) and Workload-Driven (WD) approaches. WA does not
consider the application workload means that the schema is designed without
considering the specific queries or operations that the application can perform
on the database. In contrast to WA, WD considers the application workload for
NoSQL schema design. These methodologies consider the specific workload
requirements, such as the types of queries, patterns, or operations the applica-
tion is expected to perform on the database. By considering the workload, the
schema can be optimized to support the application’s specific needs better and
improve performance.

Fig. 1   Schema design alternatives (S1-S8) in Document stores for ER model

4005

1 3

Schema generation for document stores using workload‑driven…

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f r
el

at
ed

 w
or

k
fo

r N
oS

Q
L

da
ta

 m
od

el
in

g

W
A

W
or

kl
oa

d-
ag

no
sti

c;
 W

D
 W

or
kl

oa
d-

dr
iv

en
; K

 K
ey

-v
al

ue
, C

 C
ol

um
n-

sto
re

, D
 D

oc
um

en
t-b

as
ed

W
A

/W
D

Re
fe

re
nc

e
C

on
-

ce
pt

ua
l

sc
he

m
a

A
dd

iti
on

al
 in

pu
ts

C
on

ve
rs

io
n

m
et

ho
do

lo
gy

Ta
rg

et
 m

od
el

A
ut

om
at

io
n

W
or

kl
oa

d
ag

no
sti

c
Li

 [1
1]

✖
Re

la
tio

ns
hi

ps
H

eu
ris

tic
s

C
✖

C
er

en
ak

 e
t a

l.
[1

2]
✖

Re
la

tio
ns

hi
ps

H
eu

ris
tic

s
D

✖
Im

am
 e

t a
l.

[3
3,

 3
4]

✖
En

tit
ie

s,
C

RU
D

 o
pe

ra
tio

ns
M

ec
ha

ni
ca

l
D

✓
Im

am
 e

t a
l.

[1
3]

✖
Re

la
tio

ns
hi

ps
H

eu
ris

tic
s

D
✖

W
or

kl
oa

d
dr

iv
en

C
he

bo
tk

o
et

 a
l.

[3
5]

ER
ER

Q
L

qu
er

ie
s

H
eu

ris
tic

s
C

✓
Jia

 e
t a

l.
[3

6]
ER

Q
ue

ry
 lo

g
Sc

he
m

a
gr

ap
h,

 D
A

G
s,

ta
gs

D
✓

M
io

r e
t a

l.
[1

0]
ER

SQ
L

qu
er

ie
s

Sc
he

m
a

gr
ap

h
C

✓
Li

m
a

et
 a

l.
[1

4,
 3

7]
EE

R
Es

tim
at

ed
 d

at
a

vo
lu

m
e

H
eu

ris
tic

s
D

✓
Re

ni
er

s e
t a

l.
[3

8]
ER

SQ
L

qu
er

ie
s

H
eu

ris
tic

s
D

✖
A

li
et

 a
l.

[1
7,

 3
9]

ER
SQ

L,
 q

ue
ry

 p
at

te
rn

Q
ue

ry
 g

ra
ph

D
, C

, K
✓

H
ew

as
in

gh
ag

e
et

 a
l.

[4
0,

 4
1]

ER
St

or
ag

e
re

qu
ire

m
en

ts
C

an
on

ic
al

 re
pr

es
en

ta
tio

n
D

✓
Pa

ol
a

et
 a

l.
[9

]
U

M
L

W
or

kl
oa

d
qu

er
ie

s
So

ftw
ar

e
pr

od
uc

t l
in

es
 st

ra
te

gi
es

 b
as

ed
 o

n
fe

at
ur

e
m

od
el

s
D

✓

Pr
op

os
ed

 w
or

k
EE

R
Re

la
tio

ns
hi

ps
, w

or
kl

oa
d

qu
er

ie
s,

es
tim

at
ed

 d
at

a
vo

lu
m

e

Q
ue

ry
 g

ra
ph

, S
ch

em
a

gr
ap

h,
 Q

ue
ry

 la
be

ls
D

✓

4006	 N. Bansal et al.

1 3

2.1 � Workload‑agnostic (WA) approach

Li [11] gives the heuristics for converting the relational schema into an HBase
(NoSQL column Store) schema. Similarly, Authors [12] have designed a heuris-
tics-based method for converting RDB to document stores using relationship types.
Imam et al. [33, 34] propose a mechanical schema suggestion model for a document
database. Imam et al. [13] have given manual heuristics-based guidelines to translate
ER model to Document stores using relationship type and cardinality. The drawback
of the existing works is that they are workload-agnostic (WA), which means they do
not consider application workload. Therefore, do not guarantee to give the best opti-
mal schema design solution and can hamper the application’s performance.

2.2 � Workload‑driven (WD) approach

Chebotko [35] offers the first workload-driven (WD) design method for mapping
the ER model to Cassandra (NoSQL column Store). The mapping was done based
on the application workflow by taking the ERQL queries. The proposed technique
improves the performance of reading operations while decreasing the performance
of write operations. Tianyu Jia et al. [36] have used graphs and DAGs during
schema migration from relational schema to MongoDB. The graph is generated with
the help of some tags, and the relational logs are used to define the tags on the ER
model. The authors have used a threshold to calculate the tags, which seems bogus
due to a lack of threshold information. Mior et al. [10] have proposed a tool for
schema design recommendations for column stores (C). They use ER model along
with the workload queries. The query frequencies and volume of data in each can-
didate plan are analyzed to suggest the best solution. However, the work applies to
column stores only. Authors [14, 37] provide a logical mapping from the concep-
tual model (EER (Extended Entity-Relationship)) using initial workload information
(in terms of the estimated number of data instances and primary query operations).
They developed several rules based on workload data to map the entities and rela-
tionships from EER to MongoDB. But the authors have considered workload in the
form of data volume only, which is insufficient to design an optimal schema. Vincent
Reniers et al. [38] use the MongoDB schema to generate workload queries and ER
model. The authors also considered various dimensions while schema generation,
but the model and methodologies are not given too clearly and are not automated.

Similarly, Ali et al. [17, 39] have designed the schema recommendation model
based on query patterns. The authors translate the workload queries into query path
graphs. The query path graphs are then translated into logical schema using vari-
ous rules designed by the authors. They have performed the embedding in the case
of document stores and have not considered referencing during denormalization.
Authors [40, 41] have used canonical representation to suggest the denormalized
model using application queries. The proposed model only applies to document
stores and is very complicated to be adopted by novice users due to estimated stor-
age space as an input requirement.

4007

1 3

Schema generation for document stores using workload‑driven…

Similarly, Paola et al. [9] studied various data structuring alternatives using soft-
ware product line strategies and feature models. They developed a set of structural
metrics to analyze the characteristics of these alternatives. Their work aimed to pro-
pose a model that enables the automatic generation of multiple suitable data struc-
ture alternatives based on an initial UML model. The challenge of the work is accu-
rately analyzing data structuring alternatives and generating a comprehensive set of
suitable options while considering various factors like performance, scalability, and
system maintainability.

Based on the current works, as stated in Table 1, both WA and WD approaches
have advantages and considerations. WA approaches offer flexibility and adaptabil-
ity to varying workloads, but they do not guarantee to optimize the schema among
various alternatives. Based on the WD approach, the existing work can provide more
targeted optimal schema solutions but require a good understanding of the appli-
cation workload. The work done so far for the WD approach considers workload
queries [9, 10, 17, 36, 40] or estimated data volume [14, 37] as input. However, to
generate an efficient NoSQL schema using a Workload-Driven (WD) approach, it
is also necessary to consider the application workload in terms of workload queries
and estimated data volumes. To fill the gap in the literature, we developed a schema
generation model based on a workload-driven approach that considers application
workload in the forms of workload queries and data volume to generate the schema,
especially for document stores.

3 � Schema generation for document stores using workload‑driven
approach

This section details the proposed schema generation model for document stores
using the workload-driven approach. As shown in Fig. 2, the proposed model con-
sists of three parts: Model input, Intermediate transformation, and Final schema
generation. The proposed model begins with a conceptual model and application
workload as input and produces the logical schema as output using an intermedi-
ate transformation. The graphical flow diagram is shown in Fig. 3, which shows
how three parts of the model (shown in Fig. 2) work together. It is intended to be
used for document stores during the early stages of application development.

3.1 � Model input

The proposed model takes a conceptual model in the form of an EER model and
application workload in the form of workload queries and expected data volume as
input. The details about model input are mentioned in this section.

4008	 N. Bansal et al.

1 3

3.1.1 � Conceptual model

The conceptual model comprehensively captures the application requirements and
workflow and represents the information in a high-level abstraction model in enti-
ties, relationships, and constraints. The conceptual modeling employs numerous
techniques, including ER (Entity-Relationship), EER (Extended Entity-Relation-
ship), and UML (Unified Modeling Language). However, EER provides a more
expressive and flexible representation of the relationship between entities in a data-
base than ER and UML[42]. Hence, we have taken EER of a real-time case study as
the conceptual model shown in Fig. 4.

Definition 1  An EER model is defined as EER = (T ,R) where T = {t1,… , tn} is
a set of entities, and R = {(ti, tj)|ti, tj ∈ T} is a set of relationships. A relationship
r = (ti, tj) represents the mutual connection between entities ti, tj . Both entities and
relationships have a set of attributes.

Fig. 2   Workload-driven approach for Document Stores

Fig. 3   Graphical flow model

4009

1 3

Schema generation for document stores using workload‑driven…

We have taken a case study adapted from [14], based on the eCommerce domain,
as a sample database. The case study states that customers can place orders for vari-
ous items of different products. Suppliers supply the products and have many cate-
gories. Each order has a payment system through credit card or cash. The taken case
study is closely related to a real-world scenario, and it’s straightforward to explain
our work using this sample database. The EER model of the eCommerce case study
is shown in Fig. 4. The brief about the EER model is given as follows:

(a)	 It consists of eleven entities (T) named {Person, Category, Customer, Product,
Order, Item, Carrier, Supplier, Bill, CreditCard, Payment}

(b)	 It has eight relationships (R) named {request, delivery, owner, reference, com-
posite, catalog, commitment, and furnishing}. Each relationship has its attributes
and relationship cardinality (1:1, 1:N, N:1, M: N), indicating how many objects
of entities can be associated with objects of another entity.

(c)	 It also consists of the relationship of special types such as generalization or
union. For example, payment consists of two types named Credit Card or Bill.
The special types of relationships are treated as regular one-to-one types of
relationships.

(d)	 EER displays the average (avg) access frequencies as estimated data volume by
the application users.

We have used the EER of the taken case study to illustrate the work throughout
the paper.

3.1.2 � Application workload

NoSQL databases do not support joins. Embedding or referencing takes the place
of the joins in the NoSQL database. The selection between embedding and refer-
encing during data modeling of document stores is the most challenging. Deciding
when to embed a document or instead create a reference between separate docu-
ments in different collections is an application workload consideration. Additionally,

Fig. 4   The EER schema for an e-commerce application

4010	 N. Bansal et al.

1 3

if the application workload is known during the early data modeling stage, it results
in the optimized schema design solution. Hence, the application workload, which
includes the estimated database volume and queries, is considered the model’s input.
The authors have taken the most common seven queries to cover two different sce-
narios of any eCommerce platform, a) Customer (Q1 and Q2), b) Seller (Q3-Q7).
The seven designed queries are shown in Table 2.

3.2 � Intermediate transformation

The intermediate transformation generates Query Graph (QG) and Query Label
(QL) . It transforms the application queries into query graphs. The query graphs are
used to generate query labels with the help of the application’s estimated data vol-
ume. We have employed five distinct query labels, OnetoOne Relation, Frequent
Lookup, Doc Size, Frequent Modify, and Cardinality, to cover all possible data
modeling scenarios [14]. The detailed work of this phase is discussed in this section.

3.2.1 � Generate query graphs

Each workload query returns information regarding one or more EER model enti-
ties. The derived information from EER is represented as a Query Graph (QG) [43,
44]. A QG is a sub-graph derived from the EER model.

Definition 2  A Query Graph (QG ⊆ EER) consisting of (N,E) for each query,
qi ∈ Qn is defined as follows: nodes N where N ⊆ T corresponds to entities T of
EER as mentioned in qi , and edges E = (ni, nj) ⊆ R corresponds to a set of relation-
ships R = (ti, tj) . The procedure to generate a QGi for each query qi ∈ Qn is men-
tioned as follows:

1.	 List all the entities (tn ∈ T) in each query qi ∈ Qn.
2.	 For each qi ∈ Qn , identify the starting entity ti ∈ T  . Add the entity as a node ni

in QGi . Traverse the relationship r = (ti, tj) ∈ R in the EER model to determine
the other entities (tj ∈ tn) that are connected to the starting entity (ti) . Add the

Table 2   Workload queries

Q_No Query

Q1 Customers place an order having multiple items of different products
Q2 Customers check out orders
Q3 Supplier adds items of a product under a particular category
Q4 Update the details of all orders delivered by a carrier
Q5 Fetch the details of the top-sold products of the year
Q6 Fetch the details of the maximum sold product category-wise
Q7 Fetch the details of customers who purchase a particular product

4011

1 3

Schema generation for document stores using workload‑driven…

relationship as edge (e) and the connected entity as nj to the query graph (QGi)
along with the cardinalities of the relationship r.

3.	 If any entity ti ∈ T belongs to relationships of special types, such as generaliza-
tion, adding the entity as a node nj and the relationship r = (ti, tj) ∈ R as an edge
(e) connecting nodes ni and nj to (QGi) . Add cardinality 1:1 on both sides of the
edge e = (ni, nj).

4.	 If any of the traversed entities already added to the query graph have relationships
with other entities (tk ∈ tn) , repeat step 2 to traverse these relationships and add
the connected entity to the query graph (QGi).

5.	 Continue this process until all the entities (tn ∈ T) are traversed along with the
relationships.

6.	 Repeat the above steps for each query qi ∈ Qn.

Figure 5 depicts the Query Graphs (QG) for all seven input queries mentioned in
Table 2.

3.3 � Generate query labels

In document stores, the entities of the EER model are represented by a collec-
tion. In contrast, the documents represent key-value pairs that specify the records

Fig. 5   Query Graphs generated from workload queries

4012	 N. Bansal et al.

1 3

contained within the entities. The relationships are replaced by embedding or refer-
encing. There are three types of relationships named one-to-one (1:1), one-to-many
or many-to-one (1:N or N:1), and many-to-many (M: N) between the entities in the
EER model. According to the official documentation of MongoDB [45], as shown
in Table 3, only embedding has to be done during data modeling of document stores
for a one-to-one (1:1) type of relationship.

However, for the other two types, named one-to-many or many-to-one (1:N or
N:1) and many-to-many (M: N) relationships, we either embed the related docu-
ments into a single collection or used referencing between distinct documents from
different collections. Embedding the documents or making a reference across dif-
ferent collections is an application-specific decision that depends on data growth,
read–write ratio, and query types. Based on these factors, the proposed model
resolves the trade-off between embedding and referencing in the form of Query
Labels (QL) . The QG and expected data volume are utilized to determine QL . We
have used five labels: OnetoOne Relation, Frequent Lookup, Doc Size, Frequent
Modify, and Cardinality (Table 5).

(a)	 OnetoOne Relation: Each one-to-one relationship belonging to QG is labeled as
’OnetoOne Relation. ’

(b)	 Frequent Lookup: If two or more entities are accessed frequently together repeat-
edly. So, a ’Frequent Lookup’ label is added to these entities.

(c)	 Doc Size: The expected monthly access frequency of entity pairs in the appli-
cation workload can be used to forecast the future size of a document. If the
document size is expected to exceed 16 MB, the ’Doc Size’ label is assigned to
those entity pairs.

(d)	 Frequent Modify: When two or more entities are frequently inserted, updated,
or deleted, we use ’Frequent Modify’ labels on these entities.

(e)	 Cardinality: If the ratio gap between many-to-many (M: N) types of relationships
are high, then use ’Cardinality’ labels on these entities.

Table 3   Embed/ Reference
based on the type of relationship

Type of relationship Embed/Reference

One to one (1:1) Embed
One to many (1: N) or many to one (N:1) Embed or reference
Many to many (M: N) Embed or reference

Fig. 6   Generation of query labels

4013

1 3

Schema generation for document stores using workload‑driven…

The process of query label generation is broken down into three steps: Label Cat-
egorization, Action Association, and Prioritization, as shown in Fig. 6.

Step 1 Label Categorization.
NoSQL databases are designed for high performance and scalability, and one of

the ways they achieve this is by storing related data together in a single document.
NoSQL allows for faster data retrieval, as the data needed for a particular query is
more likely to be in a single location. By analyzing the query characteristics, it is
possible to determine which entities and attributes need to be accessed together and
group them in MongoDB. We have represented the query characteristics in the form
of Query Labels (QL) . The term "entity pairs" are used in the process of Label Cat-
egorization, which refers to the nodes ( ni, nj ) bounded by an edge (e) (relationship)
within a query graph. The entity pair represents a specific connection or association
between two entities in the Query Graph and are utilized to label the edges based on
the relationships among the different nodes.

Definition 3  For QG = (N,E) , an Entity Pair ( ni, nj, r ) is defined as nodes ( ni, nj )
where ( ni, nj)∈ N bounded by a relationship r�E is the edge connecting two nodes
( ni, nj ). The procedure to produce all possible entity pairs from QGi|i = 1… n is
given below:

1. Initialize an empty list named ’EntityPairs.’
2 For each edge e�E in QGi , let ni , nj be the source and target nodes of e . Create
an entity pair ( ni, nj, r ) and add the pair to the ’EntityPairs’ list.
3. Repeat for each query graph QGi in the query graph list ( QGn).
4. Return the ’EntityPairs’ list, which contains all the unique entity pairs across
the query graphs (QGi|i = 1… n).

For the eCommerce case study, eight ’Entity pairs (EP)’ are formed from QG, as
shown in Fig. 7.

Fig. 7   Entity pairs (EP) based on query graphs

4014	 N. Bansal et al.

1 3

Along with this, we have taken 40% as the threshold value. This assumption is
rooted in the 60–40 rule, which states 60% of the profit involves 40% of the data
[46]. This rule helps identify the most critical data and optimize the database’s per-
formance by focusing on that data. The details of the Label Categorization are given
in Algorithm 1. The theoretical explanation is given as follows:

(a)	 ’OnetoOne Relation’ label is assigned to all the entity pairs having a one-to-one
relationship in the query graph

(
QGi|i = 1,… , 7

)
. For instance, entity pairs,

Order-Payment, Supplier-Person, Payment-Bill, and Payment-Credit Card have
a one-to-one relation for the taken case study. So, the ’OnetoOne Relation’ label
is assigned to the entity pairs, as shown in Fig. 8.

(b)	 ’Frequent Lookup’ labels are assigned to relationships accessed repeatedly in
the application workload. Calculate the access count for each distinct entity pair
to assign the label. A threshold value is calculated, which gives the maximum
number of entity pairs that can be assigned the ’Frequent Lookup’ label. The
formula to calculate the threshold is 40% of the maximum count of frequently
accessed entity pairs. The access count is set in ascending order, and the ’Fre-
quent Lookup’ label is assigned to the number of entities pair whose count is
equal to the number obtained from the threshold beginning from the highest
value of access count.

For instance, in the preceding case study, we counted the total number of times
the distinct entity pairs are accessed together. As shown in Fig. 9, the total count of
frequency accessed entity pairs QG is given as Customer-Order, Product-Category
is accessed twice, Order-CreditCard, Customer-CreditCard, and Order-Carrier are
accessed once each, Order-Item is accessed four times, and Item-Product entities are
accessed together five times. According to the formula, the maximum access count
of an entity pair is 5, so the threshold (40% of 5) for 5 is 2. Therefore, the label is
assigned to the upper two values (4 and 5). Hence, the entity pairs named Order-
Item and Item-Product are labeled as ’Frequent Lookup.’

Fig. 8   ‘OnetoOne Relation’ Label

4015

1 3

Schema generation for document stores using workload‑driven…

	 (iii)	 For the ’Doc-Size’ label calculation, two values are needed, one is the esti-
mated data volume on each distinct entity pair in the application workload,
and the second is the average document size. Among the two, the estimated
data volume is taken from the EER model, and the average size of a single
document can be calculated with the help of attributes of an entity. But for
simplicity, we assume that each document has five attributes (key-value pair)
with a maximum size of 12 bytes (the maximum key-value size in MongoDB).
Therefore, the average size of each document is 60 bytes. To calculate the ’Doc
Size’ label, the expected data volume of each distinct entity pair is multiplied
by the average document size. From the results, entity pairs with a size of more
than 16 MB (16 × 106 bytes) are assigned a ’DocSize’ label.

As shown in Table 4, for the taken case study, the distinct entity-pair accessed
QG is named in the first column, and the expected data volume (as mentioned in

Fig. 9   ’Frequent Lookup’ Label based on Query graphs

Table 4   The calculation for the ’Doc Size’ Label

Entity pairs from the query
graph

Expected access
frequency

Expected size in bytes Expected docu-
ment size in MB

Order-customer 90 5400 0.0054
Order-payment 1 60 0.00006
Order-item 65 3900 0.0039
Item-product 2541 152,460 0.15246
Supplier-product 16 960 0.00096
Product-category 60 3600 0.0036
Payment-customer 35 2100 0.0021
Order-carrier 283,440 17,006,400 17.0064

4016	 N. Bansal et al.

1 3

Fig. 4) for each distinct entity-pair is shown in column 2. The third and fourth col-
umn shows the expected document size in bytes and MB, respectively, by multiply-
ing the values of the second column by 60 bytes (taken average size). According to
Table 4, the size of the ’Order-Carrier’ is more than the threshold value; hence, as
shown in Fig. 10, the entity pair is assigned with the ’Doc Size’ label.

(d)	 For ’Frequent Modify’ Labels, the queries that perform the database’s write
(insert, delete, update) operations are selected from the application workload.
From the selected workload queries, fetch the corresponding QG . From the
selected QG , count distinct entity pairs (related entities) accessed together. The
threshold value calculated is 40% of the frequently accessed entity pairs fetched
from QG . Then, from the EER model, the data volume of each entity pair is
determined. The values of estimated data volume are set in ascending order,
and the ’Frequent Lookup’ label is assigned to the entity pairs whose count is
equal to the threshold beginning from the highest value of estimated data volume
count.

Based on the calculations, the ’Frequently Modify’ Label is assigned. For
instance, queries Q1, Q2, Q3, and Q4 perform the write operations on the database.
From the corresponding QGi|i = 1,… , 4 (Fig. 5), Customer-Order, Order-Item,
Item-Product, Order-Payment, Supplier-Payment, Product-Category, and Order-
Carrier are the total seven entity pairs that are accessed. The threshold value of 7
is 2. Figure 4 shows that the estimated data volume of the above-listed entity pair
is given as Order-Customer 90 times, Order-Payment 1 time, Order-Item 65 times,
Item-Product 2541 times, Supplier-Payment 16 times, Product-Category 35 times,
Order-Carrier 283,440 times. Therefore, the ’Frequently Modify’ label is assigned to

Fig. 10   ’Doc Size’ Label

Fig. 11   ’Frequent Modify’ Label

4017

1 3

Schema generation for document stores using workload‑driven…

Item-Product and Order-Carrier entity pairs with the uppermost two values, 283,440
and 2541, respectively, as illustrated in Fig. 11.

(e)	 Cardinality Labels are affixed to many-to-many types of relationships because the
ratio of M: N is calculated during logical schema generation of many-to-many
types of relationships. If the ratio is high, one-way embedding is performed;
otherwise, two-way embedding is performed. The provided case study does not
address any M: N type of relationship. But for the sake of understanding, if n
consists of a maximum of 5 categories for a book and m consists of a maximum
of 50,000 books in a category because the ratio among M:N is high, then apply
one-way embedding. If n is a maximum of 3 books written by an author and m
consists of a maximum of 5 book authors, the M:N ratio is low, so use two-way
embedding.

Step 2Action Association.
While schema designing of EER models into MongoDB, embedding or referenc-

ing is performed on entity pairs, we have associated the actions to the Query Labels
with determining when to embed or refer the entity pairs. The association of actions
has been done considering data modeling described on are designed based on the
official website of MongoDB [45]. According to the official website, three actions
can be performed on entity pairs: One-way Embedding, Two-way Embedding, and
Referencing. The action associated with each Query Label is as follows: (i) For the
’OnetoOne’ label, the entity pairs must always be embedded together using One-way
embedding. (ii) For the ’Frequently Lookup’ Label, entity pairs frequently accessed
together should always be embedded because it involves too many read operations.
Hence the data must be stored at the same location. (iii) For the ’Doc Size’ label,
the entities should always be referenced because as the document size exceeds
16 MB, MongoDB must allocate a new memory location for the growing document
and copy the old document to the new space. It involves many input/output opera-
tions and could affect MongoDB’s performance. (iv) The ’Frequent Modify’ label
involves more write operations, including insert, update, and delete operations. The
write-intensive entities should always be referenced. (v) Two-way embedding is per-
formed for the ’Cardinality’ label, depending on the M: N ratio. The action associ-
ated with each label is displayed in Table 5.

Step 3 Prioritization of Labels.
If a relationship comprises more than one label, label prioritization addresses the

trade-off between the actions associated with the labels. According to the summary
outlined [6], among embedding and referencing, the highest priority is assigned to
referencing because we must first prioritize write-heavy operations and large-size
documents. Hence, we have assigned a higher priority, i.e., 1, to reference than
embedding. Among one-way and two-way embedding, one-way embedding is
assigned priority value 2. In contrast, two-way embedding is assigned priority value
3, as shown in Table 5.

4018	 N. Bansal et al.

1 3

Ta
bl

e 
5  

C
om

pl
et

e
in

fo
rm

at
io

n
ab

ou
t Q

ue
ry

 L
ab

el
s

La
be

l n
am

e
D

es
cr

ip
tio

n
La

be
l c

at
eg

or
iz

at
io

n
fo

r c
as

e
stu

dy
A

ss
oc

ia
te

d
ac

tio
ns

La
be

l p
rio

rit
y

O
ne

to
O

ne
Re

la
tio

n
W

he
n

th
e

re
la

te
d

en
tit

y
pa

irs
 h

av
e

on
e-

to
-o

ne
 (1

:1
) t

yp
e

of

re
la

tio
ns

hi
p

Pe
rs

on
-S

up
pl

ie
r,

O
rd

er
-P

ay
m

en
t

U
se

 o
ne

-w
ay

 e
m

be
dd

in
g

2

Fr
eq

ue
nt

 lo
ok

up
W

he
n

th
e

re
la

te
d

en
tit

ie
s a

re
 u

se
d

ag
ai

n
an

d
ag

ai
n

us
in

g
th

e
sa

m
e

re
la

tio
ns

hi
p

O
rd

er
-I

te
m

, I
te

m
-P

ro
du

ct
U

se
 o

ne
-w

ay
 e

m
be

dd
in

g
2

D
oc

 si
ze

W
he

n
th

e
si

ze
 o

f a
 d

oc
um

en
t i

s e
xp

ec
te

d
to

 b
e

la
rg

e
th

an

16
 M

B
O

rd
er

-C
ar

rie
r

U
se

 re
fe

re
nc

in
g

be
tw

ee
n

tw
o

en
tit

ie
s

1

Fr
eq

ue
nt

 m
od

ify
W

he
n

th
e

en
tit

ie
s a

re
 fr

eq
ue

nt
ly

 u
pd

at
ed

 o
r d

el
et

ed
Pr

od
uc

t-I
te

m
, O

rd
er

-C
ar

rie
r

U
se

 re
fe

re
nc

in
g

be
tw

ee
n

tw
o

en
tit

ie
s

1
C

ar
di

na
lit

y
If

 th
e

ca
rd

in
al

ity
 a

m
on

g
re

la
tio

ns
hi

ps
 (M

: N
) i

s l
ow

–
Tw

o-
w

ay
 e

m
be

dd
in

g
3

4019

1 3

Schema generation for document stores using workload‑driven…

4020	 N. Bansal et al.

1 3

3.3.1 � Final schema generation

Final schema generation is further categorized into two parts: (i) generation of
Schema Graph (SG) and Label assignment, and (ii) Transformation into Logi-
cal Schema, as shown in Fig. 12. In the generation of the Schema Graph (SG) , the
EER model is converted into a graph named Schema Graph (SG), and then QL are
assigned onto SG . Based on the defined rules, SG is transformed into MongoDB
logical schema.

3.3.1.1  Generation of schema graph and label assignment  The EER model is first
converted into a graph model (SG) by representing EER entities as nodes and rela-
tionships as edges. After that, the Query Labels (QL) are assigned to Schema Graph
(SG).

Definition 4  A Schema Graph (SG) = (NG,EG) can be represented with the help of
nodes (NG ∈ T) and edges (EG ∈ R) . Nodes (NG) must always equal the number of
entities (T) , and Edges (EG) must equal the number of relationships (R) in the EER
model.

Algorithm 2  gives the detailed procedure of Schema Graph (SG) generation. The
algorithm iterates through the entities (T) and relationships (R) in the EER model.
For each entity ( t�T) , a corresponding node ( nG ) is created in the SG. Similarly, for
each relationship ( r�R ), an edge ( eG ) is added to the SG, connecting the start ( ti ) and
end entities ( tj ) of the relationship ( r ). This process continues until all entities and
relationships in the EER model have been processed. The resulting Schema Graph
provides a visual representation of the EER model. Following creating the Schema
Graph, the query labels are assigned on the edges of SG . Figure 13 depicts the SG
generated from the EER model, consisting of 11 nodes and 11 edges along with the
assigned QL on edges.

3.3.1.2  Transformation into logical schema  A logical schema of document stores is
derived from SG . The following rules are followed to generate a logical schema:

4021

1 3

Schema generation for document stores using workload‑driven…

(1)	 If a single QL is assigned on the edges of SG , the decision is based on the action
associated with QL , as discussed in Sect. 3.2.2.

(2)	 If more than one QL is assigned on the edges of SG , the decision is based on the
priority associated with QL , and based on the priority, action must be taken.

(3)	 If there is no QL between the edges of SG , create a separate collection for each
entity in SG.

Figure 14 depicts the final logical schema model for the case study after applying
all phases of the proposed model. Since no label is assigned between entity pairs
named Supplier-Product, Product-Category, Order-Customer, and Carrier-Customer
following rule 3, separate collections are created for each entity. For the rest of the
entities, there is a label between the edges, so by following rules 1 and 2, the entities
are embedded or referenced among each other.

The procedure of the proposed model that encompasses all the phases is men-
tioned as Algorithm 3. The proposed algorithm designs the schema automatically
by transforming the model’s inputs into the logical schema of MongoDB. The
Query Graph (QG) is generated for each query (qi ∈ Qn) qi ∈ Q of the applica-
tion workload (Line 1). The Query Labels (QL ) is generated using Query Graph
(QG) (Line 2). The EER model is converted into Schema Graph ( SG ) (Line 3) using

Fig. 12   Final schema generation

Fig. 13   Schema Graph (SG) with query labels

4022	 N. Bansal et al.

1 3

Algorithm 2. Then, the calculated Query Label (QL ) is assigned to the Schema
Graph (SG) (Line 4). The (SG) is converted into the logical schema using actions
performed on the assigned Query Label (QL ) (Line 5–23). Remove edge ei ∈ E from
(SG) . If it contains any (QL ), if it is OnetoOne Relation, embed entities among one
another. If the label is Frequent Lookup, for relationship type 1:1 or 1: N, embed the
child entity into the parent entity; if the relationship is N:1, then embed the child
into the parent as an array of embedded objects. For Doc Size or Frequent Modify
label, perform referencing and refer child entity into parent entity. For Cardinality
Label, perform one-way or two-way embedding depending on the ratio gap among
M: N. If an edge (ei ∈ E) has more than two query labels and performs actions based
on the priority of labels. If no label is assigned to the edge, make a new collection. If
the number of entities is N and the number of relationships is M, then Algorithm 3
has a time complexity of O(N +M).

Fig. 14   Logical schema generated from Schema Graph (SG)

4023

1 3

Schema generation for document stores using workload‑driven…

4 � Experimental evaluation

We evaluate our approach with an experiment in the e-commerce domain, as
described in Sect. 3. The experiments are conducted to validate our proposed
model and demonstrate the model’s positive effects on query processing time.
The performance of our proposed model is compared with three existing models:
(i) Conventional [37]: It is workload agnostic, and logical schema is designed
without taking an application workload by following the relationship constraints
only as shown in Fig. 15a; (ii) Optimized [37]: As shown in Fig. 15b, it is work-
load-driven but logical schema design, is generated based solely on expected
data volume of application workload, and (iii) Query Path Graph (QPG) [17]:
It considers application query patterns for the data modeling transformation of

4024	 N. Bansal et al.

1 3

conceptual to logical modeling as shown in Fig. 15c. We chose these three exist-
ing models because they define and explore three distinct ways of MongoDB data
modeling, and their work is comparable to our proposed work. Table 6 gives the
qualitative analysis of the four models based on various important factors named
Query Response Time, Query Speedup, Write Latency, Read Latency, Number of
Pipeline Stages, Pipeline efficiency, Storage Space, Scalability, Throughput and
Latency. It has been found that our model works well for all factors. However,
experiments are conducted to prove the qualitative analysis in numbers. The fol-
lowing section details the experimental setup and results to verify the qualitative
analysis.

Fig. 15   Existing Logical model used for performance comparison a Conventional model, b Optimized,
c QPG

4025

1 3

Schema generation for document stores using workload‑driven…

4.1 � Experimental setup

The experimental analysis is performed using an Intel Core i7- 1255U processor
with 16 GB of RAM, 3-level cache, and 1 TB hard disk. The data is stored using
MongoDB Atlas, a cloud-based database service provided by MongoDB. The exper-
imental setup utilized a MongoDB Atlas Cluster M20 configuration dedicated to
4 GB RAM with 20 GB storage and 2vCPUs. The cluster is configured on AWS/
Mumbai (ap-south-1) region running MongoDB version 6.0.6. It consisted of a rep-
lica set with three nodes to ensure load balancing of read and write operations, data
availability, and reduced query response time. Studio 3 T, a graphical user interface
(GUI) based MongoDB IDE [47], is also used. The experimental setup information
is summarized in Table 7.

To make the query performance comparison, we created four physical databases
for schema shown in Figs. 14 and 15 in MongoDB and named as conventional,
optimized, QPG, and proposed. We have populated all four databases with identi-
cal data, as shown in Table 8. The seven queries (Q1-Q4 CRUD queries, Q5-Q7
aggregate pipeline) outlined in Sect. 3.2 are executed in each database. As stated in
Table 9, along with the seven queries taken as input, the performance is measured
on eight additional queries (Q8-Q15) because queries evolve with time, and new
queries are always added to the system. Hence, to measure the performance of a sys-
tem, it is necessary to measure it on run-time queries.

4.2 � Experimental evaluation

To perform the experimental analysis, we have measured various essential perfor-
mance parameters of a database as listed in Table 6. Based on the parameters, the
following comparison is made among proposed and existing models: (1) Query
Response Time and Speedup (Sect. 4.2.1), (2) Read and Write Latency (Sect. 4.2.2),
(3) Efficiency Improvement using aggregate pipeline (Sect. 4.2.3), (4) Storage

Table 6   Qualitative analysis of existing and proposed model

Srl. No Factors Conventional Optimized QPG Proposed

1 Query response time High High High Low
2 Query speedup Slow Slow Very slow Fast
3 Write latency High High Very high Low
4 Read latency High High Very high Low
5 No. of pipeline stages Very high High High Low
6 Pipeline efficiency Low Low Low High
7 Storage space Less Less High Least
8 Collection-wise performance Good Good Worst Best
9 Scalability Efficient Efficient Poor Most efficient
10 Throughput Low Moderate Low High
11 Latency Low Low Low Low

4026	 N. Bansal et al.

1 3

Table 7   Experimental setup Hardware configuration

Processor Intel Core i7- 1255U running at 1.90 GHZ
RAM 16 GB
Cache 3 Level
Storage 256 MB (SSD), 1 TB hard-disk
Software configuration
Database service MongoDB Atlas
Cluster configuration Cluster M20
Cluster RAM 4 GB
Cluster storage 20 GB
Cluster vCPUs 2
Network configuration AWS / Mumbai (ap-south-1)
MongoDB version 6.0.6
Replica set nodes 3

Table 8   A eCommerce dataset,
along with the number of
records in each EER table

List of EER tables Number of
records in each
table

Dataset Person 100
Order 50,000
Carrier 16
Supplier 149
Customer 10,000
Product 400
Item 70,000
Bill 20,000
Credit card 10,000
Payment 30,000
Category 60

Table 9   Additional run-time queries for performance evaluation

Q_No Query

Q8 Given an order id, return the order and related customer, items and products
Q9 Given an order id, return the order and related customer and payments
Q10 Given a customer id, return all orders and related carriers
Q11 Given a customer id, return all orders and related payments
Q12 Given a product id, return all related items and orders
Q13 Given a supplier id, return the supplier and all related products, including their

categories
Q14 Add new attributes, city, and country in the Customer Information
Q15 Add a new category of the product

4027

1 3

Schema generation for document stores using workload‑driven…

Space (Sect. 4.2.4), (5) Collection-wise Performance (Sect. 4.2.5), (6) Scalability
(Sect. 4.2.6), (7) Throughput and Latency (Sect. 4.2.7).

4.2.1 � Query response time and speedup

It refers to the time the database takes to process and respond to a request for infor-
mation. Query response time is an important performance parameter, as it can affect
the speed and efficiency of the database. In general, faster query response times are
desirable, as they can lead to better performance and user experience. Also, we have
calculated a unitless speedup factor calculated by the mean query response time for
the proposed model divided by the mean query response time for the existing model.
The overall result is summarized through the Geometric Mean (GM) of all 15 que-
ries. Because GM is the appropriate, meaningful average for normalized unitless
numbers [48]. GM helps make broad at-a-glance speedup comparisons among exist-
ing and proposed model’s performance. The formula to calculate the query speedup
factor is:

where Qnis speed up factor for each queryqi

where TiP = Query execution time of ith query of proposed model, TiEM = Query
execution time of ith query of existing model, N = total number of workload queries.

We have performed an extensive evaluation of proposed models against existing
models on MongoDB. We ran each of the 15 queries on four models to conduct the
experiment. Three runs for each query were made to avoid the distorted results by
caches in MongoDB. The average value of three runs is taken as query response
time. The speedup factor for an individual query is then calculated by dividing the
particular query (qi ∈ Qn,wherei = 1,… , 15) response time of the existing model
by the query response time of the proposed model. Table 10 details the complete
numerical figures of query response time and the speedup factor for all 15 queries,
whereas the graphical representation of query response time is shown in Fig. 16.
The average speedup factor is shown in the last row of Table 10. The following
observations are made from Fig. 16.

It can be observed that the response time of the proposed model for queries Q1
and Q2 is less time than all other models. For queries Q5, Q6, Q8, and Q9, the
proposed model performs much better than the existing models. The performance
improvement is due to the reason that these queries access a specific Order, includ-
ing Items. The conventional and optimized schema nests the Orders inside the Cus-
tomer collection, whereas QPG has to make reference for the Orders with other
collections named Items which is very time-consuming. In contrast, the schema
generated by our model reads the documents from the Order collection directly.
For queries Q7, Q10, and Q13 proposed model is better than QPG but performs

Average Query Speedup Factor =
N

√
n=1

NΠQn

Qn =
TiP

TiEM

4028	 N. Bansal et al.

1 3

Ta
bl

e 
10

  
Q

ue
ry

 e
xe

cu
tio

n
tim

e
of

 w
or

kl
oa

d
qu

er
ie

s

Q
.N

o
Q

ue
ry

 o
pe

ra
tio

n
Q

ue
ry

 e
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

Sp
ee

du
p

fa
ct

or
 fo

r e
ac

h
qu

er
y

C
on

ve
nt

io
na

l (
C

)
O

pt
im

iz
ed

 (O
)

Q
PG

Pr
op

os
ed

 (P
)

C
 v

er
su

s P
O

 v
er

su
s P

Q
PG

 v
er

su
s P

Q
1

W
rit

e
19

1.
5

18
2.

0
15

4.
0

10
1.

0
1.

9
1.

8
1.

5
Q

2
W

rit
e

30
5.

0
29

5.
5

28
2.

5
17

5.
5

1.
7

1.
7

1.
6

Q
3

W
rit

e
24

1.
7

27
1.

2
39

1.
8

28
1.

2
0.

9
1.

0
1.

4
Q

4
W

rit
e

20
4.

2
19

3.
5

17
2.

7
18

2.
3

1.
1

1.
1

0.
9

Q
5

Re
ad

67
64

.0
53

45
.3

74
77

.0
40

19
.3

1.
7

1.
3

1.
9

Q
6

Re
ad

12
,7

37
.0

13
,4

63
.3

15
,3

17
.3

10
,8

84
.0

1.
2

1.
2

1.
4

Q
7

Re
ad

37
18

.3
38

08
.7

49
09

.3
40

76
.0

0.
9

0.
9

1.
2

Q
8

Re
ad

13
11

.3
11

53
.0

14
42

.7
91

1.
3

1.
4

1.
3

1.
6

Q
9

Re
ad

90
1.

0
10

63
.0

10
29

.3
87

6.
0

1.
0

1.
2

1.
2

Q
10

Re
ad

20
81

.3
27

97
.0

48
52

.0
34

52
.0

0.
6

0.
8

1.
4

Q
11

Re
ad

36
98

.7
97

4.
0

16
75

.7
18

42
.3

2.
0

0.
5

0.
9

Q
12

Re
ad

12
77

.7
14

44
.3

13
29

.3
11

62
.7

1.
1

1.
2

1.
1

Q
13

Re
ad

22
30

.3
18

71
.3

11
58

.7
18

58
.7

1.
2

1.
0

0.
6

Q
14

W
rit

e
32

2.
3

34
1.

5
39

1.
5

29
1.

3
1.

1
1.

2
1.

3
Q

15
W

rit
e

10
1.

0
11

5.
7

20
5.

0
16

1.
7

0.
6

0.
7

1.
3

Sp
ee

du
p

fa
ct

or
1.

2
1.

1
1.

3

4029

1 3

Schema generation for document stores using workload‑driven…

poorly than conventional or optimized because the queries access Customer records,
including Orders. In both conventional and optimized, the information can be
directly accessed from the customer-rooted collection. But in QPG and the Proposed
model, the Customer collection has to be linked with the Order collection. However,
in QPG, more time is taken because orders are nested inside customers and have a
separate collection. So, time is taken to perform both nesting and referencing from
customer to order collection. For Q11, the performance of the proposed model is
better than conventional but poor than optimized and QPG models, while Q12 per-
forms poorly than all three existing models. For Q4, Q14, and Q15, all three models
have almost the same performance. Hence, we can conclude that the performance
of the proposed model is similar to or better than existing models for both input and
run-time queries.

4.2.2 � Write and read latency

Read latency is the time taken to retrieve data from the database, while write latency
is the time taken to store data in the database. Latency can be affected by factors
such as the schema from which data is being read or written, the workload on the
database, and the type of storage used. In our case, to measure the effect on latency
due to schema and workload, the queries are divided into two categories named (1)
Write queries (Q1-Q4, Q14-Q15), and (2) Read queries (Q5-Q13). We have taken
the average query response time for all underlying categories. The resultant table is
shown in Table 11, while the graphical representation is shown in Fig. 17. It shows
that the proposed model reduces the write latency by a factor of 1.14, 1.17, and
1.33 while read latency by a factor of 1.19, 1.09, and 1.37 than Conventional, Opti-
mized, and QPG, respectively. Hence, the proposed model outperforms all three
existing models regarding write and read latency, as the lowest latency means better
performance.

Fig. 16   Query response time comparison among different

4030	 N. Bansal et al.

1 3

4.2.3 � Efficiency improvement using aggregate pipeline

MongoDB uses an aggregate pipeline framework for complex query process-
ing [49]. The aggregate pipeline processes documents in different collections and
returns computed results. An aggregate pipeline is a powerful tool for data process-
ing and analysis in MongoDB. It can perform a wide variety of operations on data,
including data transformation, data aggregation, and data analysis.

The efficiency (�) of the aggregate pipeline in MongoDB depends on several fac-
tors, including the number of pipeline stages and the size and organization of the
data being processed. Efficiency improvement (�%) measures the performance of the
aggregate pipeline with a minimum number of aggregate stages. To calculate (�) ,
firstly, the execution plan is analyzed, which shows the total number of stages for
MongoDB individual query for all four models, as shown in Table 12. Then the total
number of stages (S =

∑n

i=1
Si) for each query qi ∈ Qn where i = 1,… , 15 is calcu-

lated. The formula used to calculate the efficiency improvement is:

where SEMi
= Total number of stages in ithexistingmodel , SP = Total number of stages in proposed model

As mentioned above, we have nine aggregate queries among a total of fifteen
queries. Hence, we have taken those aggregate queries to analyze the efficiency
improvement. Table 12 shows the total number of stages used by each query and the
total number of stages used by all nine queries. The efficiency improvement of the

Efficiency improvement (�%) = (� − 100)%, where � =
SEMi

SP
∗ 100|i = 1, 2, 3

Table 11   Write and Read latency for each schema model

Query opera-
tion

Conventional
(C)

Optimized
(O)

QPG Proposed (P) Speedup factor

C versus P O versus P QPG

Write 1365.7 1399.3 1597.5 1193.0 1.14 1.17 1.33
Read 34,719.7 31,920.0 39,191.3 29,082.3 1.19 1.09 1.37

Fig. 17   Write and Read Latency among Proposed and existing models

4031

1 3

Schema generation for document stores using workload‑driven…

aggregate pipeline of the proposed method against existing models is calculated by
the formula mentioned above.

Table 13 illustrates the percentage efficiency improvement of the proposed model
against the conventional model is given by 17.5%. In contrast, for the optimized
model, it is given as 15%; for the QPG model, it is given as 10%. This section con-
cludes our method provides better pipeline efficiency than the existing methods. The
reason for better efficiency is that the aggregate pipeline stages depend on the num-
ber of documents fetched against the application query. A schema designed based
on the application queries results in fewer documents being scanned during query
processing. Hence, we can conclude that our model suggests the best logical schema
for the application workload than the existing models.

4.2.4 � Storage space

In MongoDB, the size of a collection refers to the total amount of disk space con-
sumed by the data within that specific collection. The storage requirements in Mon-
goDB can vary greatly depending on factors, such as data volume, data model,
and query usage patterns. Due to these factors, the various models, including the
Conventional, Optimized, QPG, and Proposed, introduce different collections and
exhibit variations in storage space. Table 14 shows each model’s storage space and
the total number of documents in each collection. Due to the flexibility property, the
four models (Conventional, Optimized, QPG, and Proposed) have different collec-
tions, and a collection in one model may or may not be present in another model.
For example, the "Order" collection is only provided in the QPG and Proposed mod-
els, whereas the "Payment" collection is only in the conventional model.

Figure 18 represents the graphical visualization of storage space variations across
different models. Figure 18a illustrates the space occupied by each collection indi-
vidually, providing a collection-wise comparison among the models. On the other
hand, Fig. 18b shows the total storage space occupied by all the collections within a
specific model.

Figure 18a shows that all four models have the same disk space for the Carrier,
Supplier, and Category collections, indicating that these collections have almost
consistent storage requirements across the models.

1.	 The disk space occupied by the Customer collection gradually decreases from
the Conventional model to the Proposed model, indicating storage optimizations
in the latter models. This decrease in disk space is caused by a lower level of
embedding in the proposed models when compared to the Conventional model.

2.	 The Product collection shows variations in disk space among the different models.
Compared to the Conventional and QPG models, the Optimized and Proposed
models have more disk space allocated for the Product collection. This differ-
ence in disk space can be attributed to the fact that the Optimized and Proposed
models include Furnishing and Catalog embedded documents within the Product
collection. These additional embedded documents contribute to the Optimized
and Proposed models’ higher disk space utilization when compared to the other
models.

4032	 N. Bansal et al.

1 3

Ta
bl

e 
12

  
N

um
be

r o
f P

ip
el

in
e

st
ag

es
 fo

r e
ac

h
ag

gr
eg

at
e

qu
er

y

PS
 P

ip
el

in
e

st
ag

es
, T

C
 T

ot
al

 c
ou

nt
, C

 C
on

ve
nt

io
na

l,
O

 O
pt

im
iz

ed
, P

 P
ro

po
se

d

Q
#

C
on

ve
nt

io
na

l (
C

)
O

pt
im

iz
ed

 (O
)

Q
PG

Pr
op

os
ed

 (P
)

PS
TC

PS
TC

PS
TC

PS
TC

Q
5

U
nw

in
d,

 P
ro

je
ct

, U
nw

in
d,

 G
ro

up
,

G
ro

up
5

U
nw

in
d,

 P
ro

je
ct

, U
nw

in
d,

 G
ro

up
4

U
nw

in
d,

 P
ro

je
ct

, U
nw

in
d,

 G
ro

up
,

G
ro

up
5

U
nw

in
d,

 G
ro

up
, P

ro
je

ct
3

Q
6

U
nw

in
d,

 P
ro

je
ct

, G
ro

up
, L

oo
ku

p,

U
nw

in
d,

 P
ro

je
ct

, L
oo

ku
p

7
U

nw
in

d,
 P

ro
je

ct
, U

nw
in

d,
 G

ro
up

,
Lo

ok
up

, U
nw

in
d,

 P
ro

je
ct

,
Lo

ok
up

8
U

nw
in

d,
 P

ro
je

ct
 G

ro
up

, U
nw

in
d

Lo
ok

up
5

U
nw

in
d,

 G
ro

up
, P

ro
je

ct
, G

ro
up

4

Q
7

U
nw

in
d,

 P
ro

je
ct

, U
nw

in
d,

 M
at

ch
,

G
ro

up
5

U
nw

in
d,

 P
ro

je
ct

, M
at

ch
, G

ro
up

4
U

nw
in

d,
 P

ro
je

ct
, M

at
ch

, G
ro

up
4

U
nw

in
d,

 M
at

ch
, P

ro
je

ct
3

Q
8

M
at

ch
, U

nw
in

d,
 U

nw
in

d,
 L

oo
ku

p,

G
ro

up
5

M
at

ch
, U

nw
in

d,
 U

nw
in

d,
 L

oo
ku

p,

U
nw

in
d,

 G
ro

up
6

M
at

ch
, L

oo
ku

p,
 U

nw
in

d,
 U

nw
in

d,

Lo
ok

up
, U

nw
in

d,
 G

ro
up

7
M

at
ch

, L
oo

ku
p,

 U
nw

in
d,

 U
nw

in
d,

Lo

ok
up

, U
nw

in
d,

 G
ro

up
7

Q
9

M
at

ch
, U

nw
in

d,
 L

oo
ku

p,
 U

nw
in

d,

G
ro

up
5

M
at

ch
, U

nw
in

d,
 U

nw
in

d,
 L

oo
ku

p,

U
nw

in
d,

 G
ro

up
6

M
at

ch
, L

oo
ku

p,
 U

nw
in

d
3

M
at

ch
, L

oo
ku

p,
 U

nw
in

d,
 U

nw
in

d,

Lo
ok

up
, U

nw
in

d,
 G

ro
up

7

Q
10

M
at

ch
, U

nw
in

d,
 L

oo
ku

p,
 U

nw
in

d,

U
nw

in
d,

 G
ro

up
6

M
at

ch
, U

nw
in

d,
 L

oo
ku

p,
 U

nw
in

d,

G
ro

up
5

M
at

ch
, U

nw
in

d,
 L

oo
ku

p,
 U

nw
in

d,

Lo
ok

up
, G

ro
up

6
M

at
ch

, L
oo

ku
p

2

Q
11

M
at

ch
, U

nw
in

d,
 L

oo
ku

p,
 G

ro
up

4
M

at
ch

1
M

at
ch

, U
nw

in
d,

 L
oo

ku
p,

 U
nw

in
d,

G

ro
up

5
M

at
ch

, L
oo

ku
p

2

Q
12

M
at

ch
, L

oo
ku

p,
 U

nw
in

d,
 U

nw
in

d
G

ro
up

5
M

at
ch

, L
oo

ku
p,

 U
nw

in
d,

 U
nw

in
d,

M

at
ch

, G
ro

up
6

M
at

ch
, L

oo
ku

p,
 L

oo
ku

p,
 U

nw
in

d
4

M
at

ch
, L

oo
ku

p,
 U

nw
in

d,
 U

nw
in

d,

M
at

ch
, G

ro
up

6

Q
13

M
at

ch
, L

oo
ku

p
U

nw
in

d,
 L

oo
ku

p
G

ro
up

5
M

at
ch

, L
oo

ku
p,

 U
nw

in
d,

 L
oo

ku
p

U
nw

in
d,

 L
oo

ku
p

6
M

at
ch

, L
oo

ku
p,

 U
nw

in
d,

 L
oo

ku
p,

U

nw
in

d
5

M
at

ch
, L

oo
ku

p,
 U

nw
in

d,
 L

oo
ku

p,

U
nw

in
d,

 G
ro

up
6

To
ta

l
47

46
44

40

4033

1 3

Schema generation for document stores using workload‑driven…

3.	 The Order collection is absent in the Conventional and Optimized models but
present in the QPG and Proposed models, which have significantly more disk
space.

4.	 17b shows that the total disk space for Conventional, Optimized, and Proposed
models is relatively similar, with the Proposed model showing a slight reduction.
The QPG model consumes more total disk space than the other three models,
owing to the repetition of the Order collection separately and within the customer
collection, which takes up a significant amount of disk space.

4.2.5 � Collection‑wise performance

Collection-level performance analysis using “MongoTop” is a valuable technique to
track the time taken by read and write activity of each collection in a MongoDB
instance. The benefit of this is that it provides insights into the most active col-
lections regarding disk I/O operations, which can help identify performance bot-
tlenecks and optimize database operations. "MongoTop" is a tool provided by
MongoDB that continuously samples data over a specified duration and provides
real-time reports on the activity of individual collections. We have analyzed three
important parameters (Total, Read, Write) to gain insights into a deeper understand-
ing of Collection-wise performance. The "Total" shows the total amount of time, in
microseconds, spent performing both read and write operations on a particular col-
lection. By examining this metric, we can assess a collection’s overall workload and
activity level. The "Read" parameter indicates the amount of time, in microseconds,
desiccated to read operations on a particular collection. The benefits of analyzing
this metric are to identify heavily read-intensive collections, providing insights into
the data access patterns and usage characteristics. The "Write" parameter displays
the amount of time, in microseconds, spent on performing write operations on a col-
lection. By examining this metric, we can identify collections that experience sig-
nificant write activity, enabling us to focus on optimizing write-intensive operations.
Table 15 provides information on the Total, Read and Write activity for each collec-
tion across the Conventional, Optimized, QPG, and Proposed models.

Figure 19 shows the graphical representation of information shown in Table 15.
Figure 19 has three parts: 19a, 19b, and 19c. Part ’19a’ compares the four mod-
els (Conventional, Optimized, QPG, and Proposed) based on the total time spent
on read-and-write operations for each collection. Part ’19b’ compares different col-
lections of a model based on Read time, whereas ’19c’ highlights the write time for
each collection among four models. A detailed explanation is given below:

Table 13   Aggregate pipeline
efficiency of the proposed model
against existing models

C versus P O versus P QPG versus P

Total pipeline
stages (PS)

47/40 46/40 44/40

η% 17.5% 15% 10%

4034	 N. Bansal et al.

1 3

Ta
bl

e 
14

  
St

or
ag

e
sp

ac
e

oc
cu

pi
ed

 b
y

ea
ch

 c
ol

le
ct

io
n,

 a
lo

ng
 w

ith
 to

ta
l s

pa
ce

 o
cc

up
ie

d
by

 e
ac

h
m

od
el

C
ol

le
ct

io
n

na
m

e
C

on
ve

nt
io

na
l

O
pt

im
iz

ed
Q

PG
Pr

op
os

ed

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

C
ar

rie
r

60
,0

08
12

.3
0

60
,0

08
12

.3
0

60
,0

08
12

.3
0

60
,0

08
12

.3
0

C
at

eg
or

y
60

0.
94

60
0.

94
60

0.
94

60
0.

94
C

us
to

m
er

41
5,

56
7

46
4.

55
41

5,
24

3
45

8.
31

40
5,

45
6

42
5.

55
15

0,
02

3
25

.9
6

Pr
od

uc
t

11
2,

85
0

9.
10

11
5,

83
0

11
.9

3
90

,1
19

7.
91

11
5,

83
0

11
.9

3
Su

pp
lie

r
60

,1
10

12
.3

2
60

,1
10

12
.3

2
61

,4
56

21
.4

2
60

,1
10

12
.3

2
Pa

ym
en

t
26

,1
00

2.
76

–
–

–
–

–
–

O
rd

er
–

–
–

–
76

2,
88

0
50

9.
03

56
2,

88
0

42
9.

03
To

ta
l s

to
ra

ge

(M
B

)
50

1.
96

49
5.

79
97

7.
14

49
2.

47

4035

1 3

Schema generation for document stores using workload‑driven…

1.	 Figure 19a shows the proposed model has the lowest total time across all collec-
tions compared to the other models. The collections in Optimized and Conven-
tional models show slightly higher total times compared to the Proposed model
but remain relatively close. The QPG model stands out with significantly higher
total times, primarily due to the Order collection, which substantially impacts the
overall time.

2.	 Figure 19b shows Customer collection; the Conventional model has the highest
read time, followed by the Optimized model. The QPG and Proposed models
have significantly lower read times. Therefore, the overall performance of the
Conventional and Optimized models depends on the Customer collection only.
The Proposed model generally shows reduced read times compared to the Con-
ventional and Optimized models, suggesting improved read performance. How-
ever, the QPG model exhibits higher read times for certain collections due to the
Order collection in multiple locations.

3.	 Figure 19c shows the QPG model has the highest write time for the Customer col-
lection, while the other models have relatively lower write times. Also, the Order
collection has a high time in QPG. The Proposed model generally demonstrates
lower write times than the Conventional and Optimized models. Notably, among
the four, the proposed model performs better than all existing models in terms of
write operations.

The graphs highlight the performance differences among the Conventional,
Optimized, QPG, and Proposed models. The Conventional and Optimized mod-
els exhibit similar total, read, and write times, which are higher than those of the

Fig. 18   Storage Space comparison a Collection-wise storage comparison b Total space occupied by dif-
ferent models

4036	 N. Bansal et al.

1 3

Ta
bl

e 
15

  
C

ol
le

ct
io

n-
w

is
e

pe
rfo

rm
an

ce
 c

om
pa

ris
on

C
ol

le
ct

io
n

na
m

e
C

on
ve

nt
io

na
l

O
pt

im
iz

ed
Q

PG
Pr

op
os

ed

To
ta

l
Re

ad
W

rit
e

To
ta

l
Re

ad
W

rit
e

To
ta

l
Re

ad
W

rit
e

To
ta

l
Re

ad
W

rit
e

C
ar

rie
r

16
6

16
6

0
17

9
79

0
18

0
18

0
0

17
9

17
9

0
C

at
eg

or
y

63
31

62
79

52
56

55
55

95
60

40
62

39
93

69
40

85
40

32
53

C
us

to
m

er
25

,4
20

21
,9

99
34

21
22

,3
55

18
,5

69
37

86
10

,0
56

57
11

43
45

80
47

57
06

23
41

Pr
od

uc
t

25
80

20
08

57
2

37
85

34
14

37
1

58
69

48
35

10
34

25
53

20
97

45
6

Su
pp

lie
r

14
34

14
34

0
13

45
0

0
25

67
25

67
0

14
67

14
67

0
Pa

ym
en

t
15

4
15

4
0

0
0

0
0

0
0

0
0

0
O

rd
er

0
0

0
0

0
0

18
,0

54
13

,6
02

44
52

13
,9

44
13

,1
55

0

4037

1 3

Schema generation for document stores using workload‑driven…

Proposed model. This is because the Customer collection in both models is heavily
embedded with Order documents, leading to performance bottlenecks. In contrast,
the Proposed model addresses this issue by separating the Customer and Order col-
lections, resulting in improved performance. The QPG model stands out with sig-
nificantly higher write and read times, attributed to the repetitive Order collection.
Overall, the Proposed model consistently demonstrates lower read and write times
across different collections, indicating its superior schema design compared to the
existing models.

4.2.6 � Scalability

To evaluate scalability, it is essential to test the model’s ability to handle increased
data volumes while maintaining acceptable query performance. Expanding the data
volume in each collection allows us to simulate real-world scenarios with larger
datasets and observe how the model performs under such conditions. We can deter-
mine if the model scales well with increased data volume by analyzing query perfor-
mance metrics, such as response times and speed up. This information is crucial for
capacity planning and optimizing the database infrastructure to ensure it can handle
growing workloads without sacrificing performance. To analyze the scalability, we
have increased the data volume, as shown in Table 16, which is almost double the
size compared to Table 14. Then, we run the fifteen workload queries (Tables 2 and
9) on CPU and GPU to compare the query performance of the proposed model to
the existing models. GPU is chosen due to its ability to accelerate computations,
making them vital components of supercomputers.

Fig. 19   Collection-wise performance comparison a Time taken by both read and write operations, b
Time taken by read operations, and c Time taken by both read operations

4038	 N. Bansal et al.

1 3

4.2.6.1  Scalability for CPU  The results for CPU are shown in Table 17, and the
graphical representation is shown in Fig. 20. Based on the following inferences can
be drawn:

1.	 For write queries (Q1, Q2, Q3, Q4, Q14, Q15), the Proposed model consistently
outperforms the other models (conventional, optimized, and QPG) with the lowest
response times. It demonstrates significant improvements in query performance,
indicating better optimization and efficiency in handling write operations.

2.	 Regarding read queries Q5, Q8, Q12, and Q13, the Proposed and Optimized mod-
els perform better than the other two. For queries Q6, Q7, and Q9, the conven-
tional QPG and proposed model achieve lower response times than the optimized
model. For Q10 and Q11, the proposed model shows poor query performance than
the conventional and optimized but is better than the QPG model. Therefore, the
proposed model performs better for seven out of ten read queries (Q5, Q6, Q7,
Q8, Q9, Q12, Q13) than the existing models, indicating improved query optimiza-
tion and data retrieval strategies.

3.	 The proposed model also outperforms the existing models regarding speedup
(SU) for the increased data volume. Specifically, the proposed model performs
best against Conventional Model, with SUs of 1.3. It also outperforms Optimized
and QPG, with SUs of 1.2.

With increased data volume, the Proposed model consistently exhibits the best
performance across both read and write queries, achieving the lowest response times
and high speedup factor compared to the Conventional, Optimized, and QPG mod-
els. Therefore, with increased data volume, the Proposed model maintains efficient
query performance, indicating its ability to handle larger datasets.

4.2.6.2  Scalability for GPU  To conduct the experimental analysis, we have used an
Amazon EC2 P2.xlarge instance with 1 NVIDIA K80 GPU, four vCPU’s and 63 GB
of RAM. Amazon EC2 is highly optimized for high-performance computing and
gives parallel processing capabilities with similar software configurations, as shown
in Table 7. The results for GPU are shown in Table 18, and the graphical representa-
tion is shown in Fig. 21. Based on the following inferences can be drawn:

1.	 For write queries (Q1, Q2, Q3, Q4, Q14, Q15), the Proposed model consistently
outperforms the other models (conventional, optimized, and QPG) with the lowest
response times. It demonstrates significant improvements in query performance,
indicating better optimization and efficiency in handling write operations.

2.	 Regarding read queries Q5, Q8, Q12, and Q13, the Proposed and Optimized
models perform better than the other two. For queries Q6, Q7, and Q9, the con-
ventional, QPG, and proposed models achieve lower response times than the
optimized model. For Q10 and Q11, the proposed model shows poor query per-
formance than the conventional and optimized but is better than the QPG model.
Therefore, the proposed model performs better for seven out of ten read queries

4039

1 3

Schema generation for document stores using workload‑driven…

Ta
bl

e 
16

  
Sc

al
in

g
up

 th
e

da
ta

 v
ol

um
e

fo
r p

er
fo

rm
an

ce
 a

na
ly

si
s

C
ol

le
ct

io
n

na
m

e
C

on
ve

nt
io

na
l

O
pt

im
iz

ed
Q

PG
Pr

op
os

ed

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

To
ta

l d
oc

um
en

ts
D

is
k

sp
ac

e
(M

B
)

C
ar

rie
r

21
0,

00
0

77
.4

4
21

0,
00

0
77

.4
4

21
0,

00
0

77
.4

4
21

0,
00

0
77

.4
4

C
at

eg
or

y
27

,0
00

2.
15

27
,0

00
2.

15
27

,0
00

2.
15

27
,0

00
2.

15
C

us
to

m
er

52
0,

00
0

10
15

.8
4

49
0,

00
0

10
05

.8
4

46
0,

00
0

90
5.

55
49

00
58

.1
6

Pr
od

uc
t

25
5,

00
0

29
.0

4
28

5,
00

0
39

.5
6

90
,1

19
7.

91
28

5,
00

0
39

.5
6

Su
pp

lie
r

23
0,

00
0

88
.3

6
23

0,
00

0
88

.3
6

23
0,

00
0

88
.3

6
23

0,
00

0
88

.3
6

Pa
ym

en
t

40
6,

00
0

26
.6

–
–

–
–

–
–

O
rd

er
–

–
–

–
1,

90
0,

00
0

94
6.

08
1,

90
0,

00
0

94
6.

08
To

ta
l s

to
ra

ge

(M
B

)
12

39
.4

3
12

13
.3

5
20

27
.4

9
12

11
.7

5

4040	 N. Bansal et al.

1 3

(Q5, Q6, Q7, Q8, Q9, Q12, Q13) than the existing models, indicating improved
query optimization and data retrieval strategies.

3.	 The proposed model also outperforms the existing models regarding speedup
(SU) for the increased data volume. Specifically, the proposed model performs
best against Conventional Model, with SUs of 1.3. It also outperforms Optimized
and QPG, with SUs of 1.2.

Table 17   Impact of increased data volume on query response time and query speedup factor

Q. No Query operation Conventional Optimized QPG Proposed C/P O/P QPG/P

Q1 Write 810.0 782.0 654.0 510.0 1.6 1.5 1.3
Q2 Write 2505.0 2495.5 2282.3 1996.0 1.3 1.3 1.1
Q3 Write 891.0 971.2 1161.8 705.7 1.3 1.4 1.6
Q4 Write 18,204.2 18,897.0 18,872.5 13,789.0 1.3 1.4 1.4
Q5 Read 21,076.0 17,601.8 20,477.0 12,225.0 1.7 1.4 1.7
Q6 Read 22,510.0 25,471.0 20,317.2 19,040.0 1.2 1.3 1.1
Q7 Read 13,014.0 14,680.0 10,909.3 9963.0 1.3 1.5 1.1
Q8 Read 2067.0 1945.0 2142.0 1511.3 1.4 1.3 1.4
Q9 Read 1689.0 1769.0 1529.3 1650.8 1.0 1.1 0.9
Q10 Read 5684.0 6756.0 13,425.0 8976.9 0.6 0.8 1.5
Q11 Read 2804.0 1743.0 1875.3 2204.0 1.3 0.8 0.9
Q12 Read 7661.0 4022.0 3729.5 3006.0 2.5 1.3 1.2
Q13 Read 7245.0 6646.0 5374.0 5402.0 1.3 1.2 1.0
Q14 Write 1122.5 766.0 991.5 857.0 1.3 0.9 1.2
Q15 Write 698.0 704.0 895.0 776.0 0.9 0.9 1.2
Speedup factor 1.3 1.2 1.2

Fig. 20   Impact of increased data volume on query response time for CPU

4041

1 3

Schema generation for document stores using workload‑driven…

 As the data volume on the GPU increases, the Proposed model consistently
demonstrates superior performance in both read and write queries. It consistently
achieves the lowest response times and a substantial speedup factor compared to the
Conventional, Optimized, and QPG models.

Table 18   Query response time and query speedup factor for GPU

Q. No Query operation Conventional Optimized QPG Proposed C/P O/P QPG/P

Q1 Write 67 57 45 38 1.8 1.5 1.2
Q2 Write 364 356 256 250 1.5 1.4 1.0
Q3 Write 78 87 95 60 1.3 1.5 1.6
Q4 Write 2435 2768 3012 2045 1.2 1.4 1.5
Q5 Read 5978 3856 4536 3746 1.6 0.7 1.2
Q6 Read 10,930 13,426 10,453 8769 1.2 0.4 1.2
Q7 Read 5557 4964 1909 3284 1.7 4.1 0.6
Q8 Read 386 332 450 225 1.7 22.1 2.0
Q9 Read 162 199 156 250 0.6 0.8 0.6
Q10 Read 1050 2103 3425 3323 0.3 0.6 1.0
Q11 Read 408 460 389 378 1.1 1.2 1.0
Q12 Read 1986 1356 1789 1234 1.6 1.1 1.4
Q13 Read 1586 1384 1374 1774 0.9 0.8 0.8
Q14 Write 150 104 91.5 90 1.7 1.2 1.0
Q15 Write 101 160 234 96 1.1 1.7 2.4
Speedup factor 1.2 1.4 1.2

Fig. 21   Query response time for GPU

4042	 N. Bansal et al.

1 3

4.2.6.3  Throughput and Latency through sharding  MongoDB achieves scalability
by utilizing a horizontal scaling technique named sharding because they are specifi-
cally designed to provide horizontal scalability to meet modern applications’ high
data volume demands. Sharding [7] is used to partition data horizontally across mul-
tiple servers or shards. It allows distributing the data across the cluster of machines
to increase data storage capacity and improve query performance. To check the scal-
ability of the proposed model, we have experimented by distributing the data among
different clusters (nodes), as shown in Table 19. Our proposed model is deployed on
MongoDB Atlas, which provides sharding capabilities to efficiently distribute the
data. The general process for distributing data among different clusters in MongoDB:

(a)	 Set up the Clusters: Create individual clusters to host the shards. Each cluster
should have its own set of servers running MongoDB instances. To experiment,
we have created 2, 3, and 4 Clusters having 3 nodes each.

(b)	 Enable Sharding: Enable sharding on the clusters by configuring the config serv-
ers and enabling sharding for the relevant databases or collections.

(c)	 Define Sharding Key: The sharding key determines how data is divided across
the clusters. There are various sharding keys named range-based, hash-based,
and compound-based. We have chosen hash-based keys for our work because it
automatically distributes the documents uniformly across the shards.

(d)	 Distribute Data: Insert or migrate data into the sharded collections. MongoDB
distributes the data across the shards based on the defined sharding key. The
sharded clusters ensure load balancing of read and write operations and uniform
data distribution.

After establishing the experimental setup, we proceeded with conducting experi-
ments to evaluate the scalability of the proposed model using sharding on the scaled
data, as detailed in Table 16. Specifically, we focus on two key parameters across the
distributed data on different nodes: (a) Throughput (Sect. 4.2.7.1), and (b) Latency
(Sect. 4.2.7.2).

Table 19   Details of sharded clusters

Parameters 3 nodes 6 nodes 9 nodes 12 nodes

No. of Sharded Clusters 1 2 3 4
Replication 3 3 3 3
Primary Node 1 2 (1 per shard) 3 (1 per shard) 4 (1 per shard)
Secondary Nodes 2 4 (2 per shard) 6 (2 per shard) 8 (2 per shard)
No. of Config servers 1 2 3 4
Shard Key Hash-based Hash-based Hash-based Hash-based
Distributed data Balanced Balanced Balanced Balanced

4043

1 3

Schema generation for document stores using workload‑driven…

4.2.6.4  Throughput  Throughput refers to how much work or data can be processed
by the database system within a given time frame. It represents the rate at which
MongoDB can handle and process operations, such as reads, writes, and queries. To
maximize throughput in MongoDB, it is recommended to carefully design the data-
base schema, optimize queries, utilize appropriate indexes, and scale the deployment
horizontally by adding more servers or shards as needed. To calculate the throughput
of the distributed data on different nodes, Apache JMeter—a tool known for meas-
uring metrics like throughput and latency. Various test cases for CRUD operations
are designed to compare the performance of proposed models against existing ones.
Table 20 provides the measured throughput (operations per minute(ops/mint)) for
different models on varying numbers of nodes. The graphical representation is shown
in Fig. 22. For the Conventional model, the throughput ranges from 510 ops/mint (3
nodes) to 1003 ops/mint (12 nodes). There is slightly better throughput for the Opti-
mized model than the Conventional model, ranging from 514 ops/mint (3 nodes) to
1128 ops/mint (12 nodes). For the QPG model, the throughput ranges from 501 ops/
mint (3 nodes) to 1045 ops/mint (12 nodes. For the Proposed model, the throughput
is highest, ranging from 518 ops/mint (3 nodes) to 1169 ops/mint (12 nodes). Overall,
the results indicate that the proposed model achieves the highest throughput, followed
by the optimized and QPG models. Furthermore, as the number of nodes increases,
there is a general trend of improved throughput across all models, demonstrating the
benefits of horizontal scaling.

4.2.6.5  Latency  Latency refers to the delay between requesting and receiving a
response from the server. While sharding can improve scalability and throughput, it
can introduce additional latency due to the system’s distributed nature. The latency
(milliseconds(ms)) results for data distribution over different nodes are presented in
Table 21. Figure 23 provides a graphical representation of the latency. The conven-
tional model demonstrates low latency, ranging from 3.9 ms (3 nodes) to 27 ms (12
nodes). The optimized model has constant performance across node configurations,
with latency ranging from 3.5 ms (3 nodes) to 29.7 ms (12 nodes). The latency of the
QPG model ranges from 4.1 ms (3 nodes) to 29.1 ms (12 nodes), which is equivalent
to the conventional and optimized models. The proposed model has constant latency
ranging from 3.3 ms (3 nodes) to 28.4 ms (12 nodes), similar to the other models.
Overall, there is a modest rising trend in latency as the number of nodes grows, indi-
cating that processing time may increase. In conclusion, all four models demonstrate
relatively low and comparable latency, with different node variations.

Table 20   Throughput (ops/
mint) comparison on various
distributed nodes

Nodes Conventional Optimized QPG Proposed

3 510 514 501 518
6 619 635 605 698
9 856 901 845 920
12 1003 1128 1045 1169

4044	 N. Bansal et al.

1 3

5 � Conclusion

Designing a NoSQL database schema requires not only knowledge of data but also
an understanding of how the application needs to access the data. This paper pre-
sents an automatic workload-driven model for the logical schema of a document-
based NoSQL database from a conceptual model. The model takes the conceptual
model and the application workload in estimated data volume and query workload.
The query graphs are generated from the application workload to study the query
characteristics. The characteristics are represented using query labels. These labels
are used to transform the conceptual model into MongoDB logical schema.

This paper has designed a model to minimize data modeling hardships for the
popular database named MongoDB. The proposed model does not rely on rules of
thumb to select the appropriate schema or require expert help to design a logical
schema. Therefore, the proposed work benefits novice programmers and helps them
to save time for schema design decisions during the early development phase of any
application’s design.

We employed three state-of-the-art schema generation models termed conven-
tional, optimized, and QPG to validate the performance of the proposed model. Sev-
eral parameters, including query response time, query speedup factor, read and write

Fig. 22   Throughput (ops/mint) on various distributed nodes

Table 21   Latency on various
distributed nodes

Nodes Conventional Optimized QPG Proposed

3 3.9 3.5 4.1 3.3
6 14 12.5 15.2 13.8
9 21 20.5 22.2 20.8
12 27 29.7 29.1 28.4

4045

1 3

Schema generation for document stores using workload‑driven…

latency, aggregate pipeline efficiency improvement, storage space, collection-wise
performance, and scalability, are used to compare the proposed model to existing
models: Conventional, Optimized, and QPG. The experimental results show the pro-
posed model outperforms conventional, optimized, and QPG models. It achieved a
1.2, 1.1, and 1.3 speedup factor over the respective models. Additionally, the pro-
posed model improved aggregate pipeline efficiency by 17.5%, 15%, and 10% com-
pared to the conventional, optimized, and QPG models. The proposed model show-
cased advantages in terms of good performance in terms of storage space utilization,
with lower read and write latencies. It exhibited good performance when scaling the
volume to double. Furthermore, the proposed model enables the system to efficiently
handle growing data volumes by implementing horizontal scaling techniques, result-
ing in high throughput and low latency. This highlights the efficiency and effective-
ness of our model in handling distributed data scenarios. Based on these findings,
it is evident that the proposed model surpasses the existing models (Conventional,
Optimized, and QPG) in multiple aspects, including query performance, storage
space efficiency, aggregate pipeline efficiency, read–write latency, collection-wise
performance, scalability, throughput and latency. Therefore, the proposed model
effectively tackles the challenges associated with managing the variety and volume
of big data through the well-designed schema. This schema design significantly
improves system performance and guarantees scalability for datasets of any size. As
future work we intend to expand the similar concept to other NoSQL categories, like
column and graph databases.

Acknowledgements  The authors would like to thank the editor and anonymous reviewers whose insight-
ful comments helped to improve the readability and quality of this paper.

Author contributions  NB: Writing Original Draft, Writing—Reviewing and Editing, Conceptualization,
Methodology, Programming, Validation, SS: Supervision, Validation, Writing—Reviewing and Editing,
LKA: Supervision, Validation, Writing—Reviewing and Editing.

Funding  Not Applicable.

Fig. 23   Latency comparison on distributed nodes

4046	 N. Bansal et al.

1 3

Data availability  Available on Request.

Declarations 

Conflict of interest  Not Applicable.

References

	 1.	 Davoudian A, Chen L, Liu M (2018) A survey on NoSQL stores. ACM Comput Surv. https://​doi.​
org/​10.​1145/​31586​61

	 2.	 Patel JM (2016) Operational NoSQL systems: What’s new and what’s next? Computer 49:23–30.
https://​doi.​org/​10.​1109/​MC.​2016.​118

	 3.	 Azad P, Navimipour NJ et al (2020) The role of structured and unstructured data managing mecha-
nisms in the Internet of things. Cluster Comput. https://​doi.​org/​10.​1007/​s10586-​019-​02986-2

	 4.	 Faccia A, Cavaliere LPL, Petratos P, Mosteanu NR (2022) Unstructured over structured, big data
analytics and applications in accounting and management. In: Proceedings of the 2022 6th Interna-
tional Conference on Cloud and Big Data Computing, pp 37–41. https://​doi.​org/​10.​1145/​35559​62.​
35559​69

	 5.	 Stonebraker M (2010) SQL databases v. NoSQL databases. Commun ACM 53:10–11. https://​doi.​
org/​10.​1145/​17216​54.​17216​59

	 6.	 Vera-Olivera H, Guo R, Huacarpuma RC et al (2021) Data modeling and NoSQL databases-a sys-
tematic mapping review. ACM Comput Surv. https://​doi.​org/​10.​1145/​34576​08

	 7.	 Database Sharding: Concepts and Examples. https://​www.​mongo​db.​com/​featu​res/​datab​ase-​shard​
ing-​expla​ined

	 8.	 Wang L, Zhang S, Shi J et al (2015) Schema management for document stores. Proc VLDB Endow
8(9):922–933. https://​doi.​org/​10.​14778/​27775​98.​27776​01

	 9.	 Gómez P, Roncancio C, Casallas R (2021) Analysis and evaluation of document-oriented structures.
Data Knowl Eng 134:101893. https://​doi.​org/​10.​1016/j.​datak.​2021.​101893

	10.	 Mior MJ, Salem K, Aboulnaga A, Liu R (2017) NoSE: schema design for NoSQL applications.
IEEE Trans Knowl Data Eng 29:2275–2289. https://​doi.​org/​10.​1109/​TKDE.​2017.​27224​12

	11.	 Li C (2010) Transforming relational database into HBase: a case study. In: Proceedings 2010 IEEE
International Conference on Software Engineering and Service Sciences, ICSESS 2010, pp 683–
687. https://​doi.​org/​10.​1109/​ICSESS.​2010.​55524​65

	12.	 Ceresnak R, Dudas A, Matiasko K, Kvet M (2021) Mapping rules for schema transformation : SQL
to NoSQL and back. In: International Conference on Information and Digital Technologies 2021,
IDT 2021, pp 52–58. https://​doi.​org/​10.​1109/​IDT52​577.​2021.​94976​29

	13.	 Imam AA, Basri S, Ahmad R et al (2018) Data modeling guidelines for NoSQL document-store
databases. Int J Adv Comput Sci Appl 9:544–555. https://​doi.​org/​10.​14569/​IJACSA.​2018.​091066

	14.	 De Lima C, Dos Santos Mello R (2015) A workload-driven logical design approach for NoSQL
document databases. In: 17th International Conference on Information Integration and Web-based
Applications and Services, iiWAS 2015 - Proceedings. https://​doi.​org/​10.​1145/​28371​85.​28372​18

	15.	 Jia T, Zhao X, Wang Z, D Gong (2016) Model transformation and data migration from relational
database to MongoDB. In: 2016 IEEE International Congress on Big Data (BigData Congress)

	16.	 Kuszera EM, Peres LM, Didonet Del Fabro M (2022) Exploring data structure alternatives in the
RDB to NoSQL document store conversion process. Inf Syst 105:101941. https://​doi.​org/​10.​1016/j.​
is.​2021.​101941

	17.	 Chen L, Davoudian A, Liu M (2022) A workload-driven method for designing aggregate-oriented
NoSQL databases. Data Knowl Eng 142:102089. https://​doi.​org/​10.​1016/j.​datak.​2022.​102089

	18.	 DB-Engines Ranking - popularity ranking of relational DBMS. https://​db-​engin​es.​com/​en/​ranki​ng/​
relat​ional+​dbms. Accessed 21 Jun 2022

	19.	 Rodríguez-Mazahua L, Rodríguez-Enríquez CA, Sánchez-Cervantes JL et al (2016) A general
perspective of big data: applications, tools, challenges and trends. J Supercomput 72:3073–3113.
https://​doi.​org/​10.​1007/​s11227-​015-​1501-1

https://doi.org/10.1145/3158661
https://doi.org/10.1145/3158661
https://doi.org/10.1109/MC.2016.118
https://doi.org/10.1007/s10586-019-02986-2
https://doi.org/10.1145/3555962.3555969
https://doi.org/10.1145/3555962.3555969
https://doi.org/10.1145/1721654.1721659
https://doi.org/10.1145/1721654.1721659
https://doi.org/10.1145/3457608
https://www.mongodb.com/features/database-sharding-explained
https://www.mongodb.com/features/database-sharding-explained
https://doi.org/10.14778/2777598.2777601
https://doi.org/10.1016/j.datak.2021.101893
https://doi.org/10.1109/TKDE.2017.2722412
https://doi.org/10.1109/ICSESS.2010.5552465
https://doi.org/10.1109/IDT52577.2021.9497629
https://doi.org/10.14569/IJACSA.2018.091066
https://doi.org/10.1145/2837185.2837218
https://doi.org/10.1016/j.is.2021.101941
https://doi.org/10.1016/j.is.2021.101941
https://doi.org/10.1016/j.datak.2022.102089
https://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking/relational+dbms
https://doi.org/10.1007/s11227-015-1501-1

4047

1 3

Schema generation for document stores using workload‑driven…

	20.	 Rabl T, Sadoghi M, Jacobsen HA et al (2012) Solving big data challenges for enterprise applica-
tion performance management. Proc VLDB Endow 5:1724–1735. https://​doi.​org/​10.​14778/​23675​
02.​23675​12

	21.	 da Silva LF, Lima JVF (2023) An evaluation of relational and NoSQL distributed databases on a
low-power cluster. J Supercomput. https://​doi.​org/​10.​1007/​s11227-​023-​05166-7

	22.	 Ko HKE, Lee YJK (2020) Techniques and guidelines for effective migration from RDBMS to
NoSQL. J Supercomput 76:7936–7950. https://​doi.​org/​10.​1007/​s11227-​018-​2361-2

	23.	 Khatibi E, Mirtaheri SL (2019) A dynamic data dissemination mechanism for cassandra NoSQL
data store. J Supercomput 75:7479–7496. https://​doi.​org/​10.​1007/​s11227-​019-​02959-7

	24.	 Zilio D, Rao J, Lightstone S, et al. (2004) DB2 Design advisorintegrated automatic physical data-
base design. In: Proceedings 2004 VLDB Conference, pp 1087–1097. https://​doi.​org/​10.​1016/​b978-​
01208​8469-8/​50095-4

	25.	 Bruno N, Chaudhuri S (2005) Automatic physical database tuning: a relaxation-based approach. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp 227–238.
https://​doi.​org/​10.​1145/​10661​57.​10661​84

	26.	 Roy-Hubara N, Sturm A (2020) Design methods for the new database era: a systematic literature
review. Softw Syst Model 19:297–312. https://​doi.​org/​10.​1007/​S10270-​019-​00739-8/​TABLES/1

	27.	 Roy-Hubara N (2019) The quest for a database selection and design method. CEUR Workshop Proc
2370:69–77

	28.	 Störl U, Klettke M, Scherzinger S (2020) NoSQL schema evolution and data migration: State-of-
the-art and opportunities. Adv Database Technol. https://​doi.​org/​10.​5441/​002/​edbt.​2020.​87

	29.	 Gómez P, Casallas R, Roncancio C (2016) Data schema does matter, even in NoSQL systems!.
In: Proceedings - International Conference on Research Challenges in Information Science 2016-
Augus:1–6. https://​doi.​org/​10.​1109/​RCIS.​2016.​75493​40

	30.	 Mior MJ (2014) Automated schema design for NoSQL databases. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp 41–45. https://​doi.​org/​10.​1145/​26026​
22.​26026​24

	31.	 Hewasinghage M, Nadal S, Abelló A, Zimányi E (2023) Automated database design for docu-
ment stores with multicriteria optimization. Knowl Inf Syst 65:3045–3078. https://​doi.​org/​10.​1007/​
s10115-​023-​01828-3

	32.	 Roy-Hubara N, Sturm A, Shoval P (2023) Designing NoSQL databases based on multiple require-
ment views. Data Knowl Eng 145:102149. https://​doi.​org/​10.​1016/j.​datak.​2023.​102149

	33.	 Imam AA, Basri S, Ahmad R, González-Aparicio MT (2019) Schema proposition model for NoSQL
applications. Adv Intell Syst Comput 843:30–39. https://​doi.​org/​10.​1007/​978-3-​319-​99007-1_3

	34.	 Imam AA, Basri S, Ahmad R et al (2020) Dsp: schema design for non-relational applications. Sym-
metry 12:1–33. https://​doi.​org/​10.​3390/​sym12​111799

	35.	 Chebotko A, Kashlev A, Lu S (2015) A big data modeling methodology for apache cassandra. In:
Proceedings of the 2015 IEEE International Congress on Big Data, Bigdata Congress 2015, pp 238–
245. https://​doi.​org/​10.​1109/​BigDa​taCon​gress.​2015.​41

	36.	 Jia T, Zhao X, Wang DG-2016 II, 2016 U (2016) Model transformation and data migration from
relational database to MongoDB. In: In 2016 IEEE International Congress on Big Data (BigData
Congress), pp 60–67

	37.	 Lima C, Mello RS (2016) On proposing and evaluating a NoSQL document database logical
approach. Int J Web Inf Syst 12:398–417. https://​doi.​org/​10.​1108/​IJWIS-​04-​2016-​0018

	38.	 Reniers V, Van Landuyt D, Rafique A, Joosen W (2017) Schema design support for semi-structured
data: Finding the sweet spot between NF and De-NF. In: Proceedings of the 2017 IEEE Interna-
tional Conference on Big Data, Big Data 2017 2018-Jan, pp 2921–2930. https://​doi.​org/​10.​1109/​
BigDa​ta.​2017.​82582​61

	39.	 Davoudian A (2021) A workload-driven framework for NoSQL data modeling and partitioning,
PhD Dissertation. Carleton University

	40.	 Hewasinghage M, Abelló A, Varga J, Zimányi E (2021) A cost model for random access queries in
document stores. VLDB J 30:559–578. https://​doi.​org/​10.​1007/​s00778-​021-​00660-x

	41.	 Hewasinghage M, Abelló A, Varga J, Zimányi E (2020) DocDesign: cost-based database design for
document stores. In: 32nd International Conference on Scientific and Statistical Database Manage-
ment (SSDBM), ACM, pp 1–4. https://​doi.​org/​10.​1145/​34009​03.​34016​89

	42.	 Engels G, Gogolla M, Hohenstein U et al (1992) Conceptual modelling of database applications
using an extended ER model. Data Knowl Eng 9:157–204. https://​doi.​org/​10.​1016/​0169-​023X(92)​
90008-Y

https://doi.org/10.14778/2367502.2367512
https://doi.org/10.14778/2367502.2367512
https://doi.org/10.1007/s11227-023-05166-7
https://doi.org/10.1007/s11227-018-2361-2
https://doi.org/10.1007/s11227-019-02959-7
https://doi.org/10.1016/b978-012088469-8/50095-4
https://doi.org/10.1016/b978-012088469-8/50095-4
https://doi.org/10.1145/1066157.1066184
https://doi.org/10.1007/S10270-019-00739-8/TABLES/1
https://doi.org/10.5441/002/edbt.2020.87
https://doi.org/10.1109/RCIS.2016.7549340
https://doi.org/10.1145/2602622.2602624
https://doi.org/10.1145/2602622.2602624
https://doi.org/10.1007/s10115-023-01828-3
https://doi.org/10.1007/s10115-023-01828-3
https://doi.org/10.1016/j.datak.2023.102149
https://doi.org/10.1007/978-3-319-99007-1_3
https://doi.org/10.3390/sym12111799
https://doi.org/10.1109/BigDataCongress.2015.41
https://doi.org/10.1108/IJWIS-04-2016-0018
https://doi.org/10.1109/BigData.2017.8258261
https://doi.org/10.1109/BigData.2017.8258261
https://doi.org/10.1007/s00778-021-00660-x
https://doi.org/10.1145/3400903.3401689
https://doi.org/10.1016/0169-023X(92)90008-Y
https://doi.org/10.1016/0169-023X(92)90008-Y

4048	 N. Bansal et al.

1 3

	43.	 Pirahesh H, Hellerstein JM, Hasan W (1992) Extensible/rule based query rewrite optimization in
starburst. ACM SIGMOD Rec 21:39–48. https://​doi.​org/​10.​1145/​141484.​130294

	44.	 Rosenthal A, Galindo-Legaria C (1990) Query graphs, implementing trees, and freely-reorderable
outerjoins. Proc ACM SIGMOD Int Conf Manage Data 1990:291–299

	45.	 Data Modeling Introduction — MongoDB Manual. https://​www.​mongo​db.​com/​docs/​upcom​ing/​
core/​data-​model​ing-​intro​ducti​on/. Accessed 26 Jun 2022

	46.	 What Customer Lifetime Value (CLV) Is & How to Calculate It | NetSuite. https://​www.​netsu​ite.​
com/​portal/​resou​rce/​artic​les/​ecomm​erce/​custo​mer-​lifet​ime-​value-​clv.​shtml. Accessed 19 Jan 2023

	47.	 The Professional Client, IDE and GUI for MongoDB | Studio 3T. https://​studi​o3t.​com/. Accessed 8
Jun 2023

	48.	 Fleming PJ, Wallace JJ (1986) How not to lie with statistics: the correct way to summarize bench-
mark results. Commun ACM 29:218–221. https://​doi.​org/​10.​1145/​5666.​5673

	49.	 Henry OB (2019) MongoDB aggregation stages and pipelining. White paper, pp 1–38

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Neha Bansal1 · Shelly Sachdeva1 · Lalit K. Awasthi2

 *	 Shelly Sachdeva
	 shellysachdeva@nitdelhi.ac.in

	 Neha Bansal
	 nehagoel@nitdelhi.ac.in

	 Lalit K. Awasthi
	 lalit@nith.ac.in

1	 National Institute of Technology Delhi, Delhi, India
2	 National Institute of Technology Hamirpur, Hamirpur, India

https://doi.org/10.1145/141484.130294
https://www.mongodb.com/docs/upcoming/core/data-modeling-introduction/
https://www.mongodb.com/docs/upcoming/core/data-modeling-introduction/
https://www.netsuite.com/portal/resource/articles/ecommerce/customer-lifetime-value-clv.shtml
https://www.netsuite.com/portal/resource/articles/ecommerce/customer-lifetime-value-clv.shtml
https://studio3t.com/
https://doi.org/10.1145/5666.5673

	Schema generation for document stores using workload-driven approach
	Abstract
	1 Introduction
	2 Related work and motivation
	2.1 Workload-agnostic (WA) approach
	2.2 Workload-driven (WD) approach

	3 Schema generation for document stores using workload-driven approach
	3.1 Model input
	3.1.1 Conceptual model
	3.1.2 Application workload

	3.2 Intermediate transformation
	3.2.1 Generate query graphs

	3.3 Generate query labels
	3.3.1 Final schema generation
	3.3.1.1 Generation of schema graph and label assignment
	3.3.1.2 Transformation into logical schema

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Experimental evaluation
	4.2.1 Query response time and speedup
	4.2.2 Write and read latency
	4.2.3 Efficiency improvement using aggregate pipeline
	4.2.4 Storage space
	4.2.5 Collection-wise performance
	4.2.6 Scalability
	4.2.6.1 Scalability for CPU
	4.2.6.2 Scalability for GPU
	4.2.6.3 Throughput and Latency through sharding
	4.2.6.4 Throughput
	4.2.6.5 Latency

	5 Conclusion
	Acknowledgements
	References

