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Abstract
Link prediction aims to anticipate the probability of a future connection between 
two nodes in a given network based on their previous interactions and the network 
structure. Link prediction is a rapidly evolving field of research that has attracted 
interest from physicists and computer scientists. Over the years, numerous methods 
have been developed for link prediction, encompassing similarity-based indices, 
machine learning techniques, and more. While existing surveys have covered 
link prediction research until 2020, there has been a substantial surge in research 
activities in recent years, particularly between 2021 and 2023. This increased interest 
underscores the pressing need to comprehensively explore the latest advancements 
and approaches in link prediction. We analyse and present the most notable 
research from 2018 to 2023. Our goal is to offer a comprehensive overview of the 
recent developments in the field. Besides summarizing and presenting previous 
experimental results, our survey offers a comprehensive analysis highlighting the 
strengths and limitations of various link prediction methods.

Keywords  Link prediction · Machine learning · Graph neural network

1  Introduction

Link prediction is the task that estimates the probability of a future link between two 
nodes within a network by considering their past interactions and the overall network 
topology. A network, also known as a graph, is a collection of nodes (entities) and 
edges (connections or interactions) between these nodes. It is a topic of significant 
interest in network analysis due to its diverse applications. The prediction of links 
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plays an important role in comprehending the network’s structure and dynamics and 
making accurate predictions about its future behaviour.

Link prediction has various applications across different domains. First, in rec-
ommender systems [1–3], this task can be used to predict new items or products or 
services based on the user’s actions and preferences, improving customer satisfac-
tion and thereby increasing sales. In social networks [4, 5], link prediction helps 
users to find people they may know but have not yet connected with. Also, in online 
marketplaces like a marketplace on Facebook, link prediction can be used to recom-
mend products to users based on their network connections. In the criminal networks 
[6, 7], by leveraging the analysis of relationships and interactions between individu-
als, law enforcement agencies can uncover criminal activities like drug trafficking 
or money laundering and determine the connections between those involved in such 
illegal activities. In the security domain [8], we use link prediction techniques to 
assess the trustworthiness of individual nodes in the network. For community detec-
tion [9, 10] problem, using link prediction could detect a community in a network. 
This can help analyse the network’s structure and function. Identifying missing links 
through link prediction is a valuable tool in network analysis for anomaly detection 
[11]. It can help uncover unexpected or abnormal connections in the network that 
may not be immediately apparent and identify potential anomalies that may indi-
cate suspicious or malicious activity. Finally, in the study of biological networks, 
specifically in predicting protein interactions [12, 13], link prediction algorithms 
can be used to predict new interactions between proteins based on existing interac-
tions, allowing researchers to generate hypotheses about the function of previously 
uncharacterized proteins.

Much research has been published on link prediction techniques, covering topics 
such as the application of link prediction and link prediction in complex networks, 
summarized in Table 1. Wang et al. [14] provided a comprehensive review of the 
current state-of-the-art in complex networks. Martinez et al. [15] also surveyed the 
development of link prediction algorithms. In contrast, Kumar et al. [16] focused on 
the most advanced algorithms and applications of link prediction in social networks, 
including similarity, probabilistic, and algorithmic methods. However, the previous 
survey did not consider graph neural networks, which have become increasingly 
prominent recently.

In recent years, the field of link prediction has witnessed a significant increase 
in research activities. Particularly, between 2021 and 2023, there is an abundance 

Table 1   Characteristics of the reviewed literature reviews

Article Year Objectives and topics

Linyuan et al. [17] 2011 Summarize popular link prediction algorithms for complex networks
Wang et al. [14] 2015 Link prediction for social networks in a systematic manner, techniques, and 

challenges
Martinez et al. [15] 2016 Link prediction in complex networks
Kumar et al. [16] 2020 The most advanced algorithms and applications of link prediction in social 

networks
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of publications, including over 400 articles on platforms like ScienceDirect. This 
heightened interest emphasizes the need for a comprehensive exploration of the lat-
est advancements and approaches in link prediction.

Our review aims to conduct a state-of-the-art survey on link prediction research 
since 2018, focusing on the studies not covered in previous surveys and those 
utilizing graph neural networks (GNNs). Our survey aims to offer a fresh perspective 
on current approaches in link prediction, providing insights into fundamental 
problems and strategies while assisting researchers in understanding this field’s 
developments and future directions.

This paper presents a comprehensive survey of the latest link prediction methods. 
It distinguishes itself from other surveys in two aspects. Firstly, we provide 
simplified explanations of each method using schematic representations. Secondly, 
we delve into current techniques, particularly in machine learning and deep learning, 
specifically focusing on graph neural networks. We analyse various articles, extract 
relevant databases, and identify employed measures. Furthermore, we highlight 
the strengths and limitations of each method to aid researchers in selecting the 
appropriate method and dataset for their specific research question. We also discuss 
the trend and gaps in link prediction.

We have classified the methods into four categories with subcategories based on 
their underlying techniques:

•	 Similarity-based methods

–	 Community detection-based approaches
–	 Random walk-based approaches

•	 Dimensionality reduction-based methods

–	 Embedding-based methods
–	 Matrix factorization-based methods

•	 Machine learning technique-based methods

–	 Supervised learning approaches
–	 Unsupervised learning approaches
–	 Deep learning techniques
–	 Graph neural network-based methods
–	 Reinforcement learning

•	 Other methods

In order to provide a comprehensive overview of recent advancements in link 
prediction techniques, we formulated several sub-questions to guide our research. 
These sub-questions encompassed the main categories of link prediction techniques, 
the types of networks concerned by ink prediction, the performance metrics used for 
evaluation, and the future research directions and potential areas for improvements 
in the field.

To address these sub-questions, we conducted an extensive search using 
prominent online databases such as Scopus, SpringerLink, ACM Digital Library, 
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IEEE Xplore, and ScienceDirect. Our search focused on paper titles, and we utilized 
various search keywords related to link prediction, machine learning, deep learning, 
social networks, complex networks, dynamic networks, and temporal networks.

Based on our research and analysis of relevant articles, Table  2 lists the top 
Universities in countries interested in link prediction research.

The rest of the paper is structured as follows: In Sect. 2, we introduce the problem 
of link prediction, the datasets, types of networks, and the evaluation measures used 
for the link prediction algorithms. In Sect. 3, we delve into the link prediction pro-
cess and examine the various approaches, exploring their strengths and limitations 
in Sect. 5, we discuss the trends and gaps observed in link prediction. Finally, we 
present the conclusion in Sect. 6.

2 � Link prediction

In this section, we define the link prediction problem and give an overview of the 
datasets, the evaluation measures, and the type of networks used in link prediction 
algorithms.

2.1 � Definition

Link prediction is a task in network analysis that aims at predicting the likelihood of 
future connections between nodes in a network. It uses the existing network structure 
and sometimes node attributes to estimate the presence or absence of potential links. 
This task is often applied to graphs G(V, E), where V represents the set of nodes 
as entities and E represents the set of edges as connections or links. The network’s 
existing relationships help predict potential connections between unconnected 
nodes.

Consider the example in Fig. 1. If node A is linked to both nodes B and D, nodes 
B and D are not linked, and node A is a common link between B and D, then link 
prediction would suggest a potential connection between D and B, as well as C and 
D.

Table 2   Top Universities in countries of interest for link prediction research

Country University

USA Stanford University
China University of Electronic Science and Technology of China
India The Department of Science and Technology (DST)
USA Carnegie Mellon University
France CNRS Centre National de la Recherche Scientifique
Germany Max Planck Institute for Informatics
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2.2 � Networks used in link prediction

There are several types of networks that are used in link prediction. The specific 
methods and techniques used for link prediction rely on the data type (network) 
and relationships being evaluated. The most prevalent networks employed in link 
prediction approaches are enumerated in this section and represented in Fig. 2.

In Table 3, we represent a compilation of different types of networks and the 
corresponding articles that have used these networks for link prediction.

Fig. 1   Example of link prediction in network graph

Fig. 2   Representation of different types of networks
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2.2.1 � Static network

A static network is a type of network that does not change over time, with 
nodes and edges remaining constant. The paper [18] presents a method for link 
prediction in static networks based on the popularity of nodes.

2.2.2 � Dynamic network

A dynamic network is a kind of network that changes over time, with new nodes 
and edges developing or going away as the network progresses. A dynamic network 
is used in link prediction to represent relationships between nodes that change over 
time, such as interactions between people in a social network. The authors employ 
a dynamic network to identify missing links in [19–21]. The method used in [19] 
is the time-varying topological feature learning, which addresses the temporal 
dependencies among nodes and connections in dynamic networks.

2.2.3 � Direct and indirect networks

A social network can be considered a direct or indirect network. A direct network 
is the asymmetric nature of links like Twitter. User A can follow user B or B 
following A. The indirect network is the symmetric nature of links like Facebook. 
The authors in [22] present an effective method for predicting directional links in 
directed networks.

2.2.4 � Weighted network

A weighted network is a type of network where each link between nodes has a 
weight that can represent various aspects of the relationship, such as its strength 

Table 3   Type of the network 
with references

Type of networks References

Ego network [29–31]
Multiplex network [24, 32–37]
Directed network [38–43]
Sign network [44, 45]
Dynamic network [46, 47, 30, 40, 48–55]
Knowledge network [27, 56, 57]
Static network [39, 54, 58–61, 12, 

62–68, 30, 58, 
69–80, 7, 81–83]

Weighted network [20, 84]
Heterogeneous network [79, 85]
Undirected network [64, 65, 86] [66, 70, 

72, 73] [63, 64, 71]
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or importance. To predict links between nodes, link prediction algorithms often 
use weighted networks to capture their relationships. Recently, the paper [20] 
introduced a novel temporal link prediction model called GCN-GAN, specifically 
designed for predicting weighted links in dynamic networks. GCN-GAN is a 
nonlinear model that is well-suited for handling the complexities of weighted 
dynamic networks.

2.2.5 � Multiplex network

A multiplex network is a network with many layers, where each layer represents 
a different type of relationship or interaction between nodes. Nodes are connected 
by multiple types of edges across different layers, capturing various dimensions of 
their associations. Multiplex networks provide a multidimensional representation 
of the network by considering diverse connections such as friendships, business 
partnerships, and familial ties. They offer a richer and more comprehensive 
understanding of complex social interactions in social networks. Najari et  al. [23] 
presented an LP framework based on proximity-based characteristics and interlayer 
similarity (LPIS). Nasiri et al. [24] suggested a novel technique for predicting links 
in multiplex networks using topologically biased random walks (MLRW).

2.2.6 �  Knowledge network

A knowledge network is a multirelational graph composed of entities and relations 
regarded as nodes and different types of edges, respectively [25]. In [26], the authors 
performed a comparative analysis of knowledge graph embedding methods for 
link prediction. Tao et al. [27] tackled the problem of temporal link prediction in a 
dynamic knowledge graph (KG).

2.2.7 � Signed network

A signed network is a type of network where edges have positive or negative 
weights. In a social network analysis, the positive weight of an edge indicates 
friendship between two nodes, and the negative weight of an edge indicates enmity 
between two nodes. A link prediction method is proposed in the work of Yuan et al. 
[28]. It leverages the structural information of signed social networks. The method 
involves comparing user similarity and utilizing the structural information of the 
signed social network to predict links.

2.2.8 � Ego network

An ego network is a cluster of network nodes directly linked to a central node called 
the ego. The ego network encompasses the ego and its neighbouring nodes and 
their connections. The authors in [29] proposed an ELP algorithm that uses an ego 
network in a social network with relevant features based on the similarity approach.
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2.2.9 � Heterogeneous networks

Heterogeneous networks, also known as heterogeneous information networks 
or multi-modal networks, are characterized by multiple types of nodes and 
edges. These networks incorporate diverse entities, such as users, items, events, 
or concepts, where the edges represent different types of relationships or 
interactions, including friendship connections, co-occurrence, similarity, citation, 
and other relevant associations.

2.3 � Popular datasets used in link prediction

Numerous datasets have been developed to support research in Link prediction 
for many areas, such as social networks, biology, and citation networks. In the 
following, we overview some of the most widely used datasets and summarize 
each dataset’s key characteristics in Table 4.

•	 The Zachary’s Karate Club network [87] is a social network of friendships 
among 34 karate club members at a US university.

•	 Dolphin social network [88] is a network of dolphins living in Doubtful Sound 
in New Zealand.

•	 The Football network [89] is a network of American football games played 
between Division IA colleges during the regular season in the fall of 2000.

•	 The Jazz network [90] is a collaboration network of 115 jazz musicians where 
a link between two musicians denotes music played by both in a band.

•	 The USAir network [91] is an airline network of US airports and their 
connectivity.

•	 The Twitter dataset [92] is a non-bipartite graph. It was made available as part 
of the 2020 RecSys Challenge, as described by Belli et al. (2020).

•	 Ego-Facebook [93] is a large dataset. This dataset comprises “circles” or 
“friends lists” extracted from Facebook.

•	 Facebook NIPS network [94] is a social network dataset made publicly 
available in 2012 by Julian McAuley and Jure Leskovc. This undirected and 
unweighted network represents user-to-user friendships on Facebook. Each 
user is represented by a node and an associated link between two nodes 
representing each friendship.

•	 Email-Eu-core network [95] is an email communication network generated by 
members of a large European institution. A node represents each user in the 
network, and an edge is established between two nodes if at least one email is 
generated by one of the two users.

•	 Yeast [96] is a well-known biological dataset that consists of a protein–protein 
interaction network in the budding yeast Saccharomyces cerevisiae.

•	 The Power [97] is a dataset representing the power transmission network 
covering the western region of the USA.
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•	 CollegeMsg [98] the dataset contains records of messages exchanged on an 
online social network at the University of California, Irvine. It includes infor-
mation about the source user (sender), destination user (receiver), and times-
tamp of each message. The dataset covers a time period from April 2004 to 
October 2004. It provides insights into the communication patterns and inter-
actions within the online social network during this duration.

•	 Twitter-Foursquare [99] is a dataset that combines data from both the Twitter 
and Foursquare platforms. It is collected between May and September 2012. It 
specifically focuses on three major cities in the USA. The dataset includes tweets 
and check-ins obtained from users who had checked in during that time and 
shared their check-ins on Twitter.

•	 Vickers [100] Dataset was collected by Vickers and it consists of data obtained 
from 29 seventh-grade students in a school located in Victoria, Australia. The 
students were asked to nominate their classmates based on several relations, 
focusing on three specific layers: The relationship layer, the Best friends layer, 
and the Working preference layer.

2.4 �  Evaluation metrics

In this section, we present the measures commonly used to evaluate the results of 
link prediction algorithms as shown in Fig.  3. The choice of evaluation measures 
depends on several factors, such as the method used and the types of datasets. Some 
measures may be more suitable for certain methods or datasets than others, and 
the choice of measures can also depend on the research objective. For instance, if 
the aim is to identify as many true positive links as possible, recall might be more 
significant than precision. Conversely, precision may be more crucial if the focus is 
on minimizing false positives.

•	 Area Under the Receiver (AUC) is the area under the receiver operating 
characteristic curve (ROC) [105], which is a measure of the model’s ability 

Fig. 3   Most commonly used 
measures among the papers 
included in our survey
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to distinguish between positive and negative links. The formula to calculate 
the AUC score is shown in Equation (1), where n′ is the number of times 
the missing links have scores greater than the non-existing links, and n′′ is 
the number of times their scores are equal. Assuming that the scores are 
generated from an identical and independent distribution, the AUC score 
is around 0.5. A higher AUC value indicates a more efficient algorithm 
compared to random choice [106]. 

•	 Accuracy is a metric that indicates the percentage of correctly classified links 
by a link prediction model. It can be computed using the following formula: 

 where TP (True Positive) is the number of correctly predicted positive links. TN 
(True Negative) is the number of correctly predicted negative links.

	    FP (False Positive) is the number of incorrectly predicted positive links.
	   FN (False Negative) is the number of incorrectly predicted negative links.
•	 Precision is a metric used to evaluate the performance of a link prediction 

model. It measures the proportion of correctly classified positive links (i.e. 
links that actually exist) among all classified positive links. 

•	 Recall is the ratio of correctly classified positive links to the total number of 
positive links. 

•	 F1 Score is a measure of the balance between precision and recall. 

3 � Methods for link prediction

We classify link prediction methods based on recent literature (2020–2023). 
We reviewed about 80 papers covering similarity heuristics, machine learning, 
dimension reduction, and other approaches.

(1)AUC =
n� + 0.5n��

n

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
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3.1 � Similarity‑based methods

Similarity is a measure used to evaluate the level of similarity or connection 
between two nodes in a network. It is frequently used to predict the likelihood of a 
link forming between two nodes that are not currently connected in the network. The 
most similarity measures between nodes, used in link prediction studies, are local, 
quasi-local, and global indices. Local indices, such as Common Neighbours [107], 
Salton Index [108], Jaccard Index [109], Sorensen Index [110], Hub Promoted 
Index [111], Preferential Attachment Index [112], Adamic–Adar Index [113], and 
Resource Allocation Index [114], calculate scores based on the neighbourhood 
information of nodes with a path distance less than two. Global indices, like Katz 
[115], Random Walk [116], SimRank [117], Leicht-Holme-Newman Index (LHNI) 
[118], and Matrix Forest Index (MFI) [119], use information from the entire network 
to calculate scores with a path distance greater than two. Quasi-local indices, such 
as Local Random Walk [120] and Local Path Index [121], combine the advantages 
of local and global indices and calculate scores for nodes with a path distance of 
no more than two. These quasi-local approaches tend to have higher prediction 
accuracy compared to local methods.

In conclusion, these old metrics are adaptations of the common neighbour 
method that normalize or consider the significance of the neighbouring nodes to 
reduce biases resulting from uneven distribution of node degrees. These old meas-
ures are still being used in recent studies, often in combination with other methods. 
They are computed using the equations given in Table 5, where Γ x and Γ y repre-
sent the sets of neighbours of nodes x and y, respectively.

First, in [59], the authors introduce a new link prediction algorithm, CNDP 
(Common Neighbours Degree Penalization). The CNDP algorithm combines the 
network’s average clustering coefficient and topological characteristics, such as the 
number of shared neighbours, to calculate the node similarity score. By including 

Table 5   Most popular similarity-based metrics

Measure Equation References

Common Neighbours sCNxy = |Γ(x) ∩ Γ(y)| [107]
Jaccard Index (sJI) sJI(x, y) =

|ΓX∩ΓY|
|ΓX∪ΓY|

[109]

Salton Index (sSalton) sSalton(x, y) =
�ΓX∩ΓY�√
�ΓX�⋅�ΓY�

[122]

Hub Promoted Index (sHPI) sHPI(x, y) =
|ΓX∩ΓY|

min(|ΓX|,|ΓY|)
[111]

Hub Depressed Index (sHDI) sHDI(x, y) =
|Γx∩Γy|

max(|Γx|,|Γy|)
[111]

Leicht-Holme-Newman Index (sLLHN) sLLHN(x, y) =
|Γx∩Γy|
|Γx|⋅|Γy|

[118]

Adamic–Adar Index (sAA) sAA(x, y) =
∑

w∈Γx∩Γy

1

log(Γw)
[113]

Resource Allocation Index (sRA) sRA(x, y) =
∑

w∈Γx∩Γy

1

Γw
[114]

Preferential Attachment (sPA) sPA(x, y) = Γx ⋅ Γy [112]
SimRank (sSimRank) sSimRank(x, y) =

C

Γx⋅Γy
[117]

Random Walk Index (sRandomWalk) sRandomWalk(x, y) =
P(x,y)

P(x)⋅P(y)
[123]
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common neighbours in the calculation, this method improves upon the previously 
proposed adaptive degree penalization (ADP) method. The results demonstrate that 
CNDP delivers substantial improvements in accuracy and computational efficiency 
compared to other similar techniques. Additionally, CNDP considers both local 
and global features of the network, providing a more comprehensive and nuanced 
examination of the network structure. In the work of Ahmad et  al. [65], a novel 
algorithm called the Common Neighbour and Centrality-based Parameterized Algo-
rithm (CCPA) was introduced for complex network link prediction. This algorithm 
is based on two key node characteristics: the number of common neighbours and the 
centrality of the nodes, which is calculated using closeness and betweenness central-
ity measures. The “common neighbour” feature reflects the shared nodes between 
two nodes in the network. The effectiveness of CCPA was evaluated through experi-
ments on eight real-world datasets. The authors in [66] presented a novel similarity 
measure based on the local path information of nodes. The similarity score between 
two nodes is computed using the local information of nodes within a specified dis-
tance, which considers the direct connection between the nodes and all other shorter 
paths between them. This approach merges the strengths of two well-known sim-
ilarity indices, the Katz Index and Adamic–Adar. The authors in [67] proposed a 
parameter-free new similarity metric based on degree and path depth. The metric 
extends their previous work (Jibouni et al. [68]) that focused on local features such 
as node degree and global features, including path structure. The metric considers 
different length pathways to reduce the impact of high-degree nodes by using path 
lengths 2 and 3 and considering the degree of the source and destination nodes. 
The authors applied machine learning techniques such as K-nearest neighbours, 
logistic regression, artificial neural network, decision tree, random forest, and sup-
port vector machine (SVM) for binary classification. In [69], the authors present a 
novel multidimensional network model incorporating multiple public opinion fac-
tors dimensions. The model is designed to capture the complexity of link forma-
tion in “We the Media” networks, where various factors, including structural infor-
mation, occupational environments, interests, and social psychology, influence 
social user relationships. To evaluate the effectiveness of their model, the authors 
propose a link prediction algorithm specifically tailored for multidimensional net-
work links. The algorithm is compared against baseline methods such as the Com-
mon-Neighbourhood-Driven model, the Jaccard index, and the SimRank method. 
The empirical analysis was conducted on Weibo.com public opinion data. In [36], 
the author explores link prediction in multiplex networks and proposes a multiple-
attribute decision-making (MADM) approach to address the problem. By treating 
potential links in the target layer as alternatives and diverse layers in the network 
as attributes, the goal is to use information from all layers effectively. The proposed 
approach ranks alternatives based on ideality scores and assigns weights to different 
layers using a defined layer similarity measure based on cosine similarity. Extensive 
experiments demonstrate that the proposed method outperforms competing accu-
racy and running time approaches. In [53], the author proposed a model for grow-
ing networks and introduced novel time-sliced metrics to estimate the likelihood of 
missing links. These metrics, built upon established link prediction indices, exhibit 
superior performance compared to existing approaches, especially when the decay 
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factors are small. Additionally, the paper proposes function expressions for deter-
mining the optimal slice number and decay factor in real-world networks, enhancing 
the efficiency of link prediction. By leveraging these formulas, the method accu-
rately and efficiently predicts missing links by estimating the ageing speed of grow-
ing networks. The implementation steps and advantages of the time-sliced metrics 
are exemplified using the preferential attachment metric, further highlighting their 
effectiveness in networks with ageing sites.

In the article [29], the authors proposed an ELP algorithm that used an ego 
network in a social network with relevant features based on the similarity approach. 
The features considered are Egocommon Neighbours, Ego Resource Allocation, 
Ego Page Rank, Ego Node2vec, and Ego Clustering Coefficient, focusing on 
Egocommon Neighbours (ELP). They found that this algorithm is more accurate 
than state-of-the-art methods for the same network. Similarly, the authors in [86] 
focus on the initial information contribution of nodes as a critical factor in prediction 
accuracy. By incorporating topological information and an adjustable parameter, the 
algorithm quantifies the significance of the node’s initial information. By analysing 
bidirectional information transmission between nodes, the algorithm measures 
the structural similarity based on the total information amount received by nodes. 
Experimental evaluations on real-world networks demonstrate the superiority of 
the proposed algorithm compared to existing benchmark indices. Next, in [52], the 
authors presented an enhanced feature set that addresses the link prediction problem 
in dynamic networks by incorporating individual snapshots and the overall network 
structure. Using a reward and penalty structure, the novel cost-based feature for 
link prediction (CFLP) estimates edge behaviour throughout the entire network. 
Four categories of similarity indices are used to measure edge activity in individual 
snapshots. Feature selection is performed on fourteen different snapshot-based 
features to identify the optimal combination. The combined feature set is evaluated 
with machine learning models and outperforms state-of-the-art approaches. 
Experimental results on real-world datasets demonstrate the superior performance 
of the proposed method. A novel link prediction approach is introduced in [30]. It 
addresses spurious links in static networks and predicts removing existing links in 
dynamic networks. The approach is based on the concept of attraction force between 
nodes and node-level assignment. For static networks, connection probabilities of 
existing links are calculated to detect spurious links. In dynamic networks, a virtual 
network is constructed based on network changes, and connection probabilities 
are computed to predict link removal. The author in [35] presented a challenge of 
link prediction in a multiplex network. The proposed method combines edge and 
node relevance to accurately predict links between unconnected nodes. It used 
an aggregation model to summarize the information from different layers into a 
weighted static network, considering the density of the layers. Node relevance is 
determined based on the node’s importance in the overall graph structure, while 
edge relevance considers local information. The method outperforms existing 
approaches for link prediction in both weighted static networks and multiplex 
networks. Finally, the authors in [38] proposed a topological nearest neighbour 
similarity method for directed networks. The method improves upon the Sorensen 
index and its variants to consider the directionality of network edges. The proposed 
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method effectively combines local and global information of network nodes by 
deriving the topological nearest neighbours similarity index based on the Global 
Local Hybrid Neighbours (GLHN) similarity index. Empirical validation using real 
directed network datasets demonstrates the superior performance of the proposed 
method in terms of lower error, higher accuracy, and stronger robustness compared 
to benchmark indices. Although the proposed method shows promising results, 
future work can focus on addressing computational complexity challenges, exploring 
more efficient algorithms such as deep learning, and further cleaning global node 
information to improve link prediction accuracy. Yuliansyah et al. [64] address the 
cold-start problem in link prediction when new users with limited information join 
a network. They propose a Degree of Gravity for Link Prediction (DGLP) approach, 
inspired by Newton’s law of gravity, which considers the gravity of node pairs and 
common neighbours in a single-layer network. Evaluations using multiple datasets 
and benchmark methods demonstrate that DGLP significantly improves prediction 
performance, achieving higher AUC values and successfully predicting the cold-
start problem in 99.94 % of node pairs. However, the performance of DGLP depends 
on the presence of cold-start problems in the network. The authors suggest future 
research directions, including incorporating non-topological information and 
exploring complementary combinations of node attributes and network structure 
information for predicting future relationships.

3.1.1 � Similarity approaches using random walk

The connections between nodes can be modelled through the random walk [120], 
where transition probabilities are used to determine the path a random walker would 
take from one node to another. Various link prediction metrics use random walks to 
calculate the similarity between nodes.

Nasiri et  al. [24] proposed a new approach for link prediction in multiplex 
networks using topologically biased random walks (MLRW). They explored 
these methods to determine the likelihood of a new connection in a target layer by 
considering interlayer and intralayer relationships in the network. Bias functions 
were used to calculate cross-layer weights between different layers, and these 
methods were tested using real-world datasets from various social networks. 
Next, the author of [70] introduced the Mutual Influence Random Walk (MIRW) 
algorithm for link prediction. In MIRW, the next node is selected based on its impact 
on the current node and the effectiveness of the path. The technique was evaluated 
on 11 real-world networks and compared with existing local, quasi-local, and global 
indices.

3.1.2 � Similarity approaches using community detection

Community detection involves identifying groups of nodes in a network that are 
more closely connected to each other than to the rest of the network. For example, 
detecting groups of people with common characteristics such as university, age, 
country, or interests. This technique helps predict missing links in the network, 
as the link is likely between two nodes if they belong to the same community. 
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Using community detection as the initial step in link prediction methods can lead 
to more effective link representations than similarity-based methods. Wang et  al. 
[63] implement a community information (CI)-based local similarity index for 
link prediction in large-scale networks using Spark GraphX and a parallelization 
approach. They develop a family of nine CI-based local similarity indices, including 
Common Neighbours (CN), Salton (Sal), Jaccard (Jac), Sørensen (Sor), Hub 
Promoted Index (HPI), Hub Depressed Index (HDI), Leicht-Holme-Newman Index 
(LHN), Adamic–Adar (AA), and Resource Allocation (RA). The authors combine 
the similarity algorithm with a local index and use the parallel BGLL algorithm to 
discover community networks in larger-scale networks. The model is evaluated on 
both small and large datasets. On the other hand, in [71], the authors proposed to 
solve the link prediction problem with a framework based on community detection 
and a similarity-based approach.

They proposed community relationship strength (CRS) as a measure to calcu-
late the proximity of communities and included CRS with basic similarity indices. 
They used two traditional algorithms to detect the community: FastQ and Louvain. 
These two algorithms are based on modularity optimization. They used three tradi-
tional local similarity indexes: Common Neighbours (CN), Adamic–Adar (AA), and 
Resource Allocation Index (RA). They evaluated CRS-AA CRS-CN CRS-RA on 
twelve networks and compared its results to those of other link prediction methods. 
Singh et al. [72] present a new algorithm, Community Link Prediction via Informa-
tion Diffusion (CLP-ID), for predicting missing links in networks. The algorithm 
is based on community detection and employs CD methods to determine the com-
munity structure of the networks using information diffusion. They use the IC model 
to integrate the information diffusion model. Then, they calculate the overall index 
of each existing link and the likelihood score of each non-existing link. Next, the 
authors proposed in [33] a new approach for link prediction in multiplex networks 
called Community-Guided Link Prediction based on External Similarity (CLPES). 
The authors use a more advanced MOEA/D-TS algorithm for community detec-
tion, which determines the network layer ordering and generates IP using the clus-
tering coefficient metric. The proposed CLPES computes external similarity across 
network layers using a new external similarity metric (ExSim) and predicts inter-
nal links by considering various intralayer features, such as the Jaccard coefficient, 
preferential attachment, and Adamic–Adar while taking into account the community 
structure of the network. The likelihood of connection development between nodes 
is determined through the integration of these processes.

In many real-world networks, community identification has been found to be a 
useful strategy for link prediction, and its combination with other approaches can 
enhance performance.

Several studies have demonstrated that similarity-based link prediction 
approaches can achieve high accuracy. These approaches have the ability to capture 
the global structure of the network, which enhances its accuracy. In addition, these 
similarity approaches are both efficient and low-cost, making them practical and 
cost-effective solutions for link prediction. However, it is important to note that 
these approaches have limitations. The high time cost of the algorithms can make 
them impractical for large or complex networks, while their sensitivity to noise and 
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sparse networks can result in inaccurate predictions. In social network analysis, 
the similarity measure based on the number of common neighbours is often used 
as a first-order heuristic function to predict potential friendship relations. It has 
been shown to achieve satisfactory performance. However, this heuristic may not 
be effective when it is applied to protein–protein interaction networks. In these 
types of networks, two proteins sharing many common neighbours may still have 
a low probability of interacting, making this heuristic a non-reliable predictor in 
this context. Also, many similarity indices, such as Common Neighbour (CN) and 
Resource Allocation (RA) indices, are commonly used in link prediction for static 
networks. However, these methods have a limited ability to handle high levels of 
nonlinearity. Despite these limitations, the similarity-based approaches remain 
highly desirable options for many applications in network analysis due to their high 
level of accuracy and efficiency.

3.2 � Machine learning

Machine learning has been widely used for various tasks, such as text and image 
classification [124, 125]. It has also been applied to the problem of link prediction 
in networks. A common approach in machine learning-based link prediction is using 
feature engineering to extract relevant features from the network data. These features 
are then used as input for a learning algorithm to predict the probability of a link 
forming between two nodes based on these features. We classify the approaches 
based on machine learning for link prediction into four categories: supervised, 
unsupervised, reinforcement learning, and deep learning.

3.2.1 � Supervised learning

Supervised learning is a machine learning technique for binary classification 
problems like link prediction. In this approach, a graph (E) is transformed into 
data points (x, y), where each data point represents a pair of nodes. The data are 
labelled with a positive class label (+1) if a relationship exists between the nodes 
and negative class labels (− 1) if no edge (link) exists between them. The labels of x 
and y are defined as follows:

Figure 4 depicts the typical workflow in many studies that use machine learning for 
link prediction. First, we collect or select a correctly labelled database and partition 
it into training and testing datasets. Next, we extract the features from the network to 
describe each node pair. These features may include measures of similarity or other 
domain-specific features. To have a trained model, a suitable machine learning algo-
rithm is selected and trained on the labelled training set to learn a function that maps 
the features of a node pair to a predicted probability of having a link between them. 

s(x, y) =

⎧
⎪
⎨
⎪
⎩

(x, y) ∈ V

+1 if (x, y) ∈ E

−1 if (x, y) ∉ E
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Finally, the test dataset is used to evaluate the trained model. Precision, recall, and 
AUC metrics evaluate the model’s performance. 

Support vector machine (SVM) approaches 
Shan et  al. [32] also applied SVM, random forest, and Adaboost algorithms to 

a multiplex network. This research employed hybrid approaches that combined 
different similarity measures, both local and global, to create a feature vector for 
node pairs. The feature vector included common neighbourhood, node degree, and 
clustering coefficient, as well as two new features, “neighbour friendship (FoN)” and 
“friendship in auxiliary layers (FAL),” which considered the structural information 
from all layers in the multiplex network. The feature vector was then fed into a 
classifier to predict the relationships between node pairs. The effectiveness of this 
method was evaluated by conducting experiments on six multiplex networks and 
comparing the results to NSILR [37] methods. This approach showed the benefits 
of integrating structural information from all layers and avoiding the issue of 
parameter setting. On the other hand, in [31], a binary classification approach was 
applied to the ego network in a social network. This approach extracts features such 
as age and location from user profiles based on the homophily theory. This approach 
uses similarity-based methods with various supervised learning algorithms, 
including adaptive boosting (AB), extremely randomized trees, gradient boosting 
(GB), K-nearest neighbours (KNN), linear discriminant analysis (LD), logistic 
regression (LR), Naive Bayes classifier (NB), neural network (NN), random forest 
(RF), support vector machine (SVM), and extreme gradient boosting (XG). The 
proposed method reports the highest accuracy using the extreme gradient boosting 
method. The advantage of this method is that it uses essential similarity information 
extracted from user profiles, which cannot be deduced from the graph structure 
alone. However, it is worth noting that this information may not always be available 
or correct, which could impact the accuracy of the predictions. Kumari et al. [58] 
also employed machine learning algorithms such as support vector machine (SVM), 
K-nearest neighbours (KNN), decision tree (DT), random forest (RF), and artificial 
neural network (ANN) to predict links in network data by extracting features from 
the network’s structural information. The study found that relying solely on a 

Fig. 4   Supervised and Unsupervised Learning Workflow Process
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similarity measure was insufficient for capturing link information in all networks. 
Therefore, network structure and individual features were considered for link 
prediction. The authors evaluated the models on real-world networks. They found 
that SVM performed better on the Dolphin, Facebook, and Hamsterster friendship 
datasets, while random forest had better accuracy on the email communication 
network. This approach’s benefits include using machine learning methods to 
extract characteristics from network structure information. However, it is essential 
to note that this approach only considers the static and unweighted network for link 
prediction and does not consider content-based features.

Naive Bayes approach
In [44], the authors proposed the two motif Naive Bayes (TMNB) model in 

the sign network. The TMNB model extends the single motif Naive Bayes model 
(SMNB) by combining information from two different types of motifs and uses 
the maximal information coefficient (MIC) matrix to discover the relationship 
between the motifs. The proposed solutions were evaluated and shown to be 
superior to existing methods. The (SMNB) model considers the contribution of each 
neighbouring node or edge in sign prediction.

3.2.2 � XGBoost classifier

This paper [75] presented the self-configured framework (SCF) integrated with spark 
for enhancing link prediction in large-scale social networks. The SCF autonomously 
configures the best settings based on the dataset size, workload, and cluster 
specifications. It utilizes the XGBoost classifier to predict the optimal number of 
executors per node. The framework demonstrates a 40 % reduction in prediction 
time and balanced resource consumption, efficiently using limited clusters. The 
SCF offers an advantage over manual configurations, improving performance and 
prediction quality without requiring extensive hardware setup.

One advantage of the supervised learning approach for link prediction in network 
analysis is its ability to leverage a wide range of features and representations for 
nodes and edges in the graph, leading to more robust and accurate models. Another 
advantage is the availability of several metrics, including precision, recall, F1-score, 
and ROC-AUC, for the performance evaluation of supervised learning models.

However, there are some drawbacks to using supervised learning for link 
prediction. One major issue is that building models through supervised learning 
require high computational complexity. Another problem is that social networks 
increase and the classification models can become outdated, requiring frequent 
updates. Additionally, obtaining a large labelled dataset is a challenging and time-
consuming task. Furthermore, the quality and accuracy of the link prediction results 
depend significantly on the quality of features extracted from the network. However, 
extracting high-quality features from the network can be challenging and may 
require domain expertise and manual feature engineering.

In conclusion, despite its limitations, supervised learning remains a popular and 
the most used technology for link prediction, offering precise predictions and firm 
performance in various contexts.
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3.2.3 � Unsupervised learning

Unlike supervised learning techniques, unsupervised learning techniques use 
unlabelled data. Muniz et  al. [54] proposed the unsupervised link prediction 
Contextual-Temporal-Topological (CTT) criterion based on a weighted concept. 
This weighted concept focuses on three weighting criteria: Temporal-Topological, 
Contextual-Topological, and Contextual-Temporal-Topological. The CTT criteria 
merge the three weighting criteria, differentiating it from other approaches 
based on these weighting criteria without combining them. Ghorbanzadeh et  al. 
[41] proposed a method to solve the problem of two nodes having no common 
neighbours meaning that they are not always predictable to link in the future. They 
consider neighbourhood direction and the hub and authority of neighbours. The 
performance of this method was evaluated using both supervised and unsupervised 
prediction models and was compared to several widely used baseline methods such 
as Node2Vec, DeepWalk, LINE, and M-NMF.

K-means
Mavromatis and Karypis [62] applied popular unsupervised learning 

algorithms, K-means, using a graph representation learning method called Graph 
InfoClust (GIC). The K-means algorithms were used to compute clusters based 
on simultaneous mutual information maximization. The performance of GIC 
was compared against other unsupervised methods such as deep graph infomax, 
variational graph auto-encoders, adversarially regularized graph autoencoder, 
DeepWalk, deep neural network for graph representation, and spectral clustering.

3.2.4 � Deep learning

Deep learning has garnered significant attention recently due to its effectiveness 
in solving various problems, including link prediction. The deep learning (DL) 
approach is an automated learning technique that uses neural networks to extract the 
best features from the structure and content information for link prediction. Unlike 
other supervised learning methods, DL overcomes limitations in feature extraction, 
as it can perform this task automatically.

Zhang and Chen [74] introduced the Weisfeiler-Lehman neural machine 
(WLNM), a deep learning approach for link prediction. The WLNM method 
utilizes a fully connected neural network to identify the local enclosing subgraphs 
around links that are highly correlated with link presence. By extracting these 
subgraphs as the training data, this technique has achieved impressive results in 
link prediction, outperforming other state-of-the-art methods. Afterwards, Zhang 
and Chen [73] proposed a novel link prediction method called SEAL. This later 
method addresses limitations of the previously proposed Weisfeiler-Lehman 
neural machine (WLNM) method [74]. SEAL improves upon WLNM using a 
graph neural network (GNN) instead of a fully connected neural network to learn 
graph structure features from local enclosing subgraphs. This enables SEAL to 
learn from latent and explicit node attributes in addition to subgraph topologies. 
To demonstrate the ability to unify various high-order heuristics, SEAL presented 
a �-decaying theory. The method was tested on eight datasets and compared with 
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different heuristics, latent feature techniques, and network embedding algorithms. 
Chen et  al. [46] introduced an encoder–LSTM–decoder (E-LSTM-D) model 
for link prediction in dynamic networks. The key innovation of the method is 
integrating structural and temporal features into the same framework. The authors 
employ an encoder–decoder to automatically describe the network and use LSTM 
to capture the temporal evolution of the network by stacking and representing 
a sequence of graphs. The model’s effectiveness was evaluated using a newly 
developed error rate metric. The results demonstrate that the E-LSTM-D model 
can effectively tackle the challenges posed by high dimensionality, nonlinearity, 
and sparsity in dynamic network link prediction, thanks to its encoder–decoder 
construction. On the other hand, Rossi et al. [47] proposed using temporal graph 
networks (TGNs) with deep learning techniques for dynamic link prediction. 
To balance parallel processing efficiency with the capability to learn from the 
sequentiality of the input, the authors suggest a novel training method: TGN. 
TGNs are able to memorize the long-term dependencies between nodes in the 
graph. The authors comprehensively studied various framework components and 
evaluated the speed and accuracy trade-offs. The proposed models’ performance 
was compared to static and dynamic baseline models. In their study, Sankar 
et al. [49] presented a new neural network architecture called the dynamic self-
attention network (DySAT). This approach captures a node’s temporal dynamics 
and structural neighbourhoods in a combined self-attentional representation. 
The authors aimed to learn low-dimensional vectors that describe the structural 
properties of a node and its surroundings. To evaluate the performance of DySAT, 
the authors tested it on four real-world datasets. They found that it outperformed 
existing state-of-the-art static and dynamic graph embedding baselines. Keikha 
et  al. [76] proposed the DeepLink framework for link prediction in social 
networks. The framework utilizes deep learning to extract target features from 
both the content and structure information of nodes. Firstly, a Word2Vec 
framework is used to learn the structural feature vector of nodes, and then a 
Doc2Vec algorithm is applied to learn the feature vector of content information 
for each node. Finally, the weight vectors of structure and content information 
are aggregated into a single vector. The effectiveness of DeepLink was evaluated 
on the Telegram and irBlogs networks and compared with other link prediction 
methods.

In [103], the authors address the limitation of information loss in layers of graph 
pooling in graph neural networks. They propose a solution by learning the features 
of the target link directly instead of extracting features from the whole enclosing 
subgraph. To facilitate this, the original graph is transformed into a graph line, 
which enables efficient feature learning. The proposed model is evaluated against 
the baseline techniques on 14 datasets. Zulaika et  al. [84] proposed a link weight 
prediction Weisfeiler-Lehman (LWP-WL) method. Inspired by the Weisfeiler-
Lehman neural machine, LWP-WL extracts an enclosing subgraph around the 
target link and applies a graph labelling algorithm to create an ordered subgraph 
adjacency matrix. Then, this matrix is fed into a neural network, which includes 
a convolutional neural network (CNN) layer with specialized filters designed for 
the input graph representation. Extensive evaluations demonstrate that LWP-WL 
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outperforms state-of-the-art methods in various weighted graphs. Additionally, an 
ablation study is conducted to showcase the performance improvement achieved by 
incorporating different features into the approach.

Deep learning in link prediction presents several key advantages. Firstly, deep 
learning models excel in capturing intricate patterns within network data by auto-
matically extracting meaningful features, eliminating the need for manual feature 
engineering and reducing analysis efforts. They demonstrate remarkable scalabil-
ity, capable of handling large-scale networks with millions or billions of nodes and 
edges, enabling the analysis of massive datasets. Moreover, deep learning models 
effectively capture nonlinear relationships between nodes, enabling accurate predic-
tions within complex network dynamics. Additionally, using techniques like long 
short-term memory (LSTM) enables the modelling of the temporal evolution of net-
works by stacking and representing sequences of graphs. This empowers the accu-
rate prediction of links by considering the evolving relationships among nodes over 
time.

However, it is important to consider certain drawbacks. Deep learning 
models typically necessitate a substantial amount of labelled data for effective 
training, which can be challenging to acquire. Training deep neural networks can 
be computationally intensive, requiring significant computational resources. 
The interpretability of deep learning models is limited, posing challenges in 
understanding the rationale behind their predictions. Overfitting is a potential 
concern, particularly when working with limited or imbalanced training data. The 
effectiveness of deep learning models heavily relies on diverse and representative 
training data, as biased or limited data can result in poor generalization.

In summary, deep learning in link prediction offers advantages in capturing 
complex patterns and scalability. However, it is crucial to address challenges such 
as data requirements, computational complexity, interpretability, overfitting, and the 
need for diverse training data for successful application in link prediction tasks.

3.2.4.1  Graph neural network (GNN)  A graph neural network (GNN) is a machine 
learning model that applies an optimized transformation to all graph attributes, includ-
ing nodes, edges, and global-context information. This transformation is designed to 
preserve graph symmetries, such as permutation invariance, which are important for 
accurately representing and analysing graph data.

In the field of deep learning, graph neural network (GNN) are a type of 
method specifically designed to operate on graph structured data. GNNs aim 
to effectively combine the feature information and graph structure to learn better 
node representations through feature propagation and aggregation. GNNs aim to 
learn a low-dimensional vector representation for each node in the graph. “The 
goal of GNNs is to iteratively update the node representations by aggregating the 
representations of node neighbours and their own representation in the previous 
iteration” from the book Graph Neural Networks: Foundations, Frontiers, and 
Applications [126].

Graph neural networks (GNNs) can be seen as a method for learning node embed-
dings by iteratively combining information from a node’s local neighbourhood. In 
each iteration, the first information is learned about the direct neighbours, followed 
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by the neighbours of the neighbours, and so on. There are various types of GNNs, 
each with its own unique update and aggregation functions. The three most com-
mon tasks GNNs perform are downstream graph analysis and prediction at the node, 
edge, and graph levels. A simple representation of the GNN process is depicted in 
Fig. 5.

Several techniques for neighbour embeddings in Graph Neural Networks (GNNs) 
have been proposed. Kipf and Welling present the first notable work in this area 
in [127], where they proposed aggregating neighbour information as a normalized 
sum of states, incorporating the update operation into this aggregation through 
the addition of a self-loop for specific nodes. Another popular technique is using 
a multi-layer perceptron (MLP) for aggregation [128]. This involves using a feed-
forward network to perform the aggregation operation, where the weights can be 
optimized to achieve the best aggregation of neighbouring states. Gated graph 
neural networks [129] use an attention mechanism in the aggregation process, 
considering the importance of the neighbouring node’s features. This results in an 
updated embedding that contains more information about the neighbour’s features. 
These networks use a recurrent unit to update the state iteratively over time.

In a new study presented by Cai and Ji [77], a novel node aggregation method 
was proposed to transform the enclosing subgraph into different scales while 
preserving information. The multi-scale approach used the subgraphs at different 
scales to extract graph structure features, and it was evaluated on 14 datasets 
from various fields. In the field of heterogeneous graph analysis, a new model 
named metapath aggregated graph neural network (MAGNN) was proposed in 
[79]. This model addresses three limitations of previous models, including the 
omission of node content features, the discarding of intermediate nodes along the 
metapath, and the consideration of only one metapath. MAGNN combines both 
structural and semantic information from neighbour nodes and metapath context 
to generate final node embeddings through the use of an attention mechanism for 
intra-metapath aggregation. The effectiveness of MAGNN was evaluated on three 
real-world heterogeneous graph datasets for tasks such as node clustering, link 
prediction, and node classification. In [80], the authors presented a new approach 
to graph analysis by representing the problem as a graph convolutional network. 
They proposed a novel multi-level graph convolutional network (MGCN) to 

Fig. 5   Graph neural network workflow process
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uncover the embeddings of each network. The authors introduced a new paradigm 
integrating multi-level graph convolutions into the local network structure and the 
hypergraph structure. They presented several solutions, such as network splitting 
and space reconciliation, to manage the dispersed training process and make their 
proposed framework scalable for handling large-scale social networks. The paper 
[130] introduced CPAGCN (Community Preserving Adaptive Graph Convolutional 
Networks), a novel method for link prediction in attributed networks. CPAGCN 
effectively combines attribute information and link information by utilizing 
the AGCN (Adaptive Graph Convolutional Networks) algorithm for network 
embedding. It incorporates a community detection model to preserve the community 
structure within the node representations. The link prediction module employs 
multi-layer perception (MLP) to learn prediction scores for potential links directly. 
Experimental results on real-world attributed networks demonstrate that CPAGCN 
outperforms state-of-the-art methods in link prediction. In [48], the authors address 
the challenge of link prediction in complex dynamic networks by proposing a 
novel approach called STEM-GCN. STEM-GCN is a gated graph convolutional 
network incorporating spatiotemporal semi-variogram analysis to capture spatial 
and temporal correlations. It introduces a correlation smoothing strategy to enhance 
prediction accuracy and reduce noise. STEM-GCN effectively captures network 
dynamics between consecutive time steps using stacked memory cell structures. 
Experimental results demonstrate that STEM-GCN outperforms existing methods, 
showcasing its potential to uncover evolving mechanisms of real-world dynamic 
networks. In [57], the authors proposed ComplexGCN, a novel extension of graph 
convolutional networks (GCNs) in complex space for knowledge graph embedding. 
ComplexGCN utilizes complex-valued embeddings and paratuck2 decomposition-
based scoring function to enhance representation quality and predict missing links 
in knowledge graphs. The model outperforms existing methods on standard link 
prediction datasets. It introduces complex graph convolutional layers and residual 
connections to preserve initial embedding information. The paper referenced by 
[131] introduces DATGN, a novel model for link prediction in dynamic graphs. 
DATGN addresses existing methods’ limitations by considering the nodes’ local 
time-space environment. It utilizes an activity-based sampling algorithm and a global 
attention network to aggregate global information. Additionally, a local attention 
network aggregates information from sampled sequences. Experimental results 
show that DATGN outperforms state-of-the-art models’ accuracy and efficiency, 
particularly in the inductive link prediction task. The local spatial-temporal 
network layer captures evolutionary patterns, improving link prediction accuracy. 
The study presented in [56] introduces LCILP, a novel strategy for inductive link 
prediction in knowledge graphs. LCILP used a Personalized PageRank (PPR)-
based local clustering technique to sample tightly related subgraphs around target 
links, improving the capture of meaningful local context. The approach employs a 
GNN-based model for reasoning over the extracted subgraphs. Experimental results 
demonstrate the superior performance of LCILP compared to state-of-the-art models 
on three benchmark datasets. The study also explores the relationship between graph 
properties, such as average clustering coefficient and average node degree, and the 
effectiveness of link prediction. Huang and Lei [50] proposed a novel approach 
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called temporal group-aware graph diffusion network (TGGDN) for dynamic link 
prediction. The TGGDN incorporates a group affinity matrix to capture mutual 
interactions between neighbours and integrates it into the graph diffusion process 
to simultaneously capture group and long-distance interactions. Additionally, a 
transformer block with self-attention is employed to model the temporal information 
and enhance interpretability. Experimental results on real-world datasets of varying 
sizes demonstrate that TGGDN outperforms state-of-the-art methods, achieving 
significant improvements in terms of accuracy (ACC) and area under the curve 
(AUC). The proposed method shows promise in dynamic link prediction tasks, and 
future work aims to address scalability for large-scale dynamic networks. Zhang 
et al. [81] proposed a novel approach called IEA-GNN (Anchor-aware graph neural 
network fused with information entropy) to address the limitations of existing 
methods for capturing global location information and distinguishing located nodes 
in graphs symmetrically. IEA-GNN calculates the information entropy of nodes and 
constructs candidate sets of anchor points to capture the relative distance information 
between nodes. It uses a nonlinear distance-weighted aggregation learning strategy 
based on these anchor points to enhance node feature information and improve 
discrimination between homogeneous neighbourhood nodes. The model avoids 
aggregating anchor points and highlights positional differences by selecting anchor 
points based on information entropy. Experimental results on multiple datasets 
demonstrate that IEA-GNN outperforms baseline models in node classification and 
link prediction tasks. However, the model’s performance may be affected when 
nodes are over-aggregated, an aspect that could be addressed in future research 
to enhance its generalization ability. Zhao et  al. [85] introduce an end-to-end link 
prediction method for heterogeneous networks, leveraging metapath projection 
and semantic graph aggregation. This approach learns node pair embeddings from 
different metapaths, projecting the network into multiple semantic graphs and 
employing a graph neural network. A semantic aggregation module combines node 
pair embeddings using an attention mechanism. Experimental results demonstrate 
the method’s superior accuracy compared to competing approaches.

Graph neural networks (GNNs) offer significant advantages in link prediction due 
to their ability to capture and leverage the underlying structural information of a 
graph. GNNs excel at extracting complex features from the graph structure, enabling 
accurate predictions. For example, Cai et al. [77] introduced a multi-scale approach 
using subgraphs at different scales to extract graph structure features, resulting in 
improved link prediction performance.

Another advantage of GNNs in link prediction is their ability to handle sparse 
graphs effectively. Traditional methods often struggle with sparse graphs due to the 
reliance on explicit features for each node and edge. However, GNNs can utilize the 
graph structure itself as an implicit feature, making them particularly effective in 
sparse graph scenarios. This advantage has been demonstrated in various studies, 
such as the work by Huang and Lei [50], where the temporal group-aware graph 
diffusion network (TGGDN) successfully tackled dynamic link prediction tasks on 
real-world datasets.

Despite these advantages, GNNs also have limitations in link prediction. 
Scalability to very large graphs is one such limitation, as the computational and 
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memory requirements of GNNs can become prohibitive. This challenge has been 
addressed in studies like [80], where the authors proposed a multi-level graph 
convolutional network (MGCN) to manage the dispersed training process and 
enhance scalability for large-scale social networks.

Another limitation is the risk of overfitting on small and noisy datasets, which 
can negatively impact link prediction performance. To mitigate this, techniques that 
incorporate temporal information have been introduced. For instance, STEM-GCN, 
proposed by the authors in [48], integrates spatiotemporal semi-variogram analysis 
to capture spatial and temporal correlations, resulting in improved prediction 
accuracy and reduced noise in dynamic networks.

In summary, GNNs offer advantages in capturing structural information and 
handling sparse graphs in link prediction. However, scalability to large graphs 
and the risk of overfitting should be carefully considered. Incorporating temporal 
information can further enhance link prediction accuracy in dynamic networks.

3.2.5 � Reinforcement learning (RL)

RL is a method used in machine learning where programmes, called agents, interact 
with both familiar and unfamiliar environments while continually adapt and learn 
depending on the grants received as points (positive or negative) for their job 
performance. These points can be positive or negative, and they are, respectively, 
branded as rewards or penalties [132]. In link prediction, an agent can be taught 
to explore a network, collect information about nodes and edges, and then use that 
data to predict the links that are likely to exist. The agent receives rewards when 
it anticipates links correctly, while it receives penalties when it makes errors. 
The problem with the use of machine learning techniques such as support vector 
machine and Naive Bayes is the dependency on the availability of large datasets 
for training purposes. For this reason, Lim et al. [7] proposed a deep reinforcement 
learning (DRL) based criminal network link prediction model that was compared to 
a gradient boosting machine (GBM) in machine learning, using a relatively smaller 
dataset. The DRL model transformed a graphical dataset into a feature matrix for 
each pair of nodes and used Jaccard, Adamic, and Adar as the layer input, with the 
SNA metrics of the hub index and preferential attachment index functioning as 
weights for the hidden layer. The results showed that the DRL model achieved better 
AUC (0.85, 0.82, and 0.76) scores than the GBM models of JUANES, MAMBO, 
and JAKE. Later, the same authors [55] applied a reinforcement learning algorithm 
to a temporal dataset for a criminal network and found that the time-based link 
prediction model (TDRL) has higher prediction accuracy than the previous DRL 
model. In another study [133], two methods were compared for link prediction in a 
small dataset produced through self-simulation. One method used a model without 
a metadataset (CNA-DRL), while the other used a metadataset (MCNA-DRL) to 
improve performances. The results showed that the MCNA-DRL model achieved an 
AUC score of 79 %, while the CNA-DRL model achieved a score of 70%. Tao et al. 
[27] also tackled the problem of temporal link prediction in a dynamic knowledge 
graph (KG) using reinforcement learning models and presented a novel policy 
network that could learn predictable evolutionary patterns. An updating system was 



3928	 D. Arrar et al.

1 3

also suggested to allow the agent to adapt to KG changes without fresh training. 
Next, the authors in [134] proposed a link prediction approach called RLPath, 
combining representation learning and reinforcement learning-based attentive 
relation paths. The approach obtains relation routes through reinforcement learning 
using a Markov decision process (MDP) model with two agents: a relation agent for 
choosing relations and an entity agent for choosing entities, which are represented as 
the policy network. The comparison results with the most advanced link prediction 
techniques demonstrate the competitive performance of RLPath.

3.3 � Dimensionality reduction

In the context of link prediction, reducing the dimensions of graphs is an important 
task. High-dimensional data can be challenging to process and analyse, especially 
large-scale datasets. By reducing the dimensions, the data can be simplified, making 
it easier to work with. This can lead to faster and more efficient processing and 
improved model accuracy. This section summarizes the three main approaches 
for reducing the dimensions of graphs. The first approach, known as embedding 
methods, involves mapping the graph’s information to a lower-dimensional space 
while preserving its structural information and components. The second approach is 
matrix factorization, where the graph is represented as a matrix and then factorized 
to obtain the node embedding vectors. The third approach, graph neural networks, 
also focuses on reducing the dimensions. It was already presented in the machine 
learning Sect. 3.2, allowing for a comprehensive explanation of all machine learning 
techniques.

3.3.1 � Embedding‑based methods

The network embedding approach converts network nodes into low-dimensional 
vectors, retaining their neighbourhood structures and allowing for learning 
informative features from the graph. To be more precise, the primary objective of 
node embedding techniques is to transform the original high-dimensional node 
representations into lower dimensions such that nodes that exhibit similar features 
in the original network are mapped into close proximity in the embedded space. In 
[42], a framework for joint link prediction and network alignment is presented with 
the aim of improving the recall for both tasks. A cross-graph embedding technique 
based on structural and topological neighbours was developed to effectively embed 
nodes from separate graphs. This approach is based on random walks, and a new 
formula is proposed to support network alignment. The results of the experiments 
show that the proposed approach outperforms other state-of-the-art methods in 
terms of link prediction accuracy and network alignment quality. One advantage of 
this work is its applicability to network alignment in scenarios where the degree 
scatter plot is narrow or attribute information is unavailable. The study presented 
in [135] proposes a novel link prediction method for social networks. It addresses 
the complexity of network features. The method leverages network embedding 
to represent the network structure as low-dimensional vectors, capturing spatial 
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relationships and user relevance. Additionally, word embedding models are 
employed to convert user text into vectors, considering the diversity and complexity 
of text semantics. To account for the dynamic nature of user behaviours, a time 
decay function is applied to quantify the impact of user text on link establishment. 
To simplify the complexity, the top-k relevant users are selected for each user. 
Moreover, an attention mechanism is introduced in a convolutional neural network 
to enhance the expression of user interests in text information. By integrating and 
analysing structural and text features, the proposed method achieves the objective 
of accurately predicting links in social networks. In two articles, the DeepWalk 
method is modified for the purpose of link prediction. The first article Nasiri et al. 
[12] focuses on protein–protein interactions, while the second [78] focuses on social 
networks. Nasiri presented a novel approach for link prediction in protein–protein 
interactions using embedding-based methods. The author proposes using the 
DeepWalk algorithm, a graph embedding method that utilizes Random Walking as 
a similarity measure, to address the nonlinearity issue. The DeepWalk algorithm is 
modified with a feature selection-based approach to generate a graph embedding. 
The results are compared with those obtained using other embedding methods such 
as node2vec, DeepWalk, Line, and GraphSAGE. The authors in [45] proposed a 
model for signed graphs, where positive and negative links provide insights into user 
associations. The authors tackle the challenges of imbalanced class distribution and 
hidden community structures often overlooked in existing methods. They propose an 
ensemble framework called �NeLp, consisting of network embedding and classifier 
prediction phases, to leverage hidden network communities for predicting negative 
links. The framework incorporates techniques such as community generation, 
optimization, probabilistic network embedding, and classifier prediction. Extensive 
experimental evaluation demonstrates the promising performance of �NeLp in 
terms of pertinency, robustness, and scalability. Barracchia et al. [102] proposed the 
LP-ROBIN method, which used incremental embedding based on a random walk 
to capture network dynamism and predict new links. LP-ROBIN can handle the 
addition of new nodes over time without prior knowledge. When new data arrives, 
LP-ROBIN updates the model by learning the embeddings of new nodes and links 
while updating the latent representations of existing ones. Experimental results 
demonstrate that LP-ROBIN achieves superior performance in terms of AUC and 
F1-score, outperforming baselines, static node embedding methods, and state-of-
the-art dynamic node embedding methods. The paper referenced by [61] introduces 
NNWLP, a method based on network embedding that utilizes natural nearest 
neighbours to improve link prediction accuracy. Unlike existing methods that select 
neighbour nodes with equal probability, NNWLP leverages the network features 
to find the nearest neighbours. The clustering coefficients are employed to assess 
the contribution of nearest neighbour nodes and direct neighbour nodes, generating 
node sequences and forming node vectors. These node vectors are then converted 
into edge vectors and used for link prediction. Experimental results demonstrate that 
NNWLP effectively utilizes neighbour information and significantly enhances link 
prediction accuracy. In the paper referenced by [101], the authors introduce LRNP 
(low-rank network projection), a novel link prediction algorithm. LRNP is designed 
by leveraging optimal interactive coefficients derived from solving the objective 
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function, and it uses the adjacency matrix of a fully connected network as the base 
matrix to capture local structures in observed networks. Experimental findings 
demonstrate that LRNP surpasses existing state-of-the-art methods regarding link 
prediction accuracy. In [136], the authors introduce Rotate4D, a novel model for 
knowledge graph embedding that performs 4D rotations in quaternion space using 
a special orthogonal group. By embedding entities in quaternion space and applying 
rotations, the model improves link prediction performance on standard datasets 
compared to existing models. The Rotate4D model utilizes group theory and 
quaternion scaling to represent rotations and handle hierarchical relations efficiently. 
Experimental results demonstrate significant improvements in various evaluation 
metrics, such as MRR and Hits@k. The paper suggests further exploring group-like 
structures, and their combination with neural networks can enhance link prediction 
in quaternion and octonion spaces. With a line graph, Zhang et al. [104] proposed 
the line graph contrastive learning (LGCL) method for link prediction tasks. 
LGCL addresses information loss and limited generalization in similarity-based 
approaches by leveraging h-hop subgraph sampling and line graph transformation. 
The link prediction task is transformed into a node classification task using graph 
convolution, enhancing edge embedding learning. A cross-scale contrastive learning 
framework is introduced to maximize the mutual information between line graphs 
and subgraphs, integrating structural and feature information. Experimental results 
demonstrate that LGCL outperforms existing methods, offering better generalization 
and robustness.

The random walk-based embedding approach for missing link prediction presents 
several advantages, including its simplicity and computational efficiency, which 
makes it a suitable method for large-scale networks. The approach has been found 
to perform well in homophilic networks where nodes are linked to similar ones and 
can capture nonlinear relationships. However, a challenge for this approach is its 
accuracy in predicting links for nodes with high centrality. These nodes tend to have 
complex connectivity patterns and numerous connections to other nodes.

3.3.2 � Factorization‑based methods

Factorization-based methods are a commonly used set of techniques for link 
prediction. These methods use matrix factorization, a technique of dividing a 
matrix into smaller matrices, to reflect the latent representations of nodes in 
a graph. With these representations, predictions of missing links can be made 
efficiently. Chen et al. [43] proposed two approaches for link prediction, NMF-AP 
[43] and MS-RNMF [137]. NMF-AP combines the information from both local 
and global network structures by using PageRank to determine the impact score 
of nodes, which reflects the whole network structure, and the asymmetric link 
clustering coefficient approach to obtain local information. The performance of 
NMF-AP was evaluated on ten networks and compared with other methods. NMF 
models with a single-layer map the original network and its corresponding low-
dimensional latent space. However, the technique is limited in uncovering hidden 
multi-layer information in complex networks such as biological systems, social 
networks, and transportation networks, which contain hierarchical information with 
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implicit lower-level features. On the other hand, MS-RNMF uses the heat kernel 
method to measure local similarity and the k-medoids algorithm to capture global 
information about the network structure. The nonnegative matrix factorization 
model in MS-RNMF is regularized using manifold regularization and sparse 
learning techniques, which reduces random noise and spurious links. This model 
was tested on seven networks using various measurements and parameters, and 
the results showed better performance than other methods, especially for weak 
sparse networks and susceptibility to random noise. Additionally, Chen et al. [82] 
introduced the fusing structure and sparsity constrained via deep nonnegative matrix 
factorization (FSSDNMF) approach to address this issue. To extract the topological 
details of each hidden layer, the common neighbour approach was employed to 
compute similarity scores and translate them into a multi-layer low-dimensional 
latent space. The authors eliminated random noise by jointly using the l2,1-norm 
restricted factor matrix at each hidden layer. In this article [60], the authors address 
the challenge of cold-start link prediction, where the network structure contains 
isolated nodes. They propose a multi-nonnegative matrix factorization model that 
integrates three types of information: community membership, attribute similarity, 
and first-order structure characteristics. The proposed model successfully predicts 
missing edges in the disconnected network structure by leveraging these multiple 
perspectives. This article [40] also presents a novel approach called GNMFCA 
(graph regularized nonnegative matrix factorization algorithm) for temporal link 
prediction in directed temporal networks. The proposed algorithm incorporates both 
local and global information of temporal networks by utilizing PageRank centrality 
and asymmetric link clustering coefficient. Graph regularization is employed to 
capture local information in each network slice, while PageRank centrality measures 
the importance of nodes, capturing global information. By jointly optimizing 
these factors in a nonnegative matrix factorization model, the GNMFCA model 
simultaneously preserves local and global information. The paper also introduces 
effective multiplicative updating rules for solving the model and provides a 
convergence analysis of the iterative algorithm. Experimental results on artificial and 
real-world temporal networks demonstrate that the GNMFCA outperforms existing 
temporal link prediction algorithms. Yang et al. [34] introduced a novel anchor link 
prediction method called multiple consistency (MC), which leverages interlayer and 
intralayer structures for improved performance. The MC method iteratively uses 
interlayer structure information and employs matrix factorization-based network 
representation learning to capture the global structural features of nodes. It further 
trains a radial basis neural network as a mapping function to align embedding 
vectors from different spaces. The method predicts anchor links between node pairs 
by considering interlayer and intralayer structures. Experimental results demonstrate 
the superiority of the proposed approach over existing methods. Agibetov [39] 
introduced an enhanced approach to learning neural graph embeddings by 
incorporating information from unlikely node pairs, addressing the limitation of 
traditional methods that truncate such information. Through experiments on various 
networks, the proposed approach demonstrates significant improvements in link 
prediction performance compared to baseline methods. The research sheds light on 
the relationship between skip-gram powered neural graph embeddings and matrix 
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factorization, revealing that the accuracy of graph embeddings in link prediction 
depends on the transformations applied to the original graph co-occurrence matrix. 
Notably, smoothening low-frequency pair entries instead of truncating them leads 
to better performance. The findings contribute to a deeper understanding of graph 
embedding algorithms and offer insights for designing future approaches based on 
matrix factorization.

Factorization matrix methods can enhance network structure analysis by remov-
ing random noise and identifying multiple link types, improving prediction accu-
racy. Integrating global and local structure information also helps reduce the impact 
of random noise. However, the limitation of using matrix factorization for link pre-
diction is that it heavily depends on accurately representing the observed network 
through a low-rank matrix, which may not be feasible for networks with complex 
structures. Furthermore, the technique requires significant computational resources 
and may result in overfitting if it is not regulated properly, particularly in large-scale 
networks. These challenges make matrix factorization difficult for link prediction in 
real-world dynamic networks.

3.4 � Other methods

In this section, we summarize the articles using different methods and approaches. 
In [138], the authors proposed a quantum algorithm QLP designed for path-based 
link prediction in diverse networks. QLP encodes prediction scores for both even 
and odd-length paths using a controlled continuous-time quantum walk. Through 
classical simulations, it demonstrates comparable performance to established path-
based predictors. The proposal highlights the potential of QLP to achieve a quantum 
speedup in link prediction, distinguishing it from conventional methods by utilizing 
quantum computing techniques for calculations and predictions. Kumar et  al. [139] 
proposed a novel strategy for link prediction using quantum kernel-enhanced machine 
learning models that incorporate local and global information for feature generation. 
The aim is to develop a quantum-assisted feature-based approach that combines 
projected quantum kernel (PQK) with machine learning models to improve prediction 
performance. By leveraging high-dimensional Hilbert spaces and a mathematical 
structure similar to quantum mechanics, the proposed approach enhances data for 
more accurate link prediction. Experimental results show that the quantum-enhanced 
models, such as PQK-neural networks and PQK-random forest classifier, outperform 
the corresponding classical machine learning. Comparative analysis of dynamic 
datasets demonstrates the superiority of the quantum-assisted methodology over 
individual link prediction approaches and state-of-the-art methods. The article [51] 
focused on temporal link prediction (TLP) and the need for high-accuracy white-box 
methods to explain network evolution mechanisms. Existing black-box models, such 
as network embeddings and graph neural networks, provide high prediction accuracy 
but lack interpretability. To overcome this lack, the authors propose the Develop-
Maintain Activity Backbone (DMAB) model, which considers node dynamics at a 
microscopic level to predict future links. The DMAB model extracts and quantifies 
two dynamic properties of nodes: activity and loyalty. Comparative experiments with 
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state-of-the-art black-box methods demonstrate the excellent prediction performance 
and ability of DMAB to capture network evolution mechanisms. The study highlights 
the effectiveness of considering node dynamics in understanding temporal networks’ 
dynamic link generation process. It emphasizes the need for further exploration of 
temporal network evolution mechanisms. Singh et al. [140] introduced a fuzzy-based 
link prediction algorithm, FLP-ID, designed to address the challenges of accuracy and 
efficiency in growing and multiplex social networks. FLP-ID considers critical factors 
such as different interaction channels, information diffusion, and group norms to form 
new connections. The algorithm generates a multiplex network by combining various 
relationship types and identifies the community structure. It computes node and relative 
relevance based on fuzzy criteria and group norms. By calculating the likelihood score 
of each non-existing link, FLP-ID predicts missing links with improved accuracy 
compared to crisp algorithms. Zheng et al. [141] proposed an explainable friend link 
recommendation method that leverages fusion embedding of heterogeneous context 
information. It integrates user content interests and external knowledge semantics to 
develop a fusion user embedding method. Using collaborative neighbourhood attention 
mechanisms, the method calculates direct and indirect similarity relationships between 
user pairs. It also incorporates a hybrid personalized and neighbour attention model 
for friend link prediction. The proposed method predicts users’ friends and explains 
the link prediction results. In their study, [142] proposed a novel approach to improve 
link prediction accuracy by combining different link prediction methods. They 
comprehensively analysed the hybrid method and introduced the Precision-Noise Ratio 
(PNR) metric to evaluate the accuracy of uncertain link predictions. They developed 
a scalable and parameter-free algorithm based on posterior Bayesian estimation to 
combine different methods. The results showed that the PNR-based combination 
outperformed traditional combination methods regarding prediction accuracy. 
Additionally, the proposed approach offered a general and efficient framework for 
integrating various existing link prediction methods without increasing computational 
complexity. The effectiveness and efficiency of the approach were validated through 
extensive experiments on real datasets. This research provides valuable insights and 
opens opportunities for enhancing link prediction systems using a combination of 
existing methods. The article [83] introduced a novel causal model called causal 
lifting for link prediction tasks with path dependencies, where the outcome of link 
interventions depends on existing links. Existing causal models are unsuitable for such 
scenarios due to challenges in identifying causal effects or requiring many control 
variables. Causal lifting addresses this by allowing the identification of causal link 
prediction queries using limited intervention data. The article also investigates using 
structural pairwise embeddings, which offer lower bias and better represent the causal 
structure than traditional node embedding methods like GNNs and matrix factorization.

4 � Discussion

This section comprehensively compares link prediction methods, encompassing 
similarity-based approaches, machine learning techniques, deep learning models 
(graph neural networks), and dimensionality reduction methods.
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Similarity-based methods, which solely rely on the network’s structure, offer 
simplicity and interpretability. They excel in scenarios where nodes with similar 
network neighbourhoods are likely to form links. For instance, users with common 
friends may be likelier to become friends on social networks. The input to similar-
ity-based methods includes the network’s adjacency matrix or edge list, which rep-
resents the connections between nodes in the network. The output of these methods 
is a similarity score or ranking that indicates the likelihood of a link between pairs 
of nodes. However, these methods may not fully capture complex global network 
dynamics, limiting their applicability in some cases.

Machine learning techniques provide greater flexibility by incorporating network 
structure, node attributes, and contextual information. The inputs to machine 
learning methods include the network’s adjacency matrix or edge list and any 
available node attributes or features. These attributes can be nodes’ characteristics, 
like age or location, used to enrich the information for link prediction. By leveraging 
this additional information, machine learning methods can capture more intricate 
relationships, making them well-suited for diverse networks. The output of these 
methods is a predictive model that can be used to infer potential links between nodes 
in the network. However, these methods often require a considerable amount of 
labelled data for training the predictive model, which may not always be available. 
Additionally, the increased complexity introduced by node attributes and deep 
learning models can make the resulting models less interpretable than simpler 
methods.

Dimensionality reduction methods aim to reduce the dimensionality of the input 
data while preserving essential network properties. The input of these methods is 
typically the network structure represented as an adjacency matrix or a graph. Some 
dimensionality reduction techniques, such as matrix factorization, embedding-based 
methods, and graph neural networks can incorporate node attributes as additional 
input. The output of dimensionality reduction methods is a lower-dimensional 
network representation, often referred to as embeddings. These embeddings 
capture the essential information of the network in a reduced space. However, it 
is important to note that the interpretability of the embeddings may be limited. As 
the original node features are abstracted into lower-dimensional representations, 
it becomes challenging to directly interpret the meaning of individual dimensions 
in the embedding space. Therefore, while dimensionality reduction methods offer 
computational efficiency and robustness for large networks, the interpretability of 
the resulting embeddings should be considered in the analysis and interpretation of 
the link prediction results.

After selecting suitable input and output configurations for link prediction 
methods, it becomes important to consider the availability of computational 
resources, particularly when using GNNs and deep learning models. These advanced 
techniques often require substantial computational power and may even require 
specialised hardware for efficient training and inference.

Each method has advantages and limitations, and the choice of method should 
be carefully considered based on the network’s characteristics and the application 
domain. Similarity-based methods may be appropriate for smaller networks with 
clear community structures due to their simplicity and interpretability. On the 
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other hand, for larger and more complex networks with available node attributes, 
machine learning or GNN-based approaches could be preferred to capture intricate 
relationships and patterns.

5 � Trends and gaps

In addition to providing a comprehensive overview of existing link prediction 
methods, it is important to discuss the field trends and the gaps that require further 
investigation. This section examines the trends observed in link prediction research 
regarding Attributes, Type of network, and Algorithms.

5.1 � In terms of attributes

One significant trend in link prediction is the increasing emphasis on integrating 
node and edge attributes. While traditional link prediction methods primarily rely 
on network topology, researchers have recognized the importance of incorporating 
additional information to improve prediction accuracy. Researchers aim to 
capture the diverse factors influencing link formations in real-world networks 
by considering attributes such as node features and textual content. For example, 
Xiao et  al. [135] proposed a method incorporating structural and text features for 
link prediction. They leverage the textual content of nodes in a social network to 
capture the semantic similarity between nodes and consider the network’s structural 
properties. By combining these features, their approach achieves more accurate link 
predictions compared to methods that only rely on network topology. Furthermore, 
Giubilei and Brutti [31] employed supervised algorithms and extracted attributes 
such as age and location from user profiles. Integrating attribute information in their 
approach significantly improved link prediction accuracy by effectively capturing 
the similarity between nodes based on their attribute similarities.

The availability of datasets with comprehensive attribute information is 
often limited in the field of link prediction. Many existing datasets lack certain 
attributes or have incomplete information, making it challenging to apply attribute-
based methods effectively. This scarcity of datasets hampers the development 
and evaluation of accurate link prediction models. Moreover, even when datasets 
are available, they often require preprocessing to address issues such as missing 
values, outliers, and inconsistencies. Data preprocessing is crucial to ensure the 
quality and reliability of attribute data. It involves techniques like data cleaning and 
normalization to enhance the accuracy and effectiveness of using the attributes in 
link prediction algorithms.

5.2 � In terms of networks

Another important trend is the recognition of the dynamic nature of networks. 
Real-world networks are constantly evolving, with new nodes, edges, and changes 
in network structure over time. Therefore, link prediction approaches need to 
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account for temporal dynamics and capture the changing nature of connections. 
Researchers [50, 102] are actively investigating dynamic link prediction techniques 
that can model and predict link formations over time. However, challenges remain in 
developing accurate and scalable methods to handle large-scale dynamic networks. 
Future research should focus on designing efficient algorithms and techniques to 
capture temporal patterns and predict links in evolving networks. Another important 
trend is using a knowledge network. This involves incorporating additional 
information or domain knowledge about the nodes, edges, or the network structure. 
External knowledge can provide valuable insights and enhance prediction accuracy 
by capturing contextual information, domain-specific relationships, or expert 
knowledge. Using external knowledge demonstrates the importance of considering 
beyond the network structure alone and leveraging relevant information to improve 
link prediction performance.

5.3 � In terms of algorithms

In terms of algorithms, one notable trend in link prediction is the increasing use 
of dimensionality reduction techniques, particularly in conjunction with graph 
neural networks (GNNs). These techniques aim to overcome the challenge of high-
dimensional feature spaces in network datasets by reducing the dimensionality of 
the input data while preserving relevant information. By doing so, these algorithms 
can improve the efficiency and effectiveness of link prediction models.

However, gaps and challenges still need to be addressed in this area. One such 
gap is the need for algorithms with lower complexity and reduced computational 
resource requirements. As network datasets continue to grow in size and complexity, 
it becomes increasingly important to develop algorithms that can handle the 
computational demands efficiently. This can involve exploring more efficient 
optimization strategies, model architectures, and algorithms that scale well to large 
networks.

6 � Conclusion

In conclusion, our comprehensive literature review highlights the significance 
of link prediction in various domains and provides an up-to-date overview 
of the advancements in the field. We propose a classification framework that 
categorizes existing methods into machine learning, similarity-based methods, and 
dimensionality reduction methods, with further subdivisions within each category. 
We review representative algorithms within each submethod, discussing their 
respective advantages and disadvantages. In addition to categorizing and reviewing 
existing link prediction methods, we discuss the current trends and identify the gaps 
in the field.

Overall, this survey contributes to advancing link prediction by providing 
researchers with a comprehensive analysis of the latest research trends and 
methodologies. It guides researchers towards developing more accurate and 
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context-aware models and offers a rich resource of articles, datasets, and measures 
for further exploration. With this information, researchers can make informed 
decisions about applying link prediction methods in their specific domains. The 
survey serves as a foundation for future investigations and paves the way for 
advancements in the field of link prediction and its applications.
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