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Abstract

Cardiovascular disease (CVD) is among one of the notable menaces to society
worldwide. CVD causes the highest number of deaths each year making it one of
the most life-threatening diseases across the globe. Most deaths from CVD are sud-
den therefore patients do not have a chance to get medical assistance in time. Con-
sequently, an immense need for a smart real-time system arises that can be used
to monitor heart patients’ activities affecting their cardiac health. This system acts
as a life-saving tool during serious health emergencies. Data analysis in real-time
will proves to be a substantial enhancement in innovative healthcare practices, by
which in the near future we can develop an effective, faster, and smarter diagnosis
system for doctors. If we talk about real-time data monitoring possibilities, Inter-
net of Things (IoT) empowered systems can provide one of the better solutions.
IoT-enabled intelligent healthcare system include a variety of applications, such
as Blood Pressure (BP) check, Heart Rate (HR) monitoring, Electrocardiography
(ECG) observation, etc. This paper recommends an IoT-enabled ECG monitoring
system for data generation (with the help of Node MCU ESP32 and heart rate sensor
ADS8232) and an intelligent hybrid classification model for data classification. The
dataset used has two classes where class 1 represents healthy patients and class 2
represents cardiac ill patients. A comparison among state-of-the-art algorithms and
recommended hybrid models has been carried out to establish the accurateness and
suitableness of our recommended model. The recommended model attains the high-
est accuracy of 99.7% under different validation criteria among all the state-of-the-
art algorithms, i.e. Adaboost (91.88%), Bagging (92.40%), random forest (92.48%),
K-Nearest Neighbor (92.38%), and support vector machine (91.98%). The recom-
mended hybrid model not only handles the complexities of class imbalance for elec-
trocardiogram datasets but will also help in building intelligent and accurate IoT-
enabled healthcare systems.

Keywords Intelligent hybrid classification - Cardiovascular diseases (CVD) - Class
imbalance problem - Electrocardiography (ECG) - Internet of things (IoT)
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1 Introduction

According to the World Health Organization (WHO), the approximate count of
patients deceased because of cardiovascular disease (CVD) is nearly 17.9 million,
accounting for close to 31% of all fatalities [1, 2]. CVD includes various underline
diseases, such as raised blood pressure (hypertension), coronary heart disease (heart
attack), peripheral artery disease, rheumatic heart disease, cerebrovascular disease
(stroke), deep vein thrombosis, heart failure, pulmonary embolism and congenital
heart disease [3]. Of these diseases, approximately 85% of deaths are caused by
stroke and heart attack. As per the WHO’s reports, by 2030, about 23.6 million indi-
viduals will die due to CVDs, i.e. primarily from stroke and heart disease [4, 5].
Thus, there is an immense need for continuous monitoring of some essential param-
eters of the human body, which are critical and should be exhaustively monitored in
real-time paradigms.

The enormous growth in the field of Internet of Things (IoT) has facilitated Infor-
mation Technology (IT) to new heights [6—10]. Rapid development in the empire
of IoT-based applications areas makes IoT a rising technology. In the current view-
points, approximate all the application domains the Iol is getting involved and
actively participating in the journey towards a smarter world [11-13]. In the health-
care domain, the traditional procedure was being followed by the patients but after
the emergence of IoT in healthcare, the e-health or smart health concept has come
into the picture [14—18]. Resultant, a variety of smart devices are being developed
for enabling services such as remote monitoring of the patients, unleashing patients’
healthy and safe, and empowering doctors to verbalize superlative care [19-21].
This technological advancement will not only reduce the medical overhead but also
enable in-time support of the patients at remote locations [14—18]. It also plays a
major role in decreasing the total expenditure by minimizing the span of hospital
stay with improved treatment outcomes.

In the classification problem, the data with unbalanced nature is one of the big-
gest issues, and as far as the healthcare domain is concerned it even became more
crucial because the medications are totally dependent upon the classification out-
come [22-26]. Therefore, in the healthcare domain, the classification of unbalanced
datasets is an emerging area of research. Over time a number of researchers have not
only suggested their viewpoints in the form of algorithms and theoretical approaches
[27, 28] but also developed various class-balancing solutions in the form of hybrid
paradigms [29, 30]. As far as data balancing techniques are concerned, two types of
data balancing techniques are being widely used where the first is under-sampling
and the other is over-sampling [31, 32]. In the under-sampling approach, the class
balancing is done by eliminating the data samples from the majority class, whereas,
in the over-sampling approach, the class balancing is done by adding up artificial
samples to the minority class.

Individuals’ well-being is one of the crucial tasks and it becomes more complex
when we are dealing with one of the deadliest diseases, i.e. CVD in real-time sce-
narios. Consequently, there is a need for algorithmic approaches that would play an
essential role in reducing the total risk of CVD through its efficient classification.
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Keeping these constraints in our mind, we begin the experimental examination with
basic classification models that are less accurate and not capable enough to deal
with the class imbalance problems. After several trials, we found that the proposed
intelligent hybrid classification model is well suited for classifying the imbalanced
Electrocardiogram datasets.

The main contributions of the paper are:

e To establish an IoT-enabled ECG monitoring system for data generation with the
help of Node MCU ESP32 and heart rate sensor AD8232.

e To propose an intelligent hybrid classification model having the capability of
handling the complexities of class imbalance with more accurate results.

The characterization of this paper is as follows: Section two presents a short
description of current literature based on algorithmic approaches for the classifica-
tion of ECG Dataset. In section three, a brief discussion of the methods and materi-
als such as dataset generation and description, proposed epistemology and statistical
measures have been presented. The statistical measure-based classification results
have been shown in section four. The deeper insights into the classification results
have been presented in section five. Section six incorporates the closing remarks
along with future routes of the work.

2 Related work

Massive growth in the field of Information technology encourages research to
explore the dimensions of recent technologies. It also motivates researchers and
groups to build a technological solution for human well-being. In a couple of years,
various development not only in the algorithmic perspective but also in system
design has been seen [33-37]. If we talk about the healthcare domain, a lot of pos-
sibilities are still available, which will catalyze the idea of a smart world. Cardio-
vascular disease (CVD) is a crucial disease among various life-threatening diseases
across the globe, it has gotten the attention of researchers to work on and give their
contributions to social well-being. From time to time various algorithmic solu-
tions to the ECG dataset have been suggested but there is still plenty of scope for
improvements [38-63]. The quick insights of the current research on ECG datasets
are shown in Table 1.

3 Materials and methods

This section introduces the material and methodology that has been used to carry
out the experimental evaluation. This section is divided into five subsections, where,
the first subsection refers to the hardware setup for ECG data generation. In the sec-
ond subsection, the dataset description has been presented. The model setup for the
classification task has been discussed in subsection three. In the fourth subsection,
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the recommended model has been introduced. Statistical measures for the validation
of the classification model have been presented in the last subsection five.

3.1 Hardware setup for ECG data generation

In order to generate the ECG data, we made a setup that mainly consists of a node
MCU (ESP32) and a heart sensor (AD8232). In Fig. 1a the graphical representation
of the hardware setup has been shown, whereas the nine electrode placement (E1—
Fourth intercostal space (at the right sternal border), E2—Fourth intercostal space
(at the left sternal border), E3—Intermediate between leads E2 and E4, E4—Fifth
intercostal space (at the midclavicular line), ES—Left anterior axillary line (as the
same horizontal plane of E4), E6—Left mid axillary line (as the same horizontal
plane of E4 and E5), E7—Right arm (inner wrist), E§—Left arm (inner wrist), and
E9—Right side of stomach) the human body is shown in Fig. 1b.

In Table 2, the pin connection among node MCU (ESP32) and heart sensor
(AD8232) for the ECG data generation have been shown.

The data has been generated in real-time and stored in cloud storage (Ubidots)
over a TCP connection with the help of the HTTP POST command. The generated
data is transferred in real-time to the cloud storage by using a Wi-Fi connection. The
working steps of the hardware setup have been shown in Fig. 2. The functioning of
this hardware setup is as follows:

o First of all, the connection between the heart sensor (AD8232) and node MCU
(ESP32) is established.

¢ In the second step, the electrode placement to the human body is performed.

e In the third step, the generated data is visualized on the serial monitor.

e In the fourth step, this generated data is transferred into cloud storage with the
help of the ESP32 Wi-Fi module.

e In the last step after this ECG data is extracted from the cloud medium to the
local machine for performing further investigation

3.2 Dataset description

For the experimental analysis, the ECG data have been used, which is generated
through Node MCU (ESP32) and heart rate sensor (AD8232). Nine sensors (E1-E9)
are placed at different body locations and their corresponding readings are observed.
This exercise has performed on the 50 volunteer participants over a time span of
150 s. For every second, a tuple consisting of nine attributes is generated by the
system and uploaded to the server (Ubidots) over a TCP connection with the help of
the HTTP POST command. The generated stream of data is transferred in real-time
to the cloud storage by using a Wi-Fi connection. This ECG data has been extracted
from the cloud to a local/native machine for evaluation purposes. Based on the cur-
rent health of the volunteer this dataset has been classified into the two-class where
class 1 denotes healthy patients and class 2 represents the cardiac ill patient. This
dataset is consisting of 1700 instances of 10 attributes. The visualization of the ECG
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Table2 Pin connection ADS232 ESP 32
GND GND
33V 33V
Output VP
D2 LO+
D3 LO-

Connected to
Node MCU aaed Serial Monitor
ESP32

AD8232 ECG
Sensor

Extract Data on
the Local
Device

Store Data to
Cloud

Fig.2 Working steps of the hardware setup

dataset (nine channels with class level) and their co-relation are presented in respec-
tive Fig. 3a, b.

The class-based partitioning of the ECG dataset over nine attributes is shown in
Table 3, which consists of the attribute’s illustration with the help of range (min and
max), means, and standard deviation.

3.3 Model setup

The classification model setup for the experimental analysis of the ECG dataset has
been shown in Fig. 4. This setup is comprised of five essential steps. In step one,
the ECG data is given as input to the model. In step two, the data preprocessing for
the exclusion of unusual objects and missing values has been performed. Step three
is consisting of the classification task where the processed data is given out as an
input to the classification algorithms (i.e. K-Nearest Neighbor (KNN), support vec-
tor machine (SVM), random forest (RF), Adaboost (ADB), and Bagging (BAG)).
Performance estimation of the classification algorithm is measured in step four
and based on these classification results the identification of the best classification
model is identified in step five. All the experimental evaluation has been executed
using various evaluation criteria, i.e. 2, 3, 5, and 10-fold on a Dell workstation with
a 64-bit Intel Xeon processor running at 3.60 GHz and 32 GB of RAM. Python has
been used to implement each of the algorithms being used in the simulation.
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Table 3 Class-based distribution of the ECG dataset

Attributes Class 1 Class 2
Range Mean Std. Dev Range Mean Std. Dev
Min Max Min Max
El 0.214 1.025 0.792 0.048 0.336 0.572 0.428 0.051
E2 0.522 1.025 0.793 0.045 0.336 0.983 0.738 0.117
E3 0.263 1.58 1.002 0.072 0.387 1.661 0.613 0.225
E4 0.633 3.805 1.005 0.111 0.444 1.295 0.697 0.124
ES 0.842 1 0.978 0.021 —0.962 0.88 —0.364 0.627
E6 0.842 1 0.978 0.021 -0.926 0.91 —0.354 0.681
E7 0.107 0.2 0.126 0.014 0.173 0.827 0.401 0.238
E8 0.067 0.147 0.083 0.011 0.213 0.787 0.421 0.133
E9 0.027 0.08 0.041 0.007 0.08 0.933 0.566 0.315

Data Cleaning
Classification Models

Performance Evaluation
Best Classifier

L
(]
(%)
©

)
©
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@©
—
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Fig.4 Classification model setup

3.4 Proposed hybrid classification model

The workflow of the recommended hybrid model is presented in Fig. 5. The recom-
mended hybrid classification model is composed of several steps are:

Step I The raw data is given out as input to the recommended model.

Step II The pre-processing task on the raw ECG dataset is performed to elimi-
nate the missing values and unusual objects from the dataset.

Step III Class balancing has been achieved using SMOTE (Synthetic Minority
Oversampling Technique) and which gives a new balanced dataset as output.

@ Springer



4296 S. Ketu, P. K. Mishra

Electrocardiogram Data Pre- Class Balancing
Dataset ' processing using SMOTE

Random Forest Performance

New Dataset —

Classifier Evaluation

Fig.5 Work-flow of the proposed hybrid model

Step IV This new balanced dataset has been given out as an input to the hyper-
tuned random forest algorithms under the various evaluation criteria, i.e. 2, 3, 5,
and 10-fold.

Step V The statistical parameters (i.e., accuracy, recall, precision, and fl-score)
based on performance evaluation on the hybrid classification model have been
performed.

3.4.1 Class balancing using SMOTE

Class balancing is one of the critical matters which should be effectively han-
dled while making the classification. Suppose, we have a binary classification
problem where one class holds the majority of samples and the other one has
very few data samples. Thus, making the classification based on imbalanced
data may give biased results toward the majority class because while making the
classification model the majority class contribution will be more as compared to
the minority class. Resultantly, the correctness of the classification model will
be sacrificed. Therefore, in dealing with the class imbalance problem we have
used a SMOTE algorithm which was introduced by Chawla et al. in the year
2002 [64, 65]. The basic principle of this algorithm is to make the class balance
by generating artificial samples in the minority class. It uses the k-nearest neigh-
bors (NNs) concept to generate random synthetic samples. The SMOTE-based
class balancing result has been shown in Table 4, which contains class-wise dis-
tribution with the various SMOTE percentage (i.e. 0, 50, 150, 250, 350, 450,
550, and 650).

The pseudocode of the SMOTE algorithm to solve the class imbalance issue of
the ECG dataset is represented in Algorithm 1.

@ Springer



An intelligent hybrid classification model for heart disease... 4297

Table 4 SMOTE based class balancing result

Dataset SMOTE Class 1 Class 2 Total instances

percentage
Instances % Instances %

ECG 0 1500 88.24 200 11.76 1700
50 1500 83.33 300 16.67 1800
150 1500 75 500 25 2000
250 1500 68.18 700 31.82 2200
350 1500 62.5 900 375 2400
450 1500 57.69 1100 42.31 2600
550 1500 53.57 1300 46.43 2800
650 1500 50 1500 50 3000

Algorithm 1. Pseudocode of SMOTE

Input Parameters:
D - Input Dataset
T - Minority Samples
N -SMOTE Percentage
k - Nearest Neighbors
Initialization:
o N
if (< 1)
select random samples T’ from T

for D'y « Dy x NandT « T : Dy < D'y
end if
forj » 1to|T| do
knn < k-nearest neighbors of data point x;
N'= [N/100]
while N’ # 0 do
select a random point » from knn
select random value a from [0,1]
generate a synthetic point s using 7 and a
addsto T
N’ =N"-1
end while
end for
for each attribute in Dy do
return Synthesized dataset

Output: (%) * T - synthetic samples for minority class

3.4.2 Hyper-tuned random forest algorithm

The Random forest (RF) algorithm is among the extensively used classification
algorithms [66, 67]. Due to its extensive nature, it can be applicable in roughly all
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application areas. The reason for picking up this algorithm in classification is its
extensive coverage and well-established nature. The best parameter for this classifi-
cation algorithm is achieved by the hyper-tuning selection criteria. The best hyper-
parameter is used in the recommended hybrid paradigms. The pseudocode of the
hyper-tuned random forest model for the classification of the ECG dataset has been
represented in Algorithm 2.

Algorithm 2. Pseudocode of the Hyper-Tuned Random Forest Model

Select the best hyperparameter values from the RandomizedSearchCV and do the classification with the best
hyperparameter estimator or score.
Inputs:
X — input dataset
Y — validation samples
hyperparameters — (bootstrap, max _depth, max _features, min _sample_leaf,
min_sample_split,n_estimators)
1. Function RandomizedSearchCV ( bootstrap, max _depth, max_features, min _sample_leaf,
min_sample_split,n_estimators)
Apply randomized search on hyperparameter
return best hyperparameter estimator
Function RandomForestClassifier ( X_train,Y_train, X_test,Y _test)
Use RandomizedSearchCV for getting the best hyperparameter estimator
Fit the model with X_train, Y _train
Now forecast the labels for the X_test
8. return forecasted values
Output:
Classification results with best hyperparameter estimator

N ALbN

The classification hyperparameters (i.e., min_samples_split, n_estimators, max_
features, min_samples_leaf, bootstrap, max_depth) with the various selection crite-
ria and best hyper-parameter settings used for tuning purposes have been presented
in Table 5.

3.5 Statistical analysis
For the validation of the classification results, four statistical measures, i.e., accu-

racy, fl-score, precision, and recall have been used. These statistical measures
play an essential role in establishing the accurateness and suitableness of the

Table 5 Classification’s hyperparameters

Prediction model ~ Hyperparameter Parameter selection Best hyper-
parameter
used

Random forest n_estimators [100, 200, 400, 600, 800, 1000, 1200, 1400, 200

1600, 1800, 2000]
min_samples_leaf [1,2,4] 2
min_samples_split  [2, 5, 10] 10
max_depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None] 100
max_features ["auto’, sqrt’] Auto
Bootstrap [True, False] True
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classification model [68]. Statistical measures with their respective mathematical
formulation have been shown in Table 6.

4 Result

An accurate model identification in the IoT-enabled smart healthcare environment
is among the arduous but innovative tasks. The work primarily aims to create an
intelligent hybrid classification model which is proficient in dealing with the class
imbalance issue with greater exactness and will play a key role in building the robot-
ics solution for communal well-being. Results are obtained by comparison of five
state-of-the-art models namely, ADB, BAG, RF, KNN, and SVM with the proposed
model which is also shown in Fig. 6.

To find out the effectiveness of the recommended model, a deep assessment
among the five state-of-the-art models under the various evaluation criteria (2, 3,
5, and 10-fold) has been conducted. The validation of the classification results is
calculated using four performance measures (namely, accuracy, recall, f1-score, and
precision).

The dataset used has two classes where class 1 represents healthy patients and
class 2 represents cardiac ill patients. From the empirical evaluation, it is clear that
the recommended hybrid model obtained the top accuracy throughout the experi-
ment under various validation measures over the other well-established classifica-
tion models. The statistical measures-based experimental result is shown in Table 7.

5 Discussion

For the experimental analysis, the ECG data have been used, which has been gener-
ated through the heart rate sensor (AD8232) and Node MCU (ESP32). To perform
the evaluation this ECG data is been transferred from the cloud to the local machine.
This dataset is classified into the two-class, where class 1 denotes healthy patients
and class 2 represents the cardiac ill patient. The paper presents a comparison of
five state-of-the-art models namely, ADB, BAG, RF, KNN, and SVM with the pro-
posed model. Evaluation is performed against four statistical metrics namely, accu-
racy, precision, recall, and fl-score. The class-wise visualization of classification

Table 6 Statistical measures

Statistical measure Mathematical formulation
Fl1-score fl __ 2X(precisionxrecall)

- precision+recall
Recall _ _ap

Recall TErE
Precision Precision = —Z2)
(TP+FP)

Accuracy Accuracy = (TP+1N) « 100%

(TP+TN+FP+FN)

FP - false positive, TP - true positive, FN - false negatives, and TN
- true negatives
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(ADB) Forest (RF)

Bagging
(BAG)

Fig. 6 Classification models a quick look

results with the help of four statistical measures under various validation criteria
using cross-validation policy having 2, 3, 5, and 10-fold is shown in Figs. 7a, b, c,
and 8a, b, c, respectively. Figure 9 presents the average accuracy of models during
the experimental period.

The empirical evaluation shows that the recommended hybrid model is proficient
to handle the complexities of class imbalance in the ECG dataset with enhanced per-
formance for both classes, which will give support in building the IoT-enabled smart
and accurate healthcare system. A comparison among state-of-the-art algorithms
and recommended hybrid models has been carried out to establish the accurateness
and suitableness of our recommended model. The recommended model attains the
highest accuracy of 99.7% under different validation criteria among all the state-
of-the-art algorithms, i.e. Adaboost (91.88%), Bagging (92.40%), random forest
(92.48%), K-Nearest Neighbor (92.38%), and support vector machine (91.98%). The
recommended hybrid model not only handles the complexities of class imbalance
for electrocardiogram datasets but will also help in building intelligent and accurate
IoT-enabled healthcare systems.

The dataset has been generated by 50 volunteer participants which are suitable
for binary classification problems and are not suitable to cover all types of heart dis-
eases (i.e. for multiclass classification problems). Therefore, in the future this work
will be expanded from the data (for adding more feasible attributes) and algorithmic
point of view. We will also try to make this problem a multiclass classification prob-
lem by generating data related to different types of Cardiovascular diseases.
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Table 7 Statistical measures based evaluation result

Classification models SVM KNN RF BAG ADB Hybrid
model
Class Class Class Class Class Class
1 2 1 2 1 2 1 2 1 2 1 2

Twofold Precision 0.92 0.89 0093 0.89 093 091 093 09 092 087 1 0.99
Recall 093 085 093 09 093 09 093 0.89 092 085 1 1
fl-score  0.92 0.87 093 09 093 09 093 089 092 086 1 1
Accuracy 92.0 92.4 92.5 92.4 91.8 99.7
Threefold Precision 092 0.89 093 089 093 091 093 091 092 088 1 0.99
Recall 093 086 093 089 093 089 093 0.89 093 086 099 1
fl-score 092 087 093 0.89 093 09 093 09 092 087 1 1
Accuracy  92.0 924 92.5 92.5 92.0 99.7
Fivefold Precision 092 088 093 09 093 09 093 09 092 087 1 1
Recall 093 085 093 09 093 0.89 093 0.88 092 084 1 1
fl-score 092 0.87 093 09 093 09 093 089 092 086 1 1
Accuracy 91.9 924 924 92.3 91.7 99.7
10-fold  Precision 0.92 088 093 0.89 093 091 093 09 092 088 1 1
Recall 093 0.87 093 089 093 09 093 0.89 092 087 1 1
fl-score  0.92 0.87 093 0.89 093 09 093 09 092 088 1 1
Accuracy  92.0 923 92.5 924 92.0 99.7

The results obtained from the proposed model is presented in bold

6 Conclusion

Cardiovascular diseases (CVD) are one of the biggest hazards to human society
across the globe. Hence, there is an immense requirement for real-time observation
and analysis of cardiac health. Identification of the correct model in IoT-enabled
smart healthcare paradigms is an arduous but innovative task. IoT-enabled intel-
ligent healthcare systems include numerous applications like Blood Pressure (BP)
check, Heart Rate (HR) monitoring, Electrocardiography (ECG) observation, etc.
This paper recommends an IoT-enabled ECG monitoring system for data generation
(with the help of Node MCU ESP32 and heart rate sensor AD8232) and an intel-
ligent hybrid classification model. The key intention of this study is to give a smart
hybrid classification model for dealing with class imbalance problem with greater
exactness and which will play a key role in building the robotics solution for com-
munal well-being. The dataset used has two classes where class 1 represents healthy
patients and class 2 represents cardiac ill patients. A rigorous comparison based on
various evaluation criteria (2, 3, 5, and 10-fold) among state-of-the-art algorithms
and recommended hybrid models have been carried out to establish the accurate-
ness and suitableness of our recommended model. The recommended model
attains the highest accuracy of 99.7% throughout the experiment under different
validation criteria among all the state-of-the-art algorithms, i.e. Adaboost (91.88%),
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Fig. 7 Classification result of class 1 (a) f1-Score (b) Recall (¢) Precision

Bagging (92.40%), random forest (92.48%), K-Nearest Neighbor (92.38%), and
SVM (91.98%). The recommended hybrid model not only handles the complexi-
ties of class imbalance for electrocardiogram datasets but will also help in building
intelligent and accurate IoT-enabled healthcare systems. Thus, accurate classifica-
tion of cardiovascular health through our recommended model would be useful for
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Fig. 8 Classification result of class 2 (a) f1-Score (b) Recall (¢) Precision

improving the lifestyle of cardiac patients. This will not only allow patients to be
treated from the comfort of their homes but will also reduce the need for hospital
visits and reduce the overall expenditure on hospital visits. Furthermore, it would
also help in enhancing the capabilities of effective emergency response to any medi-
cal emergency.
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Fig. 9 Results of classification models

In the future, this work will be expanded from the data and algorithmic point
of view. We will also try to make this problem a multiclass classification problem
by generating data related to different types of cardiovascular diseases. Thus, we
can not only detect different types of heart diseases but also classify them cor-
rectly. After this, we will try to build wearable devices in the form of a band or
chest belt or undergarment which will be a complete cloud-based framework.
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