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Abstract
Accurate and reliable crop type identification from satellite images provides a foun-
dation for crop yield predictions which paves the way to help ensure food secu-
rity. Most of the work done in the field of crop type mapping using remote sens-
ing is restricted to the developed countries having large field parcels, while a little 
effort has been directed towards doing so for developing countries, where this task 
becomes more challenging due to the small size of field parcels, irregular shapes of 
the fields, and an acute shortage of labelled datasets for training supervised machine 
learning models. In this research, we try to fill this gap in the literature by exploring 
the feasibility of performing the semantic segmentation of agricultural fields from 
satellite images by proposing an encoder–decoder-based semantic segmentation 
architecture, CropNet, with a ResNet network as the encoder backbone and the use 
of attention modules in the decoder to allow the model to focus on more important 
portions of the feature maps and the feature fusion to concatenate the feature maps 
from all the decoder nodes getting a more precise prediction by bringing the spa-
tial location information from the previous layers. The architecture outperformed the 
state of the art by 0.51% and 1.3%, on overall accuracy and macro-F1 score, respec-
tively, after being trained on the “2019 Zindi’s Farm Pin Crop Detection” dataset of 
Sentinel-2 images. The model achieved a field-wise overall classification accuracy 
of 78.06% and macro-F1 score of 67.3% and a pixel-wise segmentation mean Inter-
section over Union (mIoU) of 62.22% which is an improvement of 2.56% over the 
state-of-the-art methods, thereby demonstrating that our model is computationally 
efficient for the job of semantic segmentation of crop types from the satellite images 
in the difficult scenario of smallholder farms.
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1 Introduction

The 2030 Agenda for Sustainable Development, which comprises 17 Sustainable 
Development Goals (SDGs), was endorsed by the United Nations in 2015 (https:// 
sdgs. un. org/ 2030a genda). One of the SDGs concerns food security. Around 795 
million people across the world do not have adequate food to eat (https:// www. wfp. 
org/ publi catio ns/ 2019- hunger- map). According to an estimate, in the next 35 years, 
the world will need to produce more food than ever produced in human history due 
to the factors such as increasing population, climate change, rising incomes, and 
changing diets. The situation in Africa is even worse with the highest fraction of its 
population suffering from hunger as compared to any other continent.

An essential task in precision agriculture is the accurate and reliable recogni-
tion of crops, paving the way to food security by providing a basis for crop yield 
forecasting. It can help the government, farmers, buyers, and other stakeholders 
for making necessary strategies and arrangements for production, harvesting, pro-
curement, stocking, marketing, etc. It can help inform crop diversity, growth pat-
terns, and trends and facilitate crop monitoring. Traditional techniques for crop 
detection depend on locally collected survey data such as farmer surveys from 
field visits, weather patterns, rainfall statistics, soil properties, and other elements 
that affect crop development [1]. These techniques are expensive and difficult to 
scale. Moreover, precise information may not always be available to make relia-
ble predictions. Satellite images serve as a source of an enormous amount of data 
about land use, which can be explored to get very useful insights into crop growth 
patterns over vast geographical extents. Satellite data are multispectral, consisting 
of optical (visible and near infrared (NIR)), thermal, and microwave bands. Eas-
ily accessible satellite images provide large spatial coverage as well as are very 
helpful for collecting information in close to real time at the regional scale since 
they have a high temporal revisit frequency [2]. At present, more than 4,500 sat-
ellites are orbiting the earth with more than 600 being imagery satellites. Current 
state-of-the-art satellites have a resolution of 25 cm per pixel, which means that a 
person takes 3 pixels on an image.

Semantic segmentation of crops implies the process of crop identification and 
accurate localization of crops in the image at the pixel level [3, 4]. The goal is to 
assign each pixel in an image a class label to symbolize the crop to which that 
pixel belongs employing semantic segmentation. Several studies have revealed 
that satellite images can be used to predict the area where each type of crop 
is planted. The approaches to crop type detection from satellite images can be 
broadly classified into traditional approaches based on feature handcrafting and 
machine learning approaches including deep learning. Earlier approaches to crop 
detection using remote sensing data relied on handcrafted features which used 
various types of vegetation indices such as the Normalized Difference Vegetation 
Index (NDVI) [5, 6], Enhanced Vegetation Index [7, 8], and Normalized Differ-
ence Water Index (NDWI) [7, 9]. The drawback of this strategy is that the vegeta-
tion indices employed are extremely rudimentary indices that only contain data 
from a few (often two) of the available spectral bands [1].

https://sdgs.un.org/2030agenda
https://sdgs.un.org/2030agenda
https://www.wfp.org/publications/2019-hunger-map
https://www.wfp.org/publications/2019-hunger-map
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Machine learning techniques applied to multispectral satellite images include 
support vector machines [8, 10–17], decision trees [6, 10, 18, 19], random forest 
[18, 20, 21], ridge regression [7], multilayer perceptron [10], restricted Boltzmann 
machine [8], and maximum likelihood classification [15]. These approaches require 
manual feature extraction, and the classification accuracy of these approaches is lim-
ited by the representation ability of the manually extracted features. Another major 
shortcoming of these approaches for crop type classification is that they perform 
poorly outside their region of interest [22].

The fields of computer vision and natural language processing have advanced 
more swiftly recently because of the tremendous growth in deep learning research 
during the past several years. In the image classification challenge on the Ima-
geNet dataset, deep learning-based convolutional neural networks (CNNs) have 
been able to do nearly as well as humans [23]. Other image-based operations, like 
object detection, image segmentation, image synthesis, etc., have also seen notable 
advancements. The application of deep learning is penetrating newer areas includ-
ing remote sensing. Applying deep learning techniques to the satellite data can be 
helpful in semantically segmenting different crops. Pertinent features from the mul-
tispectral images can be extracted using deep learning techniques automatically in 
an end-to-end manner, completely eliminating the feature engineering tasks. A com-
bination of an unsupervised neural network and an ensemble of supervised neural 
networks was proposed as a multilevel deep learning architecture by Kussul et al. 
[24] for classifying crop types and land cover. Zhong et al. [25] built two different 
types of deep learning models: one based on 1D convolutional layers and the other 
on long short-term memory (LSTM). Cai et  al. [26] also used 1D CNN for crop 
type mapping. Ji et al. [27] proposed a 3D CNN for automatically classifying crops 
from multitemporal satellite images. Terliksiz and Altýlar [28] used spatio-temporal 
features with a 3D CNN model to predict soybean yield. In their study, Wang et al. 
[29] employed crowdsourcing to gather ground truth crop type data and used CNNs 
for mapping rice and cotton crops in southeast India at 10 m resolution. Rußwurm 
et  al. [22] developed the BreizhCrops dataset for mapping crop types in the Brit-
tany region of France. Seven classification algorithms were also used, including 
a random forest classifier and six deep learning techniques based on convolution, 
recurrence, or attention. RNN was employed in [30, 31] for mapping various crop 
types across time. In [32], ResUNet-a, a deep convolutional neural network with a 
fully connected U-Net backbone, was used to approach the issue of retrieving field 
borders from the satellite images. Rustowicz et al. [33] used two approaches to the 
issue of crop type semantic segmentation in Africa: one used a two-dimensional 
(2D) U-Net and convolutional LSTM, and the other used a 3D CNN. The limitation 
of RNN and LSTM’s ability to compute many layers simultaneously can drastically 
lengthen computation times and make it impractical for large-scale crop mapping. 
The sparse swapping and parameter sharing features of CNN may be able to shorten 
the time required for network training [34].

Another issue prevalent in precision agriculture which can help increase the agri-
cultural productivity and enhance food security is that of crop pest and disease con-
trol. Manual identification of various kinds of pests and crop diseases is problem-
atic due to the lack of expertise among the agricultural workers and being labour 
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intensive. Therefore, their automatic detection through computer vision techniques 
has a major role to play. Various researchers have approached this problem through 
advanced deep learning-based mechanisms. For instance, Jiao et al. [35] proposed 
an anchor-free CNN for detection and classification of 24 types of pests, Dong et al. 
[36] proposed a channel recalibration feature pyramid architecture for the detection 
of small pests, Jiao et al. [37] proposed adaptive feature fusion for feature pyramid 
network to detect multiple classes of pests in complex scenarios, Li et al. [38] devel-
oped a multibranch CNN with density mapping for aphid counting, and Dong et al. 
[39] proposed a multiscale feature pyramid network and an adaptive feature region 
proposal network for the detection of multiple pest categories.

Most of the literature on crop type mapping using satellite images is concentrated 
on large commercial agricultural fields in developed countries such as [21, 24–26, 
28, 31], etc. These farms are characterized by large size (5 to 10 hectares on aver-
age), definite shape, and a single crop throughout the season as opposed to small-
holder farms with size lesser than 5 hectares [40], irregular shapes, diverse inter-
cropping, and loosely defined boundaries. Large farms yield reasonable size and 
number of satellite images to be fed to a CNN-based feature extraction model giv-
ing sufficient accuracy [41]. Crop diversity has a little impact on the spectral band 
readings for a given field because the same crops are present in the nearby fields. 
However, about 30% of the world’s food supply is produced through smallholder 
farming, which uses 12% of the world’s agricultural area [42, 43]. In Africa, the 
importance of these smallholder farms is even more where around 60% of the labour 
market is employed by smallholder farmers, who cultivate more than 80% of the 
cropland [42]. Due to the location-specific nature of crop phenotypic and phenol-
ogy information as well as the variations in canopy-level spectral reflectance among 
various environments and management practises, crop type detection models cali-
brated for one region cannot be easily generalized to another region [44]. The mod-
els trained on large commercial farms cannot be effectively applied on smallholder 
farms as in smallholder farms, crop diversification is highly prevalent, fields bound-
aries are blurry, a single image patchlet contains multiple crop classes but only a few 
representative pixels for a given crop because of small field size, and the impact of 
nearby crops is substantial [45, 46]. Thus, the automatic detection of crops sown in 
smallholder farms is still a challenging task [33, 41, 46–49].

In this work, we apply deep learning-based convolutional encoder–decoder 
architecture on Sentinel-2 satellite images to detect and semantically segment the 
crops grown in different fields in the difficult scenario of smallholder farms in 
the African continent. The size of the fields in our work is comparatively small 
compared to the size of the fields in industrial farming settings, which poses a 
significant challenge. The small size of fields means a lesser number of pixels 
in the image carrying useful discriminative information. The field of deep learn-
ing and computer vision is constantly evolving, with new architectures and tech-
niques being developed regularly. CNN-based encoder–decoder segmentation 
architectures became the mainstream with the introduction of fully convolu-
tional networks (FCNs) [50]. First proposed for the Natural Language Processing 
domain [51], the self-attention-based transformer architectures found their utility 
for computer vision tasks including semantic segmentation [52–55]. In terms of 
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segmentation accuracy, transformer-based models outperformed CNN-based and 
other models on a variety of benchmarks [56]. Transformer is a suitable option 
for segmentation architecture design if the objective is to increase network accu-
racy without considering model size and computational expense. Although trans-
former-based techniques match state of the art in terms of accuracy, the CNN-
based models continue to make up the majority of segmentation models having 
undeniable advantages in terms of network size and inference speed. The reason 
behind this is that with only the parameters of the fixed-size window to learn 
and no need to encode global information, the convolution operation extracts the 
image features through a fixed-size convolution kernel. However, convolution has 
the drawback of being unable to detect long-distance relationships, such as those 
between arbitrary pixels in an image. To capture global information, we incorpo-
rated non-local self-attention mechanism into our proposed architecture to lever-
age the benefits of transformer-based attention into CNN-based architecture while 
keeping the computational cost low. Specifically, we employed lightweight SE 
attention modules after the convolution operations to amplify the useful features 
and suppress the irrelevant ones. The encoder backbone used in the architecture 
is that of pretrained ResNet model, which helps the training to advance quickly 
as its weights are already tuned to detect the low-level features such as edges, 
lines, and curves. The use of feature fusion bars to concatenate the decoder layer 
feature maps helps in getting a more precise prediction by bringing the spatial 
location information from the previous layers. All these design choices helped us 
to achieve high segmentation scores even on a small dataset. Our work has con-
tributed in the following ways:

• A robust crop type segmentation model was proposed for the difficult scenario 
of smallholder farms with irregular shapes, diverse inter-cropping, and loosely 
defined boundaries using a multicrop, multispectral, and multitemporal data-
set.

• A working pipeline to automate the workflow for preprocessing multitempo-
ral satellite images for various tasks including cloud removal, adding spectral 
indices to the images, and linear interpolation through time was proposed.

• The performance of different types of attention modules for segmenting crop 
types using the proposed model was compared.

• The effects of using different combinations of satellite bands and spectral 
indices on the performance of crop type segmentation by the proposed model 
were studied.

• The effects of the proposed design choices, i.e. attention modules and feature 
fusion bars, on the performance of the proposed model were studied.

The remainder of this article is organized as follows. Section  2 presents the 
dataset and explains the various preprocessing tasks performed on the dataset as 
well as a detailed description of the proposed architecture. Section 4 puts forth 
the experimental setup with implementation details along with the findings and 
discussion. Section 5 wraps up the work and considers its future directions.
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2  Data and Methods

2.1  Data and its preprocessing

The dataset used for our experiments is ‘Farm Pin Crop Detection Challenge’ 
(https:// zindi. africa/ compe titio ns/ farm- pin- crop- detec tion- chall enge) at Zindi, 
which is a competitive data science platform in Africa that focuses on data sci-
ence for social good. The ‘Farm Pin Crop Detection Challenge’ is originally a 
classification task that seeks to categorize crops in South African fields along a 
stretch of the Orange River, which is our Area of Interest (AoI). This dataset was 
previously used in the work of [47], wherein they compared the classical machine 
learning approaches including K-nearest neighbours, random forest, and gradient 
boosting with a deep learning-based architecture, U-Net. The authors achieved 
the best results using gradient boosting with an overall accuracy of 77.4% and 
a macro-F1 score of 66%. The dataset consists of Sentinel-2 satellite images for 
11 points in time between January and August 2017 over AoI covering the sum-
mer and winter months. The dataset consists of 2497 fields with nine crop labels, 
namely cotton, dates, grass, lucerne, maize, pecan, vineyard, vineyard and pecan 
(intercrop), and vacant (for vacant fields), as shown in Table  1. Additionally, 
there is also a background class label. The field boundaries are represented as 
polygons in a shapefile.

This dataset is limited by its small size with less than 3000 fields. Moreover, 
the size of the fields is also small. This poses a typical challenge to automatic 
crop type detection. However, the dataset is diverse with nine different crop 
classes. The classes such as cotton, lucerne, maize, pecan, vacant, and vineyard 
are represented well with enough number of fields, but the classes such as dates 
and intercrop are under-represented.

Three out of the total number of fields in the dataset contain NaN values, i.e. 
not a number in one of their attributes; thus, we dropped those fields and were left 
with 2494 fields. Then, we dropped the fields with ‘dates’ as there are only 7 field 
samples representing this crop in the dataset, which is not sufficient enough to 
train a deep learning-based model. We also dropped ‘intercrop’ which represents 
a mixed crop of ‘vineyard’ and ‘pecan’, already present in the dataset. By doing 
this, we were left with 2410 fields in the dataset, which we divided into training 
field sets and test field sets in the ratio of 75–15%, leaving 2050 and 360 fields in 
the training field set and test field set, respectively. The fields in the test field set 
were randomly sampled to include a sufficient number of examples of each class 
of crops.

The presence of some relatively small fields as compared to those in the data-
sets of industrial farming in other countries such as the USA is a challenge to the 
semantic segmentation of crops in the dataset.

We employed the eo-learn library for the preprocessing of the Sentinel-2 image 
dataset. It is an open-source Python library that automates the tasks involved in 
processing satellite images, starting with downloading Sentinel-1A and Sentinel-
2A images and continuing with feature extraction, preprocessing, and applying 

https://zindi.africa/competitions/farm-pin-crop-detection-challenge
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machine learning models to those images (https:// github. com/ senti nel- hub/ eo- 
learn). We were able to break our AoI into patches, construct a workflow, and 
then run the workflow on many patches in parallel using eo-learn. As shown in 
Fig. 1, the workflow consists of loading the images from the disc, removing too 
cloudy scenes, adding NDVI, NDWI, and Euclidean norm features to the images, 
adding a raster mask with the target crop for each field polygon, generating dif-
ferent datasets by combining different spectral bands with the spectral indices, 
resampling through time, and saving the resulting data in the form of EOPatches, 
a format for storing geospatial data by eo-learn.

The various preprocessing steps are explained as under:

Fig. 1  The eo-learn workflow

https://github.com/sentinel-hub/eo-learn
https://github.com/sentinel-hub/eo-learn
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2.1.1  Splitting AoI

We used the BBoxSplitter function from the Sentinel Hub library for splitting the 
AoI into 12 patches. Given the area, it calculates the bounding box and splits it 
into smaller bounding boxes of equal sizes. Then it filters out the bounding boxes 
that do not intersect the area. The resulting patches are eo-learn EOPatches, where 
an EOPatch is a common data structure that contains multitemporal remote sens-
ing data of a single patch typically defined by a bounding box in a specific coordi-
nate system. It can also hold extracted features such as NDVI, Euclidean norm, etc., 
metadata, and corresponding vector data. The result of this step is shown in Fig. 2.

2.1.2  Loading image data from disc

The image data in the collection are provided in JPEG2000 format, in a typical 
Sentinel-2 folder structure, and it has not been resampled or scaled to an AoI. It 
was stacked date-wise and band-wise as a four-dimensional NumPy array of shape 
date × width × height × band ( 11 × 1345 × 1329 × 13 ) in their respective patches.

2.1.3  Cloud masking

Then, we employed s2cloudless model and the SSIM-based multitemporal classifier 
(https:// medium. com/ senti nel- hub/ on- cloud- detec tion- with- multi- tempo ral- data- 
f64f9 b8d59 e5) for cloud masking and retained the scenes which contained more 
than 80% valid pixels and discarded the others.

Fig. 2  Resulting EOPatches after splitting AoI into 12 patches

https://medium.com/sentinel-hub/on-cloud-detection-with-multi-temporal-data-f64f9b8d59e5
https://medium.com/sentinel-hub/on-cloud-detection-with-multi-temporal-data-f64f9b8d59e5
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2.1.4  Feature extraction

We then extracted the spectral indices (https:// www. index datab ase. de/ db/i. php) 
NDVI, NDWI, and the Euclidean norm. NDVI is used to quantify vegetation health. 
It is calculated based on the concept that leaves absorb a high amount of visible red 
light and reflects a high amount of NIR. NDVI is calculated as:

The value of NDVI ranges between − 1 and + 1 with a higher NDVI value indi-
cating a healthier plant. As we are dealing with the task of semantic segmentation 
of crops, extracting NDVI serves as a useful feature for identifying crops as well 
as distinguishing among different crops. Different crops are planted at different 
times, grow at different rates, and are harvested at different times. As a result, NDVI 
changes differently over time for different crops [57]. We created an EOTask to cal-
culate NDVI between two bands.

NDWI [58] is an index to detect changes in the water content of leaves, which is 
calculated as:

NDWI varies from − 1 to + 1, depending on the vegetation type and cover as well 
as the water content of the leaves. High vegetation water content and vegetation 
fraction cover are correlated with high NDWI readings, while low vegetation water 
content and low vegetation cover are correlated with low NDWI values.

We also calculated the Euclidean norm of all bands within an image as:

where Bi ’s are the individual bands within an image.

2.1.5  Adding target masks

We generated target masks for the training as well as test field set images to treat 
the crop classification problem as a semantic segmentation task, where crop types 
are indicated by the raster layer. We availed the benefit  of the knowledge in the 
local spatial context of each field by rephrasing the crop identification problem as a 
semantic segmentation challenge. It also allowed for more training data to be gener-
ated through repeated sampling. Another raster mask layer indicating just the field 
polygons was also generated to be used for inference at a later stage. Figure 3 shows 
(a) a satellite image in the visible spectrum over one of the patches in AoI, (b) its 
corresponding raster mask of crop types in each field polygon for the training field 
set, and (c) the corresponding raster mask of crop types in each field polygon for the 
test field set.

(1)NDVI =
NIR − Red

NIR + Red

(2)NDWI =
Green − NIR

Green + NIR

(3)Norm = 2

√

∑

i

Bi
2

https://www.indexdatabase.de/db/i.php
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2.1.6  Generating experimental datasets

We created four different datasets to experiment with based on the different combi-
nations of spectral bands and spectral indices. Table 2 provides the specifications of 
these datasets. One dataset contains the 13 Sentinel-2 spectral bands only, while the 
other three datasets included the three spectral indices: NDVI, NDWI, and Euclid-
ean norm in addition to the spectral bands. They differ in the number of Sentinel-2 
spectral bands included.

2.1.7  Linear interpolation

Cutting out clouds leaves gaps in the data for the areas with cloud cover in each 
time slice. These gaps can be filled by interpolating between preceding and sub-
sequent time slices. For this, we used linear interpolation to average out data to 
approximately 1 time slice per month, which resulted in reducing the time dimen-
sion from 11 time points to 8 time points between January 01 and August 20, 2017, 
the time frame during which the Sentinel-2 images for the dataset were captured. 

Fig. 3  a A satellite image in the visible spectrum over one of the patches in AoI, b its corresponding ras-
ter mask of crop types in each field polygon for the training field set, and c the corresponding raster mask 
of crop types in each field polygon for the test field set

Table 2  Different datasets used for experimentation based on different combinations of spectral bands 
and spectral indices

Dataset name Spectral bands and spectral indices included Total 
number of 
channels

7_channels Red, Green, Blue, NIR, NDVI, NDWI, Euclidean Norm 7
9_channels Red, Green, Blue, NIR, SWIR band-11, SWIR band-12, NDVI, 

NDWI, Euclidean Norm
9

13_channels All 13 Sentinel-2 bands 13
16_channels All 13 Sentinel-2 bands, NDVI, NDWI, Euclidean Norm 16
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Additionally, to deal with any gaps at the start or end of the time period, we 
employed a simple extrapolation technique to copy values from preceding or suc-
ceeding time points, as necessary.

2.2  The proposed architecture

The proposed architecture’s base is a deep convolutional encoder–decoder architec-
ture, which is a kind of FCN [50]. An FCN takes an input image and produces its 
corresponding mask image indicating the predicted labels for each pixel. All the lay-
ers in an FCN are convolutional layers and there are no fully connected dense layers 
unlike a normal convolutional network which contains fully connected layers at the 
tail of the network, typically used for image classification task. Our proposed archi-
tecture, CropNet, is based on an FCN called U-Net++ [59] with a ResNet-152-based 
encoder and the decoder consisting of attention modules and the feature fusion bars 
technique. The convolutional layers in the proposed architecture are arranged in an 
encoder–decoder structure. The encoder’s job is to gradually downscale the spatial 
resolution of the input image using pooling layers while extracting the relevant fea-
ture maps at each layer using convolutions. The decoder’s purpose is to capture the 
specifics of the segmentation using the learnt features and gradually increase the 
spatial resolution at each layer by combining the feature maps generated at the pre-
vious decoder layer and the corresponding encoder layer through skip connections. 
The last decoder layer, in this manner, generates the final feature map, which is the 
semantic segmentation map of the input image. CropNet consists of three major 
improvements as compared to the baseline U-Net++ architecture:

(1) Use of ResNet architecture as the encoder
(2) Addition of an attention module at each decoder layer
(3) Use of feature fusion bars

2.2.1  Use of a ResNet variant as the encoder

Instead of using the original encoder of the U-Net++ model, the proposed archi-
tecture consists of a U-Net++ network with a ResNet acting as the encoder. ResNet 
[60] is a popular CNN architecture for image classification. We adopted ResNet-152 
as the encoder backbone in our experiments. The reason for using a ResNet encoder 
lies in its ability to train deeper neural networks. When neural networks are suf-
ficiently deep, they develop issues like vanishing gradients, the curse of dimen-
sionality, and the degradation problem, which causes accuracy to stop improving 
beyond a certain point and finally start declining. ResNet’s residual networks are 
built from residual blocks with skip connections, allowing the layers to learn the 
residual between the input and the output rather than attempting to learn the true 
input. Either the layers in residual blocks are trained or skip connections are used to 
forego their training.

Accordingly, based on how the error travels backward in the network, differ-
ent regions of networks will be trained at different rates for different training data 
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points. This can be compared to training an ensemble of various models on a 
dataset to achieve the highest accuracy. Larger gradients are transmitted to the 
first layers via skip connections, allowing for faster learning comparable to that of 
the final layers. Deeper networks can be trained as a result.

The ResNet-based encoder for CropNet extracts the feature maps from the 
deepest layer at each stride. The input to the encoder is of size m × 64 × 64 , where 
m is the number of channels in the input image, and the image is 64 pixels wide 
and high. Figure  4 shows the dimensions of the feature maps extracted at each 
encoder layer, e00 , e10 , e20 , e30 , and e40.

2.2.2  CropNet decoder with attention

Each layer of CropNet decoder is composed of several decoder nodes, where 
each decoder node consists of a concatenation of the input feature maps, then a 
sequence of two convolutional layers and an attention layer (see Fig.  4b). Each 
convolutional layer in turn is a sequence of a 2D convolution with kernel size 

Fig. 4  The proposed architecture
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3 × 3 , a rectified linear unit (ReLU) activation, and 2D batch normalization, 
shown by the ‘red’ arrows in Fig. 4b.

Attention modules at each decoder node are indicated by ‘green’ arrows in 
Fig. 4b. Attention in neural networks allows to focus on important features and helps 
to improve the representations of interests. We employed SE attention [61] in our 
attention modules. SE is a lightweight channel-wise attention module that enables 
a network to undergo dynamic channel-wise feature recalibration to improve its 
representational power. Figure 5 depicts the detailed architecture of a SE attention 
module. In this case, ‘S’ denotes the squeeze operation, which conducts a channel-
wise ‘global average pooling’ over the whole feature map, and ‘E’ is the excitation 
operation, which conducts the activation using a few fully connected layers and an 
activation function. The squeeze operation ( Fsq ) pools the channel-wise global aver-
age over the spatial dimensions ( H ×W ) of a feature map U ∈ ℝ

H×W×C to create the 
output S ∈ ℝ

1×1×c . Specifically, for each channel c , Fsq(Uc) is calculated as:

The output of the squeeze operation is then fed through the excitation operation 
( Fex ) to produce channel-wise modulation weights, E ∈ ℝ

1×1×c . Fex is a sequence of 
a fully connected (FC) layer, ReLU activation, another FC layer, and a sigmoid func-
tion. Equation 5 shows the sequence of operations employed:

where W1 ∈ ℝ
c×

c

R and W2 ∈ ℝ
c

R
×c are the weight matrices, � refers to the ReLU acti-

vation, � is the sigmoid function, and R is the reduction ratio (16 by default).
E is applied directly to U through a simple broadcasted element-wise multiplica-

tion ( Fscale ) which scales each channel in U to its corresponding learned weights in 
E to produce attention-based feature maps that will be supplied to later layers of the 
neural network.

The decoder nodes are present at four layers, l = 0, 1, 2, 3 . The nodes present at 
the first layer, l = 0 , are d01 , d02 , d03 , and d04 . At layer l = 1 , the nodes d11 , d12 , and 
d13 are present. Similarly, the nodes d21 and d22  make up the layer l = 2 . The node 
present at l = 3 is d31.

(4)Fsq(Uc) =
1

H ×W

H
∑

i=1

W
∑

j=1

Uc(i, j)

(5)Fex(S,W) = �(W2�
(

W1z
)

)

Fig. 5  An SE attention module [61]
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The nodes in the decoder are connected through skip connections. Each decoder 
node gets as input the feature maps from the corresponding encoder layer, and from 
all the previous decoder nodes present in the node’s corresponding layer, as well as the 
upsampled output from the previous encoder/decoder node at the lower layer.

At decoder node di1 , 0 ≤ i ≤ 3 , an output feature map of size 64 × 32 × 32 is pro-
duced through a sequence of operations given by Eq. 6:

where upsample operation is meant to double the spatial resolution of the input fea-
ture map, + refers to the concatenation of the corresponding feature maps along the 
channel dimension,  conv1 is the first convolution operation, and conv2 is the second 
convolution operation. conv1 reduces the number of channels to 32, 32, 64, and 128, 
and conv2 to 64, 64, 128, and 256, respectively, in d01 , d11 , d21 and d31 . The spatial 
resolution of the feature map at any decoder node in a layer remains the same as that 
of corresponding encoder node in that layer. In a similar manner, feature maps at 
decoder nodes d02 , d12 , and d22 are generated as given by Eq. 7:

Here, conv1 reduces the number of channels to 32, 64, and 128, and conv2 to 64, 
128, and 256, respectively, in d02 , d12 , and d22 . In the next step, the feature maps of the 
decoder nodes d03 and d13 were computed as given by Eq. 8:

Here, conv1 reduces the number of channels to 64 and 128, and conv2 to 128 and 256, 
respectively in d03 , and d13 . Lastly, the feature map for node d04 of size 256 × 32 × 32 is 
generated as given by Eq. 9:

Here, conv1 reduces the number of channels to 128 and conv2 to 256.

2.2.3  Use of feature fusion bars

We employed the feature fusion bars technique which simply concatenates or fuses 
together the feature maps produced by several convolutional layers in the network. This 
helps in getting a more precise prediction by bringing the spatial location information 
from the previous layers. In the proposed architecture, we employed the feature fusion 
bars to concatenate the feature maps from the decoder nodes of CropNet along the 
channel dimension. Four feature fusion bars f1 , f2 , f3 , and f4 were generated as given by 
Eqs. 10–13:

(6)di1 = se(conv2(conv1(ei0 + upsample(e(i+1)0)))), 0 ≤ i ≤ 3

(7)di2 = se(conv2(conv1(ei0 + di1 + upsample(d(i+1)1)))), 0 ≤ i ≤ 2

(8)di3 = se(conv2(conv1(ei0 + di1 + di2 + upsample(d(i+1)2)))), 0 ≤ i ≤ 1

(9)d04 = se(conv2(conv1(e00 + d01 + d02 + d03 + upsample(d13))))

(10)f1 = d01 + d11 + d21 + d31

(11)f2 = d02 + d12 + d22
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For generating each feature fusion bar, the spatial dimensions of the constituent 
feature maps were first upsampled to be of the same size, i.e., 32 × 32 . For instance, 
to generate f1 , the feature maps d11 ∈ ℝ

64×16×16 , d21 ∈ ℝ
128×8×8 , and d31 ∈ ℝ

256×4×4 
were upsampled to become d11 ∈ ℝ

64×32×32 , d21 ∈ ℝ
128×32×32 , and d31 ∈ ℝ

256×32×32 , 
respectively, while d01 ∈ ℝ

64×32×32 already has the compatible spatial dimensions. 
The upsampled feature maps were then concatenated along the channel dimension 
to generate a feature fusion bar. Four feature fusion bars thus generated were each 
passed through a sequence of two convolutional layers and a 2D convolution with 
kernel size 1 × 1 to produce 4 different segmentation maps, each of size 8 × 32 × 32 , 
where 8 is the number of classes in the dataset including a no-data class. These four 
segmentation maps were then combined into a single final segmentation map of size 
8 × 64 × 64.

2.3  Implementation details

The proposed architecture for crop segmentation was implemented in Python 
(version 3.7.13) and the open-source neural network libraries PyTorch (version 
1.6.0 + cu101) and Fastai (version 1.0.61) on Google Colaboratory cloud platform 
using Tesla P100 16 GB GPU.

We randomly sampled patchlets of size 64 × 64 pixels from 12 patches. This was 
done for the training field images as well as the test field images of each of the 4 
datasets, as explained in Table 2. Because the fields are small and the available Sen-
tinel-2 imagery has a maximum spatial resolution of 10 m, we kept the patchlet size 
small. This means a 1 hectare (10,000  m2) field looks in the imagery as 32 × 32 pix-
els. The patchlets were sampled in such a way that each patchlet contained at least a 
portion of the training field. We saved two pickle files for each patchlet: one with the 
input imagery and the other with the crop types as a raster layer. Figure 6 illustrates 
the NDVI and visible images for nine randomly sampled 64 × 64 patchlets at a single 
time point, along with the appropriate target crop types.

For each of the 4 datasets generated, we stacked the total channels n in the dataset 
with each of the 8 timepoints to produce a n × 8-channel image to get a rank 3 ten-
sor. It resulted in 56 × 64 × 64 , 72 × 64 × 64 , and 128 × 64 × 64 images, for 7_chan-
nels, 9_channels, and 16_channels datasets, respectively. For all the four datasets, 
10% of the training field images were kept for validation.

Because the network architecture had many parameters and the dataset was rather 
limited, we employed data augmentation to prevent overfitting. The various aug-
mentation techniques applied were vertical/horizontal flips, rotation, zoom, warping, 
and cutout.

The chosen dataset set has an uneven distribution of different crop varieties. Orig-
inally introduced in the RetinaNet [62] paper, we employed the focal loss, which is 
useful in cases with extreme class imbalance as ours. Using the weight parameter 

(12)f3 = d03 + d13

(13)f4 = d04
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of the loss function, we weighed the loss function in proportion to the inverse fre-
quency of each crop type. Much of the training image area lacked a crop type, either 
because there was no field in the area or because the field was not part of the train-
ing dataset, so we ignored predictions where there was no crop type label.

Other hyperparameters used in training the proposed architecture are listed in 
Table 3.

The model was trained on the architecture of CropNet for all the three datasets, 
i.e. 7_channels, 9_channels, and 16_channels datasets. For training, we employed 
a one-cycle training policy with a maximum learning rate of 0.001 for the first 5 
epochs, keeping the pretrained encoder weights frozen. We trained the model for 
a further 15 epochs with a maximum learning rate of 0.0001, allowing the encoder 
weights to be updated.

2.4  Evaluation metrics

Several typical statistical metrics commonly used in the state-of-the-art image seg-
mentation architectures were selected to evaluate the results, which are IoU score, 
accuracy, precision, recall, and F1 score. The value of all these evaluation metrics 

Fig. 6  a Visible spectrum, b NDVI images, and c the corresponding target crop types at a single time 
point for nine randomly sampled 64 × 64 training patchlets

Table 3  Various network 
hyperparameters used 
for training the proposed 
architecture

Hyperparameter Value

Optimizer Adam
Maximum learning rate 0.001–0.0001
Regularization techniques Weight decay
Loss function Focal loss
Epochs 5 + 15
Batch size 32
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ranges between 0 and 1. The larger the value of an evaluation metric, the better the 
segmentation results.

We calculated three accuracy statistics: per-class accuracy, average accuracy, and 
overall accuracy. Per-class accuracy was calculated for all seven classes in our data-
set. For a given class c , it is defined as:

where tp , tn , fp , and fn are, respectively, the numbers of true positive (TP), true nega-
tive (TN), false positive (FP), and false negative (FN) pixels for the class c . Average 
accuracy is the average of the per-class accuracies of each class. It is defined as:

Here, C is the total number of classes in the dataset. Overall accuracy is simply 
the total number of correct predictions over all the classes divided by the total num-
ber of pixels in the entire test set.

The industry-standard statistic for semantic segmentation is the IoU score, often 
known as the Jaccard index [63]. It reflects the overlap between the anticipated seg-
mentation mask and the ground truth mask, divided by the total number of pixels in 
both masks. IoU score for a class c is defined as:

As we are dealing with multiple classes segmentation, we also compute mIoU as:

where C is the total number of classes. To reveal more insights into the model’s per-
formance, three additional metrics—precision, recall, and F1 score—are also used. 
For a single class c, precision is defined as:

When dealing with multiple classes as in our case, the macro-precision can be 
calculated as simply the average of the precision values over all the classes in the 
dataset. It is defined as:

For a single class c, recall is defined as:

(14)Accuracyc =
tpc + tnc

tpc + tnc + fpc + fnc
,

(15)Averageaccuracy =

∑C

i=1
Accuracyi

C
,

(16)IoUc =
tpc

tpc + fpc + fnc
,

(17)mIoU =

∑C

i=1
tpi

∑C

i=1
(tpi + fpi + fni)

,

(18)Precisionc =
tpc

tpc + fpc
,

(19)Macroprecision =

∑C

i=1
Precisioni

C
,
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Similar to average precision, we calculated macro-recall as:

The F1 score simply combines both precision and recall as:

A model with a high F1 score demonstrates high precision and recall. In multi-
class problems, the macro-F1 score is simply the average of the F1 scores on indi-
vidual classes:

These metrics provide meaningful insights into understanding the efficacy and 
performance of the model.

3  Results and discussion

3.1  Performance comparison among different types of attention modules 
in terms of the segmentation results on 16_channels dataset

We compared the segmentation performance of four different attention modules 
before arriving at the decision to use the SE attention module. Apart from SE atten-
tion module, three other modules include Expansion-Squeeze-Excitation (ESE) 
attention [64], Efficient Channel Attention (ECA) [65], and Convolutional Block 
Attention Module (CBAM) [66]. ESE examines how features interact when they are 
upsampled and downsampled and use an expansion step that may be used to extend 
modal and channel information. ECA utilizes a local cross-channel interaction tech-
nique that does not require dimensionality reduction and can be done quickly using 
1D convolution. CBAM is a lightweight attention module that sequentially infers 
attention maps from a given feature map along two separate dimensions, channel 
and spatial, then the attention maps are multiplied to the input feature map for adap-
tive feature refinement. The performance of these modules was compared on the 16_
channels dataset using the proposed architecture. Table 4 shows the results achieved. 
The best results are emboldened in all the following tables.

From the table above, SE attention module outperformed all other attention mod-
ules on all the evaluation metrics. Also, it is a lightweight attention module with 
minimal computational burden. Thus, we decided to include SE attention in the pro-
posed architecture.

(20)Recallc =
tpc

tpc + fnc
,

(21)Macrorecall =

∑C

i=1
Recalli

C
,

(22)F1c = 2 ×
Precc × Recallc

Precc + Recallc
,

(23)MacroF1 =

∑C

i=1
F1

i

C
,
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3.2  Segmentation results on different datasets based on the number of channels

Table 5 presents the results of the segmentation task using the proposed model, Cro-
pNet, on all the four datasets: 7_channels, 9_channels, 13_channels, and 16_chan-
nels. These results were achieved with attention modules and feature fusion bars.

The 16_channels dataset, which included all the 13 Sentinel-2 bands as well as 
the computed indices, i.e. NDVI, NDWI, and Euclidean norm, outperformed the 
other three datasets: 7_channels, 9_channels, and 13_channels on all the evaluation 
metrics. The maximum OA achieved is 76.22% which is 3.26% higher as compared 
to the second-best results on the 9_channels and 13_channels dataset. Similarly, the 
mIoU, which is an important semantic segmentation metric, is also improved on the 
16_channels dataset to 62.22% as compared to 58.96% on the 9_channels dataset.

The 13_channels dataset which contains Sentinel-2 bands only and no spectral 
indices performed on par with 7_channels dataset and 9_channels dataset but not 
with 16_channels dataset on various evaluation metrics but mIoU, the most impor-
tant metric for segmentation. Still, it wasn’t any more effective than them. The mIoU 
achieved is 55.64% and 5.68% lower than that achieved on 16_channels dataset. It 
indicates the importance of feeding spectral indices if the goal of a deep learning 
model is to analyse vegetation-related information, such as crop classification, land 
cover mapping, or vegetation health monitoring. The model can learn to extract 
relevant patterns and relationships from these indices along with other available 

Table 4  Segmentation results of using different attention layers in the proposed CropNet model on 16_
channels dataset

Attention mod-
ule employed

Average 
accuracy 
(%)

Overall 
accuracy 
(%)

Macro-
precision 
(%)

Macro-recall (%) Macro-F1 
score (%)

mIoU (%)

SE 80.33 76.22 75.57 64.80 66.26 62.22
ESE 79.76 75.58 75.31 63.46 64.51 59.82
ECA 80.25 76.08 75.43 62.66 63.51 59.13
CBAM 78.73 74.93 75.25 61.70 63.01 58.95

Table 5  Segmentation results of CropNet on 7_channels, 9_channels, 13_channels, and 16_channels 
datasets achieved with attention modules and feature fusion bars

Evaluation Metric (%) Dataset

7_channels 9_channels 13_channels 16_channels

Average accuracy 78.19 78.52 76.07 80.33
Overall accuracy 71.52 72.96 72.96 76.22
Macro-precision 71.43 71.65 72.90 75.57
Macro-recall 61.19 61.71 60.03 64.80
Macro-F1 score 60.70 62.27 60.68 66.26
mIoU 58.38 58.96 55.64 62.22
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data, such as satellite images or environmental parameters. By providing additional 
features such as spectral indices as input, the deep learning model can potentially 
enhance its ability to understand vegetation dynamics and make more accurate pre-
dictions. Thus, it can be concluded that including a greater number of Sentinel-2 
bands and spectral indices provides important discriminating information to the 
classifier as compared to using only a fewer number of them.

3.3  Ablation study: analysing the effect of using attention modules 
and the feature fusion bars on the model’s performance

We conducted an ablation study to systematically analyse and evaluate the contri-
bution of individual design choices on the model’s performance to gain a deeper 
understanding of the effectiveness of each modification in the CropNet architecture 
and help identify the key factors driving its improved performance. Specifically, we 
analysed the effects of using the chosen SE attention modules and the feature fusion 
bars technique on the performance of CropNet. Table 6 presents the results of (i) 
CropNet without attention modules and feature fusion bars, (ii) CropNet after add-
ing attention modules but without feature fusion bars, and (iii) CropNet with atten-
tion and feature fusion bars. These results were obtained on the 16_channel dataset.

From Table 6, it can be seen that the attention modules and the feature fusion 
technique proved beneficial for segmentation. Overall accuracy was improved by 
1.43% by the addition of attention modules to the decoder nodes of CropNet. This 
helped the model to focus on the extraction of essential features. The application of 
the feature fusion bars further improved the segmentation accuracy by 1.75%. The 
model’s performance on other evaluation metrics also improved with the application 
of the attention modules and the feature fusion bars technique.

3.4  Further analysis of the proposed CropNet model

For gaining further insights into the performance of the proposed model, CropNet, 
we present the segmentation results on each crop in the dataset in Table 7. The over-
all percentage of pixels in the dataset belonging to each class of crops is given in the 
table. The dataset exhibits a high class imbalance as seen by the presence of poorly 

Table 6  Analysing improvement in the performance of the CropNet model after employing attention 
modules and the feature fusion bars technique on 16_channel dataset

Evaluation Metric (%) Without attention, without 
feature fusion bars

With attention, without 
feature fusion bars

With attention, with 
feature fusion bars

Average accuracy 78.91 79.34 80.33
Overall accuracy 73.04 74.47 76.22
Macro-precision 73.49 73.08 75.57
Macro-recall 62.40 63.03 64.80
Macro-F1 score 62.27 62.75 66.26
mIoU 59.66 60.41 62.22
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represented crops such as ‘cotton’ and ‘grass’ with, respectively, 4.83% and 5.91% of 
the total pixels belonging to them. On the other hand, ‘vineyard’ and ‘lucern’ are the 
majority classes with, respectively, 31.93% and 25.23% of the total pixels belonging 
to these classes. The model demonstrated better performance on the majority classes 
with the highest accuracy of 90.64% shown by the ‘lucern’ class and the best IoU 
score of 77.96% yielded on the ‘vineyard’ class. These two classes demonstrated 
good performance on other evaluation metrics also, except for precision in which the 
‘cotton’ class gave the best results of 95.91%, but its IoU score of 44.87% was low. 
The lowest performance was demonstrated by the ‘grass’ class with an accuracy of 
58.14% and an IoU score as low as 15.62%. The performance of the model on the 
‘vacant’ class was also weak with 32.35% IoU. The model demonstrated reason-
able performance on other classes such as ‘maize’ and ‘pecan’ having accuracies of 
89.60% and 86.70%, respectively.

Figure 7 displays some of the crop masks produced by the proposed model. From 
these qualitative results, it can be seen that the model is capable of segmenting dif-
ferent crops precisely producing accurate crop masks. It can also be seen that the 
model performs relatively poorly on field boundaries and fields with non-standard 
shapes, as shown in Fig. 7b, d.

3.5  Comparison with existing approaches

For validating the performance of our proposed methodology, we compared the 
results of our model with existing mainstream semantic segmentation models, 
U-Net [67] and U-Net++ [59], Deeplab v3+ [68], SegNet [69], and Attention 
U-Net [70] and also with those reported by [47], who also worked on the same 
‘2019 Zindi’s Farm Pin Crop Detection’ dataset. These approaches have given 
excellent performance in other applications including segmentation of roads, 
biomedical images, and natural images. All these approaches form the basis of 
most of the CNN-based segmentation architectures used nowadays, thus making 
it a comprehensive comparison. These results are reported on pixel-wise clas-
sification using overall accuracy, macro-F1, and mIoU and on field-wise clas-
sification performance using overall accuracy and macro-F1. Table 8 shows the 

Table 7  Performance of CropNet model on segmentation of individual crops

Evaluation metrics (%) Cotton Vineyard Grass Lucern Maize Pecan Vacant

Pixels belonging to the class (%) 4.83 31.93 5.91 25.23 13.02 8.43 10.65
Accuracy 72.82 90.15 58.14 90.64 89.60 86.70 74.22
Precision 95.91 91.73 70.27 76.23 76.73 75.76 42.34
Recall 45.74 83.85 16.73 90.84 82.96 75.63 57.83
F1 score 61.94 87.61 27.02 82.89 79.72 75.70 48.89
IoU 44.87 77.96 15.62 70.79 66.28 60.90 32.35
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comparison of the results achieved on our proposed CropNet model with the 
existing approaches.

CropNet beats the other methods on all the evaluation metrics in pixel-wise 
classification as well as field-wise classification. On pixel-wise classification, 
CropNet enhances the overall accuracy, the macro-F1 score, and the mIoU by a 
margin of 3.18%, 5.62%, and 2.44% over the best results produced by other mod-
els. On field-wise classification, CropNet achieved an overall accuracy of 78.06%, 
which is 0.62% higher than that reported by [47] and 0.51% higher than those 
achieved with U-Net++. Similarly, our proposed model attained a macro-F1 
score of 67.30% on field-wise classification, which is 1.3% greater than the earlier 
work by [47] and 4.54% higher than that attained with U-Net++.

Fig. 7  Crop segmentation masks produced by CropNet



1390 P. K. Buttar, M. K. Sachan 

1 3

4  Conclusions

The experimental results demonstrate the effectiveness of our proposed CropNet 
model on crop type detection and segmentation in the difficult scenario of small-
holder farms. This can be attributed to the U-Net++ based structure of CropNet 
which helps to enhance the semantic similarity of the feature maps between the 
encoder and the decoder. Furthermore, the addition of the attention modules in the 
decoder nodes helps to pay attention to the most relevant features of a feature map. 
The feature fusion technique facilitates getting a more precise prediction by bringing 
the spatial location information from the previous layers. All these features helped 
the model to gain superior results even with a limited size of the training samples. 
The proposed model achieved an overall accuracy and a macro-F1 of 78.06% and 
67.30%, respectively, on field-wise classification, thus improving the state of the art 
by 0.51% and 1.3%, respectively. On pixel-wise semantic segmentation, our model 
improved the mIoU by 2.56%. The performance results thus demonstrate that our 
model is computationally efficient for the task of crop type detection from satellite 
images of small field parcels.

The trained model can be used for the extraction of fields belonging to differ-
ent crops from the satellite images. Thus, it can help by providing a basis for crop 
yield forecasting and ultimately contributing to achieving food security, one of the 
17 SDGs of the United Nations’ 2030 Agenda for Sustainable Development. It can 
help the government, farmers, buyers, and other stakeholders for making necessary 
strategies and arrangements for production, harvesting, procurement, stocking, mar-
keting, etc. It can also help give information about crop diversity, crop growth pat-
terns, and trends and facilitate crop monitoring.

Although the proposed architecture is trained on a small dataset, the dataset is 
diverse and a representative of a major agricultural region in South Africa. This 
region has been drought-stricken during the recent years. In 2021, 20.2% of Afri-
cans were severely food insecure. For countries aiming at boosting food security and 
agricultural growth, improved models for crop type automatic forecast and activ-
ity monitoring are essential. Our proposed model is such an effort in this direction. 

Table 8  Performance comparison of the proposed model, CropNet with the existing work

Pixel-wise classification results Field-wise classification 
results

Overall accuracy Macro-F1 mIoU Overall accuracy Macro-F1

U-Net [67] 72.02 59.03 58.14 70.83 58.96
U-Net++ [59] 73.04 59.66 59.66 77.5 62.76
Matvienko et al., 2022 [47] 70.1 57 –- 77.44 66
Deeplab  v3+ [68] 71.81 60.64 59.78 77.39 59.20
SegNet [69] 71.35 56.56 54.36 72.87 55.54
Attention U-Net [70] 72.58 59.27 58.84 73.66 61.02
CropNet (ours) 76.22 66.26 62.22 78.06 67.30
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Generalization is an important factor for the practical application and adoption of 
any deep learning architecture. Due to the location-specific nature of crop pheno-
typic and phenology information as well as the variations in canopy-level spec-
tral reflectance among various environments and management practises, crop type 
detection models calibrated for one region cannot be easily generalized to another 
region. However, the proposed trained model may be tested for its transferability on 
other study sites with different geographical characteristics to compare and analyse 
its performance in the future research.

In the proposed work, we stacked all the timepoints together in the images’ 
channels which does not allow the model to properly learn from the patterns in 
the imagery through time. In the future, recurrent networks such as temporal con-
volutional networks can be explored to learn temporal patterns. A more sophisti-
cated loss function such as boundary loss may be used to minimize the error at field 
boundaries. Also, a model for estimating yield prediction from the detected crop 
fields can be devised.
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