
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:915–941
https://doi.org/10.1007/s11227-023-05505-8

1 3

An approximation algorithm for virtual machine placement
in cloud data centers

Zahra Mahmoodabadi1 · Mostafa Nouri‑Baygi1

Accepted: 14 June 2023 / Published online: 5 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
This study addresses the energy efficiency challenge in cloud data centers by exam-
ining the Virtual Machine Placement (VMP) problem. VMP involves mapping vir-
tual machines (VMs) to physical machines (PMs) under capacity constraints. The
paper focuses on the bin packing with linear usage cost (BPLUC) variant of bin
packing, which includes fixed and variable costs in the calculation of the cost of a
used bin. We prove that every approximation algorithm for the bin and vector bin
packing can be used for BPLUC and VBPLUC, respectively. We propose a more
power-efficient approach to VMP by applying a vector bin packing algorithm to
minimize power consumption in data centers. We test the proposed algorithm on
various synthetic and real workloads, and the experimental results demonstrate that
it is more power-efficient than existing algorithms for VMP. The findings suggest
that the proposed algorithm has significant implications for energy-efficient strate-
gies in cloud data centers. Generally, this study makes contributes to the develop-
ment of energy-efficient approaches to VMP that can help reduce power consump-
tion and improve the sustainability of cloud data centers.

Keywords  Approximation algorithm · VM placement · Vector bin packing

1  Introduction

One of the primary concerns of cloud providers is the efficient management of avail-
able resources. Minimizing power consumption and improving performance is a hot
topic these days. Idle server static power consumption is more than 60% of server
peak power consumption [1]. Virtualization is one of the proposed solutions for

 *	 Mostafa Nouri‑Baygi
	 nouribaygi@um.ac.ir

	 Zahra Mahmoodabadi
	 za.mahmoodabadi@mail.um.ac.ir

1	 Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05505-8&domain=pdf

916	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

optimal resource utilization. This technology allows cloud providers to create multi-
ple VMs on a single PM, thus improving resource efficiency.

Deciding how to allocate VMs to PMs is called virtual machine
placement(VMP)and is an NP-hard optimization problem. A common strategy to
minimize data center energy consumption is to minimize the number of active
PMs [2, 3]. Considering VMs as items and PMs as bins leads to the bin packing
problem. This problem is strongly NP-hard [4]. The problem is assigning items to
bins to minimize cost. The cost of bin packing is the number of bins used to pack
items.

There is a variant of bin packing called Bin Packing with Linear Usage Cost
(BPLUC) [5] that accounts for the cost in a different way. BPLUC bin costs con-
sist of two parts: fixed and variable costs that are associated with each unit of
capacity used. The problem is to assign each item to a bin, considering capac-
ity constraints, so that the total cost of all bins is minimized. Here, the energy
required per unit of PM usage is considered as the variable cost. Fixed cost is
defined as the energy required for an idle PM with zero utilization. BP is a par-
ticular case of BPLUC, where all fixed costs set to 1 and variable costs set to 0.

When we consider multiple dimensions for items and bins, the problem is
called VBP and VBPLUC for BP and BPLUC, respectively. For example, all
items and bins have two dimensions: volume and weight. However, data center
VMs and PMs include multiple dimensions such as CPU, RAM, bandwidth, and
storage. This study examines the VMP problem with three dimensions CPU,
RAM, and bandwidth, with the aim to minimize power consumption.

To the best of the author’s knowledge, there is no existing approximation algo-
rithm available for the energy-efficient Virtual Machine Placement (VMP) prob-
lem. In this research paper, we establish a comprehensive and meaningful connec-
tion between two fundamental problems, namely Bin Packing (BP) and Bin Packing
with Linear Usage Cost (BPLUC), as well as between Vector Bin Packing (VBP)
and Vector Bin Packing with Linear Usage Cost (VBPLUC). This correspondence
is relevant and applicable to a novel family of VBP problems. The problem of VMP
shares similarities with VBPLUC, as both involve considering the cost of a Physical
Machine (PM) in terms of the power it consumes. The power consumption is deter-
mined by the utilization of the PM, which, in turn, depends on the number of Virtual
Machines (VMs) allocated to it and the resource requirements of each VM.

The main contributions of this paper are:

1.	 We prove that any approximation algorithm for BP with an approximation ratio
� is an approximation algorithm for BPLUC with an approximation ratio based
on � for homogeneous hosts.

2.	 We prove that any approximation algorithm for VBP with an approximation ratio
� is an approximation algorithm for VBPLUC with an approximation ratio based
on � for homogeneous hosts.

3.	 We apply the proposed algorithm for VBP presented in [6] for VMP with power
minimization objective in heterogeneous data centers.

917

1 3

An approximation algorithm for virtual machine placement…

The remaining sections of this paper are organized as follows: Sect. 2 provides
an overview of the related work for VMP. In Sect. 3, we first present the system
architecture, then define and formulate the BPLUC and VBPLUC problems con-
sidering BP and VBP problems. Section 4 deals with the first and second con-
tributions. Section 5 reports the experiments on real datasets and compares the
results with other algorithms. Finally, conclusions and future work are presented
in Sect. 6.

2 � Related work

This section provides a brief overview of related work available on the VMP
topic. There is extensive literature on how to solve this problem with differ-
ent goals, such as power minimization, network traffic minimization, economic
revenue maximization, performance maximization, and resource utilization
maximization.

There are several attempts to solve VMP with the goal of power minimiza-
tion. This section describes some of them. Deterministic methods [7, 8], heuristic
methods [9–15], meta-heuristic methods [16–20] and other methods [21–25] have
been suggested to solve VMP.

2.1 � Deterministic methods

Mann et al. [8] solved the VMP issue when the virtual and physical machine pro-
cessors are multicore. The authors presented some greedy algorithms based on
PABFD [12] and a model based on Constraint Programming (CP). The objective
function is based on the sum of weighted minimization of the number of active
physical machines, reduction in the number of migrations, and minimization of
SLA violations. In the proposed method, there are two stages based on CP. First,
the method examines the search space for solutions of assigning VMs to PMs. In
the second stage, the best mapping of virtual machine cores to physical machine
cores is made for the allocation found. However, this model offers the best solu-
tion for the small instances compared to the greedy algorithms. For larger sam-
ples, for example, those containing more than 350 virtual machines, the method
could not to find a solution within the given time.

Wie et al. in [7] attempt to simultaneously reduce active and idle physical
machines’ power and physical machines’ activation time. The authors express the
activation time of physical machines with a threshold constraint. Two mathemati-
cal models are presented with two objective functions, minimizing energy and
minimizing physical machine activation time. The combination of solutions in
each model dictates the final placement of virtual machines.

Deterministic methods are based on mathematical models and algorithms
that provide a guaranteed optimal solution, given enough time and resources.

918	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

However, the computational complexity of deterministic methods often makes
them infeasible for large-scale VM placement problems.

2.2 � Heuristic methods

Ajmera et al. used a new criterion for power-based VMP [13]. In this study, the
authors addressed two problems, the initial placement of VMs and finding a suit-
able target PM during migration. Choosing the right PM to place a VM on is first
based on performance metrics(how much power is required for a given workload
for each type of PM). The PM with minimum utilization to power ratio is selected
when the VM is placed on it.

Another method to solve this problem is described by [10] called GRVMP. The
authors proposed a greedy algorithm that randomly assigns PMS to VMs with the
aim of power optimization. They introduced a new factor called resource wastage.
There, PMs with minimal waste of resources are better suited for hosting VMs.
The results show that this method is suitable for large data centers and does not
work well for data centers with a small number of VMs and PMs.

Knowing that VMP is an NP-hard combinatorial problem, it is impossible to
solve it optimally for a large number of VMs and PMs. Data centers typically
consist of thousands to millions of VMs and PMs, and the best solution provided
by a thorough search can be expensive. Therefore, a compromise must be made
between the quality of the solution and the computational costs of a real cloud
management system. Heuristic algorithms based on the bin packing problem
are extensively employed in order to effectively minimize the number of physi-
cal machines(PMs) utilized and enhance energy efficiency. Beloglazov et al. [12]
proposed a PABFD algorithm based on the Best Fit(BF) heuristic algorithm. The
algorithm chooses the PM with the lowest power consumption for VM placement.

The paper [9] delves into the challenges encountered by cloud service provid-
ers when it comes to efficiently managing multiple cloud data centers. The pri-
mary objectives revolve around meeting the escalating demands of applications
while simultaneously striving to minimize energy consumption. The paper pro-
poses an energy-efficient method called Resource Allocation based on Request
Prediction (RARP) in multiple cloud data centers. The RARP method anticipates
application request volume and allocates VMs and PMs based on the minimum
remaining resources available to minimize energy consumption. The proposed
method is evaluated through extensive experiments, and the results show signifi-
cant improvements in request detection accuracy and energy consumption com-
pared to other algorithms.

In another study, Jagiti et al. [14] proposed an FF-based algorithm for VMP in
the multidimensional case. In this study, the VMs are sorted based on the require-
ments for each dimension, and then the rank of their requests is aggregated for
each resource. This value is used to sort the VMs in the FF algorithm.

In paper [15], two energy-efficient VM placement algorithms based on bin
packing heuristics were proposed, namely Energy Efficient VM Placement
(EEVMP) and Modified Energy Efficient VM Placement (MEEVMP). These

919

1 3

An approximation algorithm for virtual machine placement…

algorithms aim to reduce the number of idle hosts in the data center by optimiz-
ing the placement of VMs, thereby achieving a more energy-efficient resource
utilization. Experimental results showed that EEVMP and MEEVMP can reduce
energy consumption compared to the default VM placement algorithm PABFD.
The study highlights the importance of efficient VM placement in achieving
energy efficiency in data centers.

In [11]’s study, VMP defined four thresholds to distinguish little loaded, lightly
loaded, normally loaded, medium loaded, and heavily loaded servers. The authors
used these metrics to detect the appropriate PMs for VMs. Additionally, during the
VM allocation process, they suggested considering two factors: power consump-
tion and SLA violations. This method showed acceptable results compared to sim-
ilar methods. Generally, Heuristic methods are based on practical experience and
common sense and are used to find good-quality solutions that may not be optimal.
Heuristic methods are often faster than deterministic methods, but the quality of the
obtained solutions may vary depending on the specific problem instance.

2.3 � Meta‑heuristic methods

The paper [19] proposes an ant colony system (ACS) algorithm for energy-efficient
dynamic virtual machine (VM) placement in data centers. The proposed algorithm
uses ant-like agents to explore the search space and find an optimal solution to the
VM placement problem, with the objective to minimize energy consumption while
satisfying the resource demands of VMs and meeting the service-level agreements
(SLAs) of cloud users. The algorithm also includes a dynamic migration strategy to
deal with the changing workload demands of the data center. The authors report that
the proposed algorithm outperforms existing VM placement algorithms in terms of
energy consumption and SLA violation rate. The proposed algorithm also provides
good scalability and robustness to changes in workload demand.

Paper [18] explores the use of a genetic algorithm (GA) for energy-efficient vir-
tual machine (VM) placement in data centers. While GA is known for providing
high-quality solutions, its fitness function is computationally demanding, limit-
ing its use in large-scale systems or specific scenarios where fast VM placement is
required. This paper proposes a data structure to reduce the complexity of the fitness
computation from quadratic to linear and an alternative fitness function to reduce
the number of instructions, resulting in an 11x acceleration of GA computation for
energy-efficient VM placement in large-scale data centers. The study highlights the
importance of VM placement in improving energy efficiency in data centers and
proposes a novel approach to overcome the computational limitations of GA.

The article [20] discusses the importance of efficient virtual machine placement
(VMP) to maximize the utilization of physical machines (PMs) in data centers and
reduce energy consumption. The authors propose a Metaheuristic Virtual Machine
Placement Framework toward the Power Efficiency of Sustainable Cloud Environ-
ment (MV-PESC) approach that uses an Extended Flower Pollination Optimization
algorithm to improve VMP efficiency. The study evaluates the proposed approach
using actual workload traces and compares it with state-of-the-art solutions. The

920	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

results show significant reductions in power consumption, active PMs, and execu-
tion time.

In [17], authors used resource reservation for VMP. Many service providers ena-
ble resource reservations for their customers to enable efficient cloud resource man-
agement and lower costs. The objective function of this research is based on instruc-
tion-energy and the goal is to effectively reduce energy consumption, and increase
utilization of reserved resources. This study applied an evolutionary algorithm to
obtain the best mapping of virtual machines to physical machines such that energy
consumption is minimized.

The authors of [16] studied the VMP with the aim of minimizing energy, tak-
ing into account the non-deterministic requirements of virtual machines. Instead of
using the deterministic values for resource requirements, they presented a random
placement in which variations in resource requirements are represented as random
variables. In this work, the VMP problem is formulated as a random optimization
model considering non-deterministic resource requirements. The authors used a
meta-heuristic algorithm to search VMP solution objects to minimize energy con-
sumption in the data center.

Generally, metaheuristics methods for VM placement problems can suffer from
local optimality problems. These methods rely on searching a large search space to
find the optimal solution but can get stuck in suboptimal solutions that are locally
optimal but not globally optimal. This can lead to sub-optimal solutions. In addition,
metaheuristic methods can be computationally intensive and time-consuming, mak-
ing them impractical for large-scale VM placement in large-scale data centers.

2.4 � Other methods

In another study [22], the authors proposed a resource-aware algorithm for VMP.
The first goal of the proposed algorithm is energy minimization in cloud IaaS, which
is achieved by minimizing the number of active physical machines. This is imple-
mented using a new method called Resource Usage Factor(RUF). RUF efficiently
uses of physical machine resources by placing virtual machines on appropriate phys-
ical machines. The secondary goal is to minimize resource usage imbalances among
active physical machines. This is achieved using a new resource usage model. This
model can detect imbalanced resource utilization.

The inefficient use of resources can lead to low system utilization and more phys-
ical server usage, which increases power consumption. To address this issue, the
paper [25] presents an energy-efficient topology-aware VM placement scheme in
cloud DCs, formulated as a multi-objective optimization problem with a focus on
minimizing power consumption and resource wastage. The proposed solution uses
an advanced multi-objective discrete version of the JAYA (MOD-JAYA) algorithm
to solve the combinatorial problem of VMP. The simulation results demonstrate the
effectiveness of the proposed algorithm in solving the VMP problem compared to
other existing schemes in terms of prominent assessment metrics.

The VMP issue has been investigated by [21] to reduce energy consumption.
The authors proposed using game theory to solve the problem that has a successful

921

1 3

An approximation algorithm for virtual machine placement…

performance for the dynamic case of VMP(when requests come online). Another
advantage of the proposed algorithm is that all optimal solutions are produced using
this procedure. The proposed method has intelligent computational properties. It
uses the initial solution and guarantees that there is a list of virtual machine migra-
tions according to the initial solution that can lead to the solution of the problem.
Algorithmic predictions are made using evolutionary game theory. The analysis of
the obtained outcomes demonstrates that the proposed approach exhibits the capa-
bility to attain the optimal solution within the dynamic virtual machine placement
(VMP) context, effectively optimizing energy consumption.

In game theory and multi-agent systems, the focus is on modeling the interac-
tions and decisions of multiple agents. However, in the VM placement problem, the
agents (i.e., the VMs) may have conflicting objectives, making coordination chal-
lenging. Moreover, the optimal placement decisions may depend on the placement
decisions of other VMs, making it difficult to find a globally optimal solution.

Using machine learning techniques is one of the most effective methods in VMP.
The authors of [23] tried to place virtual machines based on workload and required
bandwidth of virtual machine. They applied the feedforward neural network, a help-
ful tool for time series forecasting. The proposed algorithm called PACPA shows
acceptable results compared to similar algorithms.

In the work [24], Wang et al. tackled the issue of VM allocation and migration
costs through the utilization of a distributed multi-agent (MA) based approach. The
proposed MA first dispatches a cooperative agent to each PM to assist the PM in
managing VM resources. An auction-based VM allocation mechanism is then
applied to these agents to determine the allocation of VMs to PMs. PMs negotiate
with each other to perform migration when it makes sense from a power-saving per-
spective. The proposed algorithm can be used in static and dynamic environments,
and the results showed a significant reduction in energy consumption compared to
other methods.

Applying machine learning techniques to the virtual machine (VM) placement
problem can be highly advantageous for tackling intricate issues. However, certain
challenges need to be addressed in order to ensure effective utilization of these tech-
niques. These challenges encompass factors such as data availability and quality,
which can impact the accuracy and reliability of the models. Additionally, the ability
of machine learning models to generalize well across diverse VM placement sce-
narios is another area of concern. Furthermore, the complexity of the VM placement
problem itself poses a challenge, requiring sophisticated approaches to handle its
intricacies effectively.

Although BPLUC is commonly used for transportation problems, Cambazard
et al. [26] has used this problem to minimize data center energy. The authors con-
sidered a bin packing problem where there are linear costs associated with using
bins to model energy consumption. They also examined lower bounds based on lin-
ear programming and extended the global bin packing constraints to include cost
information. They focused on ways to reduce energy costs by addressing the CPU
requirements of client applications, IT equipment, and virtualization techniques.
The problem is defined in heterogeneous data centers.

922	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

A comprehensive examination of the existing literature indicates the absence of
an approximation algorithm specifically designed for solving the virtual machine
placement (VMP) problem. Previous research usually looked only at heuristics,
meta-heuristics, and a few exact techniques for solving the problem. Approxima-
tion methods are used to obtain a good-quality solution that is close to the opti-
mal solution but may not be guaranteed to be optimal. Approximation methods are
often faster than deterministic methods and can be used to solve large-scale VM
placement problems that are infeasible to solve exactly. However, the quality of the
solution obtained may depend on the specific approximation algorithm used and the
input parameters. This work is conducted in response to the need for an approxima-
tion technique to know how significant the difference between the found solution
and the best solution is.

3 � System architecture and problem definition

This section is focused on the system architecture and problem definition of our
work.

3.1 � System architecture

The system architecture of our work is illustrated in Fig. 1. The diagram on the
right-hand side of the figure illustrates the existence of three distinct layers leading
to two fundamental mapping phases. First, user applications are mapped to VMs and

Fig. 1   System architecture of cloud computing. [27]

923

1 3

An approximation algorithm for virtual machine placement…

VMs are mapped to PMs. The two mapping phases are handled by two main entities,
the VM Configuration Manager and the VM Placement Manager, respectively. VM
configuration addresses issues related to VM deployment in terms of both the num-
ber and size of VMs (individual characteristics) and is not the focus of this study.
In contrast, we assume the VM configuration has already been completed and focus
solely on the next phase, VM placement. It is intended to consider different optimi-
zation goals and apply different optimization techniques to assign VMs to PMs. Our
algorithm focuses on this part.

3.2 � Problem definition

Here is a problem similar to the classical problem of bin packing. Table 1 presents
the primary symbols used in this paper and provides an explanation of each of them.

BPLUC is a variant of the BP problem that defines the cost of a used bin differ-
ently. In BPLUC, we are given a set of n items, V = {v1,… , vn} with integer sizes
and an unlimited supply of identical bins. A bin has a capacity S, a non-negative
fixed cost, f, and a non-negative cost, c, for each unit of used capacity. Let B be
the set of available bins, B = {B1,B2,…} . A bin is used when at least one item is
assigned to it. The cost of a used bin, Bj , j ∈ B , is a linear function f + clj , where
lj is the total size of the items in bin j. The problem is to assign each item to a bin
under capacity constraints so that the sum of the costs of all bins is minimized. This
problem is known as the Bin Packing with Linear Usage Cost problem (BPLUC).
BP is a particular case of BPLUC with all f set to 1 and all c set to 0.

3.3 � BPLUC formulation

The BPLUC can be defined using the following linear model. The objective function
is to minimize the sum of the costs of all bins. lj is the total loads of allocated items
to the bin j. The variable xij is 1 if item i is assigned to PM j; otherwise it is 0. The
decision variable yj is 1 if bin j has at least one item and therefore is used; otherwise
it is 0.

(1)

minimize
�

j∈B

yj(f + clj)

subject to lj =

∑
i∈V

xijvi

S
∗ 100∀j ∈ B

(2)
∑

j∈B

xij = 1∀i ∈ V

(3)yj ≥ xij ∀i ∈ V, j ∈ B

924	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

Table 1   Main Notations and Description

Symbol Description

 Set V Set of items, where |V| = n

B Set of Bins, where |B| = m

I Set of VMs requests
Q Set of large VMs
D Set of small VMs
M Set of PMs configurations

 Index i Index of item/VM, i ∈ V

j Index of Bin/ PM, j ∈ B

t Index of resource dimension, t ∈ d

 Input parameters S Bin capacity
W Total size of all items in all bins
k Number of non-empty bins
f Non-negative fixed cost for a used bin
c Non-negative cost for each unit of a used bin
Wt Total size of all items in dimension t in all bins
vi Item/VM size
lj Total size of items in bin j
st Capacity of a bin in dimension t
lj,t Total amount of space used in dimension t in bin j
vi,t Requirement of item/ VM i in dimension t
ct The cost of a unit space used in dimension t
Bmax
j

Power consumption of Bj when it is full utilization
Bmin
j

Power consumption of Bj in idle mode

uCPU
j

Normalized CPU utilization of Bj

RW
j

Resource wastage of Bj

Rt
j

Remained normalized resource of Bj in dimension t
ut
j

Normalized resource utilization of Bj along dimension t
d Number of dimensions
� The parameter for classifying VMs to large and small classes
pi ith large VM
m Number of PMs in optimal allocation
mj Number of PMs for the assignment of type j
h Number of classes
rL Number of VM types in Q
r Number of classes
bt
j

Occupied capacity of Bj in dimension t
 Variables xi,j The value is 1 if item/VM i is allocated on bin/PM j otherwise the value is 0

yj The value is 1 if bin/PM j has at least one item/VM otherwise the value is 0
Ptot Total power consumption of all PMs
ℝ

tot Total resource wastage of all PMs

925

1 3

An approximation algorithm for virtual machine placement…

Constraint 1 defines the total load of bin j, where it depends on the items assigned to
it. Constraint 2 expresses that all item requests must be assigned. Constraint 3 shows
that a bin must have at least one item to be activated, yi = 1 . Constraint 4 is the
capacity constraint. Constraints 5 and 6 determine the bound of the variables.

3.4 � VBPLUC formulation

In the linear usage cost vector bin packing, bins and items have multiple dimensions,
for instance, weight and volume. The goal is to allocate multidimensional items to
storage bins in a way that does not violate capacity constraints in any dimension and
minimizes costs. The cost is similar to the BPLUC problem.

Given a set of identical bins called B = {B1,B2,…} where each bin, Bj , has simi-
lar characteristics as bins have in the BPLUC. A bin, Bj , has a capacity for each
dimension and defined as, S = {s1,… , sd} , where st, t ∈ d denotes the bin capacity
in dimension t. lj,t is the load of dimension t in bin j. An item, i ∈ V  , has multiple
requirements and defined as a d dimensional vector vi = {vi,1,… , vi,d} . The cost of
a unit space used in dimension t is defined by ct . The goal is to efficiently allocate
items to bins to minimize the total cost of all bins.

The objective function of VBPLUC is defined as follows. The constraints are the
same as the linear model presented in the previous section, except constraints 1 and
4 that are modified according to constraints 7 and 8.

Where in equation 7, vi,t and st are the item sizes and capacity of bin Bj in dimension
t, respectively. Equation 8 shows the capacity constraint for all dimensions.

(4)
∑

i∈V

xijvi ≤ Syj ∀j ∈ B

(5)xij ∈ {0, 1} ∀i ∈ V, j ∈ B

(6)yj ∈ {0, 1} ∀j ∈ B

(7)

minimize
�

j∈B

yj(f +

d�

t=1

stlj,t)

lj,t =

∑
i∈V

st

xijvi,t
∗ 100 ∀j ∈ B,t ∈ [d]

(8)
∑

i∈V

xij ∗ vi,t ≤ st ∀j ∈ B,t ∈ [d]

926	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

3.5 � BPLUC and power efficient VMP

Looking at the VMP problem from a power minimization perspective, each PM con-
sumes different power for each utilization level. SPECPOWER [28] provides the
first industry-standard benchmark for characterizing the power and performance of
computer servers. Table 2 comes from SPECPOWER and shows two servers with
different power and utilization characteristics. The G4 and G5 cores have CPU fre-
quencies of 1860 and 2660 MIPS, respectively, and both models have 4096 MB of
memory.

According to Table 2, we can define a linear relationship between power and
utilization for each server. For example, the diagram Fig. 2 shows this relation-
ship for server types in Table 2.

The linear equation approximating the relationship between power and utili-
zation is presented on each line as y = ax + b , where y represents power and x
represents the total utilization value (i.e., the overall usage of allocated virtual
machines) for each server. Considering the cost of a bin in BPLUC, we have the
relationship f + clj, j ∈ B . For a PM, we can assume that the cost is the power
according to the total utilization defined by the equation y = ax + b . Here we can
use the BPLUC cost definition such that x equals lj , and a and b are equivalent to f
and c, respectively. Therefore, BPLUC can be used to solve power-efficient VMP
since their cost definitions are similar.

Fig. 2   Linear relation between power and utilization for 2 server types 2660 and 1860

Table 2   Power consumption according to hosts utilization

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

927

1 3

An approximation algorithm for virtual machine placement…

4 � Proposed method

In this section, we first prove that any approximation algorithm for BP (resp.
VBP) can also be used as an approximation algorithm for BPLUC (resp.
VBPLUC). Concerning these results and the relation between VBPLUC and VM
placement problem, we then modify and implement an elaborate approximation
algorithm for VBP by Bansal et al. [6] and compare it to other well-known and
state-of-the-art VM placement methods in Section 5.

4.1 � Approximation algorithms For BPLUC and VBPLUC

Theorem 1  Any approximation algorithm for BP with approximation ratio � is an
approximation algorithm for BPLUC with approximation ratio �.

Proof  We prove the theorem by setting up a one-to-one correspondence between any
solution of BP to a solution for BPLUC with a linearly related cost. By this corre-
spondence, the optimum solution for BP has a corresponding optimum solution for
BPLUC, and the approximation solution for BP is also an approximation solution
for BPLUC.

First, consider a solution I = (B1,B2,⋯ ,Bm) for BP, which satisfies the capacity
constraints for each bin. In this solution, each Bj is the set of items placed in bin j.
The cost of such a solution equals to kf, where k is the number of non-empty bins
and f is the cost of using a bin. If we use the same allocation for BPLUC, the cost is
equal to

which can be written as

∑

j ∈ B

j is not empty

(f + clj),

=
∑

j ∈ B

j is not empty

f +
∑

j ∈ B

j is not empty

clj

= kf +
∑

j ∈ B

j is not empty

clj

= kf + c
∑

j ∈ B

j is not empty

lj

= kf + c
∑

i∈V

vi = kf + cW

928	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

In the last equation, W is the total size of all the items.
The above result shows that the cost of a solution for BPLUC is a constant value

(the cost of a unit capacity of a bin multiplied by the total size of the items) greater
than the cost of the same solution for BP. Furthermore, the optimum solution for BP
and BPLUC are the same,

Another result from the above equations, which is related to any approximation
algorithm for BP, is as follows. If an algorithm guarantee to find a solution within
� ⋅ OPT  , where OPT is the cost of the optimum solution, the cost of that solution for
BPLUC will be at most � ⋅ OPT + cW . Since the optimum solution for BP remains
optimum for BPLUC, the cost of the optimum solution for BPLUC is OPT + cW .
Finally, the approximation ratio of the given algorithm for BPLUC is bounded by
𝛼⋅OPT+cW

OPT+cW
< 𝛼 . 	� ◻

Theorem 2  Any approximation algorithm for VBP with approximation ratio � is an
approximation algorithm for VBPLUC with approximation ratio �.

Proof  We can follow the same approach as the previous theorem and prove the theo-
rem. Consider an approximation algorithm with an approximation ratio � for VBP.
This means the cost of the solution of the algorithm is at most � ⋅ OPT  , where OPT
is the cost of the optimum solution. The cost of the corresponding optimum solution
of the VBPLUC problem is OPT +

∑d

t=1
ct ⋅Wt . In this equation, ct is the cost of

unit space used in dimension t, and Wt is the total amount of space used in dimen-
sion t for all bins.

We can bound the cost of the solution of the approximation algorithm for
VBPLUC from above as follows. Let I = (B1,B2,⋯ ,Bm) denote the solution. The
total cost is equal to

Here lj,t is the total amount of space used in dimension t in bin j. The total cost can
be written as

∑

j ∈ B

j is not empty

(f +

d∑

t=1

ct ⋅ lj,t).

929

1 3

An approximation algorithm for virtual machine placement…

Since the total cost of the approximate solution, kf is at most � ⋅ OPT  , the total cost
of the corresponding solution is at most � ⋅ OPT +

∑d

t=1
(ct ⋅Wt) . Finally, the

approximation ratio of the given algorithm for VBPLUC is bounded by
𝛼⋅OPT+

∑d

t=1
(ct⋅Wt)

OPT+
∑d

t=1
(ct⋅Wt)

< 𝛼 . 	� ◻

4.2 � Mapping a VBP algorithm to VMP

Bin packing is an NP-hard problem, and there are many approximation algorithms
for it. We use an algorithm packing items into at most (1 + 2�)m + 1 bins with �
resource augmentation in (d − 1) dimensions, where m is the number of bins in opti-
mal packing [6]. The authors studied the d-dimensional vector bin packing problem,
and their algorithm is based on resource augmentation and rounding items. This
algorithm has been modified to work with cloud domains and VMP for two objec-
tives. For the first goal, the cost is assumed to be the minimum number of PMs
used for VM allocation. The second objective considers the cost as the PM’s power
consumption.

4.2.1 � VBP algorithm

Algorithm 1, called VBP, is inspired from [6]. Both PMs and VMs contain multiple
resources(dimensions), such as CPU, RAM, and bandwidth. The goal is to assign VMs
to the minimum number of PMs. In the VBP algorithm, the first step is to estimate the
optimal number of PMs (referred to as m) required to allocate VMs. Based on this

=
∑

j ∈ B

j is not empty

f +
∑

j ∈ B

j is not empty

d∑

t=1

ct ⋅ lj,t

= kf +
∑

j ∈ B

j is not empty

d∑

t=1

ct ⋅ lj,t

= kf +

d∑

t=1

∑

j ∈ B

j is not empty

ct ⋅ lj,t

= kf +

d∑

t=1

(ct ⋅
∑

j ∈ B

j is not empty

lj,t)

= kf +

d∑

t=1

(ct ⋅Wt)

930	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

estimation, the VBP algorithm then deals with the solution of the mapping problem.
The allocation process in VBP takes place in two different phases. The algorithm first
divides VMs into two parts, large VMs, and small VMs, based on the � parameter
where � is a real number. If a VM size is greater than � in at least one dimension, it
is placed in the large group; otherwise it is placed in the small group. Large VMs are
rounded to fall into a fixed number of classes. Rounded large VMs are packed with
dynamic programming, and small VMs are packed with linear programming.

Let I be a set of VM requests. Each request is a vector (CPU, RAM, BW) that
defines a VM request in each dimension. The algorithm takes � and estimates the
optimal value m. It either assigns VMs into at most (1 + 2�)m + 1 PMs or indi-
cates that the estimation is wrong. The resource augmentation applies to the (d − 1)
dimension. These dimensions are called augmentable, and the other dimension is
called non-augmentable. The last dimension is assumed to be non-augmentable, and
the other (d − 1) dimensions increments with � . The value for d is assumed to be
d = 3 in our problem.

4.2.2 � Large VMs allocation

Rounding is done differently for augmentable and non-augmentable dimensions.
Augmentable dimensions are rounded to multiples of � . where � =

�2

2d2
 and the

d − th dimensions are rounded based on the linear grouping.

•	 Rounding of augmentable dimensions: Each large VM pi is replaced with a VM
q̂i as follows:

(9)q̂t
i
=

�
⌈ pt

i

𝛼
⌉ if t ∈ {1,… , (d − 1)}.

pt
i
, t = d.

931

1 3

An approximation algorithm for virtual machine placement…

 The original instance I is classified into classes {Wu�u ∈ {1,… , ⌈ 1

�
⌉}d−1} where

Wu = {pi|q̂it = ut.𝛼,∀ t ∈ [d − 1]} , creating rA = (⌈ 1

�
⌉)d−1 classes [6].

•	 Rounding of non-augmentable dimension: The last dimension is rounded with lin-
ear grouping for each Wu separately. This splits each Wu into a = ⌈ 1

�
⌉ groups, where

� =
��

2d
 . We reduce the number of groups and increase the number of items in each

group. In our method, the � parameter is multiplied by 1000. This change made it
possible to allocate a large number of VMs.

	  VMs from Wu are sorted in non-ascending order based on the last dimension. Let
(p1,… , phu) be the sorted VMs where hu = |Wu| . For each e = {1,… , a − 1} class
Wu,e is defined having b = ⌈�hu⌉ VMs as follows: Wu,e = {p(e−1)b+1,… , peb} . The
last group Wu,a = {p(a−1)b+1,… , phu} can contain less than b elements. The first
element in each group is the largest VM in that group and is named round vector .
The final rounded instance Q is obtained by replacing each vector pi ∈ Wu,e with qi ,
where

 So the dth dimension is rounded up to the dth dimension of the group’s
round vector , and other coordinates are rounded to multiples of �.

	  The result of rounding large VMs is a vector {n1, n2,… , nh} containing the
number of elements in h different classes, where V =

∑h

i=1
ni . This vector is the

dynamic programming input.
•	 Assigning large VMs: Since Q has a fixed number of VM types rL , there is only

r ≤ (
d

�
)rL possible configurations of a single PM. M = (m1,… ,mr) is called a PM

configuration, where mj indicates the number of PMs for the assigning of type j.
	  The result of dynamic programming for large VMs is the minimum number of

PMs needed to allocate large VMs.

4.2.3 � Small VMs allocation

Linear programming is used to allocate small VMs. PMs used by large VMs may have
space for smaller VMs. Linear programming assigns small VMs to these PMs. If some
VMs cannot be placed in the previously used PMs by large VMs, they will be placed in
a new PM by the Next Fit heuristic algorithm.

The linear programming formulation is as follows. Let denote D to be the set of all
small VMs in I and define bt

j
=
∑

q∈Qi
qt for each PM, Bj , is the occupied capacity of Bj

in dimension t. t ∈ [d] indicates each dimension.

qt
i
= q̂i

t, for t ∈ [d − 1],

qd
i
= max{pd|p ∈ Wu,e}.

(1)

maximize

m∑

j=1

bl
j
∀l ∈ [d]

subject to

m∑

j=1

xij = 1,∀pi ∈ S

932	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

The objective function states that the capacity of the PMs should be filled with as
many small VMs as possible. Constraint (1) denotes that every small VM has to be
assigned to one PM. The expressions (2) and (3) are capacity constraints for all d − 1
and d dimensions, respectively. The resulting integer elements of LP are assigned
directly to the PMs. Additional PMs are used for other items.

4.2.4 � PAVBP algotirhm

Algorithm 2, called PAVBP, shows an algorithm inspired by the algorithm 1
with more details. All phases are similar to the algorithm 1, but the goal is
energy efficiency instead of the minimum number of PMs. In other words, the
algorithm chooses PMs based on power consumption. PMs with lower power
consumption have higher priority for hosting VMs.

In the algorithm, OPTpower means the best power to be achieved by assign-
ing VMs to PMs. This value is equivalence with the minimum required power,
minpower.

(2)
|S|∑

i=1

xijp
l
i
≤ (1 + �) − bl

j
, ∀j ∈ [m], l ∈ [d − 1]

(3)
|S|∑

i=1

xijp
l
i
≤ 1 − bl

j
, ∀j ∈ [m], l ∈ [d]

(4)xij ≥ 0, ∀i, j

933

1 3

An approximation algorithm for virtual machine placement…

5 � Performance evaluation

This section presents the results of the study. Experiments are implemented using
the CloudSim 3.0.3 simulator [29] and CPLEX library. The proposed approach
was compared with several heuristic methods regarding power consumption,
resource wastage, and difference ratio. All the simulation results are executed on
a system equipped with a 3.10 GHz Intel Core i5 CPU and 4 GB RAM.

5.1 � Experimental setup

We simulated a data center consisting of 1400 heterogeneous PMs and vary-
ing numbers of VMs 1052, 512, 256, and 128. Half of the PMs are HP ProLiant
ML110 G4 (referred to as G4), and the other half are HP ProLiant ML110 G5
(referred to as G5). The characteristics of the PMs are illustrated in Table 2. This
simulation assumes that both servers contain one core.

To evaluate our algorithm on different instances, we use three categories of
Virtual Machines (VMs): Based VMs, Big VMs, and Small VMs. It must be men-
tioned that these categories have nothing to do with the categories in the pro-
posed algorithm in which virtual machines are divided into two classes, large and
small. They are just three instances of different virtual machine categories for
evaluating our algorithm.

Each of these categories is the input of our algorithm in different executions.
For example, for Big VMs, we take it as VMs set and divide it into two classes
large VMs and small VMs. This process is also done for the other two catego-
ries, Based VMs and Small VMs. The size of instances in each VM category is
presented on Table 3. We modeled the VM types according to the Amazon EC2
Instance types(referred to as ”Based VMs”), as shown in Table 3. Furthermore,
the proposed method is evaluated on two other VM classes called Big VMs and
Small VMs.

To evaluate our approach, we tested real-world workloads, Control PlanetLab
workload [30] and Bitbrain’s workload [31], and WK100, a synthetic workload
where all values are always 100% during execution. Workloads are dynamically
assigned to VMs at runtime. In Cloudsim, once the workload is zero, the VM is
permanently removed from the PM, even if the VM experiences a nonzero work-
load over the next few clocks. We modified this part so that after checking the
workload of the deleted VM and finding it nonzero, the VM will be placed on an
appropriate PM according to the proposed algorithm.

Table 3   VMs instances
configurations

VMs Category Size of VMs

Based VMs 2500, 2000, 1000, 500
Big VMs 2500, 2100, 1500, 800
Small VMs 2200, 1800, 800, 400

934	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

5.2 � Evaluation results

Some concepts have been changed to explain the VBP issues in the cloud domain.
We consider PMs and VMs instead of bins and items, respectively. We modi-
fied the VBP algorithm initially proposed in [6] to make it applicable to the
cloud domain. Algorithm 1 shows this modified algorithm. We derived another
approach called PAVBP from the algorithm that aims to select the PMs that con-
sume the least power. Algorithm 2 shows the algorithm. Analyzes include com-
parisons of the results of this study with the following published work:

–	 PABFD: PABFD is proposed by Beloglozov[32] and performs the alloca-
tion of virtual machines with a BFD algorithm where the appropriate PM is
selected based on their power consumption.

–	 GRVMP: GRVMP[10] selects VMs using a greedy randomization technique
to allocate on a PM with the minimum resource wastage. The GRVMP results
reported in this study are an average of 10 runs.

–	 AFED-EF: AFED-EF[11] assigns VMs based on a parameter called energy
efficiency. Power-efficient PMs have higher priority when deploying VMs.

Three evaluation metrics are reported in the results: total power consumption,
total resource consumption, and difference ratio.

•	 Total power consumption: This metric is obtained from the following equa-
tion:

 where Bmin
j

 is the power consumption of Bj in idle mode, Bmax
j

 is the power con-
sumption of Bj when it is full utilization and u cpu

j
 is the normalized CPU utiliza-

tion of Bj.
•	 Total resource wastage: This metric intends to maximize the resource utilization

of PMs and establishes a load balancing within the resources of a PM [10]. To
obtain this metric, two parameters are needed, Rt

j
 and ut

j
 , which they can get from

the following equations:
	  This metric is obtained using the following equation:

 where Rt
j
 is the remaining normalized resource of Bj in dimension t, min(Rt

j
) is

the minimum remaining resource that is normalized within all dimensions of PM
Bj and ut

j
 is the normalized resource utilization of Bj along the t-th dimension

[10]. Similarly, � is a small positive real number, and the value is considered to
be 0.0001.

(5)P tot =

m∑

j=1

B
power

j
=

m∑

j=1

yj ∗ (Bmin
j

+ (B max
j

− B min
j

)) ∗ u
cpu

j
)

ℝ
tot =

m�

j=1

Rw
j
=

∑d

t=1
�Rt

j
− min (Rt

j
)� + �

∑d

t=1
ut
j

935

1 3

An approximation algorithm for virtual machine placement…

•	 Difference Ratio: To observe the performance difference within methods, we
report the following metric computing for each workload.

 where minPower refers to the power with the minimum value among the meth-
ods, and Power is the power consumption of the method.

The total power consumption and total resource wastage for WK100 workload are
illustrated in Fig. 3. When the workload consistently remains at 100% , our methods
produce more accurate power consumption results. We try this workload because
VMs never switch off, and this leads to evaluating our methods when the demands
are in their maximum state; VMs request 100% of their demands. We test differ-
ent scenarios with different VM categories and the number of VMs to test the
algorithms.

The experimental results obtained with VBP and PAVBP are slightly lower
than the comparison algorithm GRVBP in both total power consumption and total
resource wastage and outperform AFED-EF and PABFD in all scenarios. This
superiority can be explained by using a combination of the exact techniques of

(6)Difference Ratio =
Power − minPower

Power
∗ 100

Fig. 3   Total power consumption and resource wastage results for WK100 workload

936	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

dynamic programming and linear programming that form the core of the algo-
rithm for finding the optimal mapping.

In the big VM category of the WK100 workload, the difference in total power
consumption and resource wastage between VBP and PAVBP is noticeable. How-
ever, these values are the same for the ”based” and ”small VMs” category. VBP
generally recommends minimizing the number of PMs and ignoring power con-
sumption when allocating VMs. In contrast, PAVBP tries to choose the PM with
the lowest power consumption to allocate VMs. PMs may have insufficient capac-
ity after just hosting a VM from the ”big VMs” category (PMs can host at most
one VM).

The algorithm packs large and small items separately. The first stage is devoted to
packing large items. In the second phase, packing small items, there may be insuf-
ficient capacity in already active PMs. Therefore, the algorithm selects new PMs to
host the remaining VMs. This action increases the number of active PMs. Consider-
ing this scenario, VBP will choose a PM from both types of PM listed in Table 2. It
makes no difference, as both types of PM can be hosted on, at most, one ”big” VM.
However, PAVBP considers total power consumption when allocating VMs. At first
glance, PAVBP seems to pick the first PM type in Table 2. This is due to its lower
power consumption compared to the second type. However, this algorithm has a
general vision and chooses the second type of PM. This type consumes more power
than the first type but can allocate more VMs. This PM type can host multiple VMs.
Finally, at the end of the algorithm, fewer active PMs reduce overall power con-
sumption. As a result, PAVBP has the best performance for the ”big VMs” category.

VBP and PAVBP behave similarly on the other two VM categories: the ”based”
and ”small” VMs. VM size plays a vital role in these algorithms. After the first
phase of the algorithm (packing of large items), the PMs may still have enough
capacity for small items. Therefore, there is no need to use a new PM. In VBP, every
PM attempts to host multiple VMs with a few active PMs, so the second PM type
is chosen based on a larger capacity. This is also true for PAVBP, as we discussed
earlier for the ”big VMs” category.

Among the algorithms compared, the GRVBP algorithm yielded sub-optimal
outcomes, exhibiting values that closely approached those achieved by our proposed
method. However, more difference between our methods and the GRVBP algorithm
is observed in the ”small VMs” category. The reason for this difference is that we
try to allocate as many VMs as possible to already activated PMs and activate as few
PMs as possible. Therefore, this procedure can allocate smaller VMs better. GRVBP
gives the second-best results among the compared algorithms, but the randomness
of the algorithm prevents it from being deterministic, and this problem causes differ-
ent outputs from run to run.

PAVBP demonstrates the lowest total resource consumption value for large vir-
tual machines (VMs) in comparison with the other evaluated algorithms. This
observation suggests that PAVBP effectively utilizes the active PMs capacity to its
maximum potential. This value is higher for the VBP algorithm. This is due to the
inefficient use of active PMs capacity. These algorithms demonstrate similar power
consumption behavior for the ”base” and ”small” VM categories, leading to an
equivalent total resource consumption.

937

1 3

An approximation algorithm for virtual machine placement…

For ”small” VMs, VBP and PAVBP show the lowest total resource consumption
among the compared algorithms. This is because these algorithms allocate smaller
VMs better than comparable algorithms and use PM capacity efficiently. The total
power consumption and total resource consumption of two real-world workloads,
PlanetLab and Bitbrains are illustrated in Figs. 4 and 5, respectively. These figures
show that VBP and PAVBP have the lowest total power consumption and are par-
tially differ from the second-best algorithm, GRVBP. This fact is due to the fluid
nature of workloads, which do not always request 100% of their demands. Similarly,
the VBP and PAVBP algorithms’ total resource wastage values come first or sec-
ond. Finally, the difference ratio for each workload is specified in Tables 4, 5, and 6,
respectively. Either VBP or PBVBP has the lowest value for all workloads.

5.2.1 � Time complexity

The time complexity of AFED-EF is O(mn), m is the number of servers, and n is
the number of VMs within a data center. The time complexity of the GRVMP
algorithm is equivalent to O(nmk + mlogm) . k is a constant value, where k << n .
m and n refer to the number of servers and VMs within a data center, respectively.
The time complexity of the PABFD algorithm is equivalent to O(nm). Here, m
and n have similar definitions with GRVMP and AFED-EF algorithms. The time

Fig. 4   Total power consumption and resource wastage results for control planetlab workload

938	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

complexity of the proposed algorithm is O((dn
�
)rL .m) , where m is the number of

PMs in optimal packing, d is the number of resource’s dimensions (in our prob-
lem d = 3 , CPU, RAM and Bandwidth) and beta used to classify items into large
and small. Readers can refer to Table 1 for detailed information about notations.

Fig. 5   Total power consumption and resource wastage results for bitbrains workload

Table 4   Difference ratio for WK100 workload

Big VMs Based VMs Small VMs

VMs #/ Algorithm 1052 512 256 128 1052 512 256 128 1052 512 256 128

VBP 3% 5% 4% 5% 0% 0% 0% 0% 0% 0% 0% 0%
PAVBP 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
GRVMP 1% 1% 2% 1% 0% 1% 1% 2% 3% 4% 5% 6%
AFED-EF 17% 17% 17% 17% 28% 28% 28% 28% 40% 40% 39% 40%
PABFD 18% 19% 19% 19% 29% 30% 29% 30% 40% 40% 40% 40%

939

1 3

An approximation algorithm for virtual machine placement…

6 � Conclusions and future work

In this paper, we addressed the problem of power-efficient VM placement and the
bin-packing problem, focusing on BPLUC (Bin Packing with Linear Usage Cost),
a variant of bin packing that considers fixed and variable costs. We showed that
an algorithm for BP with an approximation ratio of � can be used as an approx-
imation algorithm for BPLUC with an approximation ratio based on � for homo-
geneous hosts. We also extended this result to VBP(Vector Bin Packing) and
VBPLUC(Vector Bin Packing with Linear Usage Cost), which deal with items and
bins with multiple dimensions.

To solve the VMP(Virtual Machine Placement) problem in a heterogeneous cloud
data center, we modified and implemented the VBP algorithm proposed in [6] to
minimize power consumption. In our analysis, we treated virtual machines (VMs)
and physical machines (PMs) as multidimensional items, taking into account their
respective dimensions of CPU, RAM, and bandwidth. Our experimental results
demonstrate that the proposed algorithm outperforms existing methods, especially
when there is a significant difference between the sizes of VMs and hosts.

In our future work, we aim to expand the application of the power-based vec-
tor bin packing algorithm to online environments. This entails developing a frame-
work that can effectively allocate suitable physical machines (PMs) for newly added
virtual machines (VMs) in real-time, as well as during the migration process. We
also aim to expand the algorithm to handle multiple resources in each dimension,
such as a CPU with four cores and two memory units. This extension will enable

Table 5   Difference ratio for control planetlab workload

VMs #/Algorithm Big VMs Based VMs Small VMs

1052 512 256 128 1052 512 256 128 1052 512 256 128

VBP 1% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
PAVBP 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 2% 0%
GRVMP 2% 2% 3% 3% 4% 4% 5% 2% 0% 1% 2% 1%
AFED-EF 8% 8% 12% 8% 20% 21% 25% 13% 22% 25% 26% 25%
PABFD 8% 9% 12% 8% 18% 22% 24% 19% 22% 22% 23% 24%

Table 6   Difference ratio for bitbrains workload

VMs #/Algorithm Big VMs Based VMs Small VMs

1052 512 256 128 1052 512 256 128 1052 512 256 128

VBP 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
PAVBP 1% 1% 0% 7% 0% 0% 0% 0% 0% 0% 2% 0%
GRVMP 3% 3% 0% 9% 1% 3% 5% 4% 2% 0% 4% 3%
AFED-EF 6% 7% 0% 2% 11% 17% 16% 9% 17% 7% 15% 16%
PABFD 8% 7% 5% 5% 12% 16% 19% 10% 15% 6% 14% 10%

940	 Z. Mahmoodabadi, M. Nouri‑Baygi

1 3

the algorithm to be applied to a broader variety of VM and PM types, making it
more useful in cloud environments. Additionally, we will investigate the relationship
between approximation methods of BP and BPLUC and their applicability to VMP
with heterogeneous hosts.

References

	 1.	 Askarizade Haghighi M, Maeen M, Haghparast M (2019) An energy-efficient dynamic resource
management approach based on clustering and meta-heuristic algorithms in cloud comput-
ing iaas platforms: Energy efficient dynamic cloud resource management. Wirel Pers Commun
104:1367–1391

	 2.	 Beloglazov A (2013) Energy-efficient management of virtual machines in data centers for cloud
computing. PhD thesis

	 3.	 Jennings B, Stadler R (2015) Resource management in clouds: survey and research challenges. J
Netw Syst Manage 23(3):567–619

	 4.	 Martello S, Toth P (1990) Bin-packing problem. Knapsack problems: algorithms and computer
implementations, pp. 221–245

	 5.	 Cambazard H, Mehta D, O’Sullivan B, Simonis H (2013) Bin packing with linear usage costs–an
application to energy management in data centres. In: International Conference on Principles and
Practice of Constraint Programming, Springer, pp. 47–62

	 6.	 Bansal N, Eliáš, M, Khan A (2016) Improved approximation for vector bin packing. In: Proceedings
of the twenty-seventh annual ACM-SIAM symposium on discrete algorithms, pp. 1561–1579. SIAM

	 7.	 Wei C, Zhi-Hua H, Wang Y-G (2020) Exact algorithms for energy-efficient virtual machine place-
ment in data centers. Futur Gener Comput Syst 106:77–91

	 8.	 Zoltán Ádám Mann (2016) Multicore-aware virtual machine placement in cloud data centers. IEEE
Trans Comput 65(11):3357–3369

	 9.	 Chen H, Wen Y, Wang Y (2023) An energy-efficient method of resource allocation based on request
prediction in multiple cloud data centers. Concurr Comput Pract Exp 35(9):e7636

	10.	 Azizi S, Shojafar M, Abawajy J, Buyya R (2020) Grvmp: a greedy randomized algorithm for virtual
machine placement in cloud data centers. IEEE Syst J 15(2):2571–2582

	11.	 Zhou Z, Shojafar M, Alazab M, Abawajy J, Li F (2021) Afed-ef: An energy-efficient VM alloca-
tion algorithm for IoT applications in a cloud data center. IEEE Trans Green Commun Netw
5(2):658–669

	12.	 Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in cloud data centers.
Concurr Comput Pract Exp 24(13):1397–1420

	13.	 Ajmera K, Tewari TK (2018) Greening the cloud through power-aware virtual machine allocation.
In: 11th International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE

	14.	 Jangiti S, Ram ES, Sriram VSS (2019) Aggregated rank in first-fit-decreasing for green cloud com-
puting. In: Cognitive informatics and soft computing, pp. 545–555. Springer

	15.	 Sunil S, Patel S (2023) Energy-efficient virtual machine placement algorithm based on power usage.
Computing, pp. 1–25

	16.	 Zhou J, Zhang Y, Sun L, Zhuang S, Tang C, Sun J (2019) Stochastic virtual machine placement for
cloud data centers under resource requirement variations. IEEE Access 7:174412–174424

	17.	 Zhang X, Tingming W, Chen M, Wei T, Zhou J, Shiyan H, Buyya R (2019) Energy-aware virtual
machine allocation for cloud with resource reservation. J Syst Softw 147:147–161

	18.	 Ding Z, Tian Y-C, Wang Y-G, Zhang W-Z, Zu-Guo Yu (2023) Accelerated computation of the
genetic algorithm for energy-efficient virtual machine placement in data centers. Neural Comput
Appl 35(7):5421–5436

	19.	 Alharbi F, Tian Y-C, Tang M, Zhang W-Z, Peng C, Fei M (2019) An ant colony system for energy-
efficient dynamic virtual machine placement in data centers. Expert Syst Appl 120:228–238

	20.	 Singh AK, Swain SR, Lee CN (2023) A metaheuristic virtual machine placement framework toward
power efficiency of sustainable cloud environment. Soft Comput 27(7):3817–3828

941

1 3

An approximation algorithm for virtual machine placement…

	21.	 Xiao Z, Jiang J, Zhu Y, Ming Z, Zhong S, Cai S (2015) A solution of dynamic VMS placement
problem for energy consumption optimization based on evolutionary game theory. J Syst Softw
101:260–272

	22.	 Gupta MK, Amgoth T (2018) Resource-aware virtual machine placement algorithm for iaas cloud. J
Supercomput 74(1):122–140

	23.	 Shaw R, Howley E, Barrett E (2019) An energy efficient anti-correlated virtual machine placement
algorithm using resource usage predictions. Simul Model Pract Theory 93:322–342

	24.	 Wang W, Jiang Y, Weiwei W (2016) Multiagent-based resource allocation for energy minimization
in cloud computing systems. IEEE Trans Syst Man Cybern Syst 47(2):205–220

	25.	 Shirvani MH (2023) An energy-efficient topology-aware virtual machine placement in cloud data-
centers: a multi-objective discrete Jaya optimization. Sustain Comput Inf Syst 38:100856

	26.	 Cambazard H, Mehta D, O’Sullivan B, Simonis H (2015) Bin packing with linear usage costs. arXiv
preprint arXiv:​1509.​06712

	27.	 Pietri I, Sakellariou R (2016) Mapping virtual machines onto physical machines in cloud comput-
ing: a survey. ACM Comput Surv (CSUR) 49(3):1–30

	28.	 SPEC Power characteristics for servers (2008) https://​www.​spec.​org/​power/. [Online; Accessed 15
Apr 2020]

	29.	 Buyya R, Calheiros RN, Beloglazov A (2009) Cloudsim: a framework for modeling and simula-
tion of cloud computing infrastructures and services. The cloud computing and distributed systems
(CLOUDS) Laboratory.[Online].[Accessed 18 May 2018]

	30.	 Peterson L, Bavier A, Fiuczynski ME, Muir S (2006) Experiences building planetlab. In: Proceed-
ings of the 7th symposium on operating systems design and implementation, pp. 351–366

	31.	 Shen S, van Beek V, Iosup A (2015) Statistical characterization of business-critical workloads
hosted in cloud datacenters. In: 2015 15th IEEE/ACM international symposium on cluster, cloud
and grid computing, pp. 465–474. IEEE

	32.	 Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Future Gener Comput Syst 28(5):755–768

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/1509.06712
https://www.spec.org/power/

	An approximation algorithm for virtual machine placement in cloud data centers
	Abstract
	1 Introduction
	2 Related work
	2.1 Deterministic methods
	2.2 Heuristic methods
	2.3 Meta-heuristic methods
	2.4 Other methods

	3 System architecture and problem definition
	3.1 System architecture
	3.2 Problem definition
	3.3 BPLUC formulation
	3.4 VBPLUC formulation
	3.5 BPLUC and power efficient VMP

	4 Proposed method
	4.1 Approximation algorithms For BPLUC and VBPLUC
	4.2 Mapping a VBP algorithm to VMP
	4.2.1 VBP algorithm
	4.2.2 Large VMs allocation
	4.2.3 Small VMs allocation
	4.2.4 PAVBP algotirhm

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Evaluation results
	5.2.1 Time complexity

	6 Conclusions and future work
	References

