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Abstract
This study addresses the energy efficiency challenge in cloud data centers by exam-
ining the Virtual Machine Placement (VMP) problem. VMP involves mapping vir-
tual machines (VMs) to physical machines (PMs) under capacity constraints. The 
paper focuses on the bin packing with linear usage cost (BPLUC) variant of bin 
packing, which includes fixed and variable costs in the calculation of the cost of a 
used bin. We prove that every approximation algorithm for the bin and vector bin 
packing can be used for BPLUC and VBPLUC, respectively. We propose a more 
power-efficient approach to VMP by applying a vector bin packing algorithm to 
minimize power consumption in data centers. We test the proposed algorithm on 
various synthetic and real workloads, and the experimental results demonstrate that 
it is more power-efficient than existing algorithms for VMP. The findings suggest 
that the proposed algorithm has significant implications for energy-efficient strate-
gies in cloud data centers. Generally, this study makes contributes to the develop-
ment of energy-efficient approaches to VMP that can help reduce power consump-
tion and improve the sustainability of cloud data centers.

Keywords  Approximation algorithm · VM placement · Vector bin packing

1  Introduction

One of the primary concerns of cloud providers is the efficient management of avail-
able resources. Minimizing power consumption and improving performance is a hot 
topic these days. Idle server static power consumption is more than 60% of server 
peak power consumption [1]. Virtualization is one of the proposed solutions for 
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optimal resource utilization. This technology allows cloud providers to create multi-
ple VMs on a single PM, thus improving resource efficiency.

Deciding how to allocate VMs to PMs is called virtual machine 
placement(VMP)and is an NP-hard optimization problem. A common strategy to 
minimize data center energy consumption is to minimize the number of active 
PMs [2, 3]. Considering VMs as items and PMs as bins leads to the bin packing 
problem. This problem is strongly NP-hard [4]. The problem is assigning items to 
bins to minimize cost. The cost of bin packing is the number of bins used to pack 
items.

There is a variant of bin packing called Bin Packing with Linear Usage Cost 
(BPLUC) [5] that accounts for the cost in a different way. BPLUC bin costs con-
sist of two parts: fixed and variable costs that are associated with each unit of 
capacity used. The problem is to assign each item to a bin, considering capac-
ity constraints, so that the total cost of all bins is minimized. Here, the energy 
required per unit of PM usage is considered as the variable cost. Fixed cost is 
defined as the energy required for an idle PM with zero utilization. BP is a par-
ticular case of BPLUC, where all fixed costs set to 1 and variable costs set to 0.

When we consider multiple dimensions for items and bins, the problem is 
called VBP and VBPLUC for BP and BPLUC, respectively. For example, all 
items and bins have two dimensions: volume and weight. However, data center 
VMs and PMs include multiple dimensions such as CPU, RAM, bandwidth, and 
storage. This study examines the VMP problem with three dimensions CPU, 
RAM, and bandwidth, with the aim to minimize power consumption.

To the best of the author’s knowledge, there is no existing approximation algo-
rithm available for the energy-efficient Virtual Machine Placement (VMP) prob-
lem. In this research paper, we establish a comprehensive and meaningful connec-
tion between two fundamental problems, namely Bin Packing (BP) and Bin Packing 
with Linear Usage Cost (BPLUC), as well as between Vector Bin Packing (VBP) 
and Vector Bin Packing with Linear Usage Cost (VBPLUC). This correspondence 
is relevant and applicable to a novel family of VBP problems. The problem of VMP 
shares similarities with VBPLUC, as both involve considering the cost of a Physical 
Machine (PM) in terms of the power it consumes. The power consumption is deter-
mined by the utilization of the PM, which, in turn, depends on the number of Virtual 
Machines (VMs) allocated to it and the resource requirements of each VM.

The main contributions of this paper are: 

1.	 We prove that any approximation algorithm for BP with an approximation ratio 
� is an approximation algorithm for BPLUC with an approximation ratio based 
on � for homogeneous hosts.

2.	 We prove that any approximation algorithm for VBP with an approximation ratio 
� is an approximation algorithm for VBPLUC with an approximation ratio based 
on � for homogeneous hosts.

3.	 We apply the proposed algorithm for VBP presented in [6] for VMP with power 
minimization objective in heterogeneous data centers.
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The remaining sections of this paper are organized as follows: Sect. 2 provides 
an overview of the related work for VMP. In Sect. 3, we first present the system 
architecture, then define and formulate the BPLUC and VBPLUC problems con-
sidering BP and VBP problems. Section  4 deals with the first and second con-
tributions. Section 5 reports the experiments on real datasets and compares the 
results with other algorithms. Finally, conclusions and future work are presented 
in Sect. 6.

2 � Related work

This section provides a brief overview of related work available on the VMP 
topic. There is extensive literature on how to solve this problem with differ-
ent goals, such as power minimization, network traffic minimization, economic 
revenue maximization, performance maximization, and resource utilization 
maximization.

There are several attempts to solve VMP with the goal of power minimiza-
tion. This section describes some of them. Deterministic methods [7, 8], heuristic 
methods [9–15], meta-heuristic methods [16–20] and other methods [21–25] have 
been suggested to solve VMP.

2.1 � Deterministic methods

Mann et al. [8] solved the VMP issue when the virtual and physical machine pro-
cessors are multicore. The authors presented some greedy algorithms based on 
PABFD [12] and a model based on Constraint Programming (CP). The objective 
function is based on the sum of weighted minimization of the number of active 
physical machines, reduction in the number of migrations, and minimization of 
SLA violations. In the proposed method, there are two stages based on CP. First, 
the method examines the search space for solutions of assigning VMs to PMs. In 
the second stage, the best mapping of virtual machine cores to physical machine 
cores is made for the allocation found. However, this model offers the best solu-
tion for the small instances compared to the greedy algorithms. For larger sam-
ples, for example, those containing more than 350 virtual machines, the method 
could not to find a solution within the given time.

Wie et  al. in [7] attempt to simultaneously reduce active and idle physical 
machines’ power and physical machines’ activation time. The authors express the 
activation time of physical machines with a threshold constraint. Two mathemati-
cal models are presented with two objective functions, minimizing energy and 
minimizing physical machine activation time. The combination of solutions in 
each model dictates the final placement of virtual machines.

Deterministic methods are based on mathematical models and algorithms 
that provide a guaranteed optimal solution, given enough time and resources. 



918	 Z. Mahmoodabadi, M. Nouri‑Baygi 

1 3

However, the computational complexity of deterministic methods often makes 
them infeasible for large-scale VM placement problems.

2.2 � Heuristic methods

Ajmera et al. used a new criterion for power-based VMP [13]. In this study, the 
authors addressed two problems, the initial placement of VMs and finding a suit-
able target PM during migration. Choosing the right PM to place a VM on is first 
based on performance metrics(how much power is required for a given workload 
for each type of PM). The PM with minimum utilization to power ratio is selected 
when the VM is placed on it.

Another method to solve this problem is described by [10] called GRVMP. The 
authors proposed a greedy algorithm that randomly assigns PMS to VMs with the 
aim of power optimization. They introduced a new factor called resource wastage. 
There, PMs with minimal waste of resources are better suited for hosting VMs. 
The results show that this method is suitable for large data centers and does not 
work well for data centers with a small number of VMs and PMs.

Knowing that VMP is an NP-hard combinatorial problem, it is impossible to 
solve it optimally for a large number of VMs and PMs. Data centers typically 
consist of thousands to millions of VMs and PMs, and the best solution provided 
by a thorough search can be expensive. Therefore, a compromise must be made 
between the quality of the solution and the computational costs of a real cloud 
management system. Heuristic algorithms based on the bin packing problem 
are extensively employed in order to effectively minimize the number of physi-
cal machines(PMs) utilized and enhance energy efficiency. Beloglazov et al. [12] 
proposed a PABFD algorithm based on the Best Fit(BF) heuristic algorithm. The 
algorithm chooses the PM with the lowest power consumption for VM placement.

The paper [9] delves into the challenges encountered by cloud service provid-
ers when it comes to efficiently managing multiple cloud data centers. The pri-
mary objectives revolve around meeting the escalating demands of applications 
while simultaneously striving to minimize energy consumption. The paper pro-
poses an energy-efficient method called Resource Allocation based on Request 
Prediction (RARP) in multiple cloud data centers. The RARP method anticipates 
application request volume and allocates VMs and PMs based on the minimum 
remaining resources available to minimize energy consumption. The proposed 
method is evaluated through extensive experiments, and the results show signifi-
cant improvements in request detection accuracy and energy consumption com-
pared to other algorithms.

In another study, Jagiti et al. [14] proposed an FF-based algorithm for VMP in 
the multidimensional case. In this study, the VMs are sorted based on the require-
ments for each dimension, and then the rank of their requests is aggregated for 
each resource. This value is used to sort the VMs in the FF algorithm.

In paper [15], two energy-efficient VM placement algorithms based on bin 
packing heuristics were proposed, namely Energy Efficient VM Placement 
(EEVMP) and Modified Energy Efficient VM Placement (MEEVMP). These 
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algorithms aim to reduce the number of idle hosts in the data center by optimiz-
ing the placement of VMs, thereby achieving a more energy-efficient resource 
utilization. Experimental results showed that EEVMP and MEEVMP can reduce 
energy consumption compared to the default VM placement algorithm PABFD. 
The study highlights the importance of efficient VM placement in achieving 
energy efficiency in data centers.

In [11]’s study, VMP defined four thresholds to distinguish little loaded, lightly 
loaded, normally loaded, medium loaded, and heavily loaded servers. The authors 
used these metrics to detect the appropriate PMs for VMs. Additionally, during the 
VM allocation process, they suggested considering two factors: power consump-
tion and SLA violations. This method showed acceptable results compared to sim-
ilar methods. Generally, Heuristic methods are based on practical experience and 
common sense and are used to find good-quality solutions that may not be optimal. 
Heuristic methods are often faster than deterministic methods, but the quality of the 
obtained solutions may vary depending on the specific problem instance.

2.3 � Meta‑heuristic methods

The paper [19] proposes an ant colony system (ACS) algorithm for energy-efficient 
dynamic virtual machine (VM) placement in data centers. The proposed algorithm 
uses ant-like agents to explore the search space and find an optimal solution to the 
VM placement problem, with the objective to minimize energy consumption while 
satisfying the resource demands of VMs and meeting the service-level agreements 
(SLAs) of cloud users. The algorithm also includes a dynamic migration strategy to 
deal with the changing workload demands of the data center. The authors report that 
the proposed algorithm outperforms existing VM placement algorithms in terms of 
energy consumption and SLA violation rate. The proposed algorithm also provides 
good scalability and robustness to changes in workload demand.

Paper [18] explores the use of a genetic algorithm (GA) for energy-efficient vir-
tual machine (VM) placement in data centers. While GA is known for providing 
high-quality solutions, its fitness function is computationally demanding, limit-
ing its use in large-scale systems or specific scenarios where fast VM placement is 
required. This paper proposes a data structure to reduce the complexity of the fitness 
computation from quadratic to linear and an alternative fitness function to reduce 
the number of instructions, resulting in an 11x acceleration of GA computation for 
energy-efficient VM placement in large-scale data centers. The study highlights the 
importance of VM placement in improving energy efficiency in data centers and 
proposes a novel approach to overcome the computational limitations of GA.

The article [20] discusses the importance of efficient virtual machine placement 
(VMP) to maximize the utilization of physical machines (PMs) in data centers and 
reduce energy consumption. The authors propose a Metaheuristic Virtual Machine 
Placement Framework toward the Power Efficiency of Sustainable Cloud Environ-
ment (MV-PESC) approach that uses an Extended Flower Pollination Optimization 
algorithm to improve VMP efficiency. The study evaluates the proposed approach 
using actual workload traces and compares it with state-of-the-art solutions. The 
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results show significant reductions in power consumption, active PMs, and execu-
tion time.

In [17], authors used resource reservation for VMP. Many service providers ena-
ble resource reservations for their customers to enable efficient cloud resource man-
agement and lower costs. The objective function of this research is based on instruc-
tion-energy and the goal is to effectively reduce energy consumption, and increase 
utilization of reserved resources. This study applied an evolutionary algorithm to 
obtain the best mapping of virtual machines to physical machines such that energy 
consumption is minimized.

The authors of [16] studied the VMP with the aim of minimizing energy, tak-
ing into account the non-deterministic requirements of virtual machines. Instead of 
using the deterministic values for resource requirements, they presented a random 
placement in which variations in resource requirements are represented as random 
variables. In this work, the VMP problem is formulated as a random optimization 
model considering non-deterministic resource requirements. The authors used a 
meta-heuristic algorithm to search VMP solution objects to minimize energy con-
sumption in the data center.

Generally, metaheuristics methods for VM placement problems can suffer from 
local optimality problems. These methods rely on searching a large search space to 
find the optimal solution but can get stuck in suboptimal solutions that are locally 
optimal but not globally optimal. This can lead to sub-optimal solutions. In addition, 
metaheuristic methods can be computationally intensive and time-consuming, mak-
ing them impractical for large-scale VM placement in large-scale data centers.

2.4 � Other methods

In another study [22], the authors proposed a resource-aware algorithm for VMP. 
The first goal of the proposed algorithm is energy minimization in cloud IaaS, which 
is achieved by minimizing the number of active physical machines. This is imple-
mented using a new method called Resource Usage Factor(RUF). RUF efficiently 
uses of physical machine resources by placing virtual machines on appropriate phys-
ical machines. The secondary goal is to minimize resource usage imbalances among 
active physical machines. This is achieved using a new resource usage model. This 
model can detect imbalanced resource utilization.

The inefficient use of resources can lead to low system utilization and more phys-
ical server usage, which increases power consumption. To address this issue, the 
paper [25] presents an energy-efficient topology-aware VM placement scheme in 
cloud DCs, formulated as a multi-objective optimization problem with a focus on 
minimizing power consumption and resource wastage. The proposed solution uses 
an advanced multi-objective discrete version of the JAYA (MOD-JAYA) algorithm 
to solve the combinatorial problem of VMP. The simulation results demonstrate the 
effectiveness of the proposed algorithm in solving the VMP problem compared to 
other existing schemes in terms of prominent assessment metrics.

The VMP issue has been investigated by [21] to reduce energy consumption. 
The authors proposed using game theory to solve the problem that has a successful 
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performance for the dynamic case of VMP(when requests come online). Another 
advantage of the proposed algorithm is that all optimal solutions are produced using 
this procedure. The proposed method has intelligent computational properties. It 
uses the initial solution and guarantees that there is a list of virtual machine migra-
tions according to the initial solution that can lead to the solution of the problem. 
Algorithmic predictions are made using evolutionary game theory. The analysis of 
the obtained outcomes demonstrates that the proposed approach exhibits the capa-
bility to attain the optimal solution within the dynamic virtual machine placement 
(VMP) context, effectively optimizing energy consumption.

In game theory and multi-agent systems, the focus is on modeling the interac-
tions and decisions of multiple agents. However, in the VM placement problem, the 
agents (i.e., the VMs) may have conflicting objectives, making coordination chal-
lenging. Moreover, the optimal placement decisions may depend on the placement 
decisions of other VMs, making it difficult to find a globally optimal solution.

Using machine learning techniques is one of the most effective methods in VMP. 
The authors of [23] tried to place virtual machines based on workload and required 
bandwidth of virtual machine. They applied the feedforward neural network, a help-
ful tool for time series forecasting. The proposed algorithm called PACPA shows 
acceptable results compared to similar algorithms.

In the work [24], Wang et al. tackled the issue of VM allocation and migration 
costs through the utilization of a distributed multi-agent (MA) based approach. The 
proposed MA first dispatches a cooperative agent to each PM to assist the PM in 
managing VM resources. An auction-based VM allocation mechanism is then 
applied to these agents to determine the allocation of VMs to PMs. PMs negotiate 
with each other to perform migration when it makes sense from a power-saving per-
spective. The proposed algorithm can be used in static and dynamic environments, 
and the results showed a significant reduction in energy consumption compared to 
other methods.

Applying machine learning techniques to the virtual machine (VM) placement 
problem can be highly advantageous for tackling intricate issues. However, certain 
challenges need to be addressed in order to ensure effective utilization of these tech-
niques. These challenges encompass factors such as data availability and quality, 
which can impact the accuracy and reliability of the models. Additionally, the ability 
of machine learning models to generalize well across diverse VM placement sce-
narios is another area of concern. Furthermore, the complexity of the VM placement 
problem itself poses a challenge, requiring sophisticated approaches to handle its 
intricacies effectively.

Although BPLUC is commonly used for transportation problems, Cambazard 
et al. [26] has used this problem to minimize data center energy. The authors con-
sidered a bin packing problem where there are linear costs associated with using 
bins to model energy consumption. They also examined lower bounds based on lin-
ear programming and extended the global bin packing constraints to include cost 
information. They focused on ways to reduce energy costs by addressing the CPU 
requirements of client applications, IT equipment, and virtualization techniques. 
The problem is defined in heterogeneous data centers.
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A comprehensive examination of the existing literature indicates the absence of 
an approximation algorithm specifically designed for solving the virtual machine 
placement (VMP) problem. Previous research usually looked only at heuristics, 
meta-heuristics, and a few exact techniques for solving the problem. Approxima-
tion methods are used to obtain a good-quality solution that is close to the opti-
mal solution but may not be guaranteed to be optimal. Approximation methods are 
often faster than deterministic methods and can be used to solve large-scale VM 
placement problems that are infeasible to solve exactly. However, the quality of the 
solution obtained may depend on the specific approximation algorithm used and the 
input parameters. This work is conducted in response to the need for an approxima-
tion technique to know how significant the difference between the found solution 
and the best solution is.

3 � System architecture and problem definition

This section is focused on the system architecture and problem definition of our 
work.

3.1 � System architecture

The system architecture of our work is illustrated in Fig.  1. The diagram on the 
right-hand side of the figure illustrates the existence of three distinct layers leading 
to two fundamental mapping phases. First, user applications are mapped to VMs and 

Fig. 1   System architecture of cloud computing. [27]
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VMs are mapped to PMs. The two mapping phases are handled by two main entities, 
the VM Configuration Manager and the VM Placement Manager, respectively. VM 
configuration addresses issues related to VM deployment in terms of both the num-
ber and size of VMs (individual characteristics) and is not the focus of this study. 
In contrast, we assume the VM configuration has already been completed and focus 
solely on the next phase, VM placement. It is intended to consider different optimi-
zation goals and apply different optimization techniques to assign VMs to PMs. Our 
algorithm focuses on this part.

3.2 � Problem definition

Here is a problem similar to the classical problem of bin packing. Table 1 presents 
the primary symbols used in this paper and provides an explanation of each of them.

BPLUC is a variant of the BP problem that defines the cost of a used bin differ-
ently. In BPLUC, we are given a set of n items, V = {v1,… , vn} with integer sizes 
and an unlimited supply of identical bins. A bin has a capacity S, a non-negative 
fixed cost, f, and a non-negative cost, c, for each unit of used capacity. Let B be 
the set of available bins, B = {B1,B2,…} . A bin is used when at least one item is 
assigned to it. The cost of a used bin, Bj , j ∈ B , is a linear function f + clj , where 
lj is the total size of the items in bin j. The problem is to assign each item to a bin 
under capacity constraints so that the sum of the costs of all bins is minimized. This 
problem is known as the Bin Packing with Linear Usage Cost problem (BPLUC). 
BP is a particular case of BPLUC with all f set to 1 and all c set to 0.

3.3 � BPLUC formulation

The BPLUC can be defined using the following linear model. The objective function 
is to minimize the sum of the costs of all bins. lj is the total loads of allocated items 
to the bin j. The variable xij is 1 if item i is assigned to PM j; otherwise it is 0. The 
decision variable yj is 1 if bin j has at least one item and therefore is used; otherwise 
it is 0.

(1)

minimize
�

j∈B

yj(f + clj)

subject to lj =

∑
i∈V

xijvi

S
∗ 100∀j ∈ B

(2)
∑

j∈B

xij = 1∀i ∈ V

(3)yj ≥ xij ∀i ∈ V, j ∈ B
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Table 1   Main Notations and Description

Symbol Description

 Set V Set of items, where |V| = n

B Set of Bins, where |B| = m

I Set of VMs requests
Q Set of large VMs
D Set of small VMs
M Set of PMs configurations

 Index i Index of item/VM, i ∈ V

j Index of Bin/ PM, j ∈ B

t Index of resource dimension, t ∈ d

 Input parameters S Bin capacity
W Total size of all items in all bins
k Number of non-empty bins
f Non-negative fixed cost for a used bin
c Non-negative cost for each unit of a used bin
Wt Total size of all items in dimension t in all bins
vi Item/VM size
lj Total size of items in bin j
st Capacity of a bin in dimension t
lj,t Total amount of space used in dimension t in bin j
vi,t Requirement of item/ VM i in dimension t
ct The cost of a unit space used in dimension t
Bmax
j

Power consumption of Bj when it is full utilization
Bmin
j

Power consumption of Bj in idle mode

uCPU
j

Normalized CPU utilization of Bj

RW
j

Resource wastage of Bj

Rt
j

Remained normalized resource of Bj in dimension t
ut
j

Normalized resource utilization of Bj along dimension t
d Number of dimensions
� The parameter for classifying VMs to large and small classes
pi ith large VM
m Number of PMs in optimal allocation
mj Number of PMs for the assignment of type j
h Number of classes
rL Number of VM types in Q
r Number of classes
bt
j

Occupied capacity of Bj in dimension t
 Variables xi,j The value is 1 if item/VM i is allocated on bin/PM j otherwise the value is 0

yj The value is 1 if bin/PM j has at least one item/VM otherwise the value is 0
Ptot Total power consumption of all PMs
ℝ

tot Total resource wastage of all PMs
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Constraint 1 defines the total load of bin j, where it depends on the items assigned to 
it. Constraint 2 expresses that all item requests must be assigned. Constraint 3 shows 
that a bin must have at least one item to be activated, yi = 1 . Constraint 4 is the 
capacity constraint. Constraints 5 and 6 determine the bound of the variables.

3.4 � VBPLUC formulation

In the linear usage cost vector bin packing, bins and items have multiple dimensions, 
for instance, weight and volume. The goal is to allocate multidimensional items to 
storage bins in a way that does not violate capacity constraints in any dimension and 
minimizes costs. The cost is similar to the BPLUC problem.

Given a set of identical bins called B = {B1,B2,…} where each bin, Bj , has simi-
lar characteristics as bins have in the BPLUC. A bin, Bj , has a capacity for each 
dimension and defined as, S = {s1,… , sd} , where st, t ∈ d denotes the bin capacity 
in dimension t. lj,t is the load of dimension t in bin j. An item, i ∈ V  , has multiple 
requirements and defined as a d dimensional vector vi = {vi,1,… , vi,d} . The cost of 
a unit space used in dimension t is defined by ct . The goal is to efficiently allocate 
items to bins to minimize the total cost of all bins.

The objective function of VBPLUC is defined as follows. The constraints are the 
same as the linear model presented in the previous section, except constraints 1 and 
4 that are modified according to constraints 7 and 8.

Where in equation 7, vi,t and st are the item sizes and capacity of bin Bj in dimension 
t, respectively. Equation 8 shows the capacity constraint for all dimensions.

(4)
∑

i∈V

xijvi ≤ Syj ∀j ∈ B

(5)xij ∈ {0, 1} ∀i ∈ V, j ∈ B

(6)yj ∈ {0, 1} ∀j ∈ B

(7)

minimize
�

j∈B

yj(f +

d�

t=1

stlj,t)

lj,t =

∑
i∈V

st

xijvi,t
∗ 100 ∀j ∈ B,t ∈ [d]

(8)
∑

i∈V

xij ∗ vi,t ≤ st ∀j ∈ B,t ∈ [d]
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3.5 � BPLUC and power efficient VMP

Looking at the VMP problem from a power minimization perspective, each PM con-
sumes different power for each utilization level. SPECPOWER [28] provides the 
first industry-standard benchmark for characterizing the power and performance of 
computer servers. Table 2 comes from SPECPOWER and shows two servers with 
different power and utilization characteristics. The G4 and G5 cores have CPU fre-
quencies of 1860 and 2660 MIPS, respectively, and both models have 4096 MB of 
memory.

According to Table 2, we can define a linear relationship between power and 
utilization for each server. For example, the diagram Fig. 2 shows this relation-
ship for server types in Table 2.

The linear equation approximating the relationship between power and utili-
zation is presented on each line as y = ax + b , where y represents power and x 
represents the total utilization value (i.e., the overall usage of allocated virtual 
machines) for each server. Considering the cost of a bin in BPLUC, we have the 
relationship f + clj, j ∈ B . For a PM, we can assume that the cost is the power 
according to the total utilization defined by the equation y = ax + b . Here we can 
use the BPLUC cost definition such that x equals lj , and a and b are equivalent to f 
and c, respectively. Therefore, BPLUC can be used to solve power-efficient VMP 
since their cost definitions are similar.

Fig. 2   Linear relation between power and utilization for 2 server types 2660 and 1860

Table 2   Power consumption according to hosts utilization

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135
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4 � Proposed method

In this section, we first prove that any approximation algorithm for BP (resp. 
VBP) can also be used as an approximation algorithm for BPLUC (resp. 
VBPLUC). Concerning these results and the relation between VBPLUC and VM 
placement problem, we then modify and implement an elaborate approximation 
algorithm for VBP by Bansal et al.  [6] and compare it to other well-known and 
state-of-the-art VM placement methods in Section 5.

4.1 � Approximation algorithms For BPLUC and VBPLUC

Theorem 1  Any approximation algorithm for BP with approximation ratio � is an 
approximation algorithm for BPLUC with approximation ratio �.

Proof  We prove the theorem by setting up a one-to-one correspondence between any 
solution of BP to a solution for BPLUC with a linearly related cost. By this corre-
spondence, the optimum solution for BP has a corresponding optimum solution for 
BPLUC, and the approximation solution for BP is also an approximation solution 
for BPLUC.

First, consider a solution I = (B1,B2,⋯ ,Bm) for BP, which satisfies the capacity 
constraints for each bin. In this solution, each Bj is the set of items placed in bin j. 
The cost of such a solution equals to kf, where k is the number of non-empty bins 
and f is the cost of using a bin. If we use the same allocation for BPLUC, the cost is 
equal to

which can be written as 

∑

j ∈ B

j is not empty

(f + clj),

=
∑

j ∈ B

j is not empty

f +
∑

j ∈ B

j is not empty

clj

= kf +
∑

j ∈ B

j is not empty

clj

= kf + c
∑

j ∈ B

j is not empty

lj

= kf + c
∑

i∈V

vi = kf + cW
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In the last equation, W is the total size of all the items.
The above result shows that the cost of a solution for BPLUC is a constant value 

(the cost of a unit capacity of a bin multiplied by the total size of the items) greater 
than the cost of the same solution for BP. Furthermore, the optimum solution for BP 
and BPLUC are the same,

Another result from the above equations, which is related to any approximation 
algorithm for BP, is as follows. If an algorithm guarantee to find a solution within 
� ⋅ OPT  , where OPT is the cost of the optimum solution, the cost of that solution for 
BPLUC will be at most � ⋅ OPT + cW . Since the optimum solution for BP remains 
optimum for BPLUC, the cost of the optimum solution for BPLUC is OPT + cW . 
Finally, the approximation ratio of the given algorithm for BPLUC is bounded by 
𝛼⋅OPT+cW

OPT+cW
< 𝛼 . 	�  ◻

Theorem 2  Any approximation algorithm for VBP with approximation ratio � is an 
approximation algorithm for VBPLUC with approximation ratio �.

Proof  We can follow the same approach as the previous theorem and prove the theo-
rem. Consider an approximation algorithm with an approximation ratio � for VBP. 
This means the cost of the solution of the algorithm is at most � ⋅ OPT  , where OPT 
is the cost of the optimum solution. The cost of the corresponding optimum solution 
of the VBPLUC problem is OPT +

∑d

t=1
ct ⋅Wt . In this equation, ct is the cost of 

unit space used in dimension t, and Wt is the total amount of space used in dimen-
sion t for all bins.

We can bound the cost of the solution of the approximation algorithm for 
VBPLUC from above as follows. Let I = (B1,B2,⋯ ,Bm) denote the solution. The 
total cost is equal to

Here lj,t is the total amount of space used in dimension t in bin j. The total cost can 
be written as

∑

j ∈ B

j is not empty

(f +

d∑

t=1

ct ⋅ lj,t).
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Since the total cost of the approximate solution, kf is at most � ⋅ OPT  , the total cost 
of the corresponding solution is at most � ⋅ OPT +

∑d

t=1
(ct ⋅Wt) . Finally, the 

approximation ratio of the given algorithm for VBPLUC is bounded by 
𝛼⋅OPT+

∑d

t=1
(ct⋅Wt)

OPT+
∑d

t=1
(ct⋅Wt)

< 𝛼 . 	�  ◻

4.2 � Mapping a VBP algorithm to VMP

Bin packing is an NP-hard problem, and there are many approximation algorithms 
for it. We use an algorithm packing items into at most (1 + 2�)m + 1 bins with � 
resource augmentation in (d − 1) dimensions, where m is the number of bins in opti-
mal packing [6]. The authors studied the d-dimensional vector bin packing problem, 
and their algorithm is based on resource augmentation and rounding items. This 
algorithm has been modified to work with cloud domains and VMP for two objec-
tives. For the first goal, the cost is assumed to be the minimum number of PMs 
used for VM allocation. The second objective considers the cost as the PM’s power 
consumption.

4.2.1 � VBP algorithm

Algorithm 1, called VBP, is inspired from [6]. Both PMs and VMs contain multiple 
resources(dimensions), such as CPU, RAM, and bandwidth. The goal is to assign VMs 
to the minimum number of PMs. In the VBP algorithm, the first step is to estimate the 
optimal number of PMs (referred to as m) required to allocate VMs. Based on this 

=
∑

j ∈ B

j is not empty

f +
∑

j ∈ B

j is not empty

d∑

t=1

ct ⋅ lj,t

= kf +
∑

j ∈ B

j is not empty

d∑

t=1

ct ⋅ lj,t

= kf +

d∑

t=1

∑

j ∈ B

j is not empty

ct ⋅ lj,t

= kf +

d∑

t=1

(ct ⋅
∑

j ∈ B

j is not empty

lj,t)

= kf +

d∑

t=1

(ct ⋅Wt)
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estimation, the VBP algorithm then deals with the solution of the mapping problem. 
The allocation process in VBP takes place in two different phases. The algorithm first 
divides VMs into two parts, large VMs, and small VMs, based on the � parameter 
where � is a real number. If a VM size is greater than � in at least one dimension, it 
is placed in the large group; otherwise it is placed in the small group. Large VMs are 
rounded to fall into a fixed number of classes. Rounded large VMs are packed with 
dynamic programming, and small VMs are packed with linear programming. 

Let I be a set of VM requests. Each request is a vector (CPU, RAM, BW) that 
defines a VM request in each dimension. The algorithm takes � and estimates the 
optimal value m. It either assigns VMs into at most (1 + 2�)m + 1 PMs or indi-
cates that the estimation is wrong. The resource augmentation applies to the (d − 1) 
dimension. These dimensions are called augmentable, and the other dimension is 
called non-augmentable. The last dimension is assumed to be non-augmentable, and 
the other (d − 1) dimensions increments with � . The value for d is assumed to be 
d = 3 in our problem.

4.2.2 � Large VMs allocation

Rounding is done differently for augmentable and non-augmentable dimensions. 
Augmentable dimensions are rounded to multiples of � . where � =

�2

2d2
 and the 

d − th dimensions are rounded based on the linear grouping.

•	 Rounding of augmentable dimensions: Each large VM pi is replaced with a VM 
q̂i as follows: 

(9)q̂t
i
=

�
⌈ pt

i

𝛼
⌉ if t ∈ {1,… , (d − 1)}.

pt
i
, t = d.
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 The original instance I is classified into classes {Wu�u ∈ {1,… , ⌈ 1

�
⌉}d−1} where 

Wu = {pi|q̂it = ut.𝛼,∀ t ∈ [d − 1]} , creating rA = (⌈ 1

�
⌉)d−1 classes [6].

•	 Rounding of non-augmentable dimension: The last dimension is rounded with lin-
ear grouping for each Wu separately. This splits each Wu into a = ⌈ 1

�
⌉ groups, where 

� =
��

2d
 . We reduce the number of groups and increase the number of items in each 

group. In our method, the � parameter is multiplied by 1000. This change made it 
possible to allocate a large number of VMs.

	   VMs from Wu are sorted in non-ascending order based on the last dimension. Let 
(p1,… , phu ) be the sorted VMs where hu = |Wu| . For each e = {1,… , a − 1} class 
Wu,e is defined having b = ⌈�hu⌉ VMs as follows: Wu,e = {p(e−1)b+1,… , peb} . The 
last group Wu,a = {p(a−1)b+1,… , phu} can contain less than b elements. The first 
element in each group is the largest VM in that group and is named round vector . 
The final rounded instance Q is obtained by replacing each vector pi ∈ Wu,e with qi , 
where 

 So the dth dimension is rounded up to the dth dimension of the group’s 
round vector , and other coordinates are rounded to multiples of �.

	   The result of rounding large VMs is a vector {n1, n2,… , nh} containing the 
number of elements in h different classes, where V =

∑h

i=1
ni . This vector is the 

dynamic programming input.
•	 Assigning large VMs: Since Q has a fixed number of VM types rL , there is only 

r ≤ (
d

�
)rL possible configurations of a single PM. M = (m1,… ,mr) is called a PM 

configuration, where mj indicates the number of PMs for the assigning of type j.
	    The result of dynamic programming for large VMs is the minimum number of 

PMs needed to allocate large VMs.

4.2.3 � Small VMs allocation

Linear programming is used to allocate small VMs. PMs used by large VMs may have 
space for smaller VMs. Linear programming assigns small VMs to these PMs. If some 
VMs cannot be placed in the previously used PMs by large VMs, they will be placed in 
a new PM by the Next Fit heuristic algorithm.

The linear programming formulation is as follows. Let denote D to be the set of all 
small VMs in I and define bt

j
=
∑

q∈Qi
qt for each PM, Bj , is the occupied capacity of Bj 

in dimension t. t ∈ [d] indicates each dimension.

qt
i
= q̂i

t, for t ∈ [d − 1],

qd
i
= max{pd|p ∈ Wu,e}.

(1)

maximize

m∑

j=1

bl
j
∀l ∈ [d]

subject to

m∑

j=1

xij = 1,∀pi ∈ S
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The objective function states that the capacity of the PMs should be filled with as 
many small VMs as possible. Constraint (1) denotes that every small VM has to be 
assigned to one PM. The expressions (2) and (3) are capacity constraints for all d − 1 
and d dimensions, respectively. The resulting integer elements of LP are assigned 
directly to the PMs. Additional PMs are used for other items.

4.2.4 � PAVBP algotirhm

Algorithm  2, called PAVBP, shows an algorithm inspired by the algorithm  1 
with more details. All phases are similar to the algorithm  1, but the goal is 
energy efficiency instead of the minimum number of PMs. In other words, the 
algorithm chooses PMs based on power consumption. PMs with lower power 
consumption have higher priority for hosting VMs.

In the algorithm, OPTpower means the best power to be achieved by assign-
ing VMs to PMs. This value is equivalence with the minimum required power, 
minpower.

(2)
|S|∑

i=1

xijp
l
i
≤ (1 + �) − bl

j
, ∀j ∈ [m], l ∈ [d − 1]

(3)
|S|∑

i=1

xijp
l
i
≤ 1 − bl

j
, ∀j ∈ [m], l ∈ [d]

(4)xij ≥ 0, ∀i, j
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5 � Performance evaluation

This section presents the results of the study. Experiments are implemented using 
the CloudSim 3.0.3 simulator [29] and CPLEX library. The proposed approach 
was compared with several heuristic methods regarding power consumption, 
resource wastage, and difference ratio. All the simulation results are executed on 
a system equipped with a 3.10 GHz Intel Core i5 CPU and 4 GB RAM.

5.1 � Experimental setup

We simulated a data center consisting of 1400 heterogeneous PMs and vary-
ing numbers of VMs 1052, 512, 256, and 128. Half of the PMs are HP ProLiant 
ML110 G4 (referred to as G4), and the other half are HP ProLiant ML110 G5 
(referred to as G5). The characteristics of the PMs are illustrated in Table 2. This 
simulation assumes that both servers contain one core.

To evaluate our algorithm on different instances, we use three categories of 
Virtual Machines (VMs): Based VMs, Big VMs, and Small VMs. It must be men-
tioned that these categories have nothing to do with the categories in the pro-
posed algorithm in which virtual machines are divided into two classes, large and 
small. They are just three instances of different virtual machine categories for 
evaluating our algorithm.

Each of these categories is the input of our algorithm in different executions. 
For example, for Big VMs, we take it as VMs set and divide it into two classes 
large VMs and small VMs. This process is also done for the other two catego-
ries, Based VMs and Small VMs. The size of instances in each VM category is 
presented on Table 3. We modeled the VM types according to the Amazon EC2 
Instance types(referred to as ”Based VMs”), as shown in Table 3. Furthermore, 
the proposed method is evaluated on two other VM classes called Big VMs and 
Small VMs.

To evaluate our approach, we tested real-world workloads, Control PlanetLab 
workload [30] and Bitbrain’s workload [31], and WK100, a synthetic workload 
where all values are always 100% during execution. Workloads are dynamically 
assigned to VMs at runtime. In Cloudsim, once the workload is zero, the VM is 
permanently removed from the PM, even if the VM experiences a nonzero work-
load over the next few clocks. We modified this part so that after checking the 
workload of the deleted VM and finding it nonzero, the VM will be placed on an 
appropriate PM according to the proposed algorithm.

Table 3   VMs instances 
configurations

VMs Category Size of VMs

Based VMs 2500, 2000, 1000, 500
Big VMs 2500, 2100, 1500, 800
Small VMs 2200, 1800, 800, 400
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5.2 � Evaluation results

Some concepts have been changed to explain the VBP issues in the cloud domain. 
We consider PMs and VMs instead of bins and items, respectively. We modi-
fied the VBP algorithm initially proposed in [6] to make it applicable to the 
cloud domain. Algorithm 1 shows this modified algorithm. We derived another 
approach called PAVBP from the algorithm that aims to select the PMs that con-
sume the least power. Algorithm 2 shows the algorithm. Analyzes include com-
parisons of the results of this study with the following published work:

–	 PABFD: PABFD is proposed by Beloglozov[32] and performs the alloca-
tion of virtual machines with a BFD algorithm where the appropriate PM is 
selected based on their power consumption.

–	 GRVMP: GRVMP[10] selects VMs using a greedy randomization technique 
to allocate on a PM with the minimum resource wastage. The GRVMP results 
reported in this study are an average of 10 runs.

–	 AFED-EF: AFED-EF[11] assigns VMs based on a parameter called energy 
efficiency. Power-efficient PMs have higher priority when deploying VMs.

Three evaluation metrics are reported in the results: total power consumption, 
total resource consumption, and difference ratio.

•	 Total power consumption: This metric is obtained from the following equa-
tion: 

 where Bmin
j

 is the power consumption of Bj in idle mode, Bmax
j

 is the power con-
sumption of Bj when it is full utilization and u cpu

j
 is the normalized CPU utiliza-

tion of Bj.
•	 Total resource wastage: This metric intends to maximize the resource utilization 

of PMs and establishes a load balancing within the resources of a PM [10]. To 
obtain this metric, two parameters are needed, Rt

j
 and ut

j
 , which they can get from 

the following equations:
	    This metric is obtained using the following equation: 

 where Rt
j
 is the remaining normalized resource of Bj in dimension t, min(Rt

j
) is 

the minimum remaining resource that is normalized within all dimensions of PM 
Bj and ut

j
 is the normalized resource utilization of Bj along the t-th dimension 

[10]. Similarly, � is a small positive real number, and the value is considered to 
be 0.0001.

(5)P tot =

m∑

j=1

B
power

j
=

m∑

j=1

yj ∗ (Bmin
j

+ (B max
j

− B min
j

)) ∗ u
cpu

j
)

ℝ
tot =

m�

j=1

Rw
j
=

∑d

t=1
�Rt

j
− min (Rt

j
)� + �

∑d

t=1
ut
j
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•	 Difference Ratio: To observe the performance difference within methods, we 
report the following metric computing for each workload. 

 where minPower refers to the power with the minimum value among the meth-
ods, and Power is the power consumption of the method.

The total power consumption and total resource wastage for WK100 workload are 
illustrated in Fig. 3. When the workload consistently remains at 100% , our methods 
produce more accurate power consumption results. We try this workload because 
VMs never switch off, and this leads to evaluating our methods when the demands 
are in their maximum state; VMs request 100% of their demands. We test differ-
ent scenarios with different VM categories and the number of VMs to test the 
algorithms.

The experimental results obtained with VBP and PAVBP are slightly lower 
than the comparison algorithm GRVBP in both total power consumption and total 
resource wastage and outperform AFED-EF and PABFD in all scenarios. This 
superiority can be explained by using a combination of the exact techniques of 

(6)Difference Ratio =
Power − minPower

Power
∗ 100

Fig. 3   Total power consumption and resource wastage results for WK100 workload
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dynamic programming and linear programming that form the core of the algo-
rithm for finding the optimal mapping.

In the big VM category of the WK100 workload, the difference in total power 
consumption and resource wastage between VBP and PAVBP is noticeable. How-
ever, these values are the same for the ”based” and ”small VMs” category. VBP 
generally recommends minimizing the number of PMs and ignoring power con-
sumption when allocating VMs. In contrast, PAVBP tries to choose the PM with 
the lowest power consumption to allocate VMs. PMs may have insufficient capac-
ity after just hosting a VM from the ”big VMs” category (PMs can host at most 
one VM).

The algorithm packs large and small items separately. The first stage is devoted to 
packing large items. In the second phase, packing small items, there may be insuf-
ficient capacity in already active PMs. Therefore, the algorithm selects new PMs to 
host the remaining VMs. This action increases the number of active PMs. Consider-
ing this scenario, VBP will choose a PM from both types of PM listed in Table 2. It 
makes no difference, as both types of PM can be hosted on, at most, one ”big” VM. 
However, PAVBP considers total power consumption when allocating VMs. At first 
glance, PAVBP seems to pick the first PM type in Table 2. This is due to its lower 
power consumption compared to the second type. However, this algorithm has a 
general vision and chooses the second type of PM. This type consumes more power 
than the first type but can allocate more VMs. This PM type can host multiple VMs. 
Finally, at the end of the algorithm, fewer active PMs reduce overall power con-
sumption. As a result, PAVBP has the best performance for the ”big VMs” category.

VBP and PAVBP behave similarly on the other two VM categories: the ”based” 
and ”small” VMs. VM size plays a vital role in these algorithms. After the first 
phase of the algorithm (packing of large items), the PMs may still have enough 
capacity for small items. Therefore, there is no need to use a new PM. In VBP, every 
PM attempts to host multiple VMs with a few active PMs, so the second PM type 
is chosen based on a larger capacity. This is also true for PAVBP, as we discussed 
earlier for the ”big VMs” category.

Among the algorithms compared, the GRVBP algorithm yielded sub-optimal 
outcomes, exhibiting values that closely approached those achieved by our proposed 
method. However, more difference between our methods and the GRVBP algorithm 
is observed in the ”small VMs” category. The reason for this difference is that we 
try to allocate as many VMs as possible to already activated PMs and activate as few 
PMs as possible. Therefore, this procedure can allocate smaller VMs better. GRVBP 
gives the second-best results among the compared algorithms, but the randomness 
of the algorithm prevents it from being deterministic, and this problem causes differ-
ent outputs from run to run.

PAVBP demonstrates the lowest total resource consumption value for large vir-
tual machines (VMs) in comparison with the other evaluated algorithms. This 
observation suggests that PAVBP effectively utilizes the active PMs capacity to its 
maximum potential. This value is higher for the VBP algorithm. This is due to the 
inefficient use of active PMs capacity. These algorithms demonstrate similar power 
consumption behavior for the ”base” and ”small” VM categories, leading to an 
equivalent total resource consumption.
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For ”small” VMs, VBP and PAVBP show the lowest total resource consumption 
among the compared algorithms. This is because these algorithms allocate smaller 
VMs better than comparable algorithms and use PM capacity efficiently. The total 
power consumption and total resource consumption of two real-world workloads, 
PlanetLab and Bitbrains are illustrated in Figs. 4 and 5, respectively. These figures 
show that VBP and PAVBP have the lowest total power consumption and are par-
tially differ from the second-best algorithm, GRVBP. This fact is due to the fluid 
nature of workloads, which do not always request 100% of their demands. Similarly, 
the VBP and PAVBP algorithms’ total resource wastage values come first or sec-
ond. Finally, the difference ratio for each workload is specified in Tables 4, 5, and 6, 
respectively. Either VBP or PBVBP has the lowest value for all workloads.

5.2.1 � Time complexity

The time complexity of AFED-EF is O(mn), m is the number of servers, and n is 
the number of VMs within a data center. The time complexity of the GRVMP 
algorithm is equivalent to O(nmk + mlogm) . k is a constant value, where k << n . 
m and n refer to the number of servers and VMs within a data center, respectively. 
The time complexity of the PABFD algorithm is equivalent to O(nm). Here, m 
and n have similar definitions with GRVMP and AFED-EF algorithms. The time 

Fig. 4   Total power consumption and resource wastage results for control planetlab workload
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complexity of the proposed algorithm is O(( dn
�
)rL .m) , where m is the number of 

PMs in optimal packing, d is the number of resource’s dimensions (in our prob-
lem d = 3 , CPU, RAM and Bandwidth) and beta used to classify items into large 
and small. Readers can refer to Table 1 for detailed information about notations.

Fig. 5   Total power consumption and resource wastage results for bitbrains workload

Table 4   Difference ratio for WK100 workload

Big VMs Based VMs Small VMs

VMs #/ Algorithm 1052 512 256 128 1052 512 256 128 1052 512 256 128

VBP 3% 5% 4% 5% 0% 0% 0% 0% 0% 0% 0% 0%
PAVBP 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
GRVMP 1% 1% 2% 1% 0% 1% 1% 2% 3% 4% 5% 6%
AFED-EF 17% 17% 17% 17% 28% 28% 28% 28% 40% 40% 39% 40%
PABFD 18% 19% 19% 19% 29% 30% 29% 30% 40% 40% 40% 40%
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6 � Conclusions and future work

In this paper, we addressed the problem of power-efficient VM placement and the 
bin-packing problem, focusing on BPLUC (Bin Packing with Linear Usage Cost), 
a variant of bin packing that considers fixed and variable costs. We showed that 
an algorithm for BP with an approximation ratio of � can be used as an approx-
imation algorithm for BPLUC with an approximation ratio based on � for homo-
geneous hosts. We also extended this result to VBP(Vector Bin Packing) and 
VBPLUC(Vector Bin Packing with Linear Usage Cost), which deal with items and 
bins with multiple dimensions.

To solve the VMP(Virtual Machine Placement) problem in a heterogeneous cloud 
data center, we modified and implemented the VBP algorithm proposed in [6] to 
minimize power consumption. In our analysis, we treated virtual machines (VMs) 
and physical machines (PMs) as multidimensional items, taking into account their 
respective dimensions of CPU, RAM, and bandwidth. Our experimental results 
demonstrate that the proposed algorithm outperforms existing methods, especially 
when there is a significant difference between the sizes of VMs and hosts.

In our future work, we aim to expand the application of the power-based vec-
tor bin packing algorithm to online environments. This entails developing a frame-
work that can effectively allocate suitable physical machines (PMs) for newly added 
virtual machines (VMs) in real-time, as well as during the migration process. We 
also aim to expand the algorithm to handle multiple resources in each dimension, 
such as a CPU with four cores and two memory units. This extension will enable 

Table 5   Difference ratio for control planetlab workload

VMs #/Algorithm Big VMs Based VMs Small VMs

1052 512 256 128 1052 512 256 128 1052 512 256 128

VBP 1% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
PAVBP 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 2% 0%
GRVMP 2% 2% 3% 3% 4% 4% 5% 2% 0% 1% 2% 1%
AFED-EF 8% 8% 12% 8% 20% 21% 25% 13% 22% 25% 26% 25%
PABFD 8% 9% 12% 8% 18% 22% 24% 19% 22% 22% 23% 24%

Table 6   Difference ratio for bitbrains workload

VMs #/Algorithm Big VMs Based VMs Small VMs

1052 512 256 128 1052 512 256 128 1052 512 256 128

VBP 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
PAVBP 1% 1% 0% 7% 0% 0% 0% 0% 0% 0% 2% 0%
GRVMP 3% 3% 0% 9% 1% 3% 5% 4% 2% 0% 4% 3%
AFED-EF 6% 7% 0% 2% 11% 17% 16% 9% 17% 7% 15% 16%
PABFD 8% 7% 5% 5% 12% 16% 19% 10% 15% 6% 14% 10%
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the algorithm to be applied to a broader variety of VM and PM types, making it 
more useful in cloud environments. Additionally, we will investigate the relationship 
between approximation methods of BP and BPLUC and their applicability to VMP 
with heterogeneous hosts.
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