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Abstract
Sensor nodes, typically small and low-power devices, are components of wire-
less sensor networks (WSNs). Each node monitors its surroundings for relevant 
environmental changes and sends all detected events to the data collector for anal-
ysis. If the sensor nodes are not placed correctly, there may be areas that are not 
within the detection zone of any sensor node. Coverage holes in WSNs are usually 
caused by random deployment and node failure. Energy holes and dead nodes are 
the main problems caused by detection and recovery of coverage holes in WSNs. 
The size of coverage holes increases the time complexity and power of recent pro-
tocols. However, there is a high computational complexity associated with distrib-
uted methods proposed in recent years to solve the coverage hole detection prob-
lem. In this paper, we propose optimal cluster-based node position estimation and 
coverage hole detection in WSNs using a hybrid deep learning approach. First, a 
modified Lyapunov optimization (MLO) algorithm to compute the node position is 
presented, which ensures edge nodes in the network. Next, we design optimal clus-
tering technique by using improved sand cat swarm optimization (ISCSO) algorithm 
to formulate efficient balanced clusters which computes coverage hole area in the 
network. Afterward, we develop a hybrid deep reinforcement learning (Hyb-DRL) 
technique for hole shape detection and hole size judgment within clusters, among 
clusters and along edges. The results show that the proposed approach achieves sig-
nificant improvements compared to existing benchmark approaches. Specifically, 
the average energy consumption of CG-DCHD approach is 43.835%, 32.674% and 
26.164% lower for node density, hole density and simulation rounds, respectively. 
The hole detection time is 18.4%, 16.802% and 15.462% lower, while the cover-
age is 16.885%, 14.977% and 12.219% higher for node density, hole density and 
simulation rounds, respectively. Additionally, the network lifetime of CG-DCHD 
approach is 15.58%, 17.702% and 20.492% higher, while the control packet over-
head is 0.83%, 1.907% and 1.466% lower for node density, hole density and simula-
tion rounds, respectively.
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1 Introduction

Currently, the progress in micro-electromechanical systems (MEMS) technology 
has made it possible to develop compact sensor arrays that can detect, analyze 
and collect data from the environment in a more efficient and effective manner for 
remote communication. Wireless networks are referred to as wireless sensor net-
works (WSNs) [1] that do not require any kind of infrastructure and are made to 
share data while simultaneously monitoring physical or environmental conditions 
like temperature, noise, vibration, pressure, motion or pollution. Through the net-
work, data can be monitored and analyzed at a primary location or sink [2]. A 
base station or sink serves as an interface between users and the network. By 
sending queries and collecting responses from the receiver, the necessary infor-
mation is obtained from the network. There are typically hundreds of thousands 
of sensor nodes in a wireless sensor network. Due to a number of limitations, 
WSN enables new applications and necessitates unconventional protocol design 
paradigms [3]. The field has made significant efforts in research, standardization 
and industrial investment over the past decade. The majority of WSN research 
currently focuses on developing protocols and algorithms that are both energy 
and computationally efficient, and the scope of application is limited to simple 
monitoring and control applications. Although sensors are powered by batteries, 
they have limited processing speed and memory to detect or transmit data. As 
sensors are installed closer to the observed event, the probability of obtaining a 
large amount of accurately detected data increases [4]. WSNs have been increas-
ingly used in a variety of security and surveillance-related applications ever since 
their inception tremendously. WSN, a collection of multi-resource strain sensor 
nodes, are broadly utilized in fields like ecological horticulture, far off tolerant 
observing, military reconnaissance, catastrophe forecast, checking and processing 
plant mechanization. The essential capability of sensor hubs in such applications 
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is to assemble important natural information and send it to a base station (BS) 
or sink via multi-cast. This topological disadvantage causes neighboring nodes 
to drain energy significantly faster, which can create energy holes in the network 
[5]. WSN consist of multiple sensor nodes that send environmental data to a base 
station (BS) and collect it.

One of the most significant issues with WSNs is the need to maintain coverage. 
The batteries serve as the power source for the sensor nodes die when the battery 
is depleted; when multiple nodes fail, communication is lost and network cover-
age is interrupted [6]. In WSNs, coverage is ensured and maintained in two steps, 
with coverage hole detection carried out by a straightforward distributed system 
with low overhead. Nodes check to see if there are any holes around. At the point 
when the quantity of openings surpasses the, the openings with the most brief 
distance to the portable hubs and highest priority are chosen number of mobile 
nodes. Across the past decade, rapid advances in wireless communication and 
embedded micro-sensing technologies have led to smaller and cheaper wireless 
assemblies. Various nodal features related to existing work morphology and geo-
metric distribution of connectivity are used to find gaps in coverage. However, the 
majority of algorithms call for a relatively high average node count degree, which 
results in high communication costs when searching for specific patterns [7]. It 
should be noted that no algorithm offers a technique for clustering nodes, despite 
the fact that all algorithms locate nodes near coverage gaps. Unfortunately, large 
communication overhead significantly shortens the life cycle of WSNs.

WSNs are used in advanced applications to detect hostile or unreachable loca-
tions such as environmental monitoring, rescue operations, pollution detection, 
outdoor surveillance, warfare, health care and home entertainment [8]. In addi-
tion, each node can collect, store, process and communicate information about 
the environment with neighboring nodes. In the monitoring area, see a coverage 
hole that is not covered by any sensor detection disk [9]. The objective is to pro-
vide effective coverage while minimizing energy consumption with the scalable 
firefly algorithm and mobile nodes. It involves evenly dividing the network area 
but smaller cells to facilitate physical coverage estimation [10]. To fill the gaps, 
a general research framework of reinforcement learning was hybridized with 
the branch and cut algorithm for network operators [11] which ensured the full 
coverage hole. The network operators need methods to combine and re-optimize 
antenna beams to improve network coverage during interference mitigation [12]. 
WSN hole detection (WHD) algorithm was developed to estimate the area of 
holes in ROIs where sensor nodes are distributed at random and to detect them. 
Based on energy consumption and designed to achieve quality of service (QoS), 
WHD average hole detection time [13]. Credible information coverage hole 
detection (CICHD) problem is solved and investigated based on credible informa-
tion coverage (CIC) model [14]. WSNs can strictly monitor by FoI and whether 
WSNs can collect and transmit the necessary information are two important prob-
lems to be solved in WSN [15]. The sensor deployment schemes are blind spot 
centroid scheme (BCPS) and confused centroid scheme (TCPS) was used to solve 
the coverage problem in MWSNs [16].
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Our contributions For further enhancement, we propose an optimal cluster-based 
node position estimation as well as WSN coverage hole detection. The following is a 
discussion of the major contributions that this work relies on.

1. A modified Lyapunov optimization (MLO) algorithm is used for node position 
computation which ensures the detection of edge nodes in the network.

2. An optimal clustering technique is perform by using improved sand cat swarm 
optimization (ISCSO) algorithm to formulate efficient balanced clusters which 
computes coverage hole area in the network.

3. A hybrid deep reinforcement learning (Hyb-DRL) technique is further used for 
hole shape detection and hole size judgment within clusters, among clusters and 
along edges.

4. Furthermore, performance of the proposed approach is evaluated by implement-
ing the proposed technique with the NS2 simulation tool, in which node density, 
node mobility and node sensing range are simulated.

The following is how the remainder of this paper is organized. Section  2 dis-
cusses the WSN coverage hole detection literature review. Section  3 covers our 
proposed work’s problem methodology and network model. The appropriate math-
ematical model is then used to provide a comprehensive breakdown of the proposed 
work’s workflow Sect. 4, in addition to the simulation outcomes and a comparison 
of the proposed and existing coverage hole detection methods. Section 6 shows the 
final section in the paper.

2  Related works

In this section, we will look at different methods for detecting coverage holes uti-
lized for WSN environment. The summary of research gaps is listed in Table 1.

Wang et al. [17] have proposed a general research framework for problems with 
coverage gaps that have unknown characteristics to summarize related models like 
deployment models, detection models and network models using some fundamental 
ideas for coverage issues involving properties that are not clear. Improve the quality 
of coverage, extend the life of the network, and reduce sensor count when cover-
age issues are uncertain characteristics are the three goals that can be accomplished 
using these models. Implementation, planning or selection, movement or adjust-
ment, and the various decision strategies are all implemented. Then, divide the solu-
tions into traditional, heuristic, approximate, distributed, centralized and stochastic 
algorithms according to their various aspects. Phoemphon et al. [18] have proposed 
using enhanced particle swarm optimization (NS-IPSO) to segment sensor nodes in 
order to improve the precision with which the distances between unknown nodes 
and pairs of anchor nodes can be estimated to find potential sensor nodes that could 
be used to divide up the region’s anchor nodes. These sensor nodes occur more fre-
quently than the standard deviation of all sensor nodes because they have a shorter 
path between anchor nodes.
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Jia et al. [19] have proposed in order to monitor partial discharges of high voltage 
(HV) equipment, a monitoring network was created. A strategy for installing ultra-
sonic sensors to monitor partial discharges is utilized in accordance with the three-
dimensional characteristics of the devices. An adaptive angle adjustment-based 
virtual force algorithm is proposed. It has been demonstrated that applying this algo-
rithm covers more than 94% of the target within a manageable integration range. 
A sensor collaboration scheme is proposed based on a standard security protocol, 
which verifies its energy saving and delay compression effects and guarantees the 
target acquisition rate. Xu et al. [20] have proposed the Gaussian kernel integration 
algorithm, the polynomial kernel integration algorithm and the polynomial graph-
based semi-supervised manifold learning algorithm A low-dimensional physical 
space and a high-dimensional location data space can be linked with a polynomial 
mapping function be calculated using this method, which has a high discrimination 
rate and clear nonlinear feature mapping. The performance of this algorithm is then 
evaluated and compared to some related localization techniques under various sig-
nal noises, anchor nodes and communication ranges, respectively. Khalifa et al. [21] 
have proposed a distributed self-healing algorithm known as distributed hole detec-
tion and repair (DHDR) makes use of just existing network nodes to simultaneously 
find and fix holes. It accurately estimates the size and location of a cover hole is 
dynamically detected as it occurs. By exchanging data and coordinating their move-
ments, it selects suitable nearby nodes that maximize coverage while consuming the 
least amount of energy. The selected nozzles move in such a way that they restore 
the hole’s hollow area without affecting the connection or coverage that is already in 
place. Vishnupriya et al. [22] have developed the Rabin–Karp algorithm to separate 
the malicious sensor from the network. It validates the sensor’s authenticity within 
the WSN and eliminates the eavesdropping attack. The cluster head (CH), who 
is chosen based on cooperation rank, data transmission rank and residual energy, 
receives maintenance data from sensor nodes. CH detection data is gathered with the 
help of a mobile node via intermediate channels. Thus, it reduces latency and usage 
of excess energy in the network. Roy et al. [23] have investigated the issues related 
to quality of service (QoS) and a proposed energy-proficient WSN versatile informa-
tion gatherer convention for information assortment Numerous asset requirements of 
WSN hubs make it truly challenging to protect nature of administration, particularly 
because of energy restriction. Das et al. [24] have proposed a computational geome-
try-based and empty circle-based framework for estimating coverage holes and hole 
areas. The Delaunay triangle is constructed using the location information of sensor 
nodes to identify a coverage gap in a large-scale WSN. After locating the hole, the 
next objective is to estimate its area. The empty circle property can be used to deter-
mine whether or not a coverage hole exists in a specific ROI of a large-scale WSN. 
The coverage hole detection and area estimation (CHDAE) efficiency of the algo-
rithm is also demonstrated through simulations. Christopher et al. [25] have come 
up with a low-latency Jellyfish dynamic routing protocol (JDRP) to avoid congestion 
and safeguard location privacy. Here, the transmission distance is calculated for each 
subsection, which selects the target area from the entire sensor field.
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3  Problem methodology and network model

3.1  Problem methodology

Ma et al. [26] have proposed a computational geometry-based, distributed protocol 
for remotely detecting coverage holes in self-organized WSNs. Calculations rather 
than predictions regarding the presence of holes at the site are used to detect holes in 
the current card. Geometric sampling of just one or two neighbors from each node 
is used in the process of hole detection, which is straightforward but efficient. It is 
suggested that local node data serve as the foundation for a global coverage hole 
detection strategy. Each node’s communication range is assumed to be equal to its 
detection range in contrast to other coverage hole detection protocols, allowing for 
greater energy savings during communication. After the deployment of the network, 
coverage gaps compromise this task. Coverage gaps are inevitable for a variety of 
reasons, including physical damage and depletion of sensor node energy. As a result, 
it is critical to have continuous coverage monitoring system as coverage holes can 
negatively affect network performance if left unattended. In general, coverage is 
considered as an important quality of service (QoS) measure to increase monitoring 
quality in the target area. Holes in WSNs can occur due to sensor placement issues 
or power/hardware failure. In such cases, the detection or data transmission may 
affect the WSN’s normal operation. It can also reduce sensor detection coverage and 
network lifetime. Due to the fact that the precise location of sensors is frequently 
unknown, the hole detection problem in WSNs is particularly challenging.

Existing research [17–26] introduces a new node that joins the network or active 
nodes that are already in use to recover from coverage loss owing to the complica-
tions of conventional redundant hole detection methods such as extra time, low accu-
racy and high operating cost [19, 20]. Adding new nodes to the network when a cov-
erage gap occurs not possible if the region of interest is in an unfavorable location 
[23]. Changing or changing the detection range of active nodes not only changes the 
network topology constantly introduces new coverage gaps and increases coverage 
overhead [22]. Maintaining network coverage, energy wireless sensor networks face 
significant difficulties in terms of lifetime and power consumption [17–20]. Since 
the sensor node battery cannot be replaced or recharged, the battery discharge lasts 
for the lifetime of the sensor node. The network coverage is reduced when some 
sensor nodes fail and disconnect decreases compromised [26]. Specifically, when a 
sensor node fails the main objective of the coverage and communication optimiza-
tion model is to select some sensor nodes with maximum direct sensor node con-
nectivity [25]. However, the existing methods do not allow obtaining a minimum 
selection of nodes, thereby alleviating the bottlenecks of traditional coverage meth-
ods. Hole detection is performed by taking one or two neighboring hops from each 
node using simple but effective geometric methods [26]. However, this method is 
not suitable for multi-hop routing and cannot be detected. To our knowledge, very 
few algorithms have suggested detecting coverage holes. Additionally, the majority 
of these protocols take into account a typical monitoring area, rather than the actual 
sensor location randomly aligned, it is more convenient to obtain a region of random 
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arrangement. To overcome above problems by optimal cluster-based node position 
estimation and coverage hole detection approach using hybrid deep learning tech-
nique. The major objectives of our proposed approach are summarized as follows:

1. The joint optimization of node position estimation and coverage hole detection 
approach is used to avoid random deployment and node failure.

2. To design optimization algorithm to compute the exact location of sensor nodes 
in the network this ensures the edge nodes

3. To introduce clustering algorithm to detect the coverage holes in the network and 
formulate objective function

4. The hybrid deep learning technique finalizes the hole shape and hole size judg-
ment for further decision-making which improves detection accuracy

3.2  Network model

We assume that n sensor nodes are designed to detect particular events and are 
arranged at random R in a rectangular field. Within its transmission range, every 
sensor hub can speak with different hubs and detect certain events. The sensor hubs 
are sufficiently thick and there are no disconnected sensor hubs. Sensor hubs realize 
their area utilizing GPS or other following strategies.

We also assume that every sensor hub realizes point by point data including the 
IDs and directions of its communication neighbors. This information can be collected 
through a beacon, a hello message or a series of topological changes expected. During 
network training, every hub learns its area data and gathers a rundown of one-bounce 
and two-jump neighbors. Figure 1 shows the organization model of our proposed way 
to deal with explore a multi-bounce remote organization with hubs with various hand-
sets. The hubs of the objective locale are haphazardly disseminated inward hubs, and 
different hubs are consistently appropriated along the external limit of the objective dis-
trict to guarantee total inclusion. Every hub does not know explicit area data, so a hub 
might be set as the default interior hub. The discovery range (Rs) is equivalent to the 
correspondence range (Rc), and every hub sends its area data through GPS or some 
other area data framework. In this organization model, regardless of whether a piece of 
the organization has an inclusion opening, the whole organization is completely associ-
ated. In any case, it is accepted that no separated sensor shows up in the organization on 
the grounds that the whole organization is completely associated, and the spotted circle 
between the two demonstrates twofold series correspondence.

4  Proposed methodology

In this segment, we portrays the functioning system of proposed optimal cluster-based 
node position estimation and coverage hole detection approach, which consists three 
fold process are node position estimation, coverage hole detection, hole shape detection 
and hole size judgment.
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4.1  Node position estimation

In this stage, every hub gathers and decides the vital data about its current circum-
stance, which is utilized to set up the following stage, track down undesirable neigh-
bors and lastly decide the convergence focuses with the opening. Most existing loca-
tion algorithms can be classified as threshold-based or threshold-based, depending 
on whether the algorithm uses distance estimation or other information to calcu-
late node locations. Therefore, it is necessary to develop new techniques, methods 
and methods to solve the localization and localization problem of wireless sensor 
nodes. In this work, the sensor node position estimation is depends on three impor-
tant design constraints are received signal strength, interference range and distance 
between sensor nodes, sink node. Here, we noted that all the design metrics are con-
sidered as the time varying factors, so need to optimize it. For that reason, a modi-
fied Lyapunov optimization (MLO) algorithm is used and estimates the exact node 
position and ensures the detection of edge nodes in the network.

4.1.1  Design constraints for node position estimation

Received signal strength (RSS) is commonly used standard because it is easy to 
measure and directly related to service quality. RSS feeds and mobile terminals 

Sensor nodes 

Coverage holes 

Cluster area 

Fig. 1  Network model of proposed approach
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are closely related to its connection point. The power consumption of transmit and 
receive domains is derived from the basic output power model taking into account 
the power demand. The energy consumption of sensor nodes depends on the amount 
of data and the transmission spacing. The vigor ingestion of a node (n) is compara-
tive with square of distance when the expansion distances (I) not exactly the starting 
distance. The total energy consumption of each sensor node is compute as follows.

where S (n, I) and R (n) are energy ingestion of transmission and acquire node.

The power required to operate the transmitter or receiver circuit per unit area, 
denoted by S(n,I), determines the power consumption for both the escaped space and 
multi-path models, which is influenced by the source communication model and initial 
communication distance. It is important to note that all costs considered in this study 
are benign for energy consumption. The RSS metric is independent of distance and 
communication energy. When the node transmits packets with power, the received sig-
nal strength (RSS) is determined by the distance “I,” and is calculated as follows:

The sign strength of the ongoing example not entirely set in stone by the develop-
ment, distance and relative speed, and the sample points are selected and controlled 
Δs1 = Δs2 = Δs , but such points are not present in the sample field. Different refer-
ence points are used for the signal strength actually received from the potential nodes, 
where Ii1 , Ii2 and Ii3 can be acquired and adapted distance is figured from the cosines 
regulations (A) as follows:

The speed and distance of the sensor nodes are determining factors for reaching the 
target position (V), which describes as follows.

(1)Etotal = S (n, I) + R(n)

(2)S(n, I) =

{
n × Eelec + n × 𝜀fs × I2; if I < I0
n × Eelec + n × 𝜀mp × I4; if I ≥ I0

(3)R (n) = n × Eelec

(4)RSS =
S(n, I)

4� i2
i

+ sa, a1∕a2

(5)I2
i1
= I2

i2
+ A1A

2
2
− 2Ii2 ⋅ A1A2 ⋅ cos (�)

(6)I2
i3
= I2

i3
+ A1A

2
2
− 2Ii2 ⋅ I1I2 ⋅ cos (�)

(7)2A1A
2
2
= I2

i1
+ I2

i2
− 2I2

i3
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The motion continuance Sa, a1∕a2 for sensor node from genuine spot to the impacted 
position or is expressed as the distance separated the hub’s speed and it can secure by 
sign regulation as follows:

Finally, we get the following mobility (M) function as,

Interference range is compute from the sensor node coverage range. Assume there 
are two sensors (0, 0, 0) and (1, 0, 0). The awareness scope of the two sensors is charac-
terized as follows.

The distance between where the two sensor congregations structure a three-layer 
focal point is equipped for estimating the state of the two circular covers.

The congestion rate is underneath and is between them.

The updated solution is compute as follows:

In the event that the sensor span is no different for all sensors because of balance 
and change the awareness range as ( Rj = Ri = R)

(8)
V =

√√√√2
(
I2
i1
+ I2

i2
− 2I2

i3

)

2Δs

(9)Sa, a1∕a2 =
R ⋅ sin�

sin � ⋅ V

(10)
M = Sa, a1∕a2 =

Δs ⋅ R ⋅ sin�

sin � ⋅

√ (
I2
i1
+I2

i2
−2I2

i3

)

2

(11)y2 + x2 + z2 = r2
i

(12)(Y − Yji)
2 + X2 + Z2 = R2

i

(13)Gj =
(Rj − Ri + Yji)(Rj − Ri + Yji)

2Yji

(14)Gi =
(Ri − Rj + Yji)(Rj + Ri − Yji)

2Yji

(15)voverlap = v(Rj, Gj) + v(Ri, Gi)

(16)v(R, G) =
�

3
G2(3R − G)

(17)voverlap =
�

12Yji
(Rj − Ri − Yji)

2(Y2
ji
+ 2YjiRi − 3R2

i
+ 2YjiRj + 6RjRi − 3R2

i
)
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The typical relationship coefficient is communicated as follows:

where voverlap = vi
j
+ v

j

i
 and update solution as follows

where cor = 2R is the switch boundary.

The distance among sensors and sink hub is figure by utilizing the conveyance 
proportion calculation. The closeness of the connecting terminal is displayed as 
follows:

where which gauges the distance among Tn and its neighbor Tn is without a doubt 
the quantity of touching Tn. Now, we applied modified Lyapunov optimization 
(MLO) algorithm for node position computation which ensures the detection of 
edge nodes in the network.

Lyapunov enhancement algorithm allows to the utilization of Lyapunov capability 
to control a unique framework ideally. Lyapunov capabilities are generally utilized 
in charge hypothesis to guarantee the stability of various types of systems. A multi-
dimensional vector often describes the state of a system at a particular moment in 
time. In contrast, the MLO algorithm is inspired by the basic Lyapunov function, 
which is a nonnegative proportion of this multifaceted state. As a general rule, activ-
ity develops when the system changes to undesirable conditions. The stability of the 
system is obtained by performing control measurements, which cause the Lyapunov 
function to deviate in the negative direction toward zero. Here, Lyapunov capability 
of the line as. The persistent time Lyapunov float generator is characterized as,

By the going with lemma, the Lyapunov float ∆(Q) can similarly be gotten from 
the going with SDE. Following from the Lyapunov smoothing out framework, we 
add the discipline term to obtain the float notwithstanding discipline term, i.e., 
where v > 0 is control limit to control the power–defer trade-off. Then, we have the 
accompanying arrangement in regard to the float in addition to punishment term.

(18)voverlap =
�

12
(2R − Yji)

2(Yji + 4R)

(19)�(j, i) =
vi
j
+ v

j

i

v

(20)�(J, I) =
1

16R3
(cor − yji)

2(yji + 2 × cor)

(21)𝜌(j, i) =

{ 1

16R3
(cor − yji)

2(yji + 2 × cor), if 0 ≤ yji < cor

0, if yji ≥ cor

}

(22)nq =
1

nsos

nsos−1∑

j=1

dist(n, j)

(23)Δ(P) = lim
�→0

E[v(P)(S + �)) − V(P(S))|P(S)]
�
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To apply Lyapunov advancement hypothesis, we initially change the drawn out 
typical imperatives into virtual sequences. Two virtual arrays A(s) and Q(s) can be 
defined below the battery and BER threshold, respectively.

Virtual queues can be considered as signals to determine whether constraints have 
been encountered in previous time slots. At higher A(s), battery voltage is sacrificed 
due to earlier continuous transfer. Also, at the network level, each BS maintains a set of 
internal queues to store the current backlog of its users. Let QNL(s) represents the cur-
rent backlog of lth user in nth BS. Then the evolution of the size of QNL(s) is given by

For all N ∈ n and L ∈ l(N), where is the transmission rate offered to the ith user of 
the nth BS in the time slot, we adopt the concept of strong stability, and the network 
is very stable.

There the waiting depends on the control policy, which is related to the random 
state of the channel and the control actions taken in response to those channel states. 
Intuitively, this expression means that a sequence is strongly stationary if its time 
mean is finite. The network is very stable if all individual sequences of the network 
are highly stable. Let YN(s)N ∈ n be virtual queues associated with constraint. We 
update the virtual queue YN(s) for all N ∈ n at each time slot as

Likewise, to ensure inequality constraint and define virtual queues XN(s)N ∈ n ; 
and update XN(s) for all n ∈ N according to the following dynamics

Then, we define a quadratic Lyapunov function l(Θ(s)) as,

The Lyapunov function is a metric that measures network congestion. Intuitively, 
if is short, then all lines are short. If larger, then at least one row is larger. The drift 

(24)Δv(P) ≤ Θ + VE[qsos|P] − m =

m∑
PmE[UM − �M|P]

(25)A(s + 1) = max{A(s) + � − a(s + 1), 0}

(26)Q(s + 1) = max{Q(s) + �(s) − �, 0}

(27)QNL(s + 1) = max[QNL(s) + RNL(s), 0] + bNL(s),

(28)PNL = lim sup
s→∞

1

s

s∑

𝜏=1

e{PNL(𝜏)} < ∞, N ∈ n, L ∈ l(N)

(29)YN(s + 1) = Max[YN(s) − yout
N
(s), 0] + yin

N
(s)

(30)YN(s + 1) = Max[XN(s) − xout
N
(s), 0] + xin

N
(s)

(31)l(Θ(s)) =
1

2

[
∑

N∈n

∑

L∈l(n)

PNL(s)
2 +

∑

N∈n

YN(s)
2 +

∑

L∈l(n)

XN(s)
2

]
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of the Lyapunov function (i.e., the expected change from one point of the Lyapunov 
function to another) can be written as.

We use the introduced drift plus penalty minimization method to solve the prob-
lems. This control principle solves the problem by reducing the bottom drift and the 
upper bound on the penalty exposure.

where V ≥ 0, subject to the constraint in each time slot. The working process of our 
proposed node position estimation using MLO is described in Algorithm 1.

4.2  Cluster‑based coverage hole area detection

Here, we utilized optimization techniques to identify areas with no coverage by the 
deployed sensors. In this approach, the network is divided into clusters of nodes, 
and the coverage hole area within each cluster is computed. The goal is to detect 
and localize coverage holes as accurately as possible, which is important for main-
taining network connectivity and optimizing the use of resources. The cluster-based 
approach is preferred over a centralized approach because it reduces the amount of 
data that needs to be transmitted to a central location, which in turn reduces the 
energy consumption of the nodes. Moreover, the distributed approach is more robust 
to node failures or network partitions, as each cluster can operate independently. The 

(32)Δ(Θ(s)) = e{l(Θ(s + 1)) − l(Θ(s))|Θ(s)}

(33)Δ(Θ(s)) = −v
∑

N∈n

e{log(�N(s))|Θ(s)}



20859

1 3

Node position estimation based on optimal clustering and…

cluster-based coverage hole area detection technique involves several steps, includ-
ing cluster formation, coverage hole detection and hole area computation.

Improved sand cat swarm optimization (ISCSO) is a metaheuristic optimization 
algorithm that is inspired by the hunting behavior of sand cats. ISCSO is used in this 
paper for cluster-based coverage hole area detection in wireless sensor networks. The 
goal of this algorithm is to generate optimal cluster heads with maximum coverage 
and minimum overlap. ISCSO uses a set of sand cat individuals, which move in search 
of the optimal solution. The algorithm initializes a population of sand cat individu-
als, and each individual represents a potential cluster head. These individuals move in 
the search space, which is defined by the network area. Each individual evaluates the 
fitness of the solution, which is measured by the coverage area and the overlap with 
other clusters. The algorithm uses a combination of exploration and exploitation strate-
gies to find the optimal solution. The exploration strategy is based on the movement of 
sand cat individuals in the search space, while the exploitation strategy is based on the 
selection of the best individuals to generate new solutions. ISCSO has shown promis-
ing results in solving optimization problems, and it has been applied in various fields 
such as engineering, finance and image processing. In this paper, ISCSO is used to gen-
erate optimal clusters for coverage hole detection in wireless sensor networks, which 
improves the overall performance of the system. In the early stages of breeding, groups 
of cats can achieve strong universal optimization capabilities.

The equations can be used to change the ability to search globally in the early stages 
of particle moving and to improve local refinement and resolution accuracy in subse-
quent iterations. Added a radius limits to the sensor nodes search location and position. 
When the distance yD

j
 and hD

best
 radius are less than the individual yD

j
 to hD

best
 . However, 

when the distance yD
j
 and qD

best
 radius between them is small, deviate from qD

best
 . The 

value of the elements is determined by the following equation:

If the underlying upsides of and are moderately little, add them to control the 
arrangement of negative qualities to stay away from negative numbers.

Particles study each other to get the most enlightening data in their fields. The mem-
ory component of x is added to each finder, giving each particle a smaller memory load 
than before. Specifies more memory weights are used to improve the current level and 
historically optimal level of each query.

(34)RK =
1 − (

√
CK + 1) ⋅ rand ⋅ j

CK ⋅MaxIter
, K = 1, 2, j <

MaxIter

2

(35)
VD
j
(s + 1) = � ⋅ VD

j
(s) + C1 ⋅ R1 ⋅ (q

D
best

(s) − yD
j
(s))

+ C2 ⋅ R2 ⋅ (h
D
best

(s) − yD
j
(s)) + F ⋅ fj + E ⋅ ej,

(36)R1 = R2 = rand, R1 ≤ 0, R2 ≥ 0.

(37)
yD
j
(s + 1) =

1

2
(x ⋅ yD

j
(s) − (1 − x) ⋅ yD

j
(s − 1) + x ⋅ VD

j
(s + 1) + (1 − x) ⋅ VD

j
(s))
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First, start with each cat approximately and compute the cost of the exercise. Finally, 
adjust its settings in tracing mode. After adding a section, we propose an advanced 
transfer learning model that applies three improved strategies to this small sketch data 
set. It consists of two parts: sample selection and sample refinement. The second term 
G is constructed so as not to contribute to the BCs, since xs(y) satisfy them. This term 
f can be generated using the ISCSO algorithm and its weight and bias must be adjusted 
to solve the minimization problem. Fitness function for a given input y ISCSO algo-
rithm defines,

wji input unit j represents the load that connects the hidden unit to j, �j the input unit j 
represents the load that connects j to the output unit, aj the hidden unit represents the 
dependence of j, and �(w) is a sigmoidal transfer function (tansig). However, when 
the distance between xc

i
 and pc

best
 is less than the radius, just deviate it from pc

best
 . The 

value of fitness elements is distinct by,

To find a small solution to the problem of exercise activity, which is defined as 
follows:

The position mode in which the target is detected is called tracking mode. This 
process can be summarized in three steps. Update the speed of each measure accord-
ing to the optimal level to transfer to the entire group of sand cats, i.e., the optimal 
solution currently found:

Verify the threshold conditions, if the speed is within the maximum speed limit. 
Update the sand cat’s position as follows:

This improvement not just works on the exhibition and incorporation of the cal-
culation, yet additionally keeps a comprehension of appropriation strength. The 
functioning system of cluster formation and coverage hole detection using ISCSO is 
described in Algorithm 2.

(38)n =

g∑

j=1

�j�(wj),

(39)wj =

N∑

i=1

wjiyi + aj

(40)Uc
i
(s + 1) = � ⋅ Uc

i
(t) + D1 ⋅ r1 ⋅ (p

c
best

(t) − xc
i
(t)

(41)Fsa = Fsmax; otherwise, Fsa = Fsmin

(42)Uc
i
(s + 1) = Uc

i
(t) + r ⋅ d(xc

best
(t) − xc

i
(t)) C = 1, 2, 3…m

(43)xc
i
(s + 1) = xc

i
(t) + Uc

i
(t + 1))
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4.3  Hole shape detection and hole size judgment

Hole shape detection refers to the process of identifying the shape or geometry of a 
coverage hole in a WSN. In other words, it involves determining the boundaries or 
outline of the area in which there is no coverage by the sensor nodes. Hole size judg-
ment, on the other hand, is the process of estimating the size or area of the coverage 
hole detected in the WSN. This information is useful for optimizing the placement 
of additional sensor nodes or adjusting the transmission power levels to ensure com-
plete coverage of the network. By accurately detecting the shape and size of the cov-
erage hole, network managers can identify the best locations to deploy new nodes 
or reposition existing ones to improve network coverage and reliability. Addition-
ally, this information can be used to optimize routing protocols to ensure that data 
is transmitted through the most reliable and efficient path in the network. Therefore, 
hole shape detection and size judgment are essential components of any coverage 
hole detection algorithm for WSN.

The long short-term memory (LSTM) is a type of recurrent neural network 
(RNN) that is well suited for processing and making predictions based on sequential 
data. In the context of reinforcement learning, the LSTM can be used as part of an 
agent’s architecture to model and predict future states and rewards. In the case of 
determining the shape and size of holes in WSNs (wireless sensor networks), the 
Hyb-DRL (hybrid deep reinforcement learning) approach combines LSTM with 
other deep reinforcement learning techniques to address this problem. Specifically, 
the layer details of the Hyb-DRL model may involve the following components:

• LSTM Layers: The LSTM layers are responsible for capturing and learning 
sequential patterns in the input data. These layers allow the model to retain infor-
mation over a certain time window, making it suitable for processing time series 
data.
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• Deep Reinforcement Learning Layers: These layers typically include fully con-
nected layers and other nonrecurrent layers that facilitate the training and deci-
sion-making process in reinforcement learning. They can help in learning the 
optimal policy for determining the shape and size of holes in WSNs based on the 
current state and potential rewards.

• Output Layers: The output layers of the Hyb-DRL model provide the final pre-
dictions or decisions based on the input data and learned policies. In the context 
of determining the shape and size of holes in WSNs, the output layers may pro-
duce the desired configurations or parameters for the network layout.

It is important to note that the specific layer details of the Hyb-DRL model may 
vary depending on the implementation and specific requirements of the problem. 
The mentioned components provide a general overview of how LSTM and rein-
forcement learning can be combined to tackle the challenge of determining the 
shape and size of holes in WSNs.

In the context of coverage hole detection in WSNs, Hyb-DRL can be used to accu-
rately detect the shape and size of coverage holes within clusters, among clusters and 
along edges. The Hyb-DRL algorithm is used to identify the shape and size of cov-
erage holes by analyzing the sensor data and making decisions based on the reward 
signals. The deep neural network is trained using the Q-learning algorithm to optimize 
the decision-making process and improve the accuracy of the coverage hole detection. 
Hyb-DRL is particularly effective in situations where there is a large amount of data 
and complex decision-making processes involved. By combining the principles of 
deep learning and reinforcement learning, Hyb-DRL can identify complex patterns and 
make accurate decisions, making it a useful tool for coverage hole detection in WSNs. 
To update the gate’s value affects how much information is brought in from the previ-
ous moment. We can determine the update fitness by:

where wz and az are the update gate’s bias and weight matrix, respectively. "(X) = 1/
[1 + exp(X)]" denotes the Sigmoid function, which serves as the gate-control signal 
by transforming the data into values between 0 and 1. The reset door is utilized to 
control the amount of the concealed layer data from the past second should be failed 
to remember you can sort it out by:

where WR and AR are the reset gate’s bias and weight matrix, respectively. The sig-
moid will set the reset gate’s output to 0 to erase previous moment’s information 
about the hidden state.

where WR and AR are, respectively, the candidate output state’s bias and weight 
matrix, and tanh calls the function that scales the data between 0 and 1. Hyb-DRL 

(44)zs = �(Wz ⋅ [Gs−1, Ys] + Az)

(45)rs = �(WR ⋅ [Gs−1, Ys] + AR)

(46)G̃s = tanG(Wg ⋅ [Gs◦Gs−1, Ys] + Ag)
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output layer contains the ideal secret layer state, not entirely set in stone by and. The 
following is the mathematical expression:

The larger zs is, the higher level of reliance on Gs on G̃s is, and ht1 plays a smaller 
role in determining the output.(1 − zs)◦Gs−1 The current node’s information, ht, 
points to selective memory for the previous hidden state. The forward Hyb-DRL 
layer stores moment t and the input sequence’s previous moment, while the subse-
quent moment is stored in the backward Hyb-DRL layer. The process of propagating 
hidden layers in Hyb-DRL classifier is,

where 
⇀

G
s
 and 

↼

G
s
 indicate the forward and in reverse estimation stowed away layer 

states, separately; mean, in both forward and reverse computations, the heaviness of 
the contribution as well as the previous state of the hidden layer; A⃗ and 

↼

A , respec-
tively, denote the forward and backward calculation bias. Qu-bit state is used in 
ensemble learning. A bit state is also frequently controlled by two quantum logic 
gates, a controlled NOT gate with two Qu bits and a cycle gate with one bit. The 
state of the Ith kv-bit neuron model in Mth sets is defined as follows based on these 
gates:

here zM−1
K

 is the controlled NOT gate’s reversal parameter, Input of Kth neuron in 
(m−1) sets. This is the best step for cyclic gate phase parameters and threshold 
parameters. The output O layer of the network is denoted by m observed state from 
the jth neuron of the output layer. UNNi is represented follows:

The best parameters are sought when training the multilayer quantum neural 
network.�M

K,i
,�M
i

 and �M
i

 that make the subsequent cost function smaller:
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where Udi
 is the instruction signal for the ith neuron in the qth pattern. New mem-

bers of the ensemble crossover in the real-coded crossover �C are created by indi-
viduals with multiple parents.

The just generation gap model is the one that assumes that children replace 
parents in each generation alternation model used. The cost function’s reciprocal 
defines the fitness function F(�j) , where the number of people is denoted by j. We 
consider the following discrete-time factory as the target system to be controlled 
in the design of a direct quantum neural network controller:

where x is the factory output, U is the factory input, factory commands, K is the 
model number and the factory idle time is a function describing it dynamic control 
variable. Algorithm 3 describes the working process involved in the coverage hole 
shape and hole size judgment.

5  Results and discussion

In this section, the performance of proposed optimal cluster-based node position 
estimation and coverage hole detection (named as OC-NP-CHD for results expla-
nation purpose) approach is validated through different simulation scenarios and 
measures. Our proposed OC-NP-CHD approach is implement and simulated using 
NS-2.33 simulation tool. Besides, in order to justify the effectiveness of our pro-
posed OC-NP-CHD approach in terms of simulation results, the reenactment results 
are contrasted and the benchmark inclusion opening location draws near, for exam-
ple, DHC [27], PS [28], DCHD [29] and CG-DCHD [26].

(54)�C = �h +

n+k∑

j=1

�j(�j − �h)

(55)X(k + dq) = Fq[X(k), ...,X(k − nq + 1), u(k), ..., u(k − mq − dq + 1)]
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5.1  Simulation setup

Table  2 provides a detailed description of the simulation setup and parameters 
used for validating the proposed OC-NP-CHD approach. The network size is set to 
500 × 500  m2, which is a reasonable size for a wireless sensor network. The number 
of sensor nodes is varied from 600 to 1000 in increments of 100 to evaluate the per-
formance of the proposed approach under different network densities. The number 
of simulation rounds is varied from 1000 to 5000 to obtain statistically significant 
results. The number of coverage holes is varied from 10 to 50 in increments of 10 
to evaluate the ability of the proposed approach to detect coverage holes of differ-
ent sizes. The sensing range and communication range of each sensor node are set 
to 20 m to simulate the radio coverage of the wireless sensor network. The IEEE 
802.15.4 MAC/PHY specification is used for the simulation, and the ad hoc on-
demand distance vector (AODV) routing protocol is used for routing packets. The 
initial energy of each sensor node is set to 10 J, which is a reasonable value for a 
wireless sensor node with a battery-powered energy source. The energy cost for con-
trol packets is set to 0.3 J to simulate the energy consumption of control packets in 
the network. The data rate is set to 250 Kbps, which is a reasonable value for a wire-
less sensor network. The simulation is run for a total time of 500 s, which provides 
sufficient time to evaluate the performance of the proposed approach.

5.2  Comparative analysis

In this section, the simulation results and comparative analysis of proposed and 
existing coverage hole detection approaches with respect to three different simula-
tion scenarios, such as impact of node density, impact of hole density and impact of 
simulation rounds.

Table 2  Simulation setup and parameters

Parameter Value

Network size 500 × 500  m2

Number of sensor nodes 600, 700, 800, 900 and 1000
Number of simulation rounds 1000, 2000, 3000, 4000 and 5000
Number of holes 10, 20, 30, 40 and 50
Sensing range 20 m
Communication range 20 m
MAC/PHY IEEE 802.15.4
Routing AODV
Initial energy of each sensor node 10 J
Energy cost for control packets 0.3 J
Data rate 250 Kbps
Total simulation time 500 s
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5.2.1  Impact of node density

In this scenario, we vary the number of nodes as 600, 700, 800, 900 and 1000 with 
the fixed network size as 500 × 500  m2 area. Table 3 describes the comparative anal-
ysis of proposed and existing coverage hole detection approaches with respect to 
impact of node density. The average energy consumption of our proposed OC-NP-
CHD approach is 65.339%, 56.539%, 41.752% and 11.71% lower than the existing 
benchmark approaches are CG-DCHD, DHC, PS and DCHD, respectively. Figure 2 
shows the average energy consumption results of proposed and existing coverage 
hole detection approaches with respect to impact of node density. The hole detection 
time of our proposed OC-NP-CHD approach is 32.174%, 24.458%, 14.761% and 
2.207% lower than the existing benchmark approaches are CG-DCHD, DHC, PS and 
DCHD, respectively. Figure 3 shows the hole detection time results of proposed and 
existing coverage hole detection approaches with respect to impact of node density. 
The coverage of our proposed OC-NP-CHD approach is 9.474%, 7.368%, 5.263% 
and 45.433% higher than the existing benchmark approaches are CG-DCHD, DHC, 
PS and DCHD, respectively. Figure 4 shows the coverage results of proposed and 
existing coverage hole detection approaches with respect to impact of node density. 
The network lifetime of our proposed OC-NP-CHD approach is 19.175%, 16.779%, 
14.382% and 11.985% higher than the existing benchmark approaches are CG-
DCHD, DHC, PS and DCHD, respectively. Figure  5 shows the network lifetime 
results of proposed and existing coverage hole detection approaches with respect to 
impact of node density. The control packet overhead of our proposed OC-NP-CHD 
approach is 1.453%, 1.04%, 0.623% and 0.203% minimized compared to the existing 
benchmark approaches are CG-DCHD, DHC, PS and DCHD, respectively.

5.2.2  Impact of hole density

In this scenario, we vary the number of holes as 10, 20, 30, 40 and 50 with the 
fixed number of nodes as 1000 and network size as 500 × 500   m2 area. Table  4 
describes the comparative analysis of proposed and existing coverage hole detection 
approaches with respect to impact of hole density. The average energy consumption 
of our proposed OC-NP-CHD approach is 65.339%, 56.539%, 41.752% and 11.71% 
lower than the existing benchmark approaches are CG-DCHD, DHC, PS and DCHD, 
respectively. Figure  6 shows the average energy consumption results of proposed 
and existing coverage hole detection approaches with respect to impact of hole den-
sity. The hole detection time of our proposed OC-NP-CHD approach is 32.174%, 
24.458%, 14.761% and 2.207% lower than the existing benchmark approaches are 
CG-DCHD, DHC, PS and DCHD, respectively. Figure  7 shows the hole detec-
tion time results of proposed and existing coverage hole detection approaches with 
respect to impact of hole density. The coverage of our proposed OC-NP-CHD 
approach is 9.474%, 7.368%, 5.263% and 45.433% higher than the existing bench-
mark approaches are CG-DCHD, DHC, PS and DCHD, respectively. Figure 8 shows 
the coverage results of proposed and existing coverage hole detection approaches 
with respect to impact of hole density. The network lifetime of our proposed 
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Fig. 2  Average energy consumption with node density

Fig. 3  Hole detection time with node density

Fig. 4  Coverage with node density
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OC-NP-CHD approach is 19.175%, 16.779%, 14.382% and 11.985% higher than the 
existing benchmark approaches are CG-DCHD, DHC, PS and DCHD, respectively. 
Figure 9 shows the network lifetime results of proposed and existing coverage hole 
detection approaches with respect to impact of hole density. The control packet over-
head of our proposed OC-NP-CHD approach is 1.453%, 1.04%, 0.623% and 0.203% 
minimized compared to the existing benchmark approaches are CG-DCHD, DHC, 
PS and DCHD, respectively.

5.2.3  Impact of simulation rounds

In this scenario, we vary the number of holes as 10, 20, 30, 40 and 50 with the 
fixed number of nodes as 1000 and network size as 500 × 500   m2 area. Table  5 
describes the comparative analysis of proposed and existing coverage hole detection 
approaches with respect to impact of simulation rounds. The average energy con-
sumption of our proposed OC-NP-CHD approach is 65.339%, 56.539%, 41.752% 
and 11.71% lower than the existing benchmark approaches are CG-DCHD, DHC, 
PS and DCHD, respectively. Figure  10 shows the average energy consumption 
results of proposed and existing coverage hole detection approaches with respect to 
the impact of simulation rounds. The hole detection time of our proposed OC-NP-
CHD approach is 32.174%, 24.458%, 14.761% and 2.207% lower than the existing 
benchmark approaches are CG-DCHD, DHC, PS and DCHD, respectively. 

Figure 11 shows the hole detection time results of proposed and existing coverage 
hole detection approaches with respect to impact of simulation rounds. The coverage 
of our proposed OC-NP-CHD approach is 9.474%, 7.368%, 5.263% and 45.433% 
higher than the existing benchmark approaches are CG-DCHD, DHC, PS and 
DCHD, respectively. Figure 12 shows the coverage results of proposed and exist-
ing coverage hole detection approaches with respect to impact of simulation rounds. 
The network lifetime of our proposed OC-NP-CHD approach is 19.175%, 16.779%, 
14.382% and 11.985% higher than the existing benchmark approaches are CG-
DCHD, DHC, PS and DCHD, respectively. Figure 13 shows the network lifetime 

Fig. 5  Network lifetime with node density
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results of proposed and existing coverage hole detection approaches with respect to 
impact of simulation rounds. The control packet overhead of our proposed OC-NP-
CHD approach is 1.453%, 1.04%, 0.623% and 0.203% minimized compared to the 
existing benchmark approaches are CG-DCHD, DHC, PS andDCHD, respectively.

6  Conclusion

The computational geometry-based approaches are failed to detect coverage holes 
between sensors and boundary of the region. We have proposed an optimal clus-
ter-based node position estimation and coverage hole detection (OC-NP-CHD) 
approach to solve the problems in the previous CG-DCHD approach. The MLO 
algorithm is used for computing the node positions in the WSN. Its impact is to 

Fig. 6  Average energy consumption with hole density

Fig. 7  Hole detection time with hole density
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Fig. 8  Coverage with hole density

Fig. 9  Network lifetime with hole density

Fig. 10  Average energy consumption with simulation rounds
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ensure that the edge nodes in the network are optimally positioned. This helps in 
reducing the size of coverage holes in the network and improving the overall cover-
age of the WSN. The ISCSO algorithm is used for optimal clustering of the sensor 
nodes in the network. Its impact is to balance the clusters and efficiently compute the 
coverage hole area in the network. This helps in detecting coverage holes in a more 
accurate and efficient manner. The Hyb-DRL technique is used for detecting the 
shape and size of coverage holes within clusters, among clusters and along edges. 
To validate the performance of proposed CG-DCHD approach by using different 
simulation scenarios and measures. From the results we observed that the average 
energy consumption of our CG-DCHD approach is 43.835%, 32.674% and 26.164% 
lower compared to the existing benchmark approaches for node density, hole den-
sity and simulation rounds, respectively. The hole detection time of our CG-DCHD 

Fig. 11  Hole detection time with simulation rounds

Fig. 12  Coverage with simulation rounds
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approach is 18.4%, 16.802% and 15.462% lower compared to the existing bench-
mark approaches for node density, hole density and simulation rounds, respectively. 
The coverage of our CG-DCHD approach is 16.885%, 14.977% and 12.219 higher 
compared to the existing benchmark approaches for node density, hole density and 
simulation rounds, respectively. The network lifetime of our CG-DCHD approach 
is 15.58%, 17.702% and 20.492% higher compared to the existing benchmark 
approaches for node density, hole density and simulation rounds, respectively. The 
control packet overhead of our CG-DCHD approach is 0.83%, 1.907% and 1.466% 
lower compared to the existing benchmark approaches for node density, hole den-
sity and simulation rounds, respectively. Energy consumption is a critical concern in 
WSNs. Future research could explore ways to optimize energy efficiency in the OC-
NP-CHD approach. This may involve developing energy-aware algorithms, adaptive 
power management techniques or energy harvesting strategies to prolong the net-
work’s lifetime and reduce energy consumption.
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