
The Journal of Supercomputing (2024) 80:1206–1237
https://doi.org/10.1007/s11227-023-05483-x

Deploying warehouse robots with confidence: the
BRAIN-IoT framework’s functional assurance

Abdelhakim Baouya1 · Salim Chehida2 · Saddek Bensalem2 ·
Levent Gürgen3 · Richard Nicholson4 ·Miquel Cantero5 ·Mario Diaznava6 ·
Enrico Ferrera7

Accepted: 6 June 2023 / Published online: 12 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Our study details the development and validation of an orchestrator-controlled robotic
network that effectively organizes and manages the activities of multiple robots. The
design workflow is based on a model-driven methodology that allows for the inde-
pendent specification of robot behaviour, which can be successfully refined regardless
of the physical architecture. The main focus of this study involves the verification
and analysis of robot orchestration by building formal models in a component–port–
connector fashion supported by BIP language (behaviour–interaction–priority). The
model also helps to study the automated orchestration with the help of a centralized
computer tasks manager. The related functional requirements gathered from indus-
trial partners are specified in temporal logic. Statistical model checking is performed
to verify the model’s correctness, providing a functional assurance to achieve the
deployment. Validation is a carry out using a dedicated robotic platform simulator. We
demonstrate the capability of the verification artefact for the Brain-IoT (https://cordis.
europa.eu/project/id/780089) platform and ways of applying them to potentially com-
plex case studies.

Keywords Internet of Things · Statistical model checking · Robotics · Scalability

1 Introduction

The use of controlled robots in the realm of the Internet of Things (IoT) has received
significant research attention. According to the 2020World Robotics Report published
by the International Federation ofRobotics (IFR), there are currently 2.7million robots
deployed in factories and warehouses worldwide, with 1.7 million in Asia, 580,000

B Abdelhakim Baouya
abdelhakim.baouya@irit.fr ; abdelhakim.baouya@gmail.com

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05483-x&domain=pdf
https://cordis.europa.eu/project/id/780089
https://cordis.europa.eu/project/id/780089

Deploying warehouse robots with confidence... 1207

Fig. 1 Robotnik robots movement in warehouse [17]

in Europe and 389,000 in the Americas [1]. These robots are equipped with actions
that enable control [2–4], as demonstrated by companies such as Amazon, Ocado and
Exotec in the Economist issue [5]. They are equipped with arms that embed cameras
and bar code readers to identify goods, while AI algorithms monitor their actions to
manage pickup and item sorting efficiently.

Robots in networked systems can communicate with each other either directly in
a decentralized system or through a master controller in a centralized system [6–
8]. Decentralized collaborative robots are designed to execute cooperative missions
[9–11], and the success of these missions depends on the quality of communication
among the robots [12, 13] and their processing speed [14, 15]. However, decentralized
robot deployment can be costly in terms of programming as much of the functionality
and orders rely on embedded AI algorithms [16]. The use case scenario developed
by Robotnik is essential to the success of the Brain-IoT project. The company
produces robots that are capable of remote control and self-adaptation in warehouse
environments (as shown in Fig. 1). To meet the needs of customers, Robotnik controls
the robots from a centralized computer while managing their actions and orders. For
further information on the robots and physical structures used, please refer to [17].

Building complex systems at a high level of abstraction is an effective method
for predicting system behaviour, as most implementation flaws stem from design
imperfections, as mentioned by Taylor Armerding [18]. According to Crnkovic and

123

1208 A. Baouya et al.

Larsson [19], component-based design is the ideal paradigm, from a software archi-
tect’s perspective, for building a system while effectively segregating business logic
into individual components. Moreover, this approach offers various ways of com-
posing and coordinating these components. As a result, the incorporation of the
component-based design paradigm prompts the usage of model-driven design (MDD)
methodologies [20], especially in embedded systems and IoT [21]. MDD provides
assistance in the development of model systems by offering abstract characterization
support, with a focus on platform-agnostic implementation and execution [22]. The
BRAIN-IoT framework offers the fundamental elements required to model IoT sys-
tems through a series of refinements. Designers first define the platform-independent
model (PIM), which is then translated into one or more platform-specific models
(PSM) based on the platform definition model (PDM).

The paper builds upon the research conducted in [23] and [24]. So, to guarantee the
correctness of Robots Orchestration, certain requirements must be met. For example,
if a cart is detected, the robot should lift it off the ground and transport it to the storage
area.Robotnik provides the requirements that must be satisfied during experimenta-
tion within the warehouse. The BIP1 language, which has been maintained at Verimag
Lab for decades [25–27] and has been utilized in successful projects such as CPS4EU2

and ERGO,3 is the language we use to construct formal models. To ensure accuracy,
the modelling and verification phases will be conducted at the PIM level. The BIP
Statistical Model Checker (SMC) [28] enables us to perform both quantitative and
qualitative analyses of requirements that have been formalized in temporal logic [29].
Once the requirements are met, a code is generated for the specific execution platform,
followed by validation through simulation at the PSM level.

The paper’s structure is as follows: Sect. 2 provides a review of the existing lit-
erature on the deployment of robot fleets, while Sect. 3 details the methodology and
architecture of the BRAIN-IoT framework. Section4 presents a background of the
BIP formalism, and Sect. 5 highlights model transformation and the Java code genera-
tor. Section6 models the orchestration in the robots’ warehouse, including verification
and validation. Finally, Sect. 7 concludes the paper.

2 RelatedWork

In this section, we delve into works related to the model-driven approach for
orchestrating networked collaborative robots, utilizing formal methods and simula-
tion techniques. Formal modelling and verification techniques have primarily been
employed in robotic applications such as controllers, motion planning and fault detec-
tion [30]. Among the works in this direction, the work presented in [31] proposes a
toolchain that utilizes a UML profile for designing models of human–robot collabo-
ration (HRC). Then, a formal model is expressed in terms of metric temporal logic
that specifies the concepts defined in the UML model. Transcoding tools are used to

1 BIP: https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html.
2 CPS4EU: https://cps4eu.eu/.
3 ERGO: https://www.h2020-ergo.eu/.

123

https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html
https://cps4eu.eu/
https://www.h2020-ergo.eu/

Deploying warehouse robots with confidence... 1209

automate the development process of the designed task on the chosen infrastructure
after requirements satisfaction is enabled by the Zot tool [32]. The toolchain has exper-
imented on some realistic case studies. The approach is also applied for risk analysis
[30] in collaborative robotic applications, and Zot formal verification tool is used to
identify and mitigate hazardous situations associated with non-negligible risks. Guio-
chet [33] proposes a hazard identification approach of human–robot interactions. This
approach combines the semiformal UML notation with HAZOP (Hazard Operability)
to describe robot manufacturers’ scenarios using use case, sequence and state machine
UML diagrams, and then identify hazards and analyse their risks based on HAZOP
tables. It also produces a list of hazards, recommendations and hypotheses. Analysis
tools are not detailed in the article but are mainly based on diagram animations using
simulation. The authors in [34] utilize the Brahms language for formal modelling of
an autonomous assistant robotic system. The Brahms model is then translated into
the PROMELA language to verify safety requirements via the SPIN model checker
[35]. Dixon et al. [36] apply the NuSMV model checker [37] to analyse the safety
and trustworthiness of robot behaviours in a robotic assistant located in a typical
domestic environment. This work aims to prove that given temporal properties are
satisfied on all the possible behaviours of the system. Mohammed et al. [38] propose a
framework for formal specification and verification of multi-robot systems behaviours
using Hybrid Finite State Machines. The framework provides two views (concurrent
and hierarchical) to optimize the verification and the constructed models. Walter et
al.[39] present a methodology for specifying and verifying the functional properties of
autonomous vehicles and robots. The method applies the theorem prover Isabelle for
interactive formal proof and verification. As all theorem provers, the engine requires
multiple assertions to perform verification compared to Model checking. In the study
by Murray et al. [40], system properties are established through the co-verification
of interconnected models using platform mappings. These mappings establish the
relationship between the inputs and outputs of both software and hardware compo-
nents, as well as their corresponding sensors and actuators. The software components
are modelled in RoboChart [41], while the hardware components are modelled in
Simulink. To verify the system, the authors utilized Simulink Design Verifier (SDV)
[42] and FDR [43]. The system properties were expressed using the formalism of
Communicating Sequential Processes (CSP) [44]. The study by Walter et al. [45]
presents a custom domain-specific language (DSL) for modelling scenarios involv-
ing robot movement and human intervention, which also accounts for the stochastic
nature of human fatigue. The model is further refined to a Network of Stochastic
Hybrid Automata and analysed using UPPAAL [46] for statistical model checking.
The formal model’s adherence to reality is thoroughly validated through experimental
scenarios created in the field of healthcare service robotics. In their work, Chowdhary
and Chattopadhyay [47] propose algorithms for robot orchestration in warehouse and
factory-like environments. These improved algorithms incorporate obstacle avoidance
and are validated for fault tolerance through various experiments. In their paper, Del-
gado et al. [48] propose a new approach called OROS, which optimizes the navigation
and sensing of robots, as well as the use of infrastructure resources, to minimize the
completion times of mission-critical tasks for 5G-connected robots and for battery life
extension.In their paper, Tahir et al. [49] demonstrate how formal verification using

123

1210 A. Baouya et al.

UPPAAL [46] can be applied to an autonomous firefighting robot system. To model
the system, they designed a customized arena and a sensor-equipped robot that throws
balls into boxes to simulate ejecting water at the fire location. Multiple properties,
including safety and liveness, were identified and validated during the simulation to
ensure the system met the necessary requirements.

Not only robots are orchestrated but also automatic trains within MDA vision.
Baouya et al. [22] proposed model-driven approach (MDA) to model the AATC sys-
tems in AADL [50]. The workflow is based on three levels: the platform-independent
model (PIM), the platform-dependent model (PDM) and the platform-specific model
(PSM),which highlight different refinement levels. Formal verification targets the PIM
level since the architecture is abstracted while the simulation is done after deployment
at PDM. Moreover, the specification in AADL is partially mapped into PRISM lan-
guage [51, 52] to perform safety assessment [52–54] due to the limitation of the
PRISM model checker [55]. The BRAIN-IoT framework [56] encompasses a set
of tools from system modelling to code generation. The modelling aspect of the
system is performed using BIP [57], a language that offers greater expressivity in
component–port–connector formalism with C/C++ constructs. The dedicated statis-
tical model checker SMC-BIP [28] is capable of verifying BIP models through a
dedicated engine. Unlike PRISM [55], NuSMV [37] and UPPAAL [46], SMC-BIP
compiles models instead of storing them in memory, resulting in reasonable verifica-
tion times [58]. Furthermore, the code generator is capable of validating specifications
through simulation.

3 Modelling and verification artefact of BRAIN-IoT framework

The BRAIN-IoTmodelling and verification artefact relies on model-driven devel-
opment (MDD) principles [59]. The system view is structured into three distinct
viewpoints: the platform-independent model (PIM), the platform description model
(PDM) and the platform-specificmodel (PSM). The PIMcontains the system function-
ality in component-oriented architecture. The PDM describes the software resources
and the hardware platform, whereas the PSM describes the mapping of the software
components to the hardware platform. The PSM view is not established until the
functionality assurance is met. Figure2 portrays the BRAIN-IoTmodelling and veri-
fication artefact. The boxes represent the steps, and the edges show their relationship.
Statistical model checker [60] accepts the BIP models defined at the PIM level to
perform verification 1©. Suppose the requirements are satisfied with a certain prob-
ability level. In that case, the deployment is performed while Java code is generated
with robots communication libraries to perform simulation 2© using the tool devel-
oped in [61]. Finally, The generated code is refined to the OSGi Bundles. When the
requirements are unmet, as mentioned with a red line in Fig. 2, the architect using the
BRAIN-IoT modelling and verification artefact has to redesign the software view at
the PIM level. Documentation pertaining to the Brain-IoT project and its framework

123

Deploying warehouse robots with confidence... 1211

Fig. 2 Functional assurance using modelling and verification artefact of BRAIN-IoT framework

can be found on the project’s website.4 Table 1 provides a summary of themain project
deliverables that were used in writing this article.

3.1 PIM

The PIM relies on the utilization of BIP5 constructs that adhere to the component-
oriented approach. Two types of components are identified: atomic and compound
components. Components exchange through ports endowed with native (i.e. float,
integer and Boolean) and complex data. BIP has been used in multiple projects [62–
64], and a formal description related to BIP language and statistical model checker is
detailed in Sect. 4.

4 https://www.brain-iot.eu/resources/public-deliverables/.
5 BIP: https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html.

123

https://www.brain-iot.eu/resources/public-deliverables/
https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html

1212 A. Baouya et al.

Table 1 BRAIN-IoT stemming deliverables relative to the article

Deliverables reference Description

http://www.brain-iot.eu/wp-content/uploads/2019/11/
D2.4-Updated-Visions-Scenarios-Use-Cases-and-
Innovations.pdf D2.4, https://www.brain-iot.eu/wp-
content/uploads/2021/05/Brain-IoT_D2.6_Final-
Visions-Scenarios-and-Use-Cases-and-
Innovations_v1.0_final.pdf D2.6

The documents provide a
comprehensive overview of
BRAIN-IoT scenarios, including
their results and how partners can
respond to meet the project
requirements.

http://www.brain-iot.eu/wp-content/uploads/2019/11/
D2.5-Updated-Architecture-and-Test-Sites-
Specifications.pdf D2.5

The document offers insight into a
reference architecture that depends
on the technology supported by our
BRAIN-IoT partners.

https://www.brain-iot.eu/wp-content/uploads/2021/05/
Brain-IoT_D4.5_Final-Deployment-and-operation-
enablers_v1.0.pdf D4.5, https://www.brain-iot.eu/wp-
content/uploads/2021/05/Brain-IoT_D4.4_Final-
discovery-search-composition-and-orchestration-
enablers_final.pdf D4.4

Robotic Service orchestration task
and communication through
sensinact gateways and Brain-IoT
Service Fabric

https://www.brain-iot.eu/wp-content/uploads/2021/05/
Brain-IoT_D6.
5_Phase_2_Integration_and_Evaluation_Framework_v1.
0.pdf sD6.5

Integration and evaluation of all
separated Brain-IoT results of the
technical work packages that, once
integrated, produce the final
framework

3.2 PDM and PSM

Our methodology supports the description of the hardware and software within three
views: the hardware platform (PDM), the software platform view and the architectural
view.

3.2.1 Hardware platform

This paper describes the hardware platform at a high level of abstraction (Macro
architecture) without a specific language to model it. The software platform interacts
with the hardware through dedicated services, which are supported by the “sensinact”
gateway.6 The software platform offers IoT service functions such as discovery and
look-up services. Within a BRAIN-IoT environment, sensiNact Management service
is responsible for the Operational management and monitoring of specific devices via
the sensiNact gateway’s [65]. Discovery is provided by the generic service discovery
mechanisms that return the relevant device based on a set of properties to be matched.
The look-up service returns information about one physical entity based on the device
ID.

6 https://projects.eclipse.org/projects/technology.sensinact.

123

http://www.brain-iot.eu/wp-content/uploads/2019/11/D2.4-Updated-Visions-Scenarios-Use-Cases-and-Innovations.pdf
http://www.brain-iot.eu/wp-content/uploads/2019/11/D2.4-Updated-Visions-Scenarios-Use-Cases-and-Innovations.pdf
http://www.brain-iot.eu/wp-content/uploads/2019/11/D2.4-Updated-Visions-Scenarios-Use-Cases-and-Innovations.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D2.6_Final-Visions-Scenarios-and-Use-Cases-and-Innovations_v1.0_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D2.6_Final-Visions-Scenarios-and-Use-Cases-and-Innovations_v1.0_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D2.6_Final-Visions-Scenarios-and-Use-Cases-and-Innovations_v1.0_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D2.6_Final-Visions-Scenarios-and-Use-Cases-and-Innovations_v1.0_final.pdf
http://www.brain-iot.eu/wp-content/uploads/2019/11/D2.5-Updated-Architecture-and-Test-Sites-Specifications.pdf
http://www.brain-iot.eu/wp-content/uploads/2019/11/D2.5-Updated-Architecture-and-Test-Sites-Specifications.pdf
http://www.brain-iot.eu/wp-content/uploads/2019/11/D2.5-Updated-Architecture-and-Test-Sites-Specifications.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.5_Final-Deployment-and-operation-enablers_v1.0.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.5_Final-Deployment-and-operation-enablers_v1.0.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.5_Final-Deployment-and-operation-enablers_v1.0.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.4_Final-discovery-search-composition-and-orchestration-enablers_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.4_Final-discovery-search-composition-and-orchestration-enablers_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.4_Final-discovery-search-composition-and-orchestration-enablers_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D4.4_Final-discovery-search-composition-and-orchestration-enablers_final.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D6.5_Phase_2_Integration_and_Evaluation_Framework_v1.0.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D6.5_Phase_2_Integration_and_Evaluation_Framework_v1.0.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D6.5_Phase_2_Integration_and_Evaluation_Framework_v1.0.pdf
https://www.brain-iot.eu/wp-content/uploads/2021/05/Brain-IoT_D6.5_Phase_2_Integration_and_Evaluation_Framework_v1.0.pdf
https://projects.eclipse.org/projects/technology.sensinact

Deploying warehouse robots with confidence... 1213

Fig. 3 Federated architecture

3.2.2 Software platform view

The software platform called BRAIN-IoT Fabric is based on Paremus Service Fabric7

which provides a distributed runtime infrastructure for dynamic behaviour expressed
in a set of bundles. Each behaviour is a result of Java code generation from the high-
level representation in BIP as portrayed in Fig. 2. Each Fabric interacts with one
or multiple devices depending on the local or federated architecture as mentioned in
Fig. 3. A Fabric is composed of one or moreBRAIN-IoT nodes, representing bundles.
The BRAIN-IoT Edge nodes are nodes that provide the connectivity for the software
artefacts to communicate with robot devices. The Edge node is played by the Sensinact
Gateway [65].

3.2.3 Architectural view

The Architectural view describes:

• The environment into which the BRAIN-IoT Fabric will be deployed and
• The dependencies thatBRAIN-IoTFabric has on the elements of the environment.

The BRAIN-IoT runtime architecture consists of four structural layers and is por-
trayed in Fig. 4:
Physical layer A set of physical computing resources within the physical environment
to be managed (inux Servers and ROS Robots) is selected to run BRAIN-IoT nodes.
A BRAIN-IoT Fabric may be a set of one or more physical resources; the more
resources available, the more robust the BRAIN-IoT runtime becomes. To participate
as a BRAIN-IoT node, the compute resource must be capable of running Java and
OSGi framework.

7 https://www.paremus.com/.

123

https://www.paremus.com/

1214 A. Baouya et al.

Fabric layer To create a Service Fabric, a set of OSGiTM/Java agents are
installed upon the physical layer. BRAIN-IoT nodes are responsible for negotiation,
installing/assembling, managing and monitoring software artefacts. The application
is written in any Java language.
Systems layerASystem is a distributed entity composedof a set of interrelated software
components. Meanwhile, it contains the following mandatory BRAIN-IoT infras-
tructure software components: (1) a “Bundle Installer Service”(BIS) responsible for
dynamically deploying a specified Smart Behaviour to its local environment, (2) a
“Behaviour Management Service” (BMS) responsible for selecting the most appro-
priate Smart Behaviour from theMarketplace, (3) the “EventBus” substrate that allows
asynchronous events to be exchanged between the software components within the
same system and (4) the sensiNact node that is responsible for managing communi-
cation between federated entities, between smart behaviour and devices.

Smart Behaviours In response to environmental triggers, each BRAIN-IoT System
is capable of dynamically deploying sets of interrelated Smart Behaviours. BRAIN-
IoT Smart Behaviours communicate with each other via asynchronous events. A
behaviour issues an event which is routed to local or remote endpoints that have
registered interest in events of that type: i.e. other Smart Behaviours. If an event can-
not be forwarded because no third party has a registered interest, then the Behaviour
Management Service consumes the event. The BMS searches the nominated BRAIN-
IoT repository for an appropriate Smart Behaviour, and if a candidate is found, the
BMS instructs a selected Bundle Installer Service (BIS) (local or remote) to instal the
selected Smart Behaviour.

4 Background on BIP component formalism

In this section, we provide a background on the modelling and the specification for-
malism supported by BIP [28, 29, 57, 60].

Atomic components are elementary building blocks for BIP systems. They are
described as labelled transition systems extended with variables. Transitions between
states are labelled by ports. A transition is associated with a guard g and an update
function Func(V), which are, respectively, a propositional logic formula and a com-
putation defined over local variables V . eval(V) is a function that assigns values to
variables V . An atomic component in BIP [28, 29, 57, 60] is formally defined as
follows.

Definition 1 (Atomic Components) An atomic component B=〈S, P, T , s0〉 is a
labelled transition system, where:

• S = Loc × Eval(V) is a set of states where Loc is a set of component locations
and V = {v0, . . . , vn} is a set of local variables,

• P a set of communication ports,
• T is a set of transitions of the form (s, p, g, s′) where s, s′ ∈ S, p ∈ P , g ∈

Eval(ϑ) is a guard, and
• s0 = {〈l0, X〉} ∈ S is the initial state.

123

Deploying warehouse robots with confidence... 1215

Fig. 4 BRAIN-IoT architecture view

Syntactically, A BIP code (i.e. a Program) is composed of a set of “m” components
(m > 0) where the behaviour of each component is described as a set of statements
that take the following form:

on p from l to N provided(g) do{ v = eval(v); }

The BIP transition can be considered as l
g:p−−→ N . “p” is the port labelling

the transition preceded by the keyword “on” and forces components to synchronize
and execute actions simultaneously in a lock-step fashion. The current location “l”
is preceded by the keyword “from”, and the next state “ N ” is preceded by the
keyword “to”. The transition is enabled when the Boolean expression g evaluates to
true within the construct “provided ()”. Let D be a finite universal domain. Given

123

1216 A. Baouya et al.

a set of variables ϑ , we define valuations for variables as functions ϑ : V → D that
associate each variable in V with a value in D. To express the evolution of the atomic
component, we introduce a token concept as in activity diagrams [66]. So, initially,
the initial state is marked using the keyword “initial to” and formally expressed
as follows:

l0 −→ N
〈l0, . . . ,N , ϑ〉 −→ 〈l0, . . . ,N , ϑ〉 (Initial)

where l0, . . . ,N ∈ Loc . Also, we express a BIP-triggered transition as an update
command:

l0
g:p−−→ N ∧ ϑ |	 g

〈l0, . . . ,N , ϑ〉 p−→ 〈l0, . . . ,N , ϑ ′〉
(Update)

where ϑ ′ := ϑ[vi := eval(vi) and l0, . . . ,N ∈ Loc
Within theBIP atomic component, for a given valuation of variables, a transition can

be executed if and only if its associated guard evaluates to true. Moreover, to deal with
the system’s interoperability, BIP formalism provides mechanisms for harmonizing
and coordinating components’ behaviours, namely priorities and connectors [28, 67].
The result of the interaction is a composition of synchronized components obtained
by using the component composition operator γ presented in Definition 2.

Definition 2 (Composition) The composition of two atomic components denoted by
γ (B1, B2) is a composite component B = 〈S, P, T , s0〉, where:
• s1

p,g1−−→ s′
1 ∧ s2

p,g2−−→ s′
2 such that s1, s′

1 ∈ S1, s2, s′
2 ∈ S2 where p ∈ P1 ∩ P2 ∧

X1 |	 g1 ∧ X2 |	 g2,

The SMC8 implements the main statistical model checking techniques, namely
hypothesis testing [68] and probability estimation [69]. Queries/requirements to be
verified using SMC-BIP [28] shall be expressed in PBLTL (Probabilistic Bounded
Linear Temporal Logic). The syntax of the PBLTL temporal logic is detailed in [28,
29, 57, 60]. Using this query language, it is possible to formulate probabilistic queries
in this format:

• Qualitative queries: P≥θ [ϕ], where θ ∈ [0, 1].
• Quantitative queries: P=?[ϕ], where ϕ is a bounded LTL formula.

Below are two illustrative examples with their natural language translation.

• P≥0.68[fail U≤1000reboot] “The probability of the system eventually reboots
after failure is at least 0.68”. The path formula F≤1000 specifies that the length of
the considered traces is 1000.

8 http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en.

123

http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en

Deploying warehouse robots with confidence... 1217

Fig. 5 BIP grammar integration in eclipse tool (supported by the eclipse foundation). The figure shows the
BIP project explorer on the left and the BIP editor on the right

• P=?[F≤1000shutdown] “What is the probability that the system eventually shut-
down?”.

BIP has been implemented in a distributed setting [70, 71], and the components
exchange information through asynchronous messaging. This means that each com-
ponent is capable of sendingmessages, waiting for notifications or performing internal
computations based on harmonizing and coordinating protocols. However, it is impor-
tant to note that this representation only shows a high-level view and does not reflect
the actual software platform structure where the processor manages task scheduling.

5 Model transformation

In this section, we showcase the conventional model transformation process that uti-
lizes Eclipse plug-ins to automatically generate the specific code needed for robot
orchestration.

5.1 BIPmodels to Java code by example

Before integrating the event bus component, the model is fed into the code generator
engine. The engine utilizes Xtend to capture the modelled atomic components, made

123

1218 A. Baouya et al.

possible through the Xtext module that enables grammar specification and keyword
colouring. The result of such integration is portrayed in Fig. 5. Each atomic component
is converted to Java class that extends Java thread and annotates with BIP ports. The
example of the atomic component in Listing 1 is mapped to Java code in Listing 2.
The initial state START and the next state LOADING characterize the atomic com-
ponent. The command in line 9 is enabled if the START location is marked and the
corresponding condition in the provided construct is satisfied.

Listing 1 Example of BIP Component

1 atom type robot()
2 export port Port p
3 data int positionX
4 data int positionY
5 place START , LOADING
6 ...
7 initial to START
8 ...
9 on p from START to LOADING provided (positionX

=1 and positionY = 6) do { initRobot ();}
10 end

A set of attributes and operations characterizes a Java class. These attributes are
related to the data manipulated by atomic components and the locations identified
by the “place” keyword. The data types of atomic components are mapped to the
respective Java data types, while BIP locations are mapped to Boolean variables. For
example, in Listing 2 lines 13–14, the activation of the port p means that the function
preceded by the annotation “@p()” is called. If the location “START” is evaluated to
true (line 15), then the guard is checked (line 16), while the do actions correspond to
Java instructions. Functions that are not preceded by Java annotations are called by
do actions.

123

Deploying warehouse robots with confidence... 1219

Listing 2 Example of Generated code

1 public class robot extends Atom{
2 /∗ Variable declaration ∗/
3 private int positionX
4 private int poisitinY
5 /∗ State declaration ∗/
6 private boolean START
7 private boolean LOADING
8 /∗ Labelled transitions declaration ∗/
9 @initial ()

10 public void initialFunction (){
11 START = true ;
12 }
13 @p()
14 public void portP(){
15 i f (START){
16 if (positionX=1 && positionY = 6){
17 LOADING=true ;
18 START=false ;
19 initRobot () ;
20 }
21 }
22 }
23 private void initRobot (){
24 . . .
25 }
26 }

BIP connectors are managed by a connector scheduler that facilitates communica-
tion between Java classes through scheduled send–receive operations. However, it is
important to note that our generator only handles a subset of the communication styles
supported by BIP Connectors [67].

5.2 Deployment of Java code at EventBus level

The connectors scheduler does not handle communication between generated compo-
nents; instead, this task is the responsibility of the PAREMUS Event Bus. The bus is
responsible for both data communication and eventing. Ports defined in Listing 2 are
mapped to Java interfaces. Atomic components are now considered as Java Bundles or
“SmartBehaviour”, where an additional Java class is created to handle event listening
(as shown inListing 3). The required interface (i.e. BIP Port) is specified as a consumed
interface within the “@SmartBehaviourDefinition” annotation (line 2). The “notify”
function is sensitive to the event; for example, in line 8, the “RobotImpl” class is lis-

123

1220 A. Baouya et al.

tening for events of type “IresolveCollision” (line 8) and performs the corresponding
actions.

Listing 3 Example of SmartBehaviour Definition

1 . . .
2 @SmartBehaviourDefinition(consumed = {IresolveCollision . class},
3 author = "UGA" , name = "Smart RobotA" ,
4 description = "Implements a remote Smart RobotA.")
5 public class RobotImpl implements SmartBehaviour<BrainIoTEvent>{
6 public void notify (BrainIoTEvent event) {
7 public stat ic IresolveCollision resolveCollision ;
8 i f (event instanceof IresolveCollision) {
9 resolveCollision = (IresolveCollision) event ;

10 synchronized (this) {
11 resolveCollision . resolveCollision () ;
12 }
13 }
14 }
15 }

6 Frommodelling to simulation of Robots Orchestration system

This section describes the scenario provided by Robotnik,9 followed by the BIPmodel
and architecture related to the case study for analysis.

6.1 Robots Orchestration scenario

A privately owned warehouse houses thousands of carts filled with two or three prod-
ucts, which are transported by Robotnik-manufactured robots programmed to travel
in all four cardinal directions to reach their respective destinations (See Fig. 6, 7).
Upon reaching the designated cart, the robots (see Fig. 8) execute a corkscrew motion
to lift the unit from the ground, transporting it in its entirety to the storage area 2©
as depicted in Fig. 6 where humans pack the appropriate items. After completing the
delivery, the robot proceeds to the unload area 3© and locates a new cart amidst the
densely packed shelves. A fog-based brain controller is responsible for coordinating
the robot’s movements across the 2D surface (see Fig. 6 and Fig. 7).

Every 0.5 s, the controller sends position requests, and the robots (see Fig. 8) will
send back a structured response in JSON.The JSONscripts related to robot interactions
are available in [72]. The robots read their positions from the QR code tag placed on
the square grid (see Fig. 6). Also, the response contains the actual robot state, such as

9 Robotnik is a company specialized in robot product development and commercialization (mobile robots,
robot arms, robotic hands and humanoids).

123

Deploying warehouse robots with confidence... 1221

Fig. 6 2D map surface of the warehouse

“stopped” or “running”. The robots are endowed with motion sensors in the front to
switch to the “stopped” state if obstacles are detected, so the robot response includes
an integer attribute “detect” taking values from 0 to 2. If it is 0, then no obstacle is
detected else; the obstacle could be a door or robot. When the robot detects a door, the
orchestrator will send a request to the automatic door to open, and then, the robot can
enter the unload area. In case of collision shall be avoided, the controller will execute
a “collision resolve” that orders the robots to update their positions. After retrieving
the necessary carts and depositing them in the storage area, the robots return to their
original positions in the docking area.

The company10 responsible for deploying this system would ensure that loading
and unloading processes are functioning correctly while also ensuring that collision
avoidance measures are properly executed. The central deployed orchestrator must
fulfil two requirements:

• REQ-1 If a cart with densely filled shelves is detected, the robot performs a
corkscrew motion to lift the cart off the ground and transport the entire unit to
the storage area.

• REQ-2 If a robot in front is detected, collision avoidance measures shall be taken
to ensure safe navigation towards the robot’s destination.

6.2 Robots Orchestrationmodel

To demonstrate the practical application of the BIP framework, we have precisely
developed BIP models for Robots Orchestration by capturing the control flow of the
scenario depicted in Sect. 6.1. First, it starts with a definition of functions that retrieve
the position of robots using the reserved word extern, e.g.:

extern int getPosition ()

Some of the variables are used to check the position of the robot according to the
grid map in Fig. 6 using the reserved word const data as follows:

10 Robotnik: https://robotnik.eu/.

123

https://robotnik.eu/

1222 A. Baouya et al.

Fig. 7 Robots movement
direction

Fig. 8 Robot prototype

const data int inDocking = 1
const data int inUnload = 2
const data int inStorage = 3

Other variables are used to check the nature of obstacles in front of the robots declared
also as constant (Figs. 7 and 8):

const data int isObstacle = 4
const data int isDoor = 5

Each transition is labelled with a port that needs to be declared in BIP. Two kinds
of ports are declared in the model: “export port” and “internal port” as
mentioned in Sect. 4. The “export port” is used to trigger transitions while syn-
chronizing with external atomic component, whereas “internal port” are used
to trigger internal transitions. So, we have to declare three port type using the reserved
word port type:

port type Port_Type_collision (float position)
port type Port_Type_collision_Three(float
position1,float position2,float position3)
port type Port_Type_No_Param ()

123

Deploying warehouse robots with confidence... 1223

Fig. 9 Graphical BIP representation of individual robot behaviour

The first port type is utilized for receiving and transmitting robot parameters from/to
the orchestrator, which enables the resolution of collisions between robots. As
mentioned in Fig. 9, the port is instantiated by the atom “Robot_Behavior”
in “resolveCollision” and “collisionResolved”. The port instance
“openDoor” referred to the third port definition while no parameters are sent. These
kinds of ports are called silent. These ports are used to label transitions between dif-
ferent BIP states. In BIP, states are preceded by the reserved word place:

place START, UNLOAD, DOCKING, STORAGE, OBSTACLE,
ROBOT, DOOR

The BIPmodel shown in Fig. 9, representing a robot, is suitable for all robots. Other
robots (i.e. atomic components) are reusing the same model by instantiating it with
a different name as in Listing 4 lines (4–6). Hence, the robots are instantiated with
the names “Robot1”, “Robot2” and “Robot3”. The same manner will be applied
for connectors as in lines 9–11. Connectors have three port parameters since they
handle the communication between robots and the orchestrator. Further, some atoms
ports are exported (i.e. used for synchronization) in the model of Fig. 9. They are
identified on the frame edge with red colour, for instance, “resolveCollision”
and “collisionResolved”, and “openDoor” ports.

123

1224 A. Baouya et al.

Listing 4 Componenents Instanciation

1 compound type Compound ()
2
3 component Door_behavior Door()
4 component Robot_behavior Robot1 (1)
5 component Robot_behavior Robot2 (2)
6 component Robot_behavior Robot3 (3)
7 component Orchestrator_behavior Orchestrator1 ()
8
9 connector connector_type_door Connector1 (

DoorInstance.openDoor , Robot1.openDoor ,
Robot3.openDoor , Robot2.openDoor)

10 connector connector_resolve_collision Connector2
(Robot1.resolveCollision , Robot2.
resolveCollision , Robot3.resolveCollision ,
Orchestrator1.resolveCollision)

11 connector connector_collision_resolved Connector3
(Robot1.collisionResolved , Robot2.

collisionResolved , Robot3.collisionResolved ,
Orchestrator1.collisionResolved)

12 end

When the robot model is triggered, as portrayed in Listing 5 local variables (i.e.
position) are initialized for the first execution. Also, the “id” of the robot in Listing
4 (line 4, id=1) is initialized with the parameter value “VID” of the component as
in Listing 5 (line 2). Moreover, the robot retrieves its actual position by calling the
function “getPosition()” that is declared above.

Listing 5 Train Variables Initialization

1 in i t i a l to START do {
2 id=VID;
3 position=getPosition () ;
4 }

The BIP model in Fig. 9 relies on multiple phases that are labelling the model
transitions, for instance; the port “unloadLocation” labels START→ UNLOAD,
“unloadToUnload” labels UNLOAD→ UNLOAD, “unloadToStorage” labels
UNLOAD→ STORAGE, “fromUnloadObstacle” labels UNLOAD→ OBSTACLE.
In case the door is detected while guard “position==isDoor” a transition
is enabled OBSTACLE → DOOR labelled with port instance “doorDetected”,
else, multiple robots are standing in the same position while they activate the
“resolveCollision” for OBSTACLE→ROBOT. When the collision is resolved,
a transition occurs on ROBOT→ START labelled with “collisionResolved”.

The red ports identified in Fig. 9 are synchronized with those portrayed in Fig. 10.
Two atomic components are modelled: the left one (i.e. Door behaviour) model
is the door opening, whereas the right model is the orchestrator that is identi-
fied with tree states “START”, “COLLISION” and “RESOLVED”. The collision is
resolved by calling external functions “resolvedPosition1(position1)”,

123

Deploying warehouse robots with confidence... 1225

Fig. 10 Graphical BIP representation of door behaviour (left) and orchestrator behaviour (right)

“resolvedPosition2(position2)” and “resolvedPosition3
(position3)”.These functions rely on Artificial Intelligence algorithms that return
the new position of robots as to move forward/backward or moving left/right.

Three connectors are identified to ensure communication between atomic compo-
nents, as mentioned in Listing 4. The first connector in line 9 allows the opening of the
door following a Broadcast manner described in Sect. 4 where the door is triggered
when one of the robots is ready on the transition DOOR→ START as portrayed in
the chronogram of Fig. 11. The connection is handled cyclically, prioritizing the first
available port. Listing 6 portrays a textual representation of the Broadcast connector
to open the door. As the synchronization solely requires a basic notification to trigger
the operation, no behaviour is impacted

Listing 6 Openning Door Synchronization

1 connector type connector_type_door (Port_Silent p1,
Port_Silent p2, Port_Silent p3, Port_Silent p4)

2 define p1 p2’ p3’ p4’
3
4 on p1 p2
5 on p1 p3
6 on p1 p4
7
8 end

In addition, robots simultaneously communicate their positions to the orchestra-
tor to perform collision detection and avoidance. In this case, the robots send their
positions at the same time to the orchestrator, which is handled by the Rendez-Vous
connector. Transitions labelled with port “resolveCollision” in the model do
not occur until the Rendez-Vous is satisfied, portrayed in the chronogram of Fig. 12.
Listing 7 portrays a textual representation of the Rendez-Vous connector. During the
synchronization, robots communicate their current positions to the orchestrator in lines
(4–7).

123

1226 A. Baouya et al.

Fig. 11 Broadcast synchronization for connector of Listing 6

Fig. 12 Rendez-Vous synchronization for connector of Listing 7

Listing 7 Robots Sending their Positions to the Orchestrator

1 connector type connector_resolve_collision (
Port_Robot_Position p1, Port_Robot_Position p2,
Port_Robot_Position p3, Port_Orchestrator p4)

2 define (p1 p2 p3 p4)
3
4 on p1 p2 p3 p4 down {
5 p4. position1 = p1. position ;
6 p4. position2 = p2. position ;
7 p4. position3 = p3. position ;}
8 end

Figure13 depicts the global graphical architecture of the complete Robots Orchestra-
tion system. It is a graphical interpretation of the textual representation in Listing 4.
The blue line links model the connectors, the red boxes model components, and the
black circles model the ports.

6.3 Verification and analysis of compliance with requirements

Utilizing the resulting BIP models, we rely on SMC-BIP to conduct statistical analy-
sis. SMC-BIP [28] generates runtime traces required to verify probabilistic bounded
LTL properties. One of the distinguishing features of SMC-BIP is that it can deter-
mine the probability of a specified PBLTL property holding based on the generated

123

Deploying warehouse robots with confidence... 1227

Fig. 13 Graphical BIP representation of Robots Orchestration system

traces. Regarding the requirement expressed in the Robots Orchestration scenario, we
formalize it in PBLTL as follows:

ϕ1 : P=?[(R1.position == inUnload)∪≤t(R1.position == inStorage)], t = 1000 (1)

The property ϕ1 expresses that the robot R1 is in the UNLOAD position for lifting
the cart and then returned STORAGE position. The resulting probability is equal to
80%.

Moreover, we would check the total carts that have been collected by three robots
(in our case we model a system with three carts). In this case, we define a new variable
“cart” that is initialized to 3. The function “liftCart()” sends actions to the robots
to perform the operation and returns the remaining cart. Thus, the value of the cart is
updated through the transition statement OBSTACLE→ CART as follows:

on cartDetected provided
(position==inFrontOfCart)from OBSTACLE
to CART do {cart=liftCart();}

123

1228 A. Baouya et al.

Fig. 14 Checking results of properties ϕ2, ϕ3 and ϕ4

ϕ2 : P=?[(R1.position == inDocking)

∪≤t(R1.position == inUnload && R1.cart == x)], t = 1000, x = 0 : 3 : 1 (2)

ϕ3 : P=?[(R2.position == inDocking)

∪≤t(R2.position == inUnload && R2.cart == x)], t = 1000, x = 0 : 3 : 1 (3)

ϕ4 : P=?[(R3.position == inDocking)

∪≤t(R3.position == inUnload && R3.cart == x)], t = 1000, x = 0 : 3 : 1 (4)

The properties ϕ2, ϕ3 and ϕ4 express that when the robots R1, R2 and R3 are at the
docking position, theymove to unload position after visiting the storage area. The robot
will lift the cart and place it in the unload area. Also, the properties evaluate the number
of carts collected by the robots. Checking ϕ2 using SMC-BIP results in the graphs
portrayed in Fig. 14. The findings indicate that the probability of robots collecting a
single cart is high, at approximately 90%. However, there remains a possibility that
the robots may not collect any carts. Therefore, the likelihood of robots collecting two
carts consecutively is nearly 80%.Due to high levels of concurrency among the robots
in the warehouse, collecting three carts successively has a relatively low probability
ranging between 10% and 20%.

123

Deploying warehouse robots with confidence... 1229

Fig. 15 Checking results of property ϕ5

ϕ5 : P=?[(R1.position == inDocking && R2.position == inDocking

&& R3.position == inDocking)

∪≤t(R1.cart ≤ C && R2.cart ≤ C && R2.cart ≤ C && O.detect == x)],
t = 1000, x = 0 : 10 : 1, C = 3

(5)

Moreover, we want to check how the orchestrator resolved the collision during the
robot’s movement. The transition START→ COLLISION in the automata model of
the orchestrator has for actions to increment the number of detected collisions. The
property ϕ5 expresses that when the robots are in the docking area, then they collect
a set of carts “C” with a certain number of collisions. The symbol “O” refers to the
orchestrator component instance. The result of checking property ϕ5 is portrayed in
Fig. 15. The likelihood of three collisions occurring during the movement of robots is
low, as compared to one or two collisions. This trend can be attributed to the fact that
when the robots collect carts, they return to their docking position and consequently
reduce the number of robots in various warehouse areas, thereby minimizing potential
collisions.

6.4 Validation at PSM level

While theBRAIN-IoTPIM level is based on statisticalmodel checking,which enables
estimation while satisfying requirements, behaviour may differ significantly at the
PSM level. Components such as robots are not linked using connectors; instead,
they communicate through dedicated libraries that facilitate send/receive operations

123

1230 A. Baouya et al.

with physical units. Connectors can be represented by buses that transport data using
send/receive protocols. Furthermore, the quality of data transportation is determined
by parameters such as the number of bus access conflicts and bus delays, which are
not visible at the PIM level. The paper does not cover the verification procedure at the
transaction level.

After verifying that all requirements were satisfied, we performed a model-to-text
operation to generate Java code corresponding to the BIPmodels detailed in this paper.
The code generated from this operation is available in [61]. Each atomic component
has been translated into a Java class capable of handling all necessary operations for
robot movements. Finally, we conducted a simulation using the generated Java code
from the initial BIP models. Fortunately, while moving from docking to unloading
areas, robots are able to collect available carts for transportation. This confirms that
the deployed infrastructure aligns with PIM BIP models. Moreover, we observed that
it is impossible for robots to collect two carts due to how communication APIs handle
requests during conflict resolution.

Each class is wrapped within OSGi bundles that are accepted by the BRAIN-
IoTServiceFabric. TheOSGibundles are deployedover a clusterwithUbuntu−16.04
desktop Intel core i7-950@3.07 GHz and ROS Kinetic with STAGE [73] and rviz
GUI [74].

Also, we use sensinact controllers [65] that implement the mechanic to commu-
nicate with the simulation platform called ROS-REST API. We use rviz to plan the
intelligent robot’s movement within a 3D movement area and STAGE to capture a
robot’s movement into 2D plan. This simulation is done to validate the requirement
REQ-2. The sequence of robot movements is portrayed in Figs. 16, 17 and 18. Fig-
ure16 presents the initial state of the robots in the docking area. Figure17 presents
the state of the blue robot in front of the door, so the door is not visible in the figure.
Figure18 portrays the carts and robots in the unloading area. Through the simulation,
no collision is observed due to well orchestration management and competitive access
to the unloading area. In addition, we could observe that the door reacts to the robot’s
demand to open it. These observations help the designer make judgments about the
accuracy of the modelled system. Also, these observations validated the requirements
expressed formally in LTL.

7 Conclusion

This paper presents the functional assurance artefact of the BRAIN-IoT framework,
which relates to the orchestration of a fleet of robots within warehouses by Robotnik
System Company. The scenario at hand involves utilizing a central computer that is
equipped with AI algorithms to detect and manage collisions. Our proposed approach
to accomplish this task is through the utilization of a model-driven design (MDD)
methodology, which establishes several refinement levels.

This research specifically focuses on the design level of the orchestrator-controlled
robotic network, which is developed using the BIP language. To ensure the accuracy
of the design, we utilize SMC-BIP to verify a set of properties expressed in PBLTL
at the PIM level. By utilizing mathematical reasoning, this formal verification tech-

123

Deploying warehouse robots with confidence... 1231

Fig. 16 Robots in docking area

Fig. 17 Robots in front of the door

123

1232 A. Baouya et al.

Fig. 18 Robots in storage area

nique provides designers with functional assurance for robotic scenarios. A Java code
is generated through model-to-text transformation, enriched with Brain-IoT Fabric
annotations and communication libraries, to facilitate the deployment of IoT nodes.

In addition to the high-level analysis, we validate our findings through simulation,
which takes into account the features of both the robot’s communication services and
the BRAIN-IoT Service Fabric. In our future work, we will conduct verification at the
transaction level by accurately modelling communicating buses. We will also focus
on validating a second use case for the water dam system that regulates drained water
in Corona, Spain.

Author Contributions AB wrote the main manuscript. SC, SB, RN, LG, MC, MD and EF collaborated in
both writing and reviewing the manuscript. SB, RN, LG, MC, MD and EF provided technical and financial
support.

Funding The research that led to the presented results was conducted within the research profile of Brain-
IoT- model-Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT
systems, funded by the European Union, Grant No.: 780089. The authors wish to extend their gratitude
towards the Eclipse Foundation, and specifically Philippe Krief and Maria Teresa Delgado, for providing
technical support throughout this project. Additionally, the authors would like to thank them for hosting the
Eclipse plug-ins that were developed during this project.

Availability of data and materials The plug-ins used in the experiments are linked to the paper describing
those experiments. Models are available upon request.

123

Deploying warehouse robots with confidence... 1233

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

1. International Federation of Robotics (2020) Ifr annual report. https://ifr.org/downloads/press2018/
Presentation_WR_2020.pdf

2. Dourado Carlos MJM et al (2019) A new approach for mobile robot localization based on an online
IoT system. Future Gener Comput Syst 100:859–881

3. Dingju Z (2018) IoT and big data based cooperative logistical delivery scheduling method and cloud
robot system. Future Gener Comput Syst 86:709–715. https://doi.org/10.1016/j.future.2018.04.081

4. Coquin D, Boukezzoula R, Benoit A, Long NT (2020) Assistance via IoT networking cameras and
evidence theory for 3d object instance recognition: application for the nao humanoid robot. Internet
Things 9:100128. https://doi.org/10.1016/j.iot.2019.100128

5. The Economist (2014) The bots in the warehouse, new robots–smarter and faster–are tak-
ing over warehouses. https://www.economist.com/science-and-technology/a-new-generation-of-
smarter-and-faster-robots-are-taking-over-distribution-centres/21807595

6. Rameez C, Manju C (2021) Orchestration of automated guided mobile robots for transportation task
in a warehouse like environment. 5:1–7. https://doi.org/10.1109/ETI4.051663.2021.9619354

7. Mello Ricardo C et al (2022) The poundcloud framework for ROS-based cloud robotics: case studies
on autonomous navigation and human-robot interaction. Robot Auton Syst 150:103981. https://doi.
org/10.1016/j.robot.2021.103981

8. Hiejima T, Kawashima S, KeM, Kawahara T (2019) Effectiveness of synchronization and cooperative
behavior of multiple robots based on swarm AI. In: 2019 IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS). pp 341–344. https://doi.org/10.1109/APCCAS47518.2019.8953108

9. Khamis A, ElGindy A (2012) Minefield mapping using cooperative multirobot systems. J Robot
698046:1687. https://doi.org/10.1155/2012/698046

10. Michael N, Zavlanos MM, Kumar V, Pappas GJ (2008) Distributed multi-robot task assignment and
formation control. In: 2008 IEEE International Conference on Robotics and Automation. pp 128–133.
https://doi.org/10.1109/ROBOT.2008.4543197

11. Ji S-H, Han J-S, Lee S-M, Moon Y-S, Kuc T-Y (2011) Collective searching algorithm for multi-robot
systemwith bounded communication range. In: 2011 8th international conference on ubiquitous robots
and ambient intelligence (URAI). pp 180–183. https://doi.org/10.1109/URAI.2011.6145956

12. Lee SG, Diaz-MercadoY, EgerstedtM (2015)Multirobot control using time-varying density functions.
IEEE Trans Robot 31(2):489–493. https://doi.org/10.1109/TRO.2015.2397771

13. Kim K, Park M, Lee S-M, Ji S-H (2012) Development of a dependable network using collective robots
with restricted communication range. In: 2012 9th International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI). pp 408–412. https://doi.org/10.1109/URAI.2012.6463027

14. PapadopoulosGeorgios T,MargheritaA, Constantine S (2021) Towards open and expandable cognitive
ai architectures for large-scale multi-agent human-robot collaborative learning. IEEEAccess 9:73890–
73909. https://doi.org/10.1109/ACCESS.2021.3080517

15. NamC, Lee S, Lee J, Cheong SH, KimDH, KimC, Kim I, Park S-K (2020) A software architecture for
service robots manipulating objects in human environments. IEEE Access 8:117900–117920. https://
doi.org/10.1109/ACCESS.2020.3003991

16. Zhang D, Pee LG, Cui L (2021) Artificial intelligence in e-commerce fulfillment: a case study of
resource orchestration at Alibaba’s smart warehouse. Int J Inf Manag 57:102304. https://doi.org/10.
1016/j.ijinfomgt.2020.102304

17. Systems Robotnik (2020) Robotnik in Brain-IoT. https://robotnik.eu/projects/brain-iot-en

123

https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
https://doi.org/10.1016/j.future.2018.04.081
https://doi.org/10.1016/j.iot.2019.100128
https://www.economist.com/science-and-technology/a-new-generation-of-smarter-and-faster-robots-are-taking-over-distribution-centres/21807595
https://www.economist.com/science-and-technology/a-new-generation-of-smarter-and-faster-robots-are-taking-over-distribution-centres/21807595
https://doi.org/10.1109/ETI4.051663.2021.9619354
https://doi.org/10.1016/j.robot.2021.103981
https://doi.org/10.1016/j.robot.2021.103981
https://doi.org/10.1109/APCCAS47518.2019.8953108
https://doi.org/10.1155/2012/698046
https://doi.org/10.1109/ROBOT.2008.4543197
https://doi.org/10.1109/URAI.2011.6145956
https://doi.org/10.1109/TRO.2015.2397771
https://doi.org/10.1109/URAI.2012.6463027
https://doi.org/10.1109/ACCESS.2021.3080517
https://doi.org/10.1109/ACCESS.2020.3003991
https://doi.org/10.1109/ACCESS.2020.3003991
https://doi.org/10.1016/j.ijinfomgt.2020.102304
https://doi.org/10.1016/j.ijinfomgt.2020.102304
https://robotnik.eu/projects/brain-iot-en

1234 A. Baouya et al.

18. Armerding T (2020) Security bugs and flaws: both bad, but in different ways. https://www.synopsys.
com/blogs/software-security/security-flaws-vs-bugs

19. Crnkovic I, Larsson M (2002) Building reliable component-based software systems. Artech House
Inc., USA

20. Selic B (2003) The pragmatics of model-driven development. IEEE Softw 20(5):19–25. https://doi.
org/10.1109/MS.2003.1231146

21. Costa B, Pires PF, Delicato FC (2020) Towards the adoption of omg standards in the development of
Soa-based IoT systems. J Syst Softw 169:110720. https://doi.org/10.1016/j.jss.2020.110720

22. AbdelhakimB,OtmaneAM,DjamalB, SamirO (2019) Safety analysis of train control systembased on
model-driven design methodology. Comput Indus 105:1–16. https://doi.org/10.1016/j.compind.2018.
10.007

23. Baouya A et al (2021) Formal modeling and simulation of collaborative intelligent robots. In: Christian
Z et al (eds) Advances in service-oriented and cloud computing. Springer, Cham, pp 41–52

24. Lech J, Radovan S (2021) Proceedings of the 2nd Summer School on Cyber- Physical Systems and
Internet-of-Things, vol II. https://doi.org/10.5281/zenodo.5086365

25. El Ballouli R, Bensalem S, Bozga M, Sifakis J (2021) Programming dynamic reconfigurable systems.
Int J Softw Tools Technol Transf 23(5):701–719. https://doi.org/10.1007/s10009-020-00596-7

26. Baouya A, Chehida S, et al (2020) A formal modeling and verification of blockchain consensus
protocol for IoT systems. In: Hamido F, Ali S (eds) Knowledge innovation through intelligent software
methodologies, tools and techniques (SoMeT_20), Kitakyushu, Japan, 20–22 September 2020, vol 327
of frontiers in artificial intelligence and applications. IOS Press, pp 330–342. https://doi.org/10.3233/
FAIA200578

27. Baouya A, Chehida S, Ouchani S, Bensalem S, BozgaM (2022) Generation and verification of learned
stochastic automata using k-nn and statistical model checking. Appl Intell 52(8):8874–8894. https://
doi.org/10.1007/s10489-021-02884-4

28. Mediouni BL et al (2018) Bensalem Saddek S-BIP 2.0: statistical model checking stochastic real-time
systems. In: Shuvendu KL, ChaoW (eds) Automated technology for verification and analysis. Lecture
notes in computer science. Springer, Cham, pp 536–542

29. Nouri A, Mediouni BL, Bozga M, Combaz J, Bensalem S, Legay A (2018) Performance evaluation of
stochastic real-time systems with the SBIP framework. Int J Critic Computer-Based Syst 1–33

30. Vicentini F, Askarpour M, Rossi MG, Mandrioli D (2020) Safety assessment of collaborative robotics
through automated formal verification. IEEE Trans Robot 36(1):42–61. https://doi.org/10.1109/TRO.
2019.2937471

31. Mehrnoosh A, Livia L, Samuele L, Niccolò I, Matteo R, Federico V (2021) Formally-based model-
driven development of collaborative robotic applications. J Intell Robot Syst 102(3):59. https://doi.
org/10.1007/s10846-021-01386-2

32. Zot (2012) A bounded satisfiability checker. http://github.com/fm-polimi/zot
33. Guiochet J (2016) Hazard analysis of human-robot interactions with hazop-uml. Saf Sci 84:225–237.

https://doi.org/10.1016/j.ssci.2015.12.017
34. Matt W, Clare D, Michael F, Maha S, Joe S, Lee KK, Kerstin D, Joan S-P (2016) Toward reliable

autonomous robotic assistants through formal verification: a case study. IEEE Trans Human-Mach
Syst 46(2):186–196. https://doi.org/10.1109/THMS.2015.2425139

35. Ben-Ari M (2008) Principles of the spin model checker, 1 edn. ISBN 1846287693
36. DixonC, et al (2014) “The fridge door is open”-temporal verification of a robotic assistant’s behaviours.

In: TAROS
37. Cimatti A et al (1999) A new symbolic model verifier. In: Nicolas H, Doron P (eds) Computer aided

verification. Springer, Berlin, pp 495–499
38. Mohammed A, Furbach U, Stolzenburg F (2010) Multi-robot systems: modeling, specification, and

model checking. 01. ISBN 978-953-307-036-0. https://doi.org/10.5772/7349
39. Walter D, Täubig H, Lüth C (2010) Experiences in applying formal verification in robotics. In:

Proceedings of the 29th International Conference onComputer Safety, Reliability, and Security. SAFE-
COMP’10. Springer-Verlag, Berlin, pp 347–360

40. Murray Y, SirevågM, Ribeiro P, Anisi DA,MossigeM (2022) Safety assurance of an industrial robotic
control system using hardware/software co-verification. Sci Comput Programm 216:102766. https://
doi.org/10.1016/j.scico.2021.102766

123

https://www.synopsys.com/blogs/software-security/security-flaws-vs-bugs
https://www.synopsys.com/blogs/software-security/security-flaws-vs-bugs
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1016/j.jss.2020.110720
https://doi.org/10.1016/j.compind.2018.10.007
https://doi.org/10.1016/j.compind.2018.10.007
https://doi.org/10.5281/zenodo.5086365
https://doi.org/10.1007/s10009-020-00596-7
https://doi.org/10.3233/FAIA200578
https://doi.org/10.3233/FAIA200578
https://doi.org/10.1007/s10489-021-02884-4
https://doi.org/10.1007/s10489-021-02884-4
https://doi.org/10.1109/TRO.2019.2937471
https://doi.org/10.1109/TRO.2019.2937471
https://doi.org/10.1007/s10846-021-01386-2
https://doi.org/10.1007/s10846-021-01386-2
http://github.com/fm-polimi/zot
https://doi.org/10.1016/j.ssci.2015.12.017
https://doi.org/10.1109/THMS.2015.2425139
https://doi.org/10.5772/7349
https://doi.org/10.1016/j.scico.2021.102766
https://doi.org/10.1016/j.scico.2021.102766

Deploying warehouse robots with confidence... 1235

41. Miyazawa A, Ribeiro P, Li W et al (2019) Robochart: modelling and verification of the func-
tional behaviour of robotic applications. Softw Syst Model 18(5):3097–3149. https://doi.org/10.1007/
s10270-018-00710-z

42. MathWorks (2021) Simulink design verifier. Accessed 1 Oct from https://www.mathworks.com/
products/simulink-design-verifier.html

43. Gibson-Robinson T, Armstrong P, Boulgakov A, Roscoe AW (2014) Fdr3—a modern refinement
checker for csp. In: Erika Á, Klaus H (eds) Tools and algorithms for the construction and analysis of
systems. Springer, Berlin, pp 187–201

44. Baxter J, Ribeiro P, Cavalcanti A (2022) Sound reasoning in tock-csp. Acta Inf 59(2):125–162. https://
doi.org/10.1007/s00236-020-00394-3

45. Livia L, Davide Z, Bersani Marcello M, Matteo R (2023) Specification, stochastic modeling and
analysis of interactive service robotic applications. Robot Auton Syst. 163:104387. https://doi.org/10.
1016/j.robot.2023.104387

46. David A, Larsen KG, Legay A, Mikučionis M, Poulsen DB (2015) Uppaal smc tutorial. Int J Softw
Tools Technol Trans 17(4):397–415

47. Chowdhary RR, Chattopadhyay MK (2021) Orchestration of automated guided mobile robots for
transportation task in a warehouse like environment. In: 2021 Emerging trends in industry 4.0 (ETI
4.0), pp 1–7. https://doi.org/10.1109/ETI4.051663.2021.9619354

48. Delgado C, Zanzi L, Li X, Costa-Pérez X (2022) Oros: orchestrating ros-driven collaborative con-
nected robots in mission-critical operations. In: 2022 IEEE 23rd international symposium on a world
of wireless, mobile and multimedia networks (WoWMoM), pp 147–156. https://doi.org/10.1109/
WoWMoM54355.2022.00026

49. Tahir A, Saghar K, Khalid HB, Shadab BU, Khan US, Asad U (2019) Formal verification and devel-
opment of an autonomous firefighting robotic model. In 2019 International Conference on Robotics
and Automation in Industry (ICRAI), pp 1–6. https://doi.org/10.1109/ICRAI47710.2019.8967388

50. Danielle S et al (2021) AADL-based safety analysis using formal methods applied to aircraft digital
systems. Reliab Eng Syst Saf 213:107649. https://doi.org/10.1016/j.ress.2021.107649

51. SimondsD (2017) Prism. Prism statisticalmodel checker. http://www.prismmodelchecker.org/manual/
RunningPRISM/StatisticalModelChecking

52. Baouya A, Mohamed OA, Ouchani S, Bennouar D (2021) Reliability-driven automotive software
deployment based on a parametrizable probabilistic model checking. In: Expert Systems with Appli-
cations, pp 114572. https://doi.org/10.1016/j.eswa.2021.114572

53. Baouya A, Mohamed OA, Ouchani S (2023) Toward a context-driven deployment optimization for
embedded systems: a product line approach. J Supercomput 79(2):2180–2211. https://doi.org/10.1007/
s11227-022-04741-8

54. Baouya A et al (2016) A formal approach for maintainability and availability assessment using prob-
abilistic model checking. In: Salim C et al (eds) Modelling and implementation of complex systems.
Springer, Cham, pp 295–309

55. KwiatkowskaM,NormanG, Parker D (2011) Prism 4.0: verification of probabilistic real-time systems.
In:GaneshG, ShazQ (eds)ComputerAidedVerification, vol 6806. LectureNotes inComputer Science.
Springer Berlin Heidelberg, pp 585–591

56. Chehida S et al (2022) Brain-iot architecture and platform for building iot systems. In: Proceedings of
the 7th International Conference on Internet of Things, Big Data and Security - IoTBDS, pp 67–77.
INSTICC, SciTePress. https://doi.org/10.5220/0011086000003194

57. BasuA,BensalemS,BozgaM,Combaz J, JaberM,NguyenT-H, Sifakis J (2011)Rigorous component-
based system design using the bip framework. IEEE Softw 28(3):41–48

58. Agha G, Palmskog K (2018) A survey of statistical model checking. ACMTransModel Comput Simul
28(1):1–39

59. BrambillaM, Cabot J,WimmerM (2012)Model-Driven Software Engineering in Practice. 1:9. https://
doi.org/10.2200/S00441ED1V01Y201208SWE001

60. Mediouni BL, Nouri A, Bozga M, Dellabani M, Combaz J, Legay A, Bensalem S (2018) SBIP 2.0:
statistical model checking stochastic real-time systems. https://www-verimag.imag.fr/TR/TR-2018-
5.pdf

61. Baouya A (2021) Java code generator. https://github.com/hakimuga/Resulted_Orchestration_Bundles
62. CPS4EU (2019–2022) Cyber physical systems for Europe. https://cps4eu.eu
63. FOCETA (2021–2023) Foundations for continuous engineering of trustworthy autonomy. http://www.

foceta-project.eu

123

https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://doi.org/10.1007/s00236-020-00394-3
https://doi.org/10.1007/s00236-020-00394-3
https://doi.org/10.1016/j.robot.2023.104387
https://doi.org/10.1016/j.robot.2023.104387
https://doi.org/10.1109/ETI4.051663.2021.9619354
https://doi.org/10.1109/WoWMoM54355.2022.00026
https://doi.org/10.1109/WoWMoM54355.2022.00026
https://doi.org/10.1109/ICRAI47710.2019.8967388
https://doi.org/10.1016/j.ress.2021.107649
http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
https://doi.org/10.1016/j.eswa.2021.114572
https://doi.org/10.1007/s11227-022-04741-8
https://doi.org/10.1007/s11227-022-04741-8
https://doi.org/10.5220/0011086000003194
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://www-verimag.imag.fr/TR/TR-2018-5.pdf
https://www-verimag.imag.fr/TR/TR-2018-5.pdf
https://github.com/hakimuga/Resulted_Orchestration_Bundles
https://cps4eu.eu
http://www.foceta-project.eu
http://www.foceta-project.eu

1236 A. Baouya et al.

64. CITADEL (2021–2023) Critical infrastructure protection using adaptive MILS. http://www.citadel-
project.org

65. CEA List (2019) SensiNact Gateway. Accessed 17 Jan 2020 from https://wiki.eclipse.org/SensiNact
66. Abdelhakim Baouya, Djamal Bennouar, Ait Mohamed Otmane, Samir Ouchani (2015) A quantitative

verification framework of sysml activity diagrams under time constraints. Exp Syst Appl 42(21):7493–
7510

67. Bliudze S, Sifakis J (2008) The algebra of connectors-structuring interaction in BIP. IEEE Trans
Comput 57(10):1315–1330. https://doi.org/10.1109/TC.2008.26

68. Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance
sampling. In: Ed B, Kim GL (eds) Computer aided verification. Springer, Berlin, pp 223–235

69. Hérault T, Lassaigne R, Magniette F, Peyronnet S (2004) Approximate probabilistic model checking.
In: Verification, model checking, and abstract interpretation. Springer, Berlin, pp 73–84

70. Dellabani M, Combaz J, Bensalem S, Bozga M (2019). Local planning semantics: a semantics for
distributed real-time systems. https://doi.org/10.4230/LITES-v006-i001-a001

71. Giannopoulou G et al DOL-BIP-critical: a toolchain for rigorous design and implementation of mixed-
criticality multi-core systems. http://link.springer.com/10.1007/s10617-018-9206-3

72. Robotnik (2020) Json file libraries for robot communication. https://github.com/hakimuga/Robotnik-
JSON-Files

73. ROS.org. Ros - stage. 2012. http://wiki.ros.org/stage
74. ROS.org. Ros - rviz. 2012. http://wiki.ros.org/rviz

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Abdelhakim Baouya1 · Salim Chehida2 · Saddek Bensalem2 ·
Levent Gürgen3 · Richard Nicholson4 ·Miquel Cantero5 ·Mario Diaznava6 ·
Enrico Ferrera7

Salim Chehida
salim.chehida@univ-grenoble-alpes.fr

Saddek Bensalem
saddek.bensalem@univ-grenoble-alpes.fr

Levent Gürgen
levent@kentyou.com

Richard Nicholson
Richard.Nicholson64@protonmail.com

Miquel Cantero
mcantero@robotnik.es

Mario Diaznava
mario.diaznava@st.com

Enrico Ferrera
enrico.ferrera@linksfoundation.com

1 CNRS, UT2, IRIT, Université de Toulouse, Toulouse, France

123

http://www.citadel-project.org
http://www.citadel-project.org
https://wiki.eclipse.org/SensiNact
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.4230/LITES-v006-i001-a001
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10617-018-9206-3
https://github.com/hakimuga/Robotnik-JSON-Files
https://github.com/hakimuga/Robotnik-JSON-Files
http://wiki.ros.org/stage
http://wiki.ros.org/rviz

Deploying warehouse robots with confidence... 1237

2 VERIMAG, Université Grenoble Alpes, Grenoble, France

3 Kentyou, Grenoble, France

4 Amazon Web Services (AWS), London, UK

5 Robotnik Automation, Valencia, Spain

6 STMicroelectronics, Grenoble, France

7 LINKS Foundation, Turin, Italy

123

	Deploying warehouse robots with confidence: the BRAIN-IoT framework's functional assurance
	Abstract
	1 Introduction
	2 Related Work
	3 Modelling and verification artefact of BRAIN-IoT framework
	3.1 PIM
	3.2 PDM and PSM
	3.2.1 Hardware platform
	3.2.2 Software platform view
	3.2.3 Architectural view

	4 Background on BIP component formalism
	5 Model transformation
	5.1 BIP models to Java code by example
	5.2 Deployment of Java code at EventBus level

	6 From modelling to simulation of Robots Orchestration system
	6.1 Robots Orchestration scenario
	6.2 Robots Orchestration model
	6.3 Verification and analysis of compliance with requirements
	6.4 Validation at PSM level

	7 Conclusion
	References

