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Abstract
This paper proposes a robust optimization of eight chaotic maps: Logistics, Sine, 
Gauss, Circle, Tent, Chebyshev, Singer, and Piecewise Maps, for superior image 
encryption. The proposed model consists of two main processes: chaotic confusion 
and pixel diffusion. In the chaotic confusion process, the positions of the image’s 
pixels are permuted with the chaotic maps, where the initial condition and the control 
parameters represent the confusion key. Firstly, the confusion process was performed 
using the eight chaotic maps without optimization. Then nine metaheuristic 
optimizers, which are the genetic algorithm, particle swarm optimizations, whale 
optimization algorithm, dragonfly algorithm, grey wolf optimizer, moth-flame 
optimizer, sine cosine algorithm, multi-verse optimizer, and ant-lion optimizer, 
have been used to fine-tune the control parameters of the eight chaotic maps. 
Then the image’s pixel values are changed using the diffusion function in the pixel 
diffusion process. Multiple performance metrics, such as entropy, histogram, cross-
correlation, computation time analysis, the number of pixels change rate (NPCR), 
unified average changing intensity (UACI), noise attack, data loss, and key analysis 
metrics, are utilized to evaluate the proposed model. The results demonstrate that the 
encryption algorithms based on the eight optimized chaotic maps are more resistant 
to differential attacks than those without optimization. Furthermore, the optimized 
Gauss chaotic map is the most computationally efficient, while the chaotic circle 
map has the most robust key. The careful adjustment of initial conditions and control 
parameters empowers the chaotic maps to create encryption keys with greater 
randomness and complexity, thereby increasing the security level of the encryption 
scheme. Experimental analysis indicates that the correlation coefficient values of 
images encrypted with the proposed scheme are nearly zero, the histogram of the 
encrypted images is uniform, the execution time of 0.1556 s, the key space of 10^80, 
NPCR of 99.63%, UACI of 32.92%, and entropy of 7.997. Moreover, the analysis 
of noise and cropping attacks, along with the comparison with other algorithms, 
demonstrate the efficiency and robustness of the proposed algorithm.
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1  Introduction

Due to the rapid progress in smart multimedia devices and communication 
technologies, securing multimedia data during the transmission process from sender 
to receiver is extremely critical in digital communication. For this reason, encryption 
and its applications are critical for improving security standards. Images always 
have a high value among all other multimedia types due to their visual impact [1]. 
Images are used to communicate information in various industries, including but not 
limited to medical, military, aerospace, banking, and education; therefore, they must 
be protected from unauthorized access [2]. The growing demand for robust image 
encryption systems has emerged as a consequence of the increased need for the 
Internet of Things and technological advancements [3]. Image encryption is mainly 
composed of two phases: confusion and diffusion. The pixels are shuffled throughout 
the confusion stage [4], while the pixel values are changed during the diffusion stage 
[5]. An efficient image encryption method includes treating an image as a stream of 
bits and then encrypting this stream utilizing traditional encryption methods like the 
Advanced Encryption Standard (AES), the International Data Encryption Algorithm 
(IDEA), and the Triple Data Encryption Algorithm (TDEA). These methods suffer 
from a strong  correlation between neighbouring  pixels and redundant data [6, 7]. 
As a result, different encryption approaches based on various technologies have 
been proposed to provide better security to images [8], such as frequency domain 
transformation [9], chaos theory [10], Deoxyribonucleic Acid (DNA) coding 
[11], and compressive sensing [12, 13]. One of the most well-known approaches 
is using chaotic maps with image encryption. Chaos-based image encryption 
algorithms provide robust results in terms of complexity, security, and speed due 
to their characteristics, such as pseudo-randomness, ergodicity, non-periodicity, and 
sensitivity to initial conditions. [14]. Due to the sensitivity of chaotic maps to initial 
conditions, the control parameters and initial conditions must be carefully selected. 
Otherwise, the results will be unsatisfactory, the secret keys can be predicted, and 
unauthorized individuals can access data [15]. Metaheuristics techniques have 
been used to optimize appropriate control parameters to overcome this problem. 
Figure 1 presents the block diagram of the proposed chaos-based image encryption 
algorithm. The main contributions of the proposed work are:

(1)	 Presenting a novel approach utilizing metaheuristic optimization algorithms to 
enhance the security and robustness of image encryption based on chaotic maps, 
leveraging the chaotic maps as objective functions to improve the optimization 
process through the inherent complexity and randomness of chaotic sequences.

(2)	 Extensive investigation and fine-tuning of control parameters for eight different 
chaotic maps using nine metaheuristic optimizers are conducted, resulting in 
the generation of highly secure encryption keys with improved randomness and 
complexity.
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(3)	 Proposing a novel confusion process using optimized chaotic sequences to 
permute image pixels, thereby strengthening the encryption scheme and 
introducing an additional layer of security.

(4)	 Conducting a comparison between encryption methods with and without 
optimization, the potential of metaheuristic optimizers is evaluated, and the 
most effective technique in terms of security and robustness is identified.

(5)	 Introducing a robust image security algorithm that effectively resists various 
attacks and distortions, focusing on mitigating the impact of periodic noise, thus 
enhancing image confidentiality and integrity.

(6)	 Evaluating the performance of the eight proposed chaotic-based image encryption 
methods on different standardized images demonstrates the applicability and 
effectiveness of our approach across various image types and characteristics.

The rest of this paper is structured as follows. Section  2 presents an overview 
of related work. Section 3 illustrates chaotic maps. Section 4 demonstrates the dif-
ferent metaheuristic optimizers that are used in this paper. Section  5 presents the 
model proposed. Section  6 introduces our proposed model’s performance metrics 
and experimental results. Finally, the conclusions are shown in Sect. 7.

2 � Related work

Mozaffari [16] has designed an image encryption system relying on bitplane 
decomposition and a local binary pattern technique, which converts the plain grayscale 
image to a group of binary images. After that, pixel substitution and permutation are 
performed using a genetic algorithm. Finally, the scrambled bitplanes are merged to 
create an encrypted image. This technology enhanced the encryption speed and allowed 
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Fig. 1   Structure diagram of the proposed system



144	 S. M. Sameh et al.

1 3

it to be used in real-time applications. Talhaoui et al. [17] have suggested an approach 
to encrypting images relying on the Bülban chaotic map, which produces only a few 
random columns and rows. Then the substitution-permutation process was used for 
pixels, and a circular shift was used for rows and columns. At last, the XOR operation 
and the modulo function are used together to mask the values of the pixels and avoid 
information leakage. This approach proved to be secure and fast for real-time image 
processing. Saravanan et  al. [18] have proposed an optimized Hybrid Chaotic Map 
(HCM) approach for image encryption, integrating 2DLCM and PWLCM. Parameter 
optimization using the Chaos-Induced Whale Optimization Algorithm (CI-WOA) 
enhances performance and ensures efficient and secure image transmission. Rezaei et 
al. [19] have presented an evolutionary-based image encryption method using a two-
dimensional Henon chaotic map. The parameters of the chaotic map, including α and β, 
are fine-tuned using the metaheuristic Imperialist Competitive Algorithm (ICA), which 
ensures that the generated pseudorandom numbers are unique, enhancing the security 
of the encryption process. Experimental results demonstrate the effectiveness of the 
proposed method in protecting image content against common attacks. Shahna et al. 
[20] have introduced a system for encrypting images relying on a symmetric key, cyclic 
shift operation, scan method, and chaotic map. Diffusion and confusion processes 
are implemented using the Henon chaotic map and Hilbert curve. Image scrambling 
involves both bit-level and pixel-level permutations. From the double-scrambled 
image, the final encrypted image is produced. The proposed technique provides high 
security. Ghazvini et  al. [21] have suggested a hybrid image encryption technique 
based on chaotic maps and a genetic algorithm. During the confusion phase, Chen’s 
map of chaos was used, while the logistic-sine map was used during the diffusion 
phase. The encrypted image is then optimized using a genetic algorithm. The proposed 
technique is resistant to security attacks. Noshadian et al. [22] have performed an image 
encryption scheme that employs a chaotic logistic function to change the value of 
the pixels and a genetic algorithm to decrease the correlation among adjacent pixels. 
Wang et al. [23] have developed a scheme for encrypting images that relies on logistic 
maps, DNA sequences, and multi-objective particle swarm optimization. The chaotic 
logistic map and DNA encoding produce random DNA mask images. Then, particle 
swarm optimization is used to find the best balance between entropy and correlation. 
The suggested scheme has good security and is resistant to security attacks. Wang 
et  al. [24] have proposed an image encryption method that uses particle swarm 
optimization (PSO) to select the parameters and initial values of chaotic systems for 
generating a high-chaotic sequence. The proposed approach uses the chaotic system 
parameters and initial values as particles, making it more computationally efficient 
for real-time applications. The encryption algorithm includes key selection, chaotic 
sequence pre-processing, block scrambling, expansion, confusion, and diffusion, 
with the PSO-optimized chaotic sequence used for scrambling and diffusion. 
Experimental results demonstrate that the proposed method is secure. Ferdush et  al. 
[25] have proposed a method for encrypting images that uses a logistic map, a genetic 
algorithm, and particle swarm optimization. The logistic map is first used to create the 
initial population. Then, the genetic algorithm is used to encrypt the image, and the 
particle swarm optimizer is used to make the best-encrypted image. The entropy of 
the proposed method is high. Alghafis et  al. [26] have utilized an image encryption 
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technique based on chaotic sequencing and DNA. Random sequences are generated 
using logistic, Henon, and Lorenz chaotic systems. Then, pixel confusion and diffusion 
are created using DNA computations in combination with the chaotic systems. The 
security tests revealed that this algorithm is well-suited to encrypt digital images and 
can also protect the privacy of other digital contents, such as audio and video files. 
Latha et  al. [27] proposed an optimized two-dimensional (2D) chaotic mapping for 
image encryption. A metaheuristic fitness-based Sea Lion optimization algorithm is 
used to fine-tune the initial parameters of the chaotic system. This algorithm tries to 
maximize the information entropy model for chaotic key generation, which leads to the 
best initial parameters. The experimental results demonstrate that the proposed model 
has high entropy. Kumar et al. [28] have proposed an algorithm to encrypt images by 
combining the Henon map with a one-dimensional elementary cellular automaton. The 
diffusion process uses an elementary cellular automaton, and pseudo-random numbers 
are generated using the Henon map. The proposed algorithm is resistant to statistical 
attacks. Babaei et al. [29] have developed a method for encrypting images using DNA, 
a chaotic map, and recursive cellular automata (RCA). The logistic map is utilized for 
a cellular shift of the image rows and columns during the permutation phase. The RCA 
and DNA are then utilized to alter the pixel intensity during the diffusion phase. The 
proposed algorithm is secure and has good entropy. Ghazanfaripour et  al. [30] have 
presented an approach for encrypting images based on hill diffusion, column-row 
diffusion, and a 3D scale-invariant modular chaotic map. Column-row diffusion and hill 
diffusion are used for adjacency pixel mixing in the plain image and pixel substitution. 
Pixel permutation is done by utilizing 3D scale-invariant chaotic maps. The proposed 
algorithm has a large key space but takes a long time to execute.

3 � Chaotic maps

Chaotic maps are subsets of nonlinear dynamical methods like noise signals but are 
much more specific [32]. One of the essential things about chaotic maps is that they are 
very sensitive to initial conditions, which indicates that a slight change in the starting 
value will significantly affect the output, making them suitable for encrypting images 
[33, 34]. In this paper, eight chaotic maps have been studied, and their properties have 
been analysed in order to produce chaotic sequences:

3.1 � Logistic map

The following equation has been utilized to define the logistic map:

where x is the chaotic sequence in the range [0 1], n is the iteration number, and  a 
is the control parameter having values in the range [0 4] [35], while the system is 
chaotic when a , ϵ [3.5699456, 4] [36].

(1)xn+1 = axn
(
1 − xn

)
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3.2 � Sine map

The sine map has been calculated using the following mathematical definition:

where x is the chaotic sequence in the range [0 1], n is the iteration number, and  a is 
the control parameter with values in the range [0 1] [37], while the system is chaotic 
when a ϵ [0.87,1] [38].

3.3 � Gauss map

Gauss map is also known as mouse map; the gauss map is mathematically formulated 
as [39]:

where, x is the chaotic sequence in the range [0 1], and n is the iteration number 
[40].

3.4 � Circle map

Circle map is one-dimensional chaotic map, and is mathematically formulated as [41]:

where x is the chaotic sequence in the range [0 1], It has two parameters a and b, the 
power of non—linearity is represented by parameter a, while the externally applied 
frequency is represented by parameter b [42].

3.5 � Tent map

The following mathematical definition gives the equation of the tent map:

where x is the chaotic sequence in the range [0 1], n is the number of iterations, and  
r is the control parameter with values in the range [0 2], while the system is chaotic 
when r ϵ [1.4, 2] [43].

(2)xn+1 = asin
(
�xn

)

(3)xn+1 =

⎧
⎪⎨⎪⎩

10

1

mod
�
xn, 1

� Otherwise
.

(4)Xi+1 = mod
(
xi + b −

(
a

2�

)
sin

(
2�xi

)
, 1
)

(5)Xn+1 =

{
rxn if 0 < xn < 0.5

r
(
1 − xn

)
if 0.5 ≤ xn < 1
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3.6 � Chebyshev map

The following formula describes the Chebyshev map:

where x is the chaotic sequence in the range [−1 1],  n is the iteration number, and  
a is the control parameter with values in the range [0 2], while the system is chaotic 
when a ϵ [1 2] [44].

3.7 � Singer map

The singer map is mathematically formulated as:

where x is the chaotic sequence in the range [0 1],  n is the iteration number, and  � 
is the control parameter with values in the range [0 2], while the system is chaotic 
when � ϵ [0.9 1.08] [45].

3.8 � Piecewise map

The piecewise map is calculated using the following equation:

where x is the chaotic sequence in the range [0 1], n is the number of iterations, and  
a is the control parameter with values in the range [0 2], while the system is chaotic 
when a ϵ [1.4, 2] [46]. Figure 2 shows the bifurcation diagram of the chaotic maps, 
where horizontal axis denotes the parameter r and vertical axis denotes x and each 
trajectory of the map about x with a fixed x is plotted as dots on the figure.

4 � Metaheuristics optimizers

Meta-heuristic optimizers are generally used to obtain optimal solutions. In this 
paper, the chaotic maps’ initial conditions and control parameters are fine-tuned 
using the following meta-heuristic optimizers:

(6)xn+1 = cos
(
acos−1

(
xn
)
)

(7)xn+1 = �
(
7.86xn − 23.31x2

n
+ 28.75x3

n
− 13, 3x4

n

)

(8)xi+1 =

⎧
⎪⎪⎨⎪⎪⎩

xn

a
if 0 ≤ xn ≤ a

xn−a

0⋅5−a
if a ≤ xn < 0.5

1−a−xn

0⋅5−a
if 0.5 < xn < 1 − a

1−xn

a
if 1 − a ≤ xn < 1
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4.1 � Genetic algorithm (GA)

GA belongs to the wider family of evolutionary algorithms (EA). It involves four 
steps: selection, mutation, crossover, and inheritance [47, 48]. To simulate the 
evolution process, GA generates several solutions called population [49]. The initial 
population is represented using the following equation:

GA uses a fitness evaluation function to determine the fitness value of each 
solution:

where, x represents the chromosome, n indicates the size of chromosomes 
population, i is the number of chromosomes, and Pi is the selection probability 
of the ith chromosome. Accordingly, the crossover and mutation operators have 
been applied to the best solutions to generate a new population. It chooses the best 
chromosomes to crossover exactly as it does in nature [50]. Random individuals’ 
random genes are changing using mutation. The mutation is used to avoid local 
optimum solutions [51].

(9)x =
{
x1, x2, x3,… , xn

}

(10)f
(
x1
)
, f
(
x2
)
, f
(
x3
)
,……… , f

(
xn
)

(11)Pi =
f
�
xi
�

∑N

i=1
f
�
xi
�

Fig. 2   The bifurcation diagram of a Logistic map, b Sine map, c Gauss map, d Circle map, e Tent map, f 
Chebyshev map, g Singer map, and h Piecewis map
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4.2 � Particle swarm optimization

Eberhart and Kennedy proposed PSO at the end of the 20th century based on their 
research about bird foraging and migration behaviour [52]. Each group member’s 
unique perception ability allows them to recognize the best local and global 
individual positions and adjust their next behavior accordingly [53]. Individuals 
are viewed as particles in a multi-dimensional search space in the algorithm, 
with each particle representing a potential solution to the optimization problem. 
The particle characteristics are described using four parameters: velocity, fitness 
value, and position [54]. The fitness function determines the fitness value. 
The particle changes its moving direction and distance independently based 
on the optimal global fitness value and reaches the best solution by iteration 
[55]. The population of n particles exists in a D-dimensional space represented 
by the following equations:

The following equations express the  location, velocity and position of the ith 
particle [56]:

where, Xi is the current location, Vi is the current velocity, Pbest is the best local 
position, and gbest is the best global position. The velocity and position are updated 
as follows:

where, c1 represents the cognitive acceleration coefficient, and c2 is the social 
acceleration coefficients.rticles tend to move towardgood areas in the search space 
in response to information spreadingthrough the swarm. A particle moves to a new 
position calculatedby the velocity updated at each time step tby Eq. (3). Equation (4) 
is then used to calculate the new velocity as the sum of the previou

(12)x =
{
x1, x2,… , xn

}

(13)xi =
[
xi1, xi2,… , xiM

]

(14)Xi =
(
x
i1
, x

i2
,… , x

iD

)

(15)Vi =
(
v
i1
, v

i2
,… , v

iD

)

(16)Pbest =
(
p
i1
, p

i2
,… , p

iD

)

(17)gbest =
(
g
i1
, g

i2
,… , g

iD

)

(18)
�
id(t + 1) = �

id(t) + c1 × Rand ×
[
Pbest

id(t) − x
id(t)

]
+ c2 × Rand

×
[
Gbest

d(t) − x
id(t)

]

(19)xid(t + 1) = xid(t) + �id(t + 1)
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4.3 � Whale optimization algorithm

Mirjalili presented WOA for solving and optimizing problems [57]. This algorithm 
was inspired by the bubble-net attacking technique used by humpback whales [58]. 
As a result, the WOA is often used in many fields, such as image encryption, energy, 
structural optimization, management, and so on [59]. Whales have a unique way of 
chasing a group of krill or small fish in which they build a nine-shaped net with 
bubbles that capture the fish, allowing them to easily eat the fish. This technique is 
known as “spiral bubble-net feeding” [60]. The WOA consists of the following three 
stages:

(I)	 Encircling prey

Whales use the following formulas to encircle A group of krill or small fish:

where X⃗ represents the position vector, ����⃗X∗ represents the position vector of the best 
solution, t represents the current iteration, A and C represent coefficient vectors, a is 
reduced linearly from 2 to 0, and r is a random vector in the range of [0, 1].

	 (II)	 Bubble-net attacking method:

The mathematical model for exploitation phase is as follows:

where L denotes a random number between − 1 and 1, b denotes a constant that 
specifies the logarithmic shape and is the distance between the prey and the whale. 
Assume that the whale will follow a shrinking mechanism or a spiral path, with a 
50% chance of each [61]. The following formula is used to represent this:

where P is a random number in the range [0, 1].

(20)D⃗ =
|||C⃗ ⋅

���⃗X∗(t) − X⃗(t)
|||

(21)X⃗(t + 1) = ���⃗X∗ − A⃗ ⋅ D⃗

(22)A = 2ar − a

(23)C = 2r

(24)X⃗(t + 1) = D⃗
�

⋅ ebl ⋅ cos (2𝜋L) + ���⃗X∗(t)

(25)D⃗
�

= ||x⃗∗ − x⃗(t)||

(26)X⃗(t + 1) =

[
���⃗X* − A⃗ ⋅ D⃗ (if ) P < 0.5

D⃗’
⋅ ebl ⋅ cos (2𝜋L) + ���⃗X*(t) (if ) P ≥ 0.5

]
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	 (III)	 Search for prey

The mathematical model for Exploration phase is as follows:

where X⃗rand is position vector selected randomly from the current population.

4.4 � Dragonfly algorithm

DA is a randomized search optimizer mimicking a dragonfly swarm’s flying 
movement [62, 63]. Dragonfly swarms follow the following rules: separation, 
alignment, cohesion, attraction, and deflection [64, 65]:

(I)	 Separation (S) The swarms are separated from other individuals in this step, 
avoiding clashes with neighbours [65]. Separation is calculated using the 
following equation:

Where X represents the current individual’s position,  Xj represents the position 
of j-th neighbouring, and N represents the number of neighbouring individuals.

	 (II)	 Alignment (A) This phase describes the process of a dragonfly’s speed 
adjusting to the speed vectors of other nearby dragonflies in the swarm 
[66]. This phase is expressed using the following equation:

Where vj is the velocity of the close individual (j).

	 (III)	 Cohesion (C) This phase refers to the swarm’s attraction to the centre of the 
swarm’s team [67]. The cohesion is calculated using the following equation:

Where Xj denotes the location of the jth close individual, and X denotes the 
location of the current individual.

(27)D⃗ =
|||C⃗ ⋅ X⃗rand − X⃗

|||

(28)X⃗(t + 1) = X⃗rand − A⃗ ⋅ D⃗

(29)si = −

N∑
j=1

X − Xj

(30)Ai =

∑N

j=1
vj

N

(31)ci =

∑N

j=1
Xj

N
− X
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	 (IV)	 Attraction This phase shows the attraction of swarms toward the food origin 
[68]. The attraction is calculated using the following equation:

Where, x+ denotes the position of the food source, and X denotes the current 
individual’s location.

(V)	 Distraction In this phase, the dragonfly is diverted from the enemy [69]. The 
distraction is computed using the following equation:

Where, X− denotes the location of the enemy, and X denotes the current individual’s 
location. To locate the best solution to a specified optimization problem, DA assigns 
a step vector and a position vector to every search agent in the swarm [71]. The step 
vector is calculated using the following equation:

The position vector is updated using the following equation:

where s, a, c, f , ande  denote the weighting factors for separation, alignment, 
cohesion, attraction, and distraction, and t denotes the current iteration.

4.5 � Grey wolf optimization

GWO is an algorithm inspired by swarm intelligence [72], and it is based on the 
leadership hierarchy and hunting behaviour of grey wolves in their natural habitat 
[73]. The leadership hierarchy in the model simulation is divided into four wolf 
types [74]: alpha (the highest level), beta, delta, and omega (the lowest level). 
The first level begins with the best solution in alpha and progresses downward in 
order [75, 76]. The steps of GWO are as follows:

(I)	 Encircling prey The following equations are used to represent the encircling 
process [76]:

where A⃗ denotes random vectors, XP denotes the prey’s position vector, t denotes 
the current iteration, victor C⃗ has random range of [0 2], and X⃗ denotes grey wolf’s 

(32)Fi = X+ − X

(33)Ei = X− + X

(34)ΔXt+1 =
(
sSi + aAi + cCi + fFi+eEi

)
+ �ΔXt

(35)Xt+1 = Xt + ΔXt+1

(36)D⃗ =
|||C⃗ ⋅

����⃗XP(t) − X⃗(t)
|||.

(37)X⃗(t + 1) = ���⃗XP − A⃗ ⋅ D⃗
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position vector. The vectors of coefficients A⃗ and C⃗ are obtained with the following 
equations:

	 (II)	 Hunting is a behavior driven by alpha, while beta and delta might 
occasionally play a role [77]. The following formulas demonstrate hunting 
behavior:

Where X⃗𝛼 , X⃗𝛽 , & X⃗𝛿 denote the first three best solutions at iteration t.

	 (III)	 Attacking Prey When the prey stops moving, the hunting process ends, the 
wolves attack, and the values of �⃗a and �⃗A are decreased mathematically [78].

	 (IV)	 Search for prey The search phase mainly uses the α, β, and δ positions. Grey 
wolves look for prey individually before banding together to attack it. To 
model divergence mathematically [79], the �⃗A  is a random value in which 
if �⃗A  > 1, the wolves will diverge, and if �⃗A < 1, the wolves will converge 
[80].

4.6 � Moth‑flame optimization

MFO is an algorithm inspired by swarm intelligence [82]. Moreover, it is based on the 
moths’ transverse orientation navigation method [83]. In MFO, individuals are called 

(38)A⃗ = 2a⃗ ⋅ ��⃗r1

(39)C⃗ = 2 ⋅ ��⃗r2

(40)����⃗D𝛼 =
||| ���⃗C1 ⋅ X⃗𝛼 − X⃗

|||

(41)D⃗𝛽 =
||| ���⃗C2 ⋅ X⃗B − X⃗

|||

(42)D⃗𝛿 =
|||C⃗3 ⋅ X⃗𝛿 − X⃗

|||

(43)X⃗1 = X⃗𝛼 − A⃗1 ⋅

(
D⃗𝛼

)

(44)X⃗2 = X⃗𝛽 − A⃗2 ⋅

(
D⃗𝛽

)

(45)X⃗3 = X⃗𝛿 − A⃗3 ⋅

(
D⃗𝛿

)

(46)X⃗(t + 1) =
X⃗1 + X⃗2 + X⃗3

3
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moths (M), a population is a group of moths, and the best solution for each moth is 
called flame (F) [84]. Only one flame for each moth is considered the best solution. 
This flame will be updated if a better solution arises during the iterations [85]. Moths 
and flames are generally represented as n * d matrices, where m denotes the number of 
moths and d denotes the number of dimensions [86]. Following is the moth population 
matrix:

where N denotes the moth population, m1,m2,⋯ ,mn denotes n moths. The moth’s 
fitness is calculated once per iteration and saved in a vector called (OM) [87]. 
Following is the moth’s fitness vector:

The following is the flame matrix (F) and its fitness vector (OF):

where F denotes flame set, f1, f2,⋯ , fn denotes n flames. MFO algorithm is 
composed of the 4 phases listed below [88]:

In the first phase, the moth’s location is updated. The equation to find the best 
optimal value is given as:

where Mi denotes the ith moth, Fj denotes the jth Flame, and S denotes the moth’s 
spiral function.

In the second phase, the moth’s spiral function is calculated using the following 
equations:

(47)M =

⎡
⎢⎢⎢⎣

m1,1 m1,2 ⋯ m1,d

m2,1 m2,2 ⋯ m2,d

⋮ ⋮ ⋱ ⋮

mn,1 mn,2 ⋯ mn,d

⎤
⎥⎥⎥⎦

(48)OM =

⎡
⎢⎢⎢⎣

OM1

OM2

OM3

OMN

⎤
⎥⎥⎥⎦

(49)F =

⎡⎢⎢⎢⎣

f1,1 f1,2 ⋯ f1,d
f2,1 f2,2 ⋯ f2,d
⋮ ⋮ ⋱ ⋮

fn,1 fn,2 ⋯ fn,d

⎤⎥⎥⎥⎦
.

(50)OF =

⎡⎢⎢⎢⎣

Of1
Of2
Of3
Ofn

⎤⎥⎥⎥⎦

(51)Mi = S
(
Mi,Fj

)

(52)S
(
Mi,Fj

)
= Di ∗ ebt ∗ cos (2�t) + Fj
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where Di denotes the distance from the ith moth to the jth Flame, t denotes a random 
value between − 1 and 1, and b denotes the spiral shape factor.

In the third phase, the number of flames is updated using the attenuation function 
[89, 90]. The attenuation function is defined using the following equation:

where R denotes the current number of iterations, T denotes the maximum iterations 
number, and N denotes the maximum flame number.

In the fourth phase, the best moth is obtained if the termination criterion is met. 
[91].

4.7 � Sine cosine algorithm

SCA is a population-based optimizer that starts with a randomly generated 
population [92, 93]. The location of solutions is updated using sine and cosine 
equations [94]. The optimization process uses the exploration phase to find the 
most desirable location in the search area and the exploitation phase to find the best 
solution in the proposed region [95]. SCA is expressed as follows:

where xt
i
 denotes the current solution’s position, r1 denotes a control parameter 

responsible for achieving the balance between exploitation and exploration, r2 , and 
r3 denote random values, and Pt

i
 denotes the target solution. The two SCA equatns 

are combined into a single Equation:

r1, r2, r3, and r4 are updated using the following equations:

(53)Di =
|||Fj −Mi

|||

(54)Nf = round
(
N − R ∗

N − 1

T

)

(55)xt+1
i

= xt
i
+ r1 ∗

(
sin

(
r2
))

∗ ||r3Pt
i
− xt

i
||

(56)xt+1
i

= xt
i
+ r1 ∗

(
cos

(
r2
))

∗ ||r3Pt
i
− xt

i
||

(57)xt
i
=

[
xt+1
i

= xt
i
+ r1 ∗

(
sin

(
r2
))

∗
|||r3Pt

i
− xt

i

||| (if )r4 < 0.5

xt
+1

i
= xt

i
+ r1 ∗

(
cos

(
r2
))

∗
|||r3Pt

i
− xt

i

||| (if )r4 ≥ 0.5

]
.

(58)r1 = a − t
a

T

(59)r2 = 2 ∗ � ∗ rand()

(60)r3 = 2 ∗ rand()
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where a denotes a constant, T  denotes the maximum number of iterations, r2 denotes 
the next solution’s movement direction, r3 is utilized to identify a random weight for 
the destination, and r4 is utilized to toggle between sine and cosine functions [96].

4.8 � Multi verse optimization

MVO is a population-based optimizer inspired by the big bang theory and the multi-
verse theory [97], which starts with a randomly generated population [98]. MVO 
algorithm comprises three main principles: White hole, Black hole, and Wormhole 
[99, 100]. The search space is explored by white holes and black holes, while the 
search space is exploited by warm holes [101]. Individual development for each 
population can be conducted using one of the theories concerning the existence 
of multiple universes [102]. For each iteration, every solution is referred to as a 
“universe” [103]. The universes are sorted depending on the inflation rates, and 
one of them is picked to have a white hole using the roulette wheel [104]. MVO is 
expressed mathematically as follows:

where d denotes the number of the parameters, n denotes the universe’s number, 
XJ
i
 denotes the jth parameter of the ith universe, XJ

k
 denotes the jth parameter of the 

kth universe, r1 denotes a random value with range [0 1], and NI
(
Ui

)
 denotes the 

ith universe’s normalized swell rate. An additional operation used to create local 
modifications for each universe is outlined below [105]:

where xj denotes the jth parameter of the best universe, ub denotes the upper limit, 
lb  denotes the lower limit, TDR denotes travelling distance rate, WEP denotes 

(61)r4 = rand()

(62)U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
1

1
x
2

1
⋯ x

d

1

x
1

2
x
2

2
⋯ x

d

2

⋮ ⋮ ⋱ ⋮

x1
n
x2
n
⋯ xd

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(63)XJ
i
=

{
XJ
k
, r1 < NI

(
Ui

)
XJ
i
, r1 ≥ NI

(
Ui

)
}

(64)XJ
i
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎨⎪⎩

�
xj + TDR ∗ (ub − lb) ∗ r

4
+ lb

�
, r

3
< 0.5

�
xj − TDR ∗ (ub − lb) ∗ r

4
+ lb

�
, r

3
≥ 0.5

⎫⎪⎬⎪⎭
, r

2
< WEP

XJ
i
, r

2
≥ WEP

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.
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wormhole existence probability, and r2, r3, and r4 denote random number with 
range [0 1]. The wormhole existence probability and the Travelling distance rate are 
calculated using the following equations [106]:

where WEPmax&WEPmin denotes two constantans in which 
( WEPmax = 1&WEPmin = 0.1) , t denotes iteration, tmax denotes the maximum 
iterations number, and 1∕n  denotes exploitation accuracy constant.

4.9 � Ant‑lion optimization

ALO is inspired by nature and relies on ant lion hunting mechanisms [107]. It 
simulates the intelligent behaviour of ant lions through the life cycle of larvae [108]. 
In the ALO, the roulette wheel and random walks of ants are used to eliminate local 
optima [109]. The ALO algorithm is divided into six stages, which are as follows 
[110]:

(I)	 Random walk of prey

Ants (prey) are supposed to walk randomly [111], The following cumulative sum 
equation represents the random walk:

where  Cumsum  denotes the sum,  ti denotes random walk step at the  i-th 
iteration,  T   denotes the total number of iterations, and  r(t)  denotes a random 
function, which is represented in the following equation:

A normalization of position in search space is described using Eq. (69):

where, Xt
j
 denotes the position of j-th variable at iteration t, aj and bj denote the 

minimum and maximum of random walk in the j-th variable, and ct
J
 and dt

j
 denote 

the minimum and maximum of the j-th variable at iteration t.

(65)WEP = WEPmin + t ∗

(
WEPmax −WEPmin

tmax

)

(66)(TDR) = 1 −

(
t

tmax

)1∕n

(67)x(t) =
[
0,Cumsum

(
2r
(
ti
))

− 1,… ,Cum sin (2r(T)) − 1
]

(68)r(t) =

{
1, rand(0, 1) > 0.5

0, rand(0, 1) ≤ 0.5

(69)Xt
j
=

(
Xt
j
− aj

)
×
(
dt
j
− ct

J

)

bj − aj
+ cj
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	 (II)	 Building traps

Antlion traps affect the random walk  ants [112], as shown by the following 
equations:

where Antliont
j
 represents the j-th position of the antlion at the iteration t.

	 (III)	 Setting trap

ALO selects antlions based on their fitness value using a roulette wheel to mimic 
the antlions’ hunting process [113].

	 (IV)	 Sliding of prey in a trap

Once the ants drop into the trap, the antlion tosses sand into the pit’s centre [114]. 
As a result, the following equations denote the ant’s movement:

where I denotes a factor based on the ratio of a current iteration to the number of 
total iterations.

(V)	 Catching a prey/rebuilding a trap

The following equation defines the final prey capture and repositioning of ant 
lions.

where Antt
i
 denotes the ant’s position at the t-th iteration.

	 (VI)	 Elitism rule

The ant’s position is updated based on the roulette wheel’s average and the elite 
antlion’s movement [115, 116], which is expressed using the following equation:

(70)ct
j
= Antliont

j
+ ct,

(71)dt
j
= Antliont

j
+ dt

(72)ct =
ct

I
,

(73)dt =
dt

I

(74)Antliont
j
= Antt

j
if
(
Antt

i

)
> f

(
Antliont

j

)
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where Rt
A
 represents the random walk taken by an ant across antlion picked during 

the process of the roulette wheel selection, and  Rt
E
 represents the random walk of 

the same ant across the elite antlion at the t-th iteration.

5 � Proposed algorithm

Encryption-based chaotic maps are extremely sensitive to initial conditions and 
control parameters; therefore, the generated sequence will not be chaotic if these 
parameters are not chosen precisely. The attacker could break the secret key and 
read the data. Manually picking these seed values takes a long time and is very 
tedious. As a result, metaheuristic optimizers are used to optimize these parameters. 
In this algorithm, we compare the performance of different metaheuristic optimizers 
to tune the control parameters of eight different chaotic maps.

First: Meta heuristic optimizing

Meta-heuristic optimizers are used to fine-tune the chaotic maps’ initial 
conditions and control parameters. In this paper, we compare the performance 
of nine different meta-heuristic optimizers. The basic steps of optimization are 
summarized as follows:

Step 1 Produce the initial population of individuals.
Step 2 Set the objective function, the chaotic map function, whose initial 
condition and control parameters will be tuned.
Step 3 Assessing every individual in the population using the objective function.
Step 4 A new population is formed by altering existing population solutions using 
evolutionary processes.
Step 5 The search parameter is updated continuously until it reaches the terminat-
ing criteria regarding the number of iterations.
Step 6 The algorithm will look for the best solution that meets the objective func-
tion at each iteration.
Step 7 The obtained solution is used as the chaotic map’s initial condition and 
control parameter.
Second: Chaotic level Confusion:

The original image’s pixels are permuted to decrease the correlation among 
neighbouring pixels. The basic steps of confusion are summarized as follows:

Step 1 Input the original image (I) with dimensions M*N, where M is the row 
size, and N is the column size.
Step 2 Convert the original image (I) to a 1*MN-dimensional vector (V).

(75)Antt
i
=

(
Rt
A

)
+
(
Rt
E

)
2
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Step 3 The tuned initial condition and control parameters are used to generate the 
chaotic sequence vector (x).
Step 4 The elements of the chaotic sequence vector are sorted using the following 
equation:

where so is the newly sorted chaotic sequence vector, and in is the index of the 
sorted vector.

Step 5
se the following equation to scramble the position of the original image vector 
(V):

 

Figure  3 shows a simple illustration of the chaotic level permutation process. 
Fig. 4.

Third diffusion level

The key image is used at this level to diffuse the permuted image. Following is 
a summary of the fundamental steps of the diffusion level:

Step 1 In order to obtain the diffusion vector (D), the following equation is 
iterated M*N times:

(76)[so, in] = sort(x)

(77)V2(i) = V(in(i))

(78)D(t + 1) = cos
(
p cos−1 (D(t))

1 2 3 64 7 85 9 10

0.3417 0.7602 0.6599 0.89530.8124 0.3391 0.81130.5516 0.5539 0.8944

0.8124 0.8953 0.8113 0.55390.3417 0.7602 0.55160.8944 0.6599 0.3391

4 6 8 91 2 510 3 7

Fig. 3   Chaotic level Permutation process
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Step 2: The 1*MN diffusion vector (D) is multiplied by 255, rounded off, and the 
absolute value (k) is calculated as follows:

Step 3  The obtained vector is converted from decimal to binary using 
the de2bin function, and then the bits are shifted using a one-bit circular shifting 
process.
Step 4  The shifted vector is converted from binary to decimal (R), and the 
obtained vector is combined with victor (k) using the exclusive OR operation to 
generate a key stream.
Step 5  The generated key stream is XORed with the permuted image to 
generate the encrypted image. Fig. 4 shows the block diagram of the proposed 
encrypting scheme. Algorithm 1 presents the pseudo-code for the Grey Wolf 
Optimization Algorithm with the Logistic Map. It illustrates one of the 
approaches used in our study to fine-tune the control parameters of chaotic 
maps for image encryption. It is important to note that similar procedures were 
applied to the eight chaotic maps using the nine metaheuristic optimizers. 
Integrating these optimizers with the respective chaotic maps allowed us to 
optimize their initial conditions and control parameters, enhancing the overall 
encryption process. Algorithm  2 represents the pseudo-code for the whole 
encryption process.

Algorithm 1: Grey wolf op�miza�on algorithm with logis�c map
1. Ini�alize the popula�on of grey wolves
2. while stopping criterion is not met do:
3.     for each grey wolf in the popula�on do:
4.         if fitness of the grey wolf is be�er than the current best 

then
5.          update the current best
6.           calculate the a and A values for the current grey wolf
7.               for each dimension in the search space do:
8.                        calculate the prey posi�on based on the logis�c map equa�on:

prey_posi�on = r * current_posi�on * (1 - current_posi�on)
9.              evaluate the objec�ve func�on (logis�c map equa�on) at the prey posi�on:

fitness = objec�ve_func�on(prey_posi�on)
10.                  update the posi�on of the grey wolf using the prey posi�on and the grey 
wolf's posi�on:

new_posi�on = prey_posi�on + A * (prey_posi�on - current_posi�on) * rand()
11.                end for
12.  end for
13.  update the explora�on and exploita�on parameters:

a = a - a * itera�on / maximum_itera�ons
A = 2 * A * (1 - itera�on / maximum_itera�ons)

14. end while
15. return the best solu�on found

(79)k = abs(round(D∗255)
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6 � Results

6.1 � Lyapunov exponent

The Lyapunov exponent (LE) provides a numerical measure for assessing the 
sensitivity of control parameters in chaotic maps. Its mathematical representation is 
as follows:
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where f ′
(
xi
)
 represents the derivative function of the function f(x), f(x) represents 

a 1D chaotic map. The parameter n denotes the number of iterations of the chaotic 
map. Table  1 shows Lyapunov exponents for optimized chaotic maps using 
metaheuristic optimizers compared to non-optimized maps. A higher Lyapunov 
exponent indicates stronger chaotic behaviour. The optimized chaotic maps have 
significantly higher (LE) values, indicating increased chaos. Notably, the optimized 
maps have higher (LE) values than the non-optimized ones, demonstrating the 
effectiveness of optimization in enhancing chaotic behaviour.

6.2 � Performance metrics

The following performance metrics are used to measure and compare the 
performance of encryption algorithms based on eight optimized chaotic maps:

6.2.1 � Statistical attack analysis

6.2.1.1  Histogram analysis  It represents the frequency of an image’s pixel distribu-
tion. The histograms of the primary image are non-uniform. In contrast, the histo-
grams of encrypted images should be uniform to resist statistical attacks. The his-
tograms of plain and encrypted images are shown in Fig. 5. It is noticeable that the 
histogram distributions of the plain images are unequal. In contrast, the histogram 
distributions of the encrypted images using encryption algorithms based on the eight 
chaotic maps are uniform, indicating that each chaotic map resists statistical attacks.

6.2.1.2  Entropy analysis  Entropy measures the randomisation of the encrypted 
image’s pixel intensities. An encryption algorithm with an entropy value of approxi-

(80)LE = lim
n→∞

1

n

n−1∑
n=0

ln
|||f

�
(
xi
)|||

Table 1   Lyapunov exponents

Logistics Sine Gauss Circle Tent Chebyshev Singer Piecewise

GA 1290.116 1354.917 1351.267 1237.972 1343.830 1408.528 1355.651 1351.400
WO 1186.008 1358.774 1351.381 1244.888 1339.396 1424.119 1355.947 1351.842
PSO 1290.704 1354.497 1347.615 1236.283 1352.456 1423.036 1356.638 1353.648
DA 1239.075 1358.180 1349.777 1243.109 1342.835 1414.821 1356.192 1352.447
GWO 1231.094 1356.368 1348.375 1238.377 1341.455 1391.594 1356.458 1350.004
MFO 1224.998 1351.094 1349.988 1238.208 1341.254 1406.309 1356.204 1352.375
SCA 1266.729 1357.351 1355.395 1238.211 1336.504 1420.995 1354.152 1356.028
MVO 1181.129 1358.977 1351.881 1238.246 1347.997 1424.709 1353.937 1349.570
ALO 1185.169 1350.651 1349.690 1241.536 1352.923 1430.378 1357.682 1353.648
No
Optimizer

1040.021 1151.292 921.024 1207.726 1261.153 0.283 1289.922 1220.607
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mately 8 is a robust algorithm. The entropy is calculated using the following formu-
las:

where, E(X) denotes the entropy of the plain image X, p
(
xi
)
 denotes the occurrence 

probability, and L denotes total number of the tested pixels. The results in Fig.  6 
demonstrate that the encrypted images’ entropy is near the optimal value. However, 
encrypted images using Tent Chaotic map optimized with SCA has the best entropy. 
Table  2 demonstrates entropy comparison with other recent algorithms. From the 
previous results, it is concluded that the proposed algorithm provides the highest 
entropy value and is robust against entropy attacks.

6.2.1.3  Correlation analysis  The correlation coefficient measures how closely two 
adjacent pixels in a picture are related. It is a term that describes the degree of simi-
larity between two neighbouring pixels in the vertical, horizontal, and diagonal 
directions. A robust algorithm for image encryption decreases the correlation among 
neighbouring pixels in the encrypted image. The following formulas are used to cal-
culate the correlation coefficient:

(81)E(X) =

L−1∑
i=0

p
(
xi
)
log2

1

p
(
xi
)

(82)rxy =
cov(x, y)√
D(x)

√
D(y)

,

(83)cov(x, y) =
1

L

L∑
i=1

(
xi − E(x)

)(
yi − E(y)

)

(84)E(x) =
1

L

L∑
i=1

xi,

(85)E(y) =
1

L

L∑
i=1

yi,

(86)D(x) =
1

L

L∑
i=1

(
xi − E(x)

)2
,

(87)D(x) =
1

L

L∑
i=1

(
yi − E(y)

)2
,
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Fig. 5   a Original images, b Original image’s histogram, The histogram of the encrypted images using c 
Logistic map, d Sine map, e Gauss map, f Circle map, g Tent map, h Chebyshev map, i Singer map, and 
j Piecewis map
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where x denotes the original image, y denotes the cipher image, and L denotes the 
number of pixels. Figures  7, 8, 9 and 10 illustrate the correlation of neighboring 
pixels in the three directions for the four images before and after encryption. As 
per Figs. 7, 8, 9 and 10, the correlation distribution of neighboring pixels in plain 
images is generally centered along the diagonal, indicating a significant relation-
ship among neighboring pixels. While the correlation of the encrypted images is 
distributed randomly over the entire area, demonstrating a weak correlation between 
adjacent pixels. Table  3 displays the numerical results of the correlation among 
neighbouring pixels of the encrypted images, whereas the results achieved for the 
encrypted images are close to zero. Table 4 shows the comparison results with other 
methods. The correlation coefficients of our encryption algorithm are better than the 
results of the other method. Tables 3 and 4 prove that the proposed algorithm resists 
correlation attacks.

6.2.2 � Peak signal to noise ratio analysis (PSNR)

PSNR gives the error between the plain image and the decrypted image. The PSNR 
is computed based on the mean squared error (MSE).

(88)MSE =
1

M ∗ N

M∑
m=1

N∑
n=1

||X(m, n) − Xd(m, n)
||2,

(89)PSNR = 10 ∗ log10

[
2552

MSE

]
,

Fig. 5   (continued)
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where, X(m, n) presents the original image, Xd(m, n) presents the decrypted image, 
and M*N presents the size of both images. All of the PSNR values for the images 
are 99%, meaning that the original and decrypted images are the same, demonstrat-
ing that the proposed model is robust.

7.9942

7.9944

7.9946

7.9948

7.9950

7.9952

7.9954

7.9956

7.9958

Logistics Sine Gauss Circle Tent Chebyshev Singer Piecewise

Cameraman

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

7.9934
7.9936
7.9938
7.9940
7.9942
7.9944
7.9946
7.9948
7.9950
7.9952
7.9954

Logistics Sine Gauss Circle Tent Chebyshev Singer Piecewise

Elaine

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

7.9968

7.9970

7.9972

7.9974

7.9976

7.9978

7.9980

Logistics Sine Gauss Circle Tent Chebyshev Singer Piecewise

Lena

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

7.9950

7.9952

7.9954

7.9956

7.9958

7.9960

7.9962

Logistics Sine Gauss Circle Tent Chebyshev Singer Piecewise

Peppers

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

Fig. 6   Entropy of different images
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6.2.3 � Robust analysis

The encryption scheme’s robustness indicates recovering valuable data even when 
noise disturbs the encrypted image or some data is lost during transmission. In the 
tests, some noise and different data loss amounts are added.

6.2.3.1  Noise attack analysis  Salt and Pepper, Gaussian, Poisson, and Speckle noise 
have been added to the encrypted images of Cameraman, Elaine, Lenna, and peppers. 
Figures 11(a–d) show the encrypted images with the Salt and Pepper intensity of 0.05, 
the Gaussian noise variance of 0.01, the Poisson, and the Speckle noise, respectively. 
Figures 11(e–h) show the corresponding decrypted images. From Fig. 11, it can be 
seen that the decrypted images are clearly visible, which indicates that the algorithm 
is robust against noise attacks. Moreover, Fig. 12 shows a PSNR comparative analysis 
of the eight chaotic maps with and without optimization. It can be recognized from 
Figs. 11 and 12 that Gauss chaotic map with Dragonfly optimizer has the best visual 
recovery and most reasonable PSNR.

6.2.3.2  Periodic noise  In order to test the algorithm’s robustness, periodic noise has 
been added to images. The following steps have been taken to recover the image:

(1)	 Convert the image from the spatial domain to the frequency domain by 
computing the fast Fourier transform.

(2)	 Find the periodic noise spikes in the frequency image and block them.
(3)	 Convert the image back to the spatial domain using the inverse Fourier transform.

Figure 13 demonstrates that despite adding periodic noise, the essential details of 
the original image can still be retrieved. Figure 14 shows that the decrypted images’ 
PSNRs are high, demonstrating that the proposed algorithm strongly resists periodic 
noise attacks.

Table 2   Entropy Comparison with other recent algorithms

Image name Proposed Ref. [132] Ref. [133] Ref. [135] Ref. [136]

Cameraman 7.99557 7.9862 – 7,9947 –
Elaine 7.99514 7.9895 – – 7.981
Lena 7.99777 7.9948 7.9902 7.9970 7.924
Peppers 7.99614 7.9827 7.9885 –
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Fig. 7   Shows the correlation for cameraman plain image and the encrypted image



171

1 3

An effective chaotic maps image encryption based on…

Plain Image

Logis�cs

Sine

Gauss

Circle

Tent

Chebyshev

Singer

Piecewise

Fig. 8   Shows the Correlation for Elaine plain image and encrypted image
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Fig. 9   Shows the Correlation for Lena plain image and the encrypted image
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Fig. 10   Shows the Correlation for Peppers plain image and encrypted image
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6.2.3.3  Cropping attack  Different degrees of cropping attack tests have been applied 
to the encrypted images. The cipher images are cropped by 2.25, 12.5, 25, and 50%, 
respectively, and then decrypted. Figure 16 shows that the decrypted image obtained 
from the non-optimized Singer chaotic map reveals a partial loss of information, 
highlighting the importance of chaotic map optimization in achieving a robust image 
encryption algorithm, where optimization plays a crucial role in preserving the integ-
rity of the encrypted data during decryption. Moreover, Fig.  17 shows the PSNR 

Table 4   Correlation comparison with others

Encryption algorithm Cipher image

Horizontal Vertical Diagonal

Proposed algorithm (Cameraman)  − 0.0039  − 0.0045  − 0.0001
Ref. [118]  − 0.0031  − 0.0006 0.0011
Ref. [2] 0.00002  − 0.0048  − 0.0029
Ref. [124] 0.0044  − 0.0041 0.0016
Proposed algorithm (Elaine)  − 0.0010  − 0.0036  − 0.0030
Ref. [121] 0.0005  − 0.0133 0.0419
Ref. [2]  − 0.0061  − 0.00007 0.0007
Ref. [122] 0.0080  − 0.0004  − 0.0006
Ref. [123] 0.0014 0.0007  − 0.0013
Ref. [125] 0.0019 0.0008 0.0010
Proposed algorithm (Lena)  − 0.0032  − 0.0012  − 0.0024
Ref. [117] 0.0068  − 0.0000  − 0.0028
Ref. [118] 0.0040  − 0.0012  − 0.0021
Ref. [2] 0.0020  − 0.0005  − 0.0009
Ref. [122] 0.0026 0.0006 0.0005
Ref. [125] 0.0007  − 0.0004 0.0011
Ref. [127] 0.0002 0.0022  − 0.001
Ref. [128]  − 0.0007 0.00001  − 0.0010
Ref. [130] 0.0008 0.0004 0.0020
Proposed algorithm (Peppers)  − 0.0022  − 0.0012  − 0.0015
Ref. [119] 0.0046 0.0089 0.0128
Ref. [120]  − 0.0121  − 0.0079 0.0051
Ref. [121] 0.0295 0.0187 0.0393
Ref. [2] 0.004 0.0009  − 0.0030
Ref. [125] 0.0002  − 0.0018 0.0014
Ref. [127]  − 0.0036 0.0023 0.0022
Ref. [129]  − 0.0020 0.00044 0.0040
Ref. [130] 0.0046 0.0039  − 0.0018
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between the original and recovered images Even though the Singer Chaotic map has 
the highest PSNR, cropped cipher images can only be reconstructed with optimiza-
tion, and part of the data is lost, as shown in Figs. 15, 16, and 17. The Gauss chaotic 
map gives a good PSNR, and the primary information of the plain images can be 
recovered. It can be concluded that the Gauss Chaotic map has the best numerical and 
visual results compared to the other chaotic maps, and the Dragonfly algorithm is the 
best optimizer in terms of robust analysis.

6.2.3.4  Cropping attack with  noise  In this test, a 25% cropping attack with noise 
has been added to cipher images. It can be shown from Fig. 18 that the decrypted 
images using the optimized chaotic map successfully reconstructed the original con-
tent (Fig. 19), whereas Fig. 20, representing the non-optimized chaotic map, failed 
to reconstruct the decrypted images. This emphasizes the significance of optimiza-
tion in achieving robust image encryption. Figure 20 shows the PSNR between the 
original image and the reconstructed images that match it. Based on these results, it 
can be declared that the Gauss Chaotic Map encryption algorithm is robust against 
noise attacks.

Fig. 11   Results of Cipher image with a Salt andPepper noise of intensity 0.05. b Gaussian noise of 
mean 0 and variance 0.01. c Poisson noise. d Speckle noise; Decryption image with e Salt and Pepper of 
intensity 0.05; Decryption image with f Gaussian noise of mean 0 and variance 0.01. g Poisson noise. h 
Speckle noise



180	 S. M. Sameh et al.

1 3

20.7

20.8

20.9

21.0

21.1

21.2

21.3

Cameraman

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

21.70

21.80

21.90

22.00

22.10

22.20

Elaine

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

21.00

21.10

21.20

21.30

21.40

21.50

Lenna

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

21.30

21.40

21.50

21.60

21.70

21.80

Peppers

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

A. Salt &Pepper

15.10

15.15

15.20

15.25

15.30

Elaine

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

14.30

14.35

14.40

14.45

14.50

Cameraman

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

14.45

14.50

14.55

14.60

Lenna

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

15.00

15.05

15.10

15.15

15.20

15.25

Peppers

GA WOA PSO DA GWO MFO SCA MVO ALO No Optimizer

B. Gaussian

Fig. 12   PSNR of the recovered images comparative analysis- Different Chaotic maps with different opti-
mizers and with no optimizer
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Fig. 12   (continued)
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6.2.4 � Key analysis

6.2.4.1  Key space analysis  The analysis of the key space refers to the collection of all 
possible encryption keys. A robust encryption algorithm must be sensitive to secret 
keys and have enough space to withstand any brute-force attack. The proposed algo-
rithm uses the chaotic map parameters, initial conditions, and the parameters of the 
diffusion equation as keys. The key space of the proposed algorithm for the different 
types of chaotic maps with a computation precision of (10−16) is shown in Table 5, 
which demonstrates that the key space of the proposed encryption algorithm is suf-
ficiently large to resist brute-force attacks, with the Circle Chaotic map having the 
most robust key space. Table 6 compares the key spaces of different encryption tech-
niques. The proposed algorithm has a large key space and is resistant to brute-force 
attacks, as seen in Table 6.

Fig. 13   Results of Periodic noise attack on images “cameraman,” “Elaine,” “Lenna,” and “Peppers”: (a–
d) Ciphertext images. (e–h) Decrypted images

0
2
4
6
8

10
12

Cameraman Elaine Lenna Pepper

PS
N

R 
(d

B)

PSNR

Fig. 14   PSNRs of the Periodic noise decrypted images and the corresponding plain image
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(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 15   Results of cropping attacks on cipher image using Gauss chaotic map optimized by dragonfly 
with: a 6.25% cropped. b 12.5% cropped. c 25% cropped. d 50% cropped; Decryption image with e 
6.25% cropped. f 12.5% cropped. g 25% cropped. h 50% cropped

(a) (b) (c) (d) (e) (f) (g) (h)
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Fig. 16   Results of cropping attacks on cipher image using Singer chaotic map without optimization with: 
a 6.25% cropped. b 12.5% cropped. c 25% cropped. d 50% cropped; Decryption image with e 6.25% 
cropped. f 12.5% cropped. g 25% cropped. h 50% cropped
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Fig. 17   Comparative analysis of PSNRs of the decrypted images after applying different percentages of 
cropping attack to the encrypted -Different Chaotic maps with different optimizers and with no optimizer
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Fig. 17   (continued)
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Fig. 18   Results of 25% cropping attacks on cipher image using Gauss chaotic map optimized by dragon-
fly with a Salt andPepper noise of intensity 0.05. b Gaussian noise of mean 0 and variance 0.01. c Pois-
son noise. d Speckle noise; Decryption image with e Salt and Pepper of intensity 0.05; Decryption image 
with f Gaussian noise of mean 0 and variance 0.01. g Poisson noise. h Speckle noise

(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 19   Results of 25% cropping attacks on cipher image using Singer chaotic map without optimization 
with a Salt andPepper noise of intensity 0.05. b Gaussian noise of mean 0 and variance 0.01. c Poisson 
noise. d Speckle noise; Decryption image with e Salt and Pepper of intensity 0.05; Decryption image 
with f Gaussian noise of mean 0 and variance 0.01. g Poisson noise. h Speckle noise
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Fig. 20   Comparative analysis of PSNRs of the decrypted images after applying noise and cropping 
attack to the encrypted -Different Chaotic maps with different optimizers and with no optimizer
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6.2.4.2  Key sensitivity analysis  Key sensitivity examines the sensitivity of a cipher 
image to a very slight change in the secret key. Figure 21a indicates decryption with the 
correct key x = 0.777; the encrypted image is identical to the original image; then the 

Table 5   Key Space of each 
Chaotic Map

Chaotic map Parameters and initial 
conditions

Key space

Logistics map 2 + 2 ((10
16
)
4
)

Circle map 3 + 2 ((10
16
)
5
)

Gauss map 1 + 2 ((10
16
)
3
)

Sine map 2 + 2 ((10
16
)
4
)

Tent map 2 + 2 ((10
16
)
4
)

Chebyshev map 2 + 2 ((10
16
)
4
)

Singer map 2 + 2 ((10
16
)
4
)

Piecewise map 2 + 2 ((10
16
)
4
)

Table 6   Comparisons of the 
image encryption algorithms 
key space

Algorithm Key space

Proposed algorithm (10
80
)

Ref. [119] (10
56
)

Ref. [128] (10
45
)

Ref. [129] (10
36
)

Ref. [130] (10
64
)

Ref. [131] (10
42
)

Ref. [34] (10
40
)

(a) (b)

Fig. 21   Decrypting Lena image using the a correct key and b wrong key
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Table 7   UACI and NPCR comparison

Chaotic maps Optimizers Cameraman Elaine Lenna Peppers

UACI NPCR UACI NPCR UACI NPCR UACI NPCR

1-Logistics GA 0.3254 0.9881 0.3216 0.9936 0.3266 0.9943 0.3242 0.9941
WO 0.3253 0.9896 0.3220 0.9939 0.3270 0.9942 0.3243 0.9939
PSO 0.3248 0.9895 0.3216 0.9942 0.3266 0.9940 0.3246 0.9939
DA 0.3252 0.9896 0.3215 0.9938 0.3272 0.9941 0.3246 0.9943
GWO 0.3252 0.9897 0.3217 0.9938 0.3269 0.9939 0.3243 0.9942
MFO 0.3253 0.9895 0.3219 0.9938 0.3267 0.9940 0.3243 0.9941
SCA 0.3257 0.9892 0.3221 0.9940 0.3270 0.9941 0.3245 0.9943
MVO 0.3253 0.9895 0.3215 0.9941 0.3271 0.9942 0.3247 0.9940
ALO 0.3249 0.9898 0.3219 0.9941 0.3270 0.9942 0.3243 0.9942
No optimizer 0.2921 0.9896 0.3020 0.9941 0.2970 0.9942 0.3123 0.9943

2-Sine GA 0.3252 0.9898 0.3221 0.9940 0.3274 0.9943 0.3245 0.9940
WO 0.3251 0.9894 0.3216 0.9939 0.3267 0.9941 0.3242 0.9945
PSO 0.3253 0.9895 0.3214 0.9940 0.3264 0.9942 0.3244 0.9940
DA 0.3249 0.9894 0.3217 0.9937 0.3271 0.9942 0.3242 0.9942
GWO 0.3257 0.9897 0.3216 0.9937 0.3268 0.9941 0.3245 0.9942
MFO 0.3253 0.9892 0.3215 0.9938 0.3269 0.9942 0.3246 0.9942
SCA 0.3252 0.9895 0.3220 0.9939 0.3270 0.9941 0.3244 0.9941
MVO 0.3250 0.9895 0.3218 0.9938 0.3269 0.9941 0.3245 0.9941
ALO 0.3258 0.9895 0.3219 0.9938 0.3269 0.9942 0.3240 0.9942
No optimizer 0.2925 0.9895 0.3018 0.9937 0.2976 0.9943 0.3139 0.9942

3-Gauss GA 0.3252 0.9887 0.3219 0.9935 0.3270 0.9942 0.3245 0.9942
WO 0.3252 0.9892 0.3217 0.9941 0.3271 0.9939 0.3240 0.9940
PSO 0.3252 0.9889 0.3218 0.9938 0.3271 0.9938 0.3245 0.9939
DA 0.3249 0.9891 0.3218 0.9937 0.3266 0.9942 0.3244 0.9943
GWO 0.3247 0.9889 0.3216 0.9938 0.3268 0.9941 0.3241 0.9941
MFO 0.3251 0.9890 0.3216 0.9936 0.3266 0.9937 0.3248 0.9941
SCA 0.3253 0.9892 0.3217 0.9939 0.3267 0.9939 0.3247 0.9943
MVO 0.3250 0.9891 0.3219 0.9937 0.3271 0.9940 0.3243 0.9940
ALO 0.3255 0.9889 0.3217 0.9935 0.3270 0.9940 0.3246 0.9940
No optimizer 0.2899 0.9890 0.3007 0.9938 0.2966 0.9939 0.3130 0.9939

4- Circle GA 0.3249 0.9912 0.3216 0.9939 0.3270 0.9945 0.3249 0.9948
WO 0.3252 0.9868 0.3212 0.9938 0.3273 0.9932 0.3247 0.9938
PSO 0.3252 0.9884 0.3211 0.9938 0.3265 0.9943 0.3246 0.9940
DA 0.3251 0.9893 0.3214 0.9942 0.3266 0.9943 0.3246 0.9943
GWO 0.3254 0.9900 0.3217 0.9940 0.3275 0.9944 0.3249 0.9945
MFO 0.3252 0.9848 0.3215 0.9927 0.3271 0.9938 0.3245 0.9929
SCA 0.3252 0.9886 0.3221 0.9939 0.3269 0.9941 0.3242 0.9941
MVO 0.3252 0.9879 0.3220 0.9932 0.3270 0.9941 0.3240 0.9937
ALO 0.3245 0.9901 0.3214 0.9939 0.3274 0.9944 0.3251 0.9946
No optimizer 0.2906 0.9894 0.3021 0.9941 0.3006 0.9947 0.3154 0.9946
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Table 7   (continued)

Chaotic maps Optimizers Cameraman Elaine Lenna Peppers

UACI NPCR UACI NPCR UACI NPCR UACI NPCR

5-Tent GA 0.3268 0.9960 0.3235 0.9960 0.3281 0.9960 0.3261 0.9960

WO 0.3268 0.9960 0.3238 0.9961 0.3283 0.9961 0.3264 0.9960

PSO 0.3260 0.9960 0.3237 0.9960 0.3278 0.9963 0.3265 0.9961

DA 0.3272 0.9960 0.3238 0.9960 0.3290 0.9961 0.3261 0.9961

GWO 0.3277 0.9962 0.3229 0.9960 0.3287 0.9961 0.3266 0.9963

MFO 0.3270 0.9961 0.3241 0.9960 0.3282 0.9961 0.3259 0.9960

SCA 0.3279 0.9960 0.3238 0.9960 0.3282 0.9960 0.3261 0.9960

MVO 0.3267 0.9959 0.3233 0.9961 0.3281 0.9959 0.3262 0.9961

ALO 0.3280 0.9962 0.3233 0.9960 0.3280 0.9962 0.3264 0.9961

No optimizer 0.1582 0.9332 0.2249 0.9852 0.1751 0.9739 0.2036 0.9769
6-Chebysev GA 0.3277 0.9961 0.3234 0.9962 0.3285 0.9960 0.3263 0.9960

WO 0.3267 0.9961 0.3227 0.9962 0.3288 0.9959 0.3269 0.9962
PSO 0.3281 0.9961 0.3236 0.9961 0.3282 0.9960 0.3255 0.9960
DA 0.3265 0.9958 0.3230 0.9962 0.3285 0.9961 0.3269 0.9961
GWO 0.3276 0.9963 0.3241 0.9960 0.3288 0.9961 0.3269 0.9963
MFO 0.3277 0.9963 0.3228 0.9960 0.3288 0.9963 0.3265 0.9960
SCA 0.3270 0.9960 0.3242 0.9959 0.3272 0.9961 0.3260 0.9961
MVO 0.3265 0.9960 0.3235 0.9960 0.3289 0.9961 0.3274 0.9962
ALO 0.3271 0.9962 0.3230 0.9962 0.3282 0.9963 0.3262 0.9963
No optimizer 0.2923 0.9895 0.3024 0.9937 0.2978 0.9944 0.3144 0.9943

7-Singer GA 0.3272 0.9960 0.3232 0.9959 0.3288 0.9961 0.3268 0.9962
WO 0.3265 0.9960 0.3235 0.9960 0.3282 0.9961 0.3265 0.9961
PSO 0.3268 0.9961 0.3240 0.9960 0.3290 0.9961 0.3269 0.9962
DA 0.3273 0.9958 0.3240 0.9960 0.3282 0.9960 0.3265 0.9960
GWO 0.3273 0.9961 0.3234 0.9962 0.3285 0.9960 0.3267 0.9962
MFO 0.3266 0.9959 0.3246 0.9961 0.3284 0.9962 0.3264 0.9960
SCA 0.3276 0.9961 0.3232 0.9961 0.3289 0.9961 0.3263 0.9959
MVO 0.3273 0.9962 0.3236 0.9962 0.3287 0.9961 0.3262 0.9961
ALO 0.3272 0.9959 0.3240 0.9960 0.3290 0.9959 0.3268 0.9962
No optimizer 0.1529 0.9329 0.2168 0.9833 0.1672 0.9724 0.1951 0.9743

8-Piecewise GA 0.3267 0.9960 0.3237 0.9960 0.3288 0.9961 0.3268 0.9961
WO 0.3267 0.9961 0.3234 0.9959 0.3286 0.9961 0.3261 0.9960
PSO 0.3270 0.9961 0.3239 0.9962 0.3284 0.9960 0.3267 0.9961
DA 0.3277 0.9962 0.3234 0.9962 0.3284 0.9961 0.3267 0.9961
GWO 0.3262 0.9963 0.3233 0.9962 0.3278 0.9960 0.3263 0.9961
MFO 0.3273 0.9959 0.3232 0.9960 0.3284 0.9959 0.3265 0.9960
SCA 0.3267 0.9961 0.3234 0.9959 0.3292 0.9960 0.3272 0.9960
MVO 0.3274 0.9960 0.3237 0.9960 0.3276 0.9960 0.3266 0.9959
ALO 0.3266 0.9959 0.3233 0.9960 0.3288 0.9962 0.3265 0.9961
No optimizer 0.2894 0.9887 0.3000 0.9936 0.2953 0.9939 0.3122 0.9944
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ciphered image is decrypted using one bit changed key x = 0.7770000000000000001. 
as shown in Fig. 21b, shows that the cipher image could not be decrypted then the 
ciphered image is decrypted using a one-bit changed key x = 0.7770000000000000001. 
As shown in Fig. 21b, the cipher image could not be decrypted. Consequently, the 
proposed algorithm is highly sensitive to secret keys.

6.2.5 � Differential analysis

6.2.5.1  Number of pixel change rate  It is the proportion of changed pixel numbers 
between two encrypted images with a one-pixel change in the original image. The 
following are the formulas used to compute the NPCR:

where  Y1(i, j)&Y2(i, j) denote two encrypted images corresponding to the same orig-
inal image differing only in one bit, and M*N is the size of the images.

(90)NPCR =

M∑
i=1

N∑
j=1

D(i, j)

M ∗ N
∗ 100%

(91)D(i, j) =

{
0, otherwise

1, if Y1(i, j) = Y2(i, j)

Table 8   Comparisons of the image NPCR of encrypted image

Image name Proposed Ref. [118] Ref. [2] Ref. [125] Ref. [134]

Cameraman 0.99632 0.99630 – – 0.99630
Elaine 0.99624 – 0.99650 0.99618 –
Lena 0.99630 0.99620 0.9960 0.99628 0.99620
Peppers 0.99628 – 0.99610 0.99620 –

Table 9   Comparisons of the image UACI of encrypted image

Image name Proposed Ref. [130] Ref. [131] Ref. [133] Ref. [134] Ref. [135]

Cameraman 32.8082 – – – 31.2802 25.492
Elaine 32.4573 – – – – –
Lena 32.9224 – 34.7772 28.7491 30.7972 –
Peppers 32.7370 32.6708 34.4092 30.7957 – –
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6.2.5.2  Unified average changing intensity  It calculates the average difference in 
intensity between two ciphered images, which corresponds to a change of one pixel 
in the original image. The following equation is utilized to calculate the UACI:
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Fig. 22   Encryption time/ decryption time (sec) of the proposed algorithm
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where Y1(i, j)andY2(i, j) denote two ciphered images corresponding to the same plain 
image, differing only by one bit, and M*N is the size of the images. Table 7 shows 
the results of UACI and NPCR for encryption algorithms using the eight optimized 
chaotic maps. As seen from Table 4, all results of UACI and NPCR are closer to the-
oretical values except when using all the chaotic maps without optimization, giving 
the lowest UACI and NPCR. From the previous results, the optimized eight chaotic 
maps demonstrate effective resistance to differential attacks. Tables 7 and 8 compare 
UACI and NPCR with other encryption algorithms, which indicates that the pro-
posed algorithm has the highest sensitivity and is competitive with other proposed 
encryption methods (Table 9).

6.2.6 � Computational speed analysis

It is the time required to execute the algorithm, measured in seconds or mil-
liseconds.  Figure  22 compares the time of execution for the eight opti-
mized chaotic maps. It can be observed that the chaotic tent map has a rela-
tively higher computational time than the other chaotic maps. The results 

(92)UACI =
1

M × N

[
M∑
i=1

N∑
j=1

Y1(i, j) − Y2(i, j)

255

]
× 100%

Table 10   Comparisons of time 
complexity of encrypted and 
decryption process

Encryption algorithm Execution 
time 
(seconds)

Proposed algorithm (Cameraman) 0.1689
Ref. [123] 0.5539
Ref. [36] 4.711
Proposed algorithm (Elaine) 0.1715
Ref. [126] 0.176
Ref. [122] 1.3105
Proposed algorithm (Lena) 0.1556
Ref. [126] 0.179
Ref. [127] 0.62
Ref. [123] 0.5454
Ref. [128] 1.1044
Ref. [34] 0.25
Proposed algorithm (Peppers) 0.1776
Ref. [126] 0.183
Ref. [129] 0.27444
Ref. [123] 0.5474
Ref. [36] 5.2199
Ref. [131] 0.36
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regarding computational time for all images demonstrate that the gauss chaotic map 
has the lowest computational time compared to the other chaotic maps and that 
using the chaotic maps without optimization has the highest computational time. 
The proposed algorithm provides the fastest encryption speed, as shown in Table 10.

7 � Conclusion

This paper aims to propose an image encryption scheme using optimized chaotic 
maps. Eight chaotic maps (logistics, sine, gauss, circle, tent, Chebyshev, singer, and 
piecewise map) are optimized using various metaheuristic optimizers. The encryp-
tion process involves chaotic confusion and pixel diffusion. Performance metrics 
such as entropy, histogram, cross-correlation, computation time, NPCR, UACI, 
noise attack, data loss, and key analysis are employed to evaluate the proposed 
scheme. The evaluation of the proposed encryption scheme yielded significant find-
ings. The correlation coefficient values of encrypted images are nearly zero, indicat-
ing high security. The histogram analysis reveals uniform distributions, preventing 
information leakage. The execution time for encryption is recorded as 0.1556 ms, 
demonstrating real-time applicability. The key space reaches 10^80, ensuring a large 
key space for robustness. The NPCR value is measured at 99.63%, and the UACI 
value is 32.92%, further indicating the effectiveness of the encryption scheme. 
Moreover, the analysis of noise and cropping attacks confirms the robustness of the 
proposed scheme. Comparative evaluations against other algorithms support the 
superior performance of the optimized encryption algorithms.
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