
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:17784–17809
https://doi.org/10.1007/s11227-023-05360-7

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud 
microphysics scheme

Yan Hong1 · Yuzhu Wang1 · Xuanying Zhang1 · Xiaocong Wang2 · He Zhang2 · 
Jinrong Jiang3

Accepted: 27 April 2023 / Published online: 9 May 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2023

Abstract
The National Center for Atmospheric Research released a global atmosphere model 
named Community Atmosphere Model version 5.0 (CAM5), which aimed to pro-
vide a global climate simulation for meteorological research. Among them, the 
cloud microphysics scheme is extremely time-consuming, so developing efficient 
parallel algorithms faces large-scale and chronic simulation challenges. Due to the 
wide application of GPU in the fields of science and engineering and the NVIDIA’s 
mature and stable CUDA platform, we ported the code to GPU to accelerate com-
puting. In this paper, by analyzing the parallelism of CAM5 cloud microphysical 
schemes (CAM5 CMS) in different dimensions, corresponding GPU-based one-
dimensional (1D) and two-dimensional (2D) parallel acceleration algorithms are 
proposed. Among them, the 2D parallel algorithm exploits finer-grained parallel-
ism. In addition, we present a data transfer optimization method between the CPU 
and GPU to further improve the overall performance. Finally, GPU version of the 
CAM5 CMS (GPU-CMS) was implemented. The GPU-CMS can obtain a speedup 
of 141.69× on a single NVIDIA A100 GPU with I/O transfer. In the case without 
I/O transfer, compared to the baseline performance on a single Intel Xeon E5-2680 
CPU core, the 2D acceleration algorithm obtained a speedup of 48.75× , 280.11× , 
and 507.18× on a single NVIDIA K20, P100, and A100 GPU, respectively.

Keywords  High-performance computing · Graphics processing unit · Compute 
unified device architecture · Cloud microphysics

 *	 Yuzhu Wang 
	 wangyz@cugb.edu.cn

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05360-7&domain=pdf


17785

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

1  Introduction

In order to do a more specific analysis and make a better understanding of global 
climate, the Climate and Global Dynamics Division of the National Center for 
Atmospheric Research (NCAR) has concentrated on developing climate simula-
tion systems over the past twenty years. They developed the Community Atmos-
phere Model (CAM) which is a three-dimensional (3D) global atmospheric 
model. CAM has been substantially modified with a range of enhancements and 
improvements in the representation of physical processes since CAM version 4 
(CAM4). The most significant improvement is that the combination of physical 
parameterization has been enhanced, making it possible for users to simulate full 
aerosol–cloud interactions, including cloud droplet activation by aerosols, the 
precipitation process due to dependent behavior of particle size, and the explicit 
radiative interaction of cloud particles [1–3]. In 2004, a new double-moment bulk 
microphysics scheme was described in [4], which predicts the number concentra-
tions and mixing ratios of four hydrometeor substances: droplets, cloud ice, rain, 
and snow.

Obviously, calculations and specifications for the condensed phase optics 
(aerosols, liquid cloud droplets, hydrometeors, and ice crystals) taken from cloud 
microphysics consume tremendous time and computing resources. Hence, the 
demand for computing resources has been growing in tandem with the complex-
ity of climate simulation systems. In the late 1990s, high-performance comput-
ing (HPC) came to be widely known in the field of scientific computing, with 
applications for petroleum exploration, weather forecasting, aerospace, and other 
computation-intensive research. Nowadays, the modern graphics processing unit 
(GPU) has become a reliable alternative to a central processing unit (CPU) in 
dealing with data-intensive, computation-intensive, and time-intensive problems 
by combining features of high parallelism, multi-threaded multicore processors, 
high-memory bandwidth, general-purpose computing, and low cost with compact 
size. Due to the advantages of the speed related to HPC, more and more mete-
orologists choose to use GPU to improve parallel computing efficiency [5–8]. 
The emergence of NVIDIA’s Compute Unified Device Architecture (CUDA) 
increased the use of GPU in a wide range of scientific research [9].

The Chinese Academy of Sciences-Earth System Model (CAS-ESM) [10] uses 
the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmos-
pheric General Circulation Model version 4.0 (IAP AGCM4.0) [11], as its atmos-
pheric component model. Here, the IAP AGCM4.0 uses the cloud microphysics 
scheme (CMS) of CAM version 5 (CAM5) as its microphysics parameterization 
scheme. The CMS process in the CAM5 global atmospheric model is very time-
consuming, so developing an efficient parallel algorithm is a challenging and 
meaningful work. After further analyzing the code structure, we found that it is 
very suitable for parallel development. This paper proposed a GPU-based parallel 
algorithm that aims to accelerate the CAM5 CMS. After implementing the algo-
rithm on the CUDA parallel computing platform, a GPU version of the CAM5 
CMS, namely, GPU-CMS, was developed. The experimental results show that the 



17786	 Y. Hong et al.

1 3

acceleration algorithm obtained a 507.18× speedup on a single A100 GPU with-
out I/O transfer. Nevertheless, in heterogeneous computing, data transfer costs 
are still significant. Therefore, we propose a data transfer optimization method to 
reduce transfer time and further improve computing performance. GPU-CMS can 
achieve a speedup of 141.69× with I/O transfer. Our work has realized the paral-
lelization of the overall code from two aspects of calculation and data transfer: 
the parallelism of the CAM5 CMS code has been fully exploited, and the data 
transfer time has been further compressed. Finally, the performance of the code 
has been evaluated and verified from various aspects.

The main contributions of our study are as follows:

•	 For the first time, we propose the GPU-based parallel acceleration algorithm 
of the CAM5 CMS process. Based on the CUDA computing platform, the one-
dimensional (1D) parallel acceleration algorithm is proposed and implemented 
for CAM5 CMS in the horizontal direction. Then, an innovative two-dimensional 
(2D) parallel acceleration algorithm is proposed and implemented for CAM5 
CMS in the horizontal and vertical directions. The proposed parallel algorithm 
shows excellent computational capability.

•	 A performance optimization method is proposed for time-consuming data trans-
mission between CPU and GPU. The use of pinned memory technology reduces 
the I/O transfer time and further enhances the computing performance of GPU-
CMS.

The rest of this paper is structured as follows. Section 2 illustrates the related work 
on accelerating physical parameterization schemes on GPU. Section  3 details the 
model and code structure of CAM5 CMS. Section 4 presents the GPU-based accel-
eration algorithms and their implementation. Section 5 evaluates the performance of 
GPU-CMS and verifies its correctness. Finally, Section 6 summarizes the full paper 
and makes a proposal for future research.

2 � Related work

Modern GPUs have massive parallel microprocessors that can provide high-perfor-
mance services for parallel computations in the areas of science and engineering. As 
a result, GPUs have become a powerful replacement for traditional microprocessors 
in HPC systems [12, 13]. For the parameterization methods of cloud microphysical 
processes on various models and platforms, many scholars have carried out research 
and experiments on GPU-based acceleration algorithms and achieved good accel-
eration results.

Mielikainen et al. [14] used a single GPU to accelerate the Weather Research 
and Forecast (WRF) Single Moment 5-class (WSM5) model, achieving a 389× 
speedup without I/O (Input/Output) transfer. When using 4 GPUs, the WRF 
WSM5 model got 357× and 1556× performance improvement with and without 
I/O transfer respectively. In the same year, the implementation of the GPU-based 
Kessler microphysics scheme proposed by Mielikainen et al. [15] achieved a 70× 



17787

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

speedup over the implementation of the CPU-based single-threaded scheme. 
When using 4 GPUs, the scheme achieved a performance improvement of 132× 
speedup with I/O transfer. The obvious superiority of GPU can also be seen in 
the acceleration of the WRF Single Moment 6-class (WSM6) cloud microphysics 
scheme in the Global/Regional Assimilation and Prediction  System (GRAPES) 
model proposed by Xiao et al., which obtained over 140× speedup compared to 
the CPU serial version [16]. Similar to this system, the WRF Double-Moment 
6-class (WDM6) microphysics scheme, which was proposed by Mielikainen et al., 
obtained a speedup of 150× and 206× with and without I/O transfer, respectively 
[17]. Huang et al. proposed a parallel design of a GPU-based WSM6 scheme that 
achieved a 216× speedup using a single NVIDIA K40 GPU compared to the CPU 
part running on a single core [18]. Kim et al. proposed a scheme to accelerate the 
WSM6 microphysics of cross-scale prediction models on GPU using OpenACC 
instructions and verified the performance of the code on NVIDIA GPU Tesla 
V100. When transplanting the entire model to the GPU, a 5.71× speedup was 
obtained without I/O transfer [19]. Wang et al. proposed an algorithm to acceler-
ate the rapid radiative transfer model for general circulation models (RRTMG) 
shortwave radiation scheme using GPU technology (GPU-RRTMG_SW). With-
out I/O transfer, the scheme on a single NVIDIA GeForce Titan V achieved a 
speedup of 38.88× over the baseline performance on a single Intel Xeon E5-2680 
CPU core [20]. Carlotto et  al. proposed a GPU-based SW2D-GPU model (two-
dimensional shallow water model) for the high computational cost of the shallow 
water model, which was implemented in parallel using CUDA C/C++. Compared 
to its serial version, the SW2D-GPU model achieves a 34× speedup [21]. Cao 
et al. proposed a leap-format-based highly scalable 3D atmospheric general cir-
culation model (AGCM-3DLF), which releases parallelism in all three physical 
dimensions. The model has good efficiency and scalability on different platforms. 
On the CAS-Xiandao1 supercomputer, AGCM-3DLF achieved a speed of 11.1 
simulated years per day (SYPD) at a high resolution of 25 km [22].

The GPU was originally designed for graphics processing [23]. The CUDA par-
allel computing platform launched by NVIDIA makes full use of the computing 
power of the GPU and obtains a significant acceleration effect in the computation-
intensive tasks of large-scale data parallel processing [24]. However, the CPU is 
suitable for processing control tasks with complex logic, and this complementarity 
facilitated the development of the CPU/GPU heterogeneous parallel computing sys-
tem period. Due to NVIDIA’s mature and stable CUDA platform, more and more 
scientific research and experiments have chosen CUDA as a development platform 
for parallel programming. In addition, many proven applications are developed in 
Fortran. As such, the Portland Group designed the CUDA Fortran language [25–27] 
to enable GPU acceleration for Fortran applications. Applications in fields such as 
meteorology and theoretical physics can be rewritten to take advantage of the com-
puting power of GPUs.

From the above study, GPU is suitable for accelerating the physical parameteri-
zation schemes of climate system models. At present, there are no relevant studies 
about accelerating the CAM5 CMS using GPU. Therefore, we choose to implement 
the algorithm in CUDA Fortran to explore its GPU-based acceleration algorithm in 



17788	 Y. Hong et al.

1 3

one and two dimensions, as well as to optimize the time-consuming data transfer 
process between CPU and GPU.

3 � Model description

3.1 � CAM5 CMS

The two-moment bulk stratiform cloud microphysics scheme in the atmospheric 
circulation model was proposed by Morrison et  al. [4, 28], which was applied in 
CAM5. In this study, we used this cloud microphysics scheme of CAM5. Cloud 
microphysics is a physical process that describes the mutual conversion of water, 
water vapor, and water condensate in clouds, which includes the collection/auto-
conversion, condensation/evaporation, deposition/sublimation, freezing/melting, 
and nucleation/derivation of water vapor, water, and ice crystals in the air. This 
scheme can predict the number concentrations and mixing ratios of cloud water and 
cloud ice. The relationship between the specific various water species and the micro-
physical processes is shown in Fig. 1. Morrison et al. [4, 28] described the CAM5 
CMS in detail. In atmospheric circulation models, cloud microphysical processes 
still occupy a large amount of computational time. Therefore, we analyzed the spe-
cific code structure in Sect. 3.2 and developed a GPU parallel acceleration scheme.

3.2 � Analysis of code structure

The code structure of CAM5 CMS in IAP AGCM4.0 of CAS-ESM is shown in 
Fig.  2. The subroutine mmicro_pcond is the most time-consuming part of the 
CAM5 CMS, which mainly consists of multiple loop segments. Therefore, we 
split the mmicro_pcond function into 3 sub-functions: process1, process2, and 
process3. In Fig. 2, “function” is an external function that is called to assist in the 

Cloud Droplets

Rain

Water Vapor

Cloud Ice 

Snow

Freezing/Melting

Condensation/
Evaporation

Freezing/Melting/Collection

Collection/ 
Autoconversion

Collection/ 
Autoconversion

Sedimentation

Condensation/
Evaporation

Sedimentation

Collection

Deposition/
Sublimation

Deposition/
Sublimation

Ice
Multiplication

Cloud Droplets

Rain

Water Vapor

Cloud Ice 

Snow

Freezing/Melting

Condensation/
Evaporation

Freezing/Melting/Collection

Collection/ 
Autoconversion

Collection/ 
Autoconversion

Sedimentation

Condensation/
Evaporation

Sedimentation

Collection

Deposition/
Sublimation

Deposition/
Sublimation

Ice
Multiplication

Fig. 1   Box diagram of the CAM5 CMS [4]



17789

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

calculation process. These external functions need to add device attributes to be 
called on the device during parallelism. In the mmicro_pcond function, all three 
sub-functions have two or three loops for the computation process and weak data 
dependencies, making them suitable for parallel programming using the CUDA 
programming model.

The subroutine process1 is used to initialize time-varying parameters and 
adjust air density for fall-speed parameters. The task of the subroutine process2 
includes (1) initializing sub-step microphysical tendencies, initializing diagnostic 
precipitation to zero, and initializing vertically integrated rain and snow tenden-
cies; (2) calculating precipitation fractions based on maximum overlap assump-
tion, obtaining in-cloud values of cloud water/ice mixing ratios and numbering 
concentrations for microphysical process calculations, calculating the poten-
tial for droplet activation if cloud water is present, and getting size distribution 
parameters based on in-cloud cloud water/ice; and (3) beginning microphysical 
process calculations, such as the auto conversion of cloud liquid water to rain, 
auto conversion of cloud ice to snow, heterogeneous freezing of cloud water, cal-
culating evaporation/sublimation of rain and snow, and summing over sub-step 
for average process rates. Due to the complex computing process with a lot of 
matrix parameters, process2 consumes a lot of time. The subroutine process3 
mainly calculates sedimentation for cloud water and ice. The external function 
“polysvp” is used to calculate the saturated vapor pressure. The external function 
“gamma” is used to simulate the particle spectral distribution density. The exter-
nal function “vaqsatd_water” is used to calculate the saturated specific humidity. 
The serial computational procedure of the mmicro_pcond on the CPU is shown in 
Algorithm 1.

mmicro_pcond

process3

process1

process2

function

polysvp

gamma

vqsatd_water

Fig. 2   The code structure of CAM5 CMS in IAP AGCM4.0



17790	 Y. Hong et al.

1 3

4 � GPU‑enabled acceleration algorithm

4.1 � Algorithm idea

Similar to the real earth, the CAM5 CMS is described in the form of three dimen-
sions. The x-axis, y-axis, and z-axis represent the earth’s longitude, latitude, and the 
model layers (vertical direction), respectively [29]. The CAM5 CMS model is usu-
ally computationally independent in the latitude and longitude dimensions (horizon-
tal direction) and partially independent in the vertical direction, thus allowing for 
1D and 2D parallelism in these two directions. In coding CAM5 CMS, the longi-
tude and latitude dimensions are amalgamated into the first dimension of parameter 
arrays, and the vertical direction is in the second dimension. Data parallelism is pri-
marily achieved by the thread and block indexes of the CUDA architecture that pro-
vides a unique global index for each thread, allowing multiple threads to perform the 
same computation on different data, that is, the single-instruction multi-data (SIMD) 
mode.

In CAS-ESM, the IAP AGCM4.0 is with a 1.4◦×1.4◦ horizontal resolution and 
51 model layers in the vertical direction. Thus, the CAM5 CMS has 256×128 = 
32,768 horizontal grid points. When one GPU is used for acceleration, 32,768 
horizontal grid points are computed per time step. In the structure of the program, 



17791

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

the ncol variable represents the size of the horizontal dimension. The number of 
total grid points is settled. When the size of ncol is set to 2048, 32,768 grid points 
will be divided into 32,768/2048=16 chunks, with 2048 points on each chunk. In 
other words, one GPU will complete total computations of 32,768 points through 
16 iterations at each time step. This experiment simulates the integration process 
of CAM5 CMS for one model day, so the total number of iterations is 16× 24 
hours = 384 times. Due to the limitation of global memory, the number of paral-
lel threads that can be started at the same time on one GPU is limited. Moreover, 
the configuration varies from GPU to GPU, so the corresponding number of cal-
culation iterations and running time will also be different.

As shown in Fig. 3, the execution model of CUDA is a three-layer thread hier-
archy. Each kernel runs on a grid, which contain several thread blocks, and each 
block contains several threads. All threads in the same grid share the same global 
memory space. Collaboration between threads in the same thread block can be 
achieved by “synchronization” and “shared memory,” while threads in different 
thread blocks cannot cooperate. In the grid, we locate a thread by the two coordi-
nate scalars: blockIdx (the ID number of the thread block in the grid) and thread-
Idx (the ID number of the thread within the thread block). In the CUDA program-
ming model, the user implements the call of the kernel through the statement of 
“kernel ⋘ grid, block ⋙ .” Among them, “grid” is the number of thread blocks, 
and “block” is the number of threads per block. And different computing perfor-
mances can be achieved by modifying the execution configuration of the kernel, 
see Sect. 5.3 for the specific details of the experiment.

Kernel
Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Gird

Block(1,1)
Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(0,2)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

DeviceHost

Fig. 3   Hierarchy of threads in CUDA



17792	 Y. Hong et al.

1 3

In the heterogeneous computing process of CPU/GPU, we take the original pro-
gram as the calling function and rewrite each loop in it as a sub-function called by 
the kernel. Moreover, the kernel is called on the host and executed on the device 
(the specific calculation flow of the 2D GPU-CMS acceleration algorithm based on 
the CPU/GPU heterogeneous process is shown in Algorithm 2). The CUDA Fortran 
execution flow of the GPU-CMS is illustrated below: 

(1)	 Define and allocate CPU memory for the arrays and variables that participate in 
the operation on the host. At the same time, define and allocate GPU memory 
for data that needs to be computed on the device, including input and output, as 
well as intermediate arrays and variables.



17793

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

(2)	 Initialize data, including input and output arrays and other parameters.
(3)	 Transfer the data that was initialized into the global memory of the GPU.
(4)	 Select the appropriate thread block and grid size, and call the kernel 

⋘ grid, block ⋙ function to calculate the microphysical process.
(5)	 Transfer results from GPU to CPU.
(6)	 Output the results and free the memory both on GPU and CPU.

4.2 � Implementation of parallel algorithm

4.2.1 � 1D acceleration algorithm

In space, the CAM5 CMS is divided into a 3D grid of horizontal and model layers, 
as shown in Fig. 4. In Fig. 4, the x-axis, y-axis, and z-axis represent the earth’s lon-
gitude, latitude, and model layers, respectively. In computation, a 3D grid in space 
corresponds to a two-dimensional array in the computation process. That is to say, 
in the CAM5 CMS code, the horizontal section composed of longitude and latitude 
corresponds to the first dimension of the array, and the model layer corresponds to 
the second dimension of the array.

Because of the independence of computation in the horizontal direction, the 1D 
parallel strategy of CAM5 CMS is with domain decomposition in the longitude and 
latitude dimensions (horizontal direction). It means that each CUDA parallel thread 
is tasked with a workload of a horizontal “column” (this is determined from the x 
and y axis), as shown in Fig. 4a. Here, ncol is the size of the first dimension of the 
array, which is also the number of “columns” participating in the parallel process. 
According to the sequential and dependent nature of the code structure, the paral-
lel code is implemented as 3 kernels, which were also named process1, process2, 
and process3, with serial execution between the kernels. The implementation of 1D 

y

z

xx

(a) 1D Parallel

y

z

xx

(b) 2D Parallel

Fig. 4   3D spatial structure of CAM5 CMS (longitude,latitude, and model layers) and its domain decom-
position



17794	 Y. Hong et al.

1 3

acceleration algorithm of process1 in the horizontal direction is illustrated in Algo-
rithm 3. In addition, the implementation of the other kernels is similar to process1, 
so that will not be described here.

According to the storage hierarchy of CUDA and the structural characteristics 
of the code, it is necessary to select the appropriate memory to deploy the program 
data in parallel programming. Therefore, it is essential for us to reduce the memory 
access latency. Generally speaking, in the CUDA storage structure, the larger the 
storage space, the slower the memory access speed, where the access speed from 
fast to slow is Registers ⇒ Caches ⇒ Shared Memory ⇒ Global Memory (Local 
Memory). First, the local variables in the kernel will be stored in the register, and 
when the register memory is exhausted, the array will be stored in the local mem-
ory, which is about as fast as global memory access. Second, each thread has its 
independent register and local memory, which can effectively avoid the conflict of 
memory writing between different threads. Therefore, we defined some of the inter-
mediate arrays and variables as local variables instead of global variables (because 
global variables are generally stored in global memory). The memory access time of 
the modified program was optimized.

4.2.2 � 2D acceleration algorithm

In CAS-ESM, pver is 51, which is the number of model layers of CAM5 CMS in 
the vertical direction. To achieve a higher level of parallelism on the GPU, more 
parallel threads were opened by making full use of GPU resources. So, a 2D paral-
lel acceleration algorithm was introduced that can perform finer-grained parallelism. 



17795

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

The CAM5 CMS is partially independent in the vertical dimension. Therefore, we 
further modified the 1D GPU-CMS code to allow parallelism from both horizontal 
and vertical dimensions for the advance of GPU computational efficiency. As shown 
in Fig. 4b, each CUDA parallel thread was assigned a workload of a partial “col-
umn” (this is determined from the x, y, and z axes) in the 2D domain decomposition 
algorithm of the GPU-CMS.

On further analysis of the code structure, we found that porcess1 supports 2D par-
allelism, and process2 maintains 1D parallelism because there are data dependencies 
between the overall computing processes. Considering the data dependency and data 
synchronization problems of the process3 kernel, we decoupled it preliminarily and 
divided it into three kernels named process3_1, process3_2, and process3_3, respec-
tively. Part of the code in process3 could only be parallel in the horizontal direction 
due to data dependency, so the kernel process3_2 only performed 1D decomposi-
tion. The other code in process3, which is process3_1 and process3_2, was able to 
use 2D decomposition. The implementation of 2D acceleration algorithm of pro-
cess3_1 is illustrated in Algorithm 4. The detailed implementations of other kernels 
will not be described further here.

In the 1D acceleration algorithm, 1D temporary arrays were private to each 
thread (horizontal column) and were stored in registers or local memory. In the 2D 
acceleration algorithm (horizontal and vertical directions), register scalars are used 
instead of temporary arrays in local memory, such as the “lami_d” variable in Algo-
rithm 3 and Algorithm 4, to achieve the effect of register optimization. By modify-
ing the code, memory usage was reduced, and access speed was also improved.



17796	 Y. Hong et al.

1 3

4.3 � Optimization of data transfer

The peak bandwidth between device memory and GPU is much larger than the 
maximum transfer bandwidth between host memory and device video memory. For 
example, the memory bandwidth of the NVIDIA A100 GPU is 1555 GB/s, while 
the transfer rate of the PCIe 4.0× 16 bus is only up to 64 GB/s. Therefore, transfer-
ring data on the PCIe bus between the CPU and the GPU has been the more time-
consuming part when using the GPU for parallel acceleration. In this case, it is 
necessary to use the pinned memory technology to reduce the consumption of data 
transfer between the device and the host.

In CUDA architecture, there are two types of memory on the host: pageable 
memory and pinned memory. When allocating memory for variables on the host 
in the CUDA architecture, pageable memory is used by default, where data may 
be swapped to the hard disk. As shown in Fig. 5, the CUDA driver will allocate a 
temporary pinned memory when the data are sent to the device. Then, the data will 
be placed in this temporary space, and the device will read the data directly from the 
pinned memory. Pinned memory technology defines and allocates data directly in 
pinned memory, and the host operating system will not perform paging and swap-
ping operations on this memory, ensuring that it always resides in physical memory. 
This approach effectively avoids additional overhead with the pinned host buffer, 
allowing for faster transfers. Since each pinned data requires an allocation of physi-
cal memory, which cannot be swapped to disk, it is necessary to use pinned memory 
appropriately. Excessive use will consume more memory space and reduce overall 
system performance.

In the process of simulating integration for one model day, the mmicro_pcond 
function will be called repeatedly, and the data transmission between the host and 
the device will be performed many times, which will consume a lot of time. In our 
experiment, the input and output arrays of the GPU-CMS are pinned to maintain 
these arrays in the physical memory. The data transmission time has been signifi-
cantly reduced, after the optimization of the pinned memory technology. The spe-
cific acceleration result is detailed in Sect. 5.5.

GPU 
Memory

Pageable 
Memory

Pinned 
Buffer

Device

Host

PCIe

GPU 
Memory

Pinned 
Memory

Device

Host

PCIe

Pageable Data Transfer Pinned Data Transfer

Fig. 5   Pageable memory (left) and pinned memory (right) data transfer



17797

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

5 � Results and discussion

To estimate the performance of GPU-CMS, we conducted experiments on K20, 
P100, and A100 GPU clusters, and Table 1 in Sect. 5.1 shows the detailed configu-
ration. In this paper, we evaluate the overall performance of the code in terms of 
parallel acceleration algorithms, different experimental platforms, and I/O transfers. 
The runtime and speedup before and after GPU parallel programming were analyzed 
and compared using the runtime of the serial CAM5 CMS code on a single Intel 
Xeon E5-2680 CPU core as a benchmark. The work of verification was also carried 
out to ensure the accuracy of the code.

5.1 � Experimental setup

The experiments were conducted on three GPU clusters: NVIDIA K20 cluster at the 
Computer Network Information Center of the Chinese Academy of Sciences, P100 
cluster at the Inner Mongolia Super Brain of the Eastern Supercomputing Cloud, and 
A100 cluster at the N36 branch of the Beijing Super Cloud Computing Center. Their 
detailed configurations are listed in Table  1, including operating system, standard 
memory, memory bandwidth, and CUDA version. It is worth noting that the serial 
CAM5 CMS in the experiment ran on a single Intel Xeon E5-2680 v2 CPU core on 
the K20 cluster, and its GPU-CMS ran on a single GPU of the three clusters.

To fully explore the performance of the parallel acceleration algorithm proposed 
above, we conducted an ideal climate simulation experiment for one model day. In 
our experiment, the time step of the GPU-CMS is 1 h, and double precision is used 
to ensure accurate predictions. In this paper, we discuss the runtime of the parallel 
code with and without data transfer separately. The runtime including data transfer 
is counted to evaluate the overall performance of the code; the runtime excluding 
data transfer is counted to derive the best performance when the cloud microphysics 
is coupled with other physical processes. Without considering the data transfer time, 
the GPU-CMS runtime is shown in Eq. 1. If data transfer is considered, the runtime 

Table 1   Configurations of GPU clusters

K20 cluster P100 cluster A100 cluster

Specification of CPU
 CPU Intel Xeon E5-2680 

v2@2.8GHz
Intel Xeon E5-2680 

v4@2.4GHz
Intel Xeon Silver 

4314@2.4GHz
 Operating System CentOS 6.4 Red Hat 4.8.5-39 Red Hat 4.8.5-39

Specification of GPU
 GPU NVIDIA Tesla K20 NVIDIA Tesla P100 NVIDIA A100
 CUDA Cores 2496 3584 6912
 Standard Memory 5 GB 16 GB 40 GB
 Memory Bandwidth 208 GB/s 732 GB/s 1555GB/s
 CUDA Version 6.5 11.6 11.3



17798	 Y. Hong et al.

1 3

is calculated according to Eq. 2. Among them, T_calculation denotes the computa-
tion time of all kernels, T_mmicro_pcond denotes the computation time of the most 
time-consuming mmicro_pcond subroutine in the CAM5 CMS, T_HtoD denotes the 
data transfer time from the host to the device, and T_DtoH denotes the data transfer 
time from the device to the host.

5.2 � Influence of ncol

The number of units in the vertical dimension is only 51, so the effect of the vari-
ation of the parallelizable grid size in the horizontal dimension is mainly studied. 
The parallelizable horizontal “column” is represented by ncol in the code, so we 
can change ncol to set different horizontal points for one computation on one GPU. 
Increasing the value of ncol means that there are more threads in the horizontal 
dimension that can be parallelized, and the number of calls to the kernels on the 
host is relatively reduced, thus significantly improving the performance of the GPU-
CMS code. Due to the difference in the size of GPU video memory, we chose to 
experiment on the best performing A100 GPU, and ncol was able to fetch from 512 
to 32768. It needs to call the kernel 24 times on the host when GPU-CMS reaches 
the maximum value 32768 of ncol. Without considering I/O transfer, we fixed the 
thread block size to 128 (because the performance is best when the block size is 128, 
and the specific experiment is carried out in Sect. 5.3). In this experiment, the runt-
ime and speedup of the 1D GPU-CMS obtained with the change of ncol value are 
studied. The results are shown in Fig. 6.

By analyzing the figure, the following conclusions can be drawn: 

(1)	 The performance improvement of GPU-CMS is often stronger as the horizontal 
resolution gets finer. Because the smaller ncol values do not have enough threads 
to take advantage of all GPU resources. However, as the ncol value exceeds 
16384, the memory usage increases gradually, so the speedup does not improve 
significantly. There is even a slight increase in the runtime of the process2 ker-
nel.

(2)	 The 1D GPU-CMS achieves optimal performance when ncol takes the value of 
32768, where a speedup of 469.91× is obtained, and the runtime is compressed 
from 537.6662 s to 1.1442 s.

5.3 � Comparison of shape and size of thread blocks

Apparently, there are a lot of factors that will have an impact on the runtime of the 
GPU-accelerated version. According to the CUDA structure, the block size is one of 
the main influencing factors. In other words, the number and dimensions of threads 

(1)Tcalculation = Tprocess1 + Tprocess 2 + Tprocess 3

(2)Tmmicro_pcond = Tcalculation + THtoD + TDtoH



17799

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

in one execution block will determine the computation time indirectly. Hence, we 
explore the optimal shape of the thread block. Generally, thread wrap is the minimal 
execution unit in a program while thread block is the basic activated unit. There are 
always 32 threads in a thread wrap. In a thread warp, all threads execute in a manner 
of single instruction multi-threading (SIMT). Therefore, the block size should be 
selected in multiples of 32 to set up the contrast experiments. A block of size 16 is 
selected in the experiment and used as a reference group to verify the selection rule.

The runtime of the CAM5 CMS on a single Intel Xeon E5-2680 v2 CPU is 
537.6662 s. Without taking into account the I/O transfer, Figs.  7 and   8 portray 
the runtime of the 1D and 2D GPU-CMS on a single K20 GPU. Among them, the 

Fig. 6   The influence of ncol on the runtime (s) and speedup of GPU-CMS on a single A100 GPU, where 
the block size = 128

0.9

15.66

6.01

23.55 22.57 23.31

0

5

10

15

20

25

16 32 64 128 256 512

R
un

tim
e(

s)

Blocksize

process1 process2 process3 mmicro_pcond

Fig. 7   The influence of block size on the runtime (s) of 1D GPU-CMS on a single K20 GPU, where the 
ncol = 2048



17800	 Y. Hong et al.

1 3

column represents the runtime of each kernel, and the polyline is the overall runtime 
of the mmicro_pcond function. The stacked histogram section of Fig. 8 shows the 
total runtime of the process3, which was split into three kernel in 2D parallelism.

We attempted to explore the optimal shape of a thread block to examine the 
impact of different combinations of thread block settings on program performance, 
without considering the I/O transfer. In comparison, it is found that the optimal 
computational efficiency is obtained for a 1D thread block organization of 256× 1 
and a 2D thread block organization of 256× 2. Moreover, the 2D acceleration perfor-
mance is significantly better than the 1D acceleration performance, and the specific 
speedup is shown in Table 2.

Compared with the 1D speedup, the speedup of 2D parallelism is significantly 
increased. The speedup of process1 and process3 was 3.95× and 1.88× , and the 
speedup of the mmicro_pcond function is 1.18×.

As we want to use the organization of threads efficiently to speed up our program, 
therefore, we considered it valuable to test the impact of thread block size on perfor-
mance, in addition to thread block shape. We investigated the effect of x-dimension 
size on runtime in the 1D or 2D acceleration algorithm, where the y-dimension size 
of a 2D thread block is fixed to 2. Figs. 7 and  8 show that the best performance is 
achieved when the thread block size is 128 or 256 in the x dimension. Although the 
impact of the thread block size is not noticeable, the maximum difference is close 

3.2

0.23

15.66
20.42 19.09 19.76

0

5

10

15

20

25

16 32 64 128 256 512

R
un

tim
e 

(s
)

Blocksize

process3_1 process3_2 process3_3 process1 process2 mmicro_pcond

Fig. 8   The influence of block size on the runtime (s) of 2D GPU-CMS on a single K20 GPU, where the y 
dimension size is 2 and ncol = 2048

Table 2   Runtime (s) and 
speedup of 1D and 2D GPU-
CMS on a single K20 GPU

Here, the 1D block size = 256, 2D block size = (256,2) ncol = 2048; 
the bold values are used to represent the speedup

Dimension Subroutines runtime (s) mmicro_pcond

process1 process2 process3

1D 0.89923 15.6642 6.00807 22.5715
2D 0.22777 15.6642 3.20169 19.09366
Speedup 3.95 1 1.88 1.18



17801

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

to about 1 s, which has an influence on the performance of the algorithm. Theoreti-
cally, the memory access latency is hidden to some extent as the thread block size 
increases, and optimal performance is achieved. When the block size is too small, 
the threads will not be fully utilized, and the runtime will be relatively long, as in the 
case of block size 16 in Figs. 7 and  8. When the block size is too large, the thread 
requires too many resources, such as constant memory and shared memory, and the 
application storage space of the thread is larger than the hardware configuration, 
which may sometimes cause the kernel to fail to start. As shown in Figs. 7 and  8 
when the block size is 512, although the kernel is successfully started, the runtime 
increases significantly. In this case, CUDA will ensure the resource supply by forc-
ing the number of blocks to be reduced, which will also not fully utilize all threads 
and achieve the best performance. In summary, the highest computational efficiency 
can be achieved when the block size is 128/256. Therefore, the thread block size is 
set to (128,2) uniformly in the following experiments.

5.4 � Evaluation of different GPUs

With the continuous evolution of NVIDIA GPU architecture, upgrades, and break-
throughs are being made in the number of CUDA cores, video memory size, peak 
floating-point performance, and bandwidth. As a result, the different GPUs have 
different computational performances. We further examined how the performance 
of GPU-CMS varies with different GPUs on the three GPU clusters introduced in 
Sect. 5.1. At the same time, the portability of our parallel algorithm is verified.

The runtime and the corresponding speedup of the 2D GPU-CMS on the K20, 
P100, and A100 GPUs are shown in Tables 3 and 4 without the I/O transfer time. By 
analyzing the table, we can draw the following conclusions: 

(1)	 The maximum ncol of the K20 GPU can be taken to 4096 with optimal per-
formance. P100 and A100 GPUs show the best performance at ncol=16384. 
Therefore, the experimental data with ncol of 4096 and 16384 were selected for 
comparison.

(2)	 When ncol=4096, the speedup of the GPU-CMS on one K20, P100, and A100 
are 48.75× , 163.17× , and 169.85× . When the value of ncol is small, P100 and 

Table 3   Runtime (s) and 
speedup of GPU-CMS on 
different GPUs ncol = 4096

Here, the block size = (128,2); the bold values are used to represent 
the speedup

Device Subroutines runtime (s) mmicro_pcond Speedup

process1 process2 process3

CPU 39.7767 333.5353 164.3542 537.6662 –
K20 0.2245 8.3555 2.4483 11.0283 48.75
P100 0.0550 2.4782 0.8358 3.2951 163.17
A100 0.0246 2.5472 0.5937 3.1655 169.85



17802	 Y. Hong et al.

1 3

A100 show similar performance. When the value of ncol is greater, the perfor-
mance advantage of the A100 GPU will gradually increase.

(3)	 When ncol=16384, the speedup of the GPU-CMS on one P100 and A100 can 
reach 280.11× and 507.18× . Since the A100’s video memory size and memory 
bandwidth are much larger than those of the K20 and P100, the acceleration 
performance is better.

5.5 � Optimization of I/O transfer

In the experiments of our study, two optimization methods are used to reduce unnec-
essary data transfer. First, storing the intermediate data on the device without pass-
ing it back to the host. Second, changing the initialization and definition of some 
data to the device. Nevertheless, the I/O transfer of some necessary data between 
CPU and GPU is inevitable. Therefore, the data transmission process needs to be 
optimized.

We discovered that the data transmission between CPU and GPU becomes the 
most time-consuming part of the GPU-CMS when the GPU-CMS computation time 
is compressed to 1.0601 s. We solved this issue by using pinned memory technol-
ogy to optimize the code, and we got an improvement in the performance. Since the 
optimal speedup of calculation time is obtained on the A100 GPU. Hence, the A100 
GPU is the best choice for us to continue the optimization work of data transfer. The 
runtime and speedup of the GPU-CMS on the A100 GPU are shown in Table  5, 
with and without considering the I/O transfer.

It can be seen from Table 6 that the transfer time from the host to the device gets 
a speedup of 1.62× , and the transfer time from the device to the host gets a speedup 
of 1.68× , after the optimization of pinned memory technology. The speedup of the 

Table 4   Runtime (s) and 
speedup of GPU-CMS on 
different GPUs, ncol = 16384

Here, the block size = (128,2); the bold values are used to represent 
the speedup

Device Subroutines runtime (s) mmicro_pcond Speedup

process1 process2 process3

CPU 39.7767 333.5353 164.3542 537.6662 –
P100 0.0535 1.3235 0.5425 1.9195 280.11
A100 0.0219 0.7545 0.2837 1.0601 507.18

Table 5   Runtime (s) of GPU-CMS I/O transfer on a single A100 GPU

Here, the block size = (128,2) and ncol = 16384; the bold values are used to represent the speedup

States Computing time (s) I/O transfer mmicro_pcond Speedup

HtoD DtoH

Without I/O 1.0601 – – 1.0601 507.18
With I/O 1.0601 2.7085 1.7881 5.5567 96.76



17803

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

entire GPU-CMS is increased by 1.46× , from 96.76× to 141.68× . In general, the 
pinned memory technology performs well in data transfer.

5.6 � Verification

Clouds exert a significant impact on the short-wave and long-wave radiative trans-
mission, acting as pipes for the conversion of water vapor into precipitation, and as 
an important part of heat transfer by releasing latent heat. Therefore, verifying the 
accuracy of the GPU-based cloud microphysical scheme is crucial for the overall 
atmospheric model operation [4]. Our work aims to parallelize the computation pro-
cess of CAM5 CMS. Then, we focused on the computational error, and the model 
error was not in our consideration. The CAM5 CMS in this paper mainly predicts 
the number concentration and mixing ratio of cloud water and cloud ice. Therefore, 
the “qctend,” “qitend,” “nctend,” and “nitend” variables for the calculation of 
the concentration and mixing ratio increment process were selected for validation, 
examining the differences between the CPU code and the GPU code at each model 
layer. For validation, we ran the simulation for one model day using a horizontal 
grid size of 128×256=32768, a model layer count of 51, and an integration time step 
of 1 h.

The root means square difference (RMSD) is selected to verify the correctness of 
the GPU-CMS code, which was used to calculate the absolute differences between 
runs on different devices (here refers to CPU and GPU) and to calculate the vertical 
distribution of the overall average horizontal dimension [19]. The detailed calcula-
tion is shown in Eq. 3. where, i = 1,..., 32768 is the index of the horizontal cells on 
each model layer, n is the number of horizontal grid points, and x is the sum of the 
calculated results of all horizontal cells on the vertical layer index i for a model day. 
( xi and x̂i represent serial and parallel calculation results respectively). The experi-
mental results are shown in Fig. 9 (RMSD diagram of the vertical layer).

We verified whether there is a significant difference between the results of the 
parallel GPU-CMS code and the original serial code. On the premise of ensuring 
correctness, the notable acceleration performance is more trustworthy. In CUDA 

(3)RMSD =

�

1

n

n
∑

i=1

(xi − x̂i)
2

Table 6   Runtime (s) of GPU-CMS with the optimization on a single A100 GPU

Here, the block size = (128,2) and ncol = 16384; the bold values are used to represent the speedup

States Computing time (s) I/O transfer mmicro_pcond Speedup

HtoD DtoH

Without optimization 1.0601 2.7085 1.7881 5.5567 96.76
With optimization 1.0601 1.6704 1.0644 3.7949 141.68
Speedup – 1.62 1.68 1.46 1.46



17804	 Y. Hong et al.

1 3

parallel computing, the computation-intensive and data-independent codes are 
ported to the GPU for computation. Therefore, both CPU and GPU floating-point 
operations and math functions such as sqrt will introduce small calculation errors, 
but do not cause large deviations. From Fig.  9, it can be seen that the serial and 
parallel codes do not differ significantly during the integration of one model day. 
The “qctend” and “nctend” variables have errors in the first half of the model lay-
ers and no errors in the second half. Although “qitend” seems to fluctuate greatly, 
the overall error range is around 1.0E-19, which is reasonable. The “nitend” vari-
able is almost error-free. The time mean RMSD values for the “qctend,” “qitend,” 
“nctend,” and “nitend” variables were 4.30E-18, 1.20E-19, 5.14E-09, and 4.92E-
18, with very small magnitudes. The error is small and within the acceptable range.

In order to further verify the correctness of the code, we integrated the code into 
the entire CAS-ESM system. Due to the limited running time of the platform, we 
can only simulate the integral running for seven model days. And the “PRECL” vari-
able for the calculation of the precipitation rate was selected for validation (the rest 
of the variables are similar). Figure 10 is the result graph of the “PRECL” variable 
after seven model days of running in CAS-ESM system on the CPUs. And Fig. 11 is 
the meteorological error graph of the “PRECL” variable after seven model days of 
running in CAS-ESM system on the K20 GPUs. It can be seen from Fig. 11 that the 
error is within a reasonable range and is acceptable. Then, we can conclude that the 

Fig. 9   Time mean RMSD vertical profiles value for qctend, qitend, nctend, and nitend over one model 
day. The x-axis represents the values of the variables and the y-axis show the model layers of the model



17805

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

error resulting from the modification of the code is small and within the acceptable 
range. Therefore, our GPU-CMS code is correct and efficient.

5.7 � Discussion

(1)	 Mielikainen et al. obtained a 70× speedup for the Kessler microphysics scheme 
on one single GPU [15], while our GPU-CMS obtained a speedup of 141.69× , 
which is obviously better. The CUDA C-based WSM6 scheme proposed by 

Fig. 10   Precipitation rate simulated by CAS-ESM CAM5 CMS on CPUs

Fig. 11   The error range of precipitation rate simulated by CAS-ESM GPU-CMS on GPUs



17806	 Y. Hong et al.

1 3

Huang et al. obtained a speedup of 216× on one single NVIDIA K40 GPU [18] 
with a horizontal grid size of 433×308. The horizontal grid size in this paper is 
128×256. If the resolution increases, GPU-CMS will get a better speedup than 
141.69× . Increasing the resolution to do more in-depth experiments is one of 
our next works. Without considering the I/O transfer, Mielikainen et al.’s [14] 
single-GPU-based parallel method for Weather Research and Forecasting (WRF) 
Single Moment Class 5 (WSM5) achieves a 389× speedup, while our GPU-CMS 
parallel work achieves a speedup of 507.18× . At the same time, we compared our 
GPU-CMS work with Kim J Y, et al.’s [19] proposal to use OpenACC instruc-
tions to transplant the WSM6 microphysics of the cross-scale prediction model 
to the GPU for acceleration. The parallel performance of CUDA is obviously 
better than that of OpenACC. Of course, this is also determined by analyzing 
the specific code structure.

(2)	 CUDA Fortran was chosen to implement parallelism in this experiment for the 
following reasons: (1) For the implementation on GPU, Fortran based on PGI 
is more concise in syntax than C language. (2) Because there is no error caused 
by different languages, CUDA Fortran is more accurate and has less error than 
CUDA C. While CUDA Fortran is easier to implement, CUDA C is more mature 
and generally performs better than CUDA Fortran. Therefore, we will continue 
to develop the CUDA C version of the code [30].

(3)	 Without considering the I/O transfer, the acceleration performance of GPU-CMS 
will be better. With the integration of GPU-CMS into the whole CAS-ESM 
system, part of the data transfer process is reduced. At present, I/O transfer time 
still occupies most of the running time, which can be further reduced by CUDA 
stream and other technologies to achieve the maximum reduction of I/O transfer 
time.

6 � Conclusion and future work

It is an entirely new challenge to accelerate the CAM5 CMS by using GPU. This 
paper presented the acceleration algorithm of the CAM5 CMS (namely GPU-CMS) 
on one GPU. First, the characteristics and code structure of the CAM5 CMS are 
analyzed. On the basis of this work, a parallel acceleration algorithm based on 1D 
region decomposition was proposed using the CUDA programming model. Second, 
the 2D parallel acceleration algorithm was further proposed. Third, the data transfer 
process between the host and the device was optimized using the pinned memory 
technology. As the experimental results in this paper show, our parallel algorithm 
is efficient. In order to test the acceleration speedup, implemented the original and 
improved cloud microphysics process (CAM5 CMS and GPU-CMS) in different 
experimental settings (NVIDIA K20, NVIDIA P100, and NVIDIA A100 GPU) and 
compared and analyzed. The experimental results indicated that the program can be 
performed better on the NVIDIA A100 GPU. During the computation of one model 
day, the 2D GPU-CMS on a single A100 GPU obtained a speedup of 141.69× as 
compared to that in a single Intel Xeon E5-2680 CPU-core, reducing the runtime 
from 537.6662 s to 1.0601 s. Without considering I/O transmission, the speedup is 



17807

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

increased to 507.18× , which certainly expedites the computation of the CAM5 CMS 
model. In addition to obtaining better computational efficiency, it is very important 
to achieve accurate results. We carefully verified our code using RMSD and plot-
ted the meteorological error by running seven model days in the CAS-ESM system, 
proving that the error of the code is within an acceptable range. In summary, it is 
feasible, cost-effective, and efficient to accelerate the computational process of the 
CAM5 CMS with GPU.

Indubitably, the current accelerated GPU-CMS still has some points that need 
to be enhanced. The future work will focus on the following two points: (1) The 
accelerated GPU-CMS currently only runs on a single GPU instead of multi-GPU. 
To completely utilize the thousands of CPU cores and GPUs in the device, the MPI 
+CUDA hybrid paradigm [31] and OpenMP+CUDA structure [32] should be con-
sidered to investigate multi-GPU acceleration algorithms for scalability. Obviously, 
the implementation of integrating this program onto multiple GPUs presents sig-
nificant challenges. As a return, the algorithm based on multiple GPUs will achieve 
much better acceleration results. (2) The data transfer between CPU and GPU is 
still the most time-consuming part of the GPU-CMS. In this case, CUDA stream-
ing technology can be used for asynchronous data transfer, which can overlap the 
kernel computation and data transfer process to achieve the purpose of hiding part 
of the data transfer time and reducing the data transfer time. In addition, the use of 
coalesced memory accesses techniques and mixed precision techniques to optimize 
GPU-CMS is also well worth investigating.

Acknowledgements  This work was supported in part by the National Natural Science Foundation of 
China under Grant 41931183, in part by the National Key Research and Development Program of China 
under Grant 2016YFB0200800, and in part by the National Key Scientific and Technological Infrastruc-
ture project “Earth System Science Numerical Simulator Facility” (Earth Lab).

Author contributions  YH helped in methodology, software, and writing—original draft; YW contributed 
to supervision, conceptualization, methodology, and writing—review and editing; XZ: Writing-original 
draft; XW, HZ, and JJ helped in writing—review and editing.

Funding  Not applicable.

Data availability  The data that support the findings of this study are available on request from the cor-
responding author.

Declarations 

Conflict of interest  The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

Ethical approval  Not applicable.

References

	 1.	 Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz 
C, Lin S-J, et  al (2004) Description of the ncar community atmosphere model (cam 3.0). NCAR 
Tech. Note NCAR/TN-464+ STR 226, 1326–1334



17808	 Y. Hong et al.

1 3

	 2.	 Neale RB, Chen C-C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, 
Kinnison D, Lamarque J-F et al (2010) Description of the ncar community atmosphere model (cam 
5.0). NCAR Tech Note NCAR/TN-486+ STR 1(1):1–12

	 3.	 Conley AJ, Garcia R, Kinnison D, Lamarque J-F, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, 
Morrison H et al (2012) Description of the ncar community atmosphere model (cam 5.0). NCAR 
technical note 3

	 4.	 Morrison H, Curry J, Khvorostyanov V (2005) A new double-moment microphysics parameteriza-
tion for application in cloud and climate models. part i: description. J Atmos Sci 62(6):1665–1677

	 5.	 Fan Z, Qiu F, Kaufman A, Yoakum-Stover S (2004) Gpu cluster for high performance computing. 
In: SC’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, pp 47–47. IEEE

	 6.	 Deng Z, Chen D, Hu Y, Wu X, Peng W, Li X (2012) Massively parallel non-stationary eeg data 
processing on gpgpu platforms with morlet continuous wavelet transform. J Internet Serv Appl 
3(3):347–357

	 7.	 Chen D, Wang L, Tian M, Tian J, Wang S, Bian C, Li X (2013) Massively parallel modelling & 
simulation of large crowd with gpgpu. J Supercomput 63(3):675–690

	 8.	 Yuan Y, Shi F, Kirby JT, Yu F (2020) Funwave-gpu: multiple-gpu acceleration of a boussinesq-type 
wave model. J Adv Model Earth Syst 12(5):e01957

	 9.	 Sanders J, Kandrot E (2010) CUDA by Example: an Introduction to General-purpose GPU Pro-
gramming, Addison-Wesley Professional

	10.	 Xiao D, Tong-Hua S, Jun W, Ren-Ping L (2014) Decadal variation of the aleutian low-icelandic low 
seesaw simulated by a climate system model (cas-esm-c). Atmos Oceanic Sci Lett 7(2):110–114

	11.	 Zhang H, Zhang M, Zeng Q-C (2013) Sensitivity of simulated climate to two atmospheric mod-
els: interpretation of differences between dry models and moist models. Mon Weather Rev 
141(5):1558–1576

	12.	 Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) Gpu computing. Proc 
IEEE 96(5):879–899

	13.	 Nickolls J, Dally WJ (2010) The gpu computing era. IEEE Micro 30(2):56–69
	14.	 Mielikainen J, Huang B, Huang H-LA, Goldberg MD (2012) Improved gpu/cuda based paral-

lel weather and research forecast (wrf) single moment 5-class (wsm5) cloud microphysics. IEEE J 
Select Topics Appl Earth Observ Remote Sensing 5(4):1256–1265

	15.	 Mielikainen J, Huang B, Wang J, Huang H-LA, Goldberg MD (2013) Compute unified device 
architecture (cuda)-based parallelization of wrf kessler cloud microphysics scheme. Comput Geosci 
52:292–299

	16.	 Xiao H, Sun J, Bian X, Dai Z (2013) Gpu acceleration of the wsm6 cloud microphysics scheme in 
grapes model. Comput Geosci 59:156–162

	17.	 Mielikainen J, Huang B, Huang H-L, Goldberg M, Mehta A (2013) Speeding up the compu-
tation of wrf double-moment 6-class microphysics scheme with gpu. J Atmos Oceanic Tech 
30(12):2896–2906

	18.	 Huang M, Huang B, Gu L, Huang H-LA, Goldberg MD (2015) Parallel gpu architecture framework 
for the wrf single moment 6-class microphysics scheme. Comput Geosci 83:17–26

	19.	 Kim JY, Kang J-S, Joh M (2021) Gpu acceleration of mpas microphysics wsm6 using openacc 
directives: performance and verification. Comput Geosci 146:104627

	20.	 Wang Z, Wang Y, Wang X, Li F, Zhou C, Hu H, Jiang J (2021) Gpu-rrtmg_sw: accelerating a short-
wave radiative transfer scheme on gpu. IEEE Access 9:84231–84240

	21.	 Carlotto T, Borges Chaffe PL, Innocente dos Santos C, Lee S (2021) Sw2d-gpu: a two-dimensional 
shallow water model accelerated by gpgpu. Environ Modell Softw 145:105205. https://​doi.​org/​10.​
1016/j.​envso​ft.​2021.​105205

	22.	 Cao H, Yuan L, Zhang H, Zhang Y, Wu B, Li K, Li S, Zhang M, Lu P, Xiao J (2023) Agcm-3dlf: 
accelerating atmospheric general circulation model via 3-d parallelization and leap-format. IEEE 
Trans Parallel Distrib Syst 34(3):766–780. https://​doi.​org/​10.​1109/​TPDS.​2022.​32310​13

	23.	 Fung J, Mann S (2004) Computer vision signal processing on graphics processing units. In: 2004 
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp 93. IEEE

	24.	 Kirk D et  al (2007) Nvidia cuda software and gpu parallel computing architecture. In: ISMM 
7:103–104

	25.	 Wolfe M et al (2012) Cuda fortran programming guide and reference. The Portland Group, Release
	26.	 Ruetsch G, Fatica M (2013) CUDA Fortran for Scientists and Engineers: Best Practices for Efficient 

CUDA Fortran Programming, Elsevier

https://doi.org/10.1016/j.envsoft.2021.105205
https://doi.org/10.1016/j.envsoft.2021.105205
https://doi.org/10.1109/TPDS.2022.3231013


17809

1 3

A GPU‑enabled acceleration algorithm for the CAM5 cloud…

	27.	 NVIDIA: CUDA Fortran Programming Guide and Reference. (2019). [Online]. available at https://​
www.​pgroup.​com/​resou​rces/​docs/​19.1/​pdf/​pgi19​cudaf​orug.​pdf

	28.	 Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in 
the community atmosphere model, version 3 (cam3). part i: description and numerical tests. J Clim 
21(15):3642–3659

	29.	 Wang Y, Zhao Y, Jiang J, Zhang H (2020) A novel gpu-based acceleration algorithm for a longwave 
radiative transfer model. Appl Sci 10(2):649

	30.	 NVIDIA: “CUDA C Programming Guide v10.0.”. [Online]. https://​docs.​nvidia.​com/​pdf/​CUDA_C_​
Progr​amming_​Guide.​pdf (2019)

	31.	 Farhatuaini L, Pulungan R (2019) Parallelization of uniformization algorithm with cuda-aware mpi. 
In: 2019 7th International Conference on Information and Communication Technology (ICoICT), 
pp 1–6. IEEE

	32.	 Czarnul P (2018) Parallelization of large vector similarity computations in a hybrid cpu+ gpu envi-
ronment. J Supercomput 74(2):768–786

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

Authors and Affiliations

Yan Hong1 · Yuzhu Wang1 · Xuanying Zhang1 · Xiaocong Wang2 · He Zhang2 · 
Jinrong Jiang3

	 Yan Hong 
	 hongyan@email.cugb.edu.cn

	 Xuanying Zhang 
	 zxy13meredith@163.com

	 Xiaocong Wang 
	 wangxc@lasg.iap.ac.cn

	 He Zhang 
	 zhanghe@mail.iap.ac.cn

	 Jinrong Jiang 
	 jjr@sccas.cn

1	 School of Information Engineering, China University of Geosciences, Beijing 100083, China
2	 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3	 Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

https://www.pgroup.com/resources/docs/19.1/pdf/pgi19cudaforug.pdf
https://www.pgroup.com/resources/docs/19.1/pdf/pgi19cudaforug.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf

	A GPU-enabled acceleration algorithm for the CAM5 cloud microphysics scheme
	Abstract
	1 Introduction
	2 Related work
	3 Model description
	3.1 CAM5 CMS
	3.2 Analysis of code structure

	4 GPU-enabled acceleration algorithm
	4.1 Algorithm idea
	4.2 Implementation of parallel algorithm
	4.2.1 1D acceleration algorithm
	4.2.2 2D acceleration algorithm

	4.3 Optimization of data transfer

	5 Results and discussion
	5.1 Experimental setup
	5.2 Influence of ncol
	5.3 Comparison of shape and size of thread blocks
	5.4 Evaluation of different GPUs
	5.5 Optimization of IO transfer
	5.6 Verification
	5.7 Discussion

	6 Conclusion and future work
	Acknowledgements 
	References




