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Abstract
Low Power Wide Area Networks (LPWANs) have become a popular option for 
modern wireless communication technologies. Long Range (LoRa) protocol was 
designed for LPWAN, which offers long-distance communication, low-power con-
sumption, and simultaneous transmissions. Long-distance communication necessi-
tates an extremely low signal-to-noise ratio at the receiver. Additionally, low power 
consumption necessitates less signaling, which leads to the usage of simpler pro-
tocols like ALOHA and less coordinated communication. Therefore, as the num-
ber of devices equipped with this technology grows, its performance will degrade 
naturally as a result of scalability and interference difficulties. Deep learning holds 
great promise for resolving these problems through data-driven approaches and 
enhances the efficiency of LoRaWAN in usage of limited spectrum resources. In this 
work, we present the design of an end-to-end communication system as an autoen-
coder architecture utilizing deep learning. This adaptable architecture is able to effi-
ciently capture channel impairments while simultaneously optimizing the operations 
of the transmitter and receiver together. The autoencoder is designed with multi-
ple system model elements, including a sender net that simulates a LoRa transmitter 
and modulates data, a channel net that models channel impairments, and a receiver 
net that acts as a LoRa receiver to demodulate and retrieve the original data. The 
proposed autoencoder model is trained and evaluated with LoRa samples generated 
by simulation, and it is shown to be a high performer by comparing with the tradi-
tional LoRaWAN in terms of Bit Error Rate (BER) and Packet Success Rate (PSR) 
measurements.
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1 Introduction

The most popular connection choice for Internet of Things (IoT) applications 
needing extended range, great energy efficiency, and low cost has emerged as 
Low Power Wide Area Networks (LPWAN). The goal of LPWAN protocols is 
to connect a large number of battery-operated devices, such as sensors used in 
applications that can tolerate delays and have modest throughput requirements 
per device [1]. A significant number of LPWAN technologies uses unlicensed fre-
quencies, which presents an extra obstacle on account of the increased interfer-
ence levels. Effective data transmission is essential for long-range communica-
tions and improved quality of service, which increases reliability. Consequently, 
reducing the need for signal retransmission, which entails spectrum congestion. 
Spectrum efficacy is especially critical in the unlicensed Industrial, Scientific, 
and Medical (ISM) band, because this spectrum is open to the public.

The goal of every communication system is to accurately recreate the mes-
sage sent by the transmitter at the other end of the channel. The transmitted sig-
nal may get distorted as a result of the channel’s noise characteristics, and the 
receiver may not be able to reconstruct the message exactly. A reliable commu-
nication system ought to be capable to overcome these channel-induced corrup-
tions and faithfully reconstruct the message at the recipient. Wireless communi-
cation systems have traditionally been built using accurate system models and 
complicated mathematical theories. The complex relationship between spectrum 
data and communication architecture of new generation wireless communica-
tion technologies is difficult to represent using traditional modeling approaches. 
Machine Learning (ML) and Deep Learning (DL) technologies are grown rapidly 
in recent years, with applications extending into practically every sector and aca-
demic domain. The nonlinearity resistance of DL algorithms has made them a 
topic of intense study for implementation in wireless communication systems [2]. 
DL has emerged as a practical approach to address the challenges associated with 
the wireless communication system’s need for increased data rate, speed, reliabil-
ity, and security. Utilizing multiple DL classification approaches [3–5] enables 
its usage for modulation recognition. Equalization and sampling synchronization 
with DL has been investigated in [6, 7].

Multiple functional blocks are utilized to construct links in traditional math-
ematically derived models of communication systems. Every functional block is 
optimized separately to get maximum efficiency. As an alternative, the DL-based 
autoencoder architecture offers a comprehensive answer, one that is wholly data-
driven and focused on learning from end-to-end in order to achieve optimal per-
formance. This research focused on the end-to-end design of autoencoder-based 
communication systems. The idea of training a wireless communications network 
to act as an autoencoder was first proposed in [8]. An autoencoder is one kind 
of a Deep Neural Network (DNN) that features both an encoder and a decoder. 
It is the responsibility of the encoder to discover an underlying representation 
of the input data, and the decoder’s task is to recover the original data from the 
encoding. Instead of optimizing the transmitter and receiver independently, this 
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is accomplished by designing the two major components as an autoencoder. The 
authors in [9] presented a training method for end-to-end systems without know-
ing about the channel by considering perturbation stochastic approximations. In 
[10], another method based on transmitter output perturbations is suggested. [11, 
12] provide techniques for utilizing neural networks to approximate the channel 
distribution and then use that as a substitute channel for backpropagation.

Long Range (LoRa) is a widely used LPWAN modulation technology that sup-
ports numerous IoT applications, including smart metering, smart agriculture, smart 
buildings, and logistics monitoring [13]. LoRa is a low-power, long-range commu-
nication standard implemented at the physical layer. LoRa’s ability to provide com-
promises between power consumption, communication range, and data rate enables 
sustainable IoT. The physical layer of LoRaWAN allows for the orthogonalization 
of transmissions in terms of channel frequency, bandwidth, coding rate, transmis-
sion power, and spreading factor, enabling the deployment of LoRa nodes in high 
density. However, it also faces several challenges in terms of scalability, capacity, 
interference and so on. Most LoRa-based IoT applications nowadays are used to cre-
ate massive network maps consisting of millions of nodes. This creates a problem 
for LoRa network densification. Evaluating an application on such a massive scale 
necessitates the use of advanced simulation and modeling techniques.

The following is a list of the contributions made in this work:

• Designing a DL-based autoencoder for end-to end communication of LoRaWAN.
• Implementing effective channel model and training mechanism.
• Performance evaluation of the model with simulation data.

The remainder of the article is organized as follows: The second section dis-
cusses the fundamentals of LoRa technology and how DL can be implemented in 
LPWANs. The autoencoder architecture and system model are presented in Sect. 3. 
Section 4 goes into detail about implementation, including two-phase training. The 
results of the simulation are presented in Sect.  5, and the article is concluded in 
Sect. 6.

2  LoRa and deep learning

LoRa is a physical layer acquired and developed by Semtech corporation, with 
higher-level properties for implementing LPWANs. LoRa’s base adjustment is Chirp 
Spread Spectrum (CSS). It has similar low-power characteristics as Frequency Shift 
Keying, but apparently improves contact range. Multiple IoT nodes in LoRa network 
can be connected with a network server via gateways using a virtual channel. There 
are six virtual channels called Spreading Factors (SFs), ranging from 7 to 12 are 
used for communication between LoRa nodes and gateway. LoRa data rate varies 
between 300 bits and 50,000 bits per second relative to the selection of SF and band-
width. A LoRa receiver can decode signals that are 19.5 decibels below the noise 
floor, allowing for extremely extended communication ranges. The possible commu-
nication range of LoRa is 15 km in rural and 5 km in urban areas [14]. Depending 
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on the network environment and the number of LoRa nodes served by a LoRa gate-
way, the parameters of the network can be optimized to achieve better efficiency. 
The primary parameters of LoRa that can be optimized for better results are SF, 
bandwidth, coding rate, carrier frequency, and transmission power.

In addition to the LoRa radio protocol, the LoRa Alliance has developed the 
LoRaWAN protocol stack and network architecture [15]. LoRaWAN is a MAC 
layer protocol with open access which operates on regional ISM band frequencies 
of 433 MHz–868 MHz (EU), 915 MHz (AUS and US), and 923 MHz (ASIA). The 
LoRaWAN MAC layer determines the network architecture that in this respect is a 
star of stars. The LoRaWAN network architecture depicted in Fig. 1 consists of three 
functional devices, including LoRa nodes, gateways, and a network server. There are 
three classes of LoRa nodes (A, B, and C), with output varying according to the data 
rates and latencies made accessible by the network and, therefore, resulting in longer 
battery life. Gateways function as transparent bridging between LoRa nodes and the 
network server. Typically, communications to the network server are implemented 
through secured TCP/IP lines, application data are encoded from LoRa nodes, and 
gateways do not impose higher-level protocols because they are only pass-through 
tools. Before arriving at the application point, packets are inspected at gateways and 
any duplicates are discarded. The network server is the place where application real 
getting intent is performed.

LoRa communication technology has several advantages over other communica-
tion technologies, including its long-range capabilities, low power consumption, and 
low cost. However, as the demand for IoT applications and devices increases, LoRa 
communication faces several challenges that can affect its performance and scalabil-
ity. Scalability is a significant challenge for LoRa communication, as the number 
of IoT devices and applications continues to grow. With an increasing number of 
devices transmitting data, the network can become congested, resulting in reduced 
data rates and increased latency. Additionally, LoRa communication is susceptible 
to interference from other devices operating in the same frequency band, which can 
further impact network performance. To address these challenges, the usage of DL 
has become increasingly important to maintain network performance.

Fig. 1  LoRaWAN network architecture
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The performance of LoRa systems can be highly dependent on the channel con-
ditions, such as distance, location, and signal strength. The proposed autoencoder 
can be used to model the LoRaWAN channel accurately and learn the optimal map-
ping between the transmitted signal and the received signal under different channel 
conditions. This can help improve the accuracy of signal detection and interference 
mitigation algorithms. Additionally, DL-based LoRa autoencoder can also reduce 
the energy consumption and transmission time of the LoRaWAN by compressing 
the sensory data need to be transmitted [16].

2.1  Deep learning in LPWANs

IoT and Smart City implementations are producing massive volumes of sensory data 
that must be analyzed. Research in this area focuses on finding ways to apply DL to 
these different fields. DNNs are high-rated efficient DL algorithms. They are distin-
guished from traditional neural networks by their reliance on nonlinear processing 
neurons for feature extraction. They conceal a multitude of layers, each of which 
contributes to the accurate modeling of more intricate functions. DNNs often handle 
nonlinear data properties, which are helpful in big data use cases. DNNs are used 
to recognize the radio’s one-of-a-kind hardware impairments and patterns. This is 
accomplished by studying a substantial quantity of the raw data that is released by 
the radios. Typically, IoT networks have a high density of devices, making it ideal 
for utilizing DL approaches in these networks to improve network performance, 
authentication, security, and service accessibility.

DL is used in multiple ways to address the challenges of LoRaWAN. One of the 
primary challenges with LoRaWAN communication is the need for efficient and 
reliable data transmission. A DL-based approach [17] is used to predict the optimal 
transmission parameters, such as the SF and data rate, based on the characteristics 
of the environment and the data traffic. This can help to minimize collisions and 
reduce energy consumption, resulting in improved performance and longer battery 
life for LoRaWAN devices. DL is also used for interference detection and mitigation 
in LoRaWAN communication by designing a model to analyze the received signal 
and detect patterns that indicate interference [18]. In addition to these applications, 
DL also used for data compression, feature extraction, and anomaly detection in 
LoRaWAN communication [19]. These techniques can help to reduce the amount of 
data that needs to be transmitted, improve data transmission rates, and detect abnor-
mal events or behaviors in the network.

Various DL algorithms are employed in LoRaWAN; however, the autoencoder 
principle from DL is rarely used. Autoencoder is a DL technique that can be used 
for unsupervised feature learning and data compression. A compressed version 
of the input data is created by the encoder network, and the decoder network then 
restores the original data. Recent works have utilized the autoencoder concept for 
LoRaWAN localization [20] and demodulation [21] applications. According to our 
knowledge, this is the first attempt to design an end-to-end communication system 
for LoRaWAN using a DL-based autoencoder.
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3  System model

The proposed model aims to provide end-to-end communication in a LoRa net-
work through the use of an autoencoder. Figure  2 depicts a block diagram of 
the system. Sensor Nodes (SNs) connected to LoRa nodes (LNs), LoRa Gate-
way (LG), and Network Server (NS) make up the system. The SNs gather sen-
sory data from IoT devices. The LN is responsible for compressing and trans-
mitting sensory data to the LG. The LG receives and transmits the same to the 
NS. The transmitted data is decompressed at the NS and forwarded to the AS. 
Autoencoders are utilized in the design of communication system  to simultane-
ously optimize sender and receiver modules, which is a wholly novel approach 
for  constructing communication systems. The system employs the DNN model 
to compress sensory data. Encoder and decoder of DNN perform compression 
and decompression operations at LN and NS, respectively. The system employs 
sender net as an encoder for compression of sensory data and channel net to sim-
ulate LoRa channel characteristics. At the NS, the receiver net decompresses and 
retrieves the original data.

3.1  Design of autoencoder

Autoencoders are a type of neural network that is programmed to learn a com-
pressed version of raw data and then use that information to reconstruct the input 
at the output. Developing strong representations for the message at each layer is 
necessary for the network to ensure reliable transmission. The proposed autoen-
coder model architecture is presented in Fig.  3. Consider the data to be trans-
mitted from the sender to be s ∈ S . To send data over a noisy channel, modern 
communication systems transform the data s into a representation x ∈ X . At the 
destination, a corrupted form of x , denoted by y , is received. The receiver makes 
an effort to recreate s from y as accurately as feasible. A transmitter is modeled 
as a function that takes input data s and generates an intermediate representation 
x using the formula x = f (s) . The channel that corrupts x is denoted by y = h(x) . 
Here, the input x is transformed into the desired output y using the stochastic gra-
dient function h(x) . Lastly, the receiver can be thought of as another function that 
uses ŝ = g(y)  to figure out the best way to reconstruct ŝ from y.

Fig. 2  Illustration of the system model
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3.1.1  Sender net

The sender net is composed of a feed-forward neural network that has dense layers, 
which is then followed by a layer that is used for normalization. Every dense layer in 
a neural network is a deep-connected layer, indicating that each neuron in it receives 
input from all neurons in the preceding  layer. Matrix–vector multiplication is car-
ried out in the background by the dense layer. Back propagation can be used to learn 
and update the values of the real parameters that are represented as variables in the 
matrix.

LoRa employs CSS modulation, in which a frequency-modulated pulse is used 
to spread data across the channel’s bandwidth. LoRa supports M = 2SF distinct 
symbols, each of which contains SF bits. The duration of a symbol is denoted by 
Ts = MT, where T = 1/B and B represents the bandwidth of the signal. The SF range 
in LoRa is {7, 8, 9, 10, 11, 12} and available bandwidths are 125,250, and 500 kHz. 
A chirp is used to represent each LoRa symbol, and this chirp has a linear frequency 
shift that occurs over a period of time denoted by Ts. As input, the sender network 
receives the symbols from LoRa nodes.

An L-layered feed-forward neural network performs an iterative mapping f (s0 ; 
θ): RN0 → RNL to transform a vector of inputs s0 ∈ RN0 to an output vector xL ∈ RNL 
by multiple steps:

(1)sl = fl
(

sl−1; �l
)

, l = 1,… ,L

Fig. 3  Illustration of proposed model architecture
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where fl
(

sl−1; �l
)

∶ RNl−1 → RNl is the mapping performed at lth layer. This mapping 
relies on set of parameters �l  along with an output vector sl−1 from the previous 
layer. The mapping fl is a function of random variables as it is stochastic. The col-
lection of network parameters is represented with � =

{

�1,… , �l
}

 . The lth  layer is 
fully connected layer with

where activation function is given by Wl ∈ RNl×Nl−1 , bl ∈ RNl , , and σ (·). The param-
eters set of this layer is �l = {Wl , bl }. A fresh random mapping is created by all layers 
with stochastic mappings on every invocation. Normalization is used at the output of 
the last dense layer to alter the data such that it satisfies the average power restriction 
or the amplitude constraint imposed by hardware. Finally, the compressed version of 
input data denoted by x is transmitted via Channel net to the gateway.

3.1.2  Channel net

Once the transmitted samples are given to the LoRa channel, the next operation to 
be performed is the propagation of the signal through the channel. This involves 
the signal being affected by path loss, shadowing, multi-path, and noise, which can 
lead to attenuation, distortion, and interference. The channel also introduces timing 
errors due to the delay and dispersion of the signal.

The Channel net is designed to simulate the effects of the LoRa channel on the 
transmitted data. The Channel net designed of a single layer with a Gaussian noise 
function, where the standard deviation of the noise is determined by the path loss 
and shadowing effects, and the amplitude and phase of the noise are determined by 
the fading effect. Each in-phase and quadrature-phase (IQ) sample component is 
amplified by a genuine Gaussian random variable N in the standard channel known 
as Additive White Gaussian Noise (AWGN). To simulate the channel effects, a sto-
chastic channel model can be used, which incorporates the LoRa channel features. 
The most common propagation models used for LoRaWAN systems are the log-
normal shadowing model and the Rayleigh fading model. The parameters used to 
simulate the channel includes the distance between the transmitter and receiver, the 
frequency of the signal, the gain of the antennas, and the standard deviation of the 
shadowing and fading models.

The stochastic channel model for LoRa is designed as shown in Fig. 4 with the 
following components:

1. Upsampling and pulse shaping: In order to accurately reflect the proportion of 
complex samples to symbols, we set sampling factor β ≥ 1. To begin, we upsample 
the input symbol vector x ∈ Cn by appending β − 1 zeros at the end of each sym-
bol. Then, passed through a discrete normalized root-raised cosine filter grrc(t) . 
Upsampled and filtered output grrc ∈ C(Nmsg+L−1) contains complex-valued sam-
ples of length Nmsg + L − 1.

(2)fl
(

sl−1;�l
)

= �
(

Wlsl−1 + bl
)
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2. Sample offset time: Due to asynchronization of sender and receiver, the sample 
time has a random offset, indicated by �off . Since it is anticipated that the receiver 
would operate directly on IQ-samples received without resorting to any conven-
tional synchronization methods, this timing offset may be modeled during the 
pulse-shaping stage. The time-shifted filter grrc

(

t − �off
)

 is used to calculate the 
convolution of the upsampled input.

3. Phase offset and carrier frequency offset: The carrier frequency offset occurs when 
the oscillator frequencies of the sender ftx and receiver frx in radio hardware are 
slightly out of sync. We describe this as a time-varying rotation impact on the 
complicated IQ samples.

where fs is a sampling frequency, Δ� =
fcfo

fs
 is the common-phase offset, and �off is 

an optional unknown phase offset.

4. Path loss model: The path loss model is used to simulate the attenuation of the 
signal as it travels through the channel. The Friis transmission equation [22] is 
used to model the path loss, which is given by:

where Pr is the received power, Pt is the transmitted power, Gt and Gr are the 
gains of the transmitting and receiving antennas, λ is the wavelength of the sig-
nal, and d is the distance between the transmitter and receiver.

5. Shadowing model: The shadowing model is used to simulate the attenuation of 
the signal due to obstacles in the environment. The log-normal distribution is 
considered to model the shadowing, which is given by:

(3)xcfo,k = xrrc, ke
j(2�tΔ�+�off)

(4)Pr = Pt ∗ Gt ∗ Gr ∗

(

�

4�d

)2

Fig. 4  Representation of channel modeling process
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where PL is the path loss, d0 is the reference distance, �  is the path loss expo-
nent, and X is a random variable representing the log-normal shadowing with a 
standard deviation σ.

6. Fading model: The fading model is used to simulate the variation in the signal 
amplitude and phase due to multi-path propagation. The Rayleigh distribution is 
used to model the fading, which is given by:

where a and b are independent, identically distributed Gaussian random vari-
ables with zero mean and unit variance.

7. Additive White Gaussian: To simulate the effects of noise and interference in the 
channel model, we have considered AWGN. Therefore, the output of the channel 
is described as having the form y ∈ CNmsg+L−1.

where nk ∼ CN
(

0, �2
)

.

The stochastic channel model takes the transmitted signal samples as input and 
applies the above-mentioned channel effects to produce the received signal samples. 
These received signal samples are then fed into the receiver net of the autoencoder 
model for decoding and demodulation.

3.1.3  Receiver net

Demodulation of LoRa signals relies on the orthogonality of the underlying basis 
signals, as well as the cross-correlation qualities that exist between the 2SF different 
potential LoRa basis signals. The LoRa receiver’s correlator would provide 2SF out-
puts according to the received signal’s correlation with all basis signals. The default 
approach for recognizing LoRa symbols is to choose the index of the LoRa base sig-
nal that has the maximum correlation value with the signal that has been received.

As shown in Fig. 3, the receiver net is designed as DNN architecture consisting 
multiple fully connected layers with its final layer activated using a “softmax” func-
tion. The modulus of the de-chirped received samples will serve as the input to the 
receiver net, and there will be Cn input nodes. The output is comprised of the bits 
that make up the symbol that is being conveyed, which results in output nodes equal 
to M. The ReLU activation is employed in the hidden layers of the network. In the 
output layer, the sigmoid function is used to transform the output values into a range 
from [0, 1]. To avoid overfitting, batch normalization is included in the hidden lay-
ers. The complex value is transformed into its real value in the receiver network by 

(5)PL = PL
(

d0
)

+ 10� log 10

(

d

d0

)

+ X

(6)h =

�

1
√

2

�

∗ (a + ib)

(7)y = x + nk
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adding the real and imaginary parts of the channel’s output. The output of receiver 
b�(0, 1)M is a vector of probabilities that allocates probabilities to each of the poten-
tial messages.

4  Implementation

The proposed autoencoder is implemented for LoRaWAN communication by train-
ing the autoencoder with IQ data collected from LoRa nodes. Table  1 shows the 
LoRaWAN attributes that were considered  for system design and data gathering. 

Table 1  Summary of LoRa 
network Parameters

Parameters Symbols Value

Transmission frequency f 868 MHz
Spreading factor SF 7,8,9,10,11,12
Bandwidth BW 125 kHz
Coding rate CR 4/5
Transmission power Pt 16dBm
Transmission radius R 1000 m
Node distribution – Random
Traffic Model – Poisson distribution
Propagation Model – Log-normal shad-

owing and fading
Pay load PL 100bytes
Path loss exponent � 4

Table 2  Autoencoder network 
architectural parameters

Sender net Parameters Output 
dimen-
sion

Input 0 1
Embedding 65,536 256
Dense (ReLU) 65,792 256
Dense (ReLU) 2056 8
Normalization 0 8
Channel net
Previous layer input 0 56
Dense (ReLU) 14,592 256
Noise layer
Receiver net
Input 0 56
Dense (ReLU) 14,592 256
Dense (ReLU) 65,792 256
Dense (softmax) 65,792 256
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Table 2 lists the architectural parameters of an autoencoder network. The Stochas-
tic Gradient Descent (SGD) method is implemented for training the autoencoder. 
As the communication issue has been formulated as a classification challenge, it is 
appropriate to employ the cross-entropy loss function

where bs stands for the sth component of b. In light of the fact that we are work-
ing with an autoencoder, which requires that the output and the input be the same 
throughout training, we have a set number of M distinct training labels. Usage of 
randomized channel functions as a regularization prevents the NN from overfitting, 
as the receiver never sees the same training sample again. Training using the same 
set of M labels over and over again yields an unlimited amount of labeled training 
data. The autoencoder was separated into a transmitter (TX) and a receiver (RX) 
after training, with each half responsible for establishing a different mapping TX: M 
→ Cn and RX: Cn

→ M.

4.1  Training of autoencoder

The main benefit of representing the whole communication network from end to 
end as an autoencoder is that it makes the training process easier. The backpropaga-
tion technique [23] is used by all cutting-edge DL programs to efficiently calculate 
gradients across all layers. This technique can only be used with models of stochas-
tic channels, which provide a mathematically differentiable transfer function for the 
channel throughout all training data. To address the mentioned issue, a two-stage 
training technique related to transfer learning [24] is employed. The overall training 
process [25] is depicted in Fig. 5. To begin, an autoencoder is trained with the use 
of a stochastic channel model that was built to precisely describe the LoRa channel 

(8)Lloss = − log
(

bs
)

Fig. 5  Representation of two-phase training technique
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behavior (Phase I). The pseudocode for stochastic channel modeling is given in 
algorithm 1. The initial performance will be dependent on the accuracy of the model 
with trained transmitter and receiver deployment for over-the-air communication. 
Inconsistencies between the simulated and actual communication channels are a 
common source of system failure.

We address this mismatch by performing (Phase II) by fine-tuning the receiver 
component of the autoencoder. The sender will send several messages across the 
real LoRa channel, and the receiver will record the corresponding IQ samples. After 
gathering enough data from these samples and message indices, a guided receiver 
tuning is performed. Transmitters in effective models of stochastic channels acquire 
representations ‘x’ of the message ‘s’, which are resilient to distortions introduced 
by the channel. In spite of any differences in channel behavior, the acquired repre-
sentations are sufficient for training a receiver that reliably recovers the transmitted 
messages.

5  Results and discussion

To train the autoencoder, we created a labeled dataset by simulation. This dataset 
contains LoRa IQ symbols with SF ranges from 7 to 12, a bandwidth of 125 kHz, a 
carrier frequency of 868.1 MHz, a coding rate of 4/5, and a number of various chan-
nel impairments, as described in Sect. 3. In the first step of the process, an open-
source LoRa simulator  is used to generate a set of LoRa symbols [26]. After that 
the data is processed via a radio channel emulator, which causes various impair-
ments to be introduced into them. These impairments include AWGN noise, carrier 
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offset, time offset, pathloss, and shadowing. The output of the channel emulator is 
recorded as in-phase and quadrature information, which consists of two sinusoids 
that are π/2 radians out of phase with one another. LoRa demodulation methods are 
then used on  the channel’s output to acquire the demodulated samples, which are 
then used to train the receiver net in the autoencoder. As mentioned in the training 
process, the receiver is trained with stochastic channel output samples and finetuned 
with the real channel samples.

In the first step of our process, we generated 10,000 LoRa IQ samples of data 
transmissions with SF values in the range of 7 to 12. The produced dataset is parti-
tioned into three distinct subsets: training, validation, and test sets. The autoencoder 
is first trained with the help of the training data set, after which it is validated and 
tested for its performance in terms of BER and PSR. Later, the dataset is divided 
into segments based on each SF, and the autoencoder is tested using a set of data for 
each particular SF. We have also used a dataset with varying numbers of transmis-
sions to test the autoencoder’s robustness against interference, which grows in pro-
portion to the number of transmissions. Therefore, the autoencoder is subjected to 
testing for a variety of SFs and interference levels as well.

The stochastic channel model is used to train the autoencoder employing SGD 
and Adam optimizer [27], with a learning rate of 0.001. We trained through 60 itera-
tions of 10,000 arbitrary messages with a batch size of 50, 100, 500, and 1000 rising 
every 20 epochs. The validation accuracy rapidly surpasses 91.5%, while the valida-
tion loss decreases gradually as shown in Fig. 6a. To fine-tune the training data, we 
have used sequences for which the first receiver achieved a BER performance in 
range of 10−1 and 10−4 . To increase performance in the low SNR region, we used 
fine-tuning of sequences with which the original receiver’s performance was less 
than around 10−1 . Additionally, it brought for a considerable error floor in the region 
with a high SNR. Due to the fact that fine-tuning with extremely noisy sequences 
obscures crucial data structure, the receiver loses its capacity to adapt to high SNR. 
Finally, we found that fine-tuning using sequences for which the BER was less than 
10−4 led to a small but significant improvement. Fine-tuning was performed over 

Fig. 6  a Performance of autoencoder b Autoencoder training loss with and without fine-tuning of 
receiver net (RX)
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the course of one epoch per batch size, with batch sizes of 1000, 5000, and 10,000, 
respectively. The training is performed with a limited number of iterations to avoid 
the neural network being overtrained. A comparison of the autoencoder’s perfor-
mance with and without fine-tuning is depicted in Fig. 6b.

5.1  Performance metrics 

The quality of service of a LoRa network depends on several parameters and met-
rics, including coverage, data rate, latency, packet success rate, bit error rate, scal-
ability, and Interference. We evaluated the efficacy of a LoRaWAN network with the 
proposed autoencoder using the following three metrics.

5.1.1  Bit error rate

The bit error rate (BER) is defined as the percentage of lost data relative to the over-
all data. We have evaluated the performance of LoRa DL autoencoder with conven-
tional LoRa in terms of BER. This evaluation consists of multiple tests correspond-
ing to each SF. The BER is evaluated with respect to SNR for each individual SF. 
The BER curves of proposed model along with traditional LoRa are presented in 
Fig.  7. In conventional LoRa, the BER increases as the SNR decreases. The pro-
posed autoencoder model provides substantially lower BER than traditional LoRa at 
the same SNR. The improvement in BER is more prominent at lower SNR values. 
In terms of SF, the BER will typically decrease as the SF value increases, with the 
autoencoder providing almost the same level of performance across the board for all 
SF values.

5.1.2  Collision rate

The collision rate is the percentage of packets that collide with other packets and are 
not successfully received by the receiver device out of the total number of packets 

Fig. 7  BER analysis of proposed model in comparison with conventional LoRaWAN
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transmitted. The network throughput will be massively impacted by collision rate. 
As the number of transmissions increases, the collision rate will increase due to the 
increased likelihood of packets colliding with each other. The relationship between 
the number of transmissions and collision rate for proposed autoencoder and con-
ventional LoRa are given in Fig. 8a. The conventional LoRa network shown colli-
sion rate of 82.5% for around 600 number of transmissions and the proposed autoen-
coder lowered it by almost 20% by achieving 62%.

5.1.3   Packet Success Rate

PSR is the ratio of reliably received data packets to the total number of data packets 
sent. In order to characterize the reliability and coverage of LoRa network, PSR val-
ues can be utilized. We have calculated the PSR of autoencoder by varying the num-
ber of transmissions. The comparative results are presented in Fig. 8b. The autoen-
coder shown 5% of improvement in PSR compared to traditional LoRa.

5.2  Testing scenarios

In order to evaluate the autoencoder in various test scenarios, the model’s perfor-
mance is examined for data with different spreading factors ranging from 7 to 12. 
Initially, the autoencoder is trained and tested with the dataset of samples taken from 
LoRa nodes which used all types of SFs. In this test scenario, the autoencoder was 
subjected to further testing using multiple set of input samples containing only data 
pertaining to each SF individually. The performance of the autoencoder in relation 
to the various input sets was calculated in terms of categorical cross-entropy loss of 
the model and the findings are presented in Fig. 9a. Based on the results, it can be 
concluded that the proposed autoencoder exhibits superior performance with higher 
SFs as compared to the lower ones, albeit the difference is relatively minor. None-
theless, it can be ascertained that the autoencoder delivers remarkable performance 
for all SFs overall.

In a second scenario, the autoencoder is evaluated for different levels of inter-
ference. The autoencoder is tested with different datasets by increasing the number 

Fig. 8  Comparison of collision rate a and Packet success rate b of proposed model with conventional 
LoRaWAN
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of transmissions. The loss value of autoencoder for various levels of interference is 
presented in Fig. 9b. In a traditional LoRaWAN network, the number of collisions 
will rise as the number of transmissions in the network increases, which will result 
in a degradation of the network’s performance. In the same manner, the performance 
of autoencoder degraded slightly with an increase in the number of transmissions, 
but not by an unacceptable amount.

6  Conclusion and future scope

In this article, we have proposed a novel approach to improve the performance of 
LPWANs by integrating the intelligence of DL. Specifically, we have demonstrated 
the feasibility of building an end-to-end communication system for LoRa using 
DNNs. We have developed a framework for designing, training and evaluating an 
autoencoder with different channel impairments to emulate practical LoRa commu-
nication channel conditions. Our results indicate that the proposed model performs 
efficiently in comparison with classic LoRa system. The proposed model achieved 
5% of improvement in PSR and reduced 20% of collision rate. In terms of BER also 
the proposed model shown moderate improvement. We anticipate that performance 
will be enhanced further by adjusting hyperparameters and altering the NN topolo-
gies. Future work will involve rigorous training and testing to optimize different net-
work parameters and improve overall performance. Implementing the proposed con-
cept in real-time with hardware is also an interesting direction for future research.
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