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Abstract
The traffic flow prediction task is essential to the urban intelligent transportation 
system. Due to the complex correlation of traffic flow data, insufficient use of spati-
otemporal features will often lead to significant deviations in prediction results. This 
paper proposes an adaptive traffic flow prediction model AD-GNN based on spati-
otemporal graph neural network. The gated temporal convolutional network captures 
the temporal dependence between layers. Moreover, the diffusion graph convolu-
tional network simulates the spatial relationship between nodes. Then, the param-
eterized adjacency matrix is used to construct an adaptive convolutional network 
to adaptively mine the implicit global deep spatial dependence. The experimental 
results show that the model has good prediction performance on three real public 
datasets and can sufficiently meet real needs.

Keywords Adaptive · Traffic flow prediction · Spatiotemporal graph neural 
network · Spatial dependence

1 Introduction

With the continuous development of urbanization, traffic congestion and accidents 
faced by residents’ travel also increase [1]. Therefore, the importance of the intel-
ligent transportation system is self-evident.

The traffic flow prediction method refers to predicting the traffic flow at differ-
ent locations by using the historical data collected and stored in the traffic system 
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and combined with other information [2, 3]. If future traffic conditions can be 
accurately predicted, it can facilitate traffic planning and significantly improve the 
travel experience. Therefore, fully and accurately mining the information in the 
traffic data is particularly important for developing the intelligent transportation 
system.

In recent years, the number of available traffic datasets has gradually increased, 
providing essential data support for traffic prediction research. However, consid-
ering the traffic complexity in different scenarios, traffic flow prediction still faces 
many challenges. Firstly, the traffic flow of the urban road network has complex 
temporal and spatial correlations. The traffic conditions of a specific road section 
will be affected by the traffic conditions at different times in the nearby historical 
moment [4, 5]. The traffic state association between different road sections will 
be affected by various factors such as geometric distance, adjacency relationship, 
and functional similarity, showing complex spatial association. At the same time, 
most existing traffic flow prediction algorithms use long-term traffic history data 
collected by sensors in specific locations [6–8]. However, in actual traffic scenar-
ios, there may be cases where the prediction task is cold-started due to the insuf-
ficient duration of historical data [9]. Furthermore, changes in the road network 
structure often occur in traffic scenarios [10], and this change will cause the cor-
responding parameters fitted before the change to no longer suit traffic prediction 
tasks under the new road network structure.

For the above reasons, we propose an adaptive traffic flow prediction model 
AD-GNN based on spatiotemporal graph neural network. We utilize the gated 
temporal convolutional network combined with diffusion convolution network to 
model spatiotemporal correlations. In order to calculate the influence weights of 
different time steps in the historical data on the prediction results, we introduce 
an attention mechanism to enhance the model’s ability to describe the time series 
correlation. In addition, the adaptive adjacency matrix method is used to param-
eterize the adjacency matrix to capture the deep spatial dependencies between 
different locations based on a data-driven approach.

Given the complex temporal and spatial mode capture problem in traffic flow 
data, the main contribution of this paper is to introduce the attention mechanism 
into the process of temporal modeling to add the implicit state with stronger tem-
poral dependence to every moment, to improve the performance of the model’s 
temporal modeling. At the same time, the interaction of traffic features at differ-
ent locations is analogous to the feature diffusion process on the graph data, and 
the adaptive adjacency matrix is used to capture the spatial correlation of other 
nodes in the road network. Considering the gradient disappearing problem caused 
by the number of model layers increase, this paper uses the residual and skip con-
nection units to avoid this problem and complete the corresponding prediction 
task.

The structure of this paper is as follows. The related work is introduced in 
Sect.  2. The traffic flow prediction model is introduced in Sects. 3 and 4. In 
Sect.  5, we use different benchmark models for comparison to verify the effec-
tiveness of the AD-GNN model on three datasets. In Sect.  6, we conclude and 
propose future research directions.
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2  Related works

Traffic flow prediction methods are mainly divided into traditional time series 
methods and deep learning methods. The commonly method for the traditional 
time series method is the autoregressive integrated moving average model, also 
known as the ARIMA method [11]. The ARIMA method regards the sequence in 
a specific period as a general non-stationary sequence. It combines the two ideas 
of autoregression and moving average for simulating stationary time series. How-
ever, considering that the model initialization of the ARIMA method is too com-
plicated, another standard prediction method is the vector autoregression method, 
also known as the VAR method [12]. The VAR method is widely used in traffic 
forecasting. However, such methods cannot characterize more complex nonlinear 
correlations, which limits the prediction accuracy.

Deep learning methods can simulate more complex spatiotemporal corre-
lations and have higher prediction accuracy than traditional methods [13]. The 
DeepST method treats the traffic scene in a specific area as a two-dimensional 
grid [14]. It simulates the interaction between the inflow and outflow of adja-
cent sub-regions by combining the convolutional neural network with the residual 
unit. Some methods use the LSTM model for time series modeling and combine 
the CNN model to simulate spatial correlation to complete the corresponding 
traffic prediction [15, 16]. Based on the spatial relationship between different 
locations of the road network, the graph convolution method is usually used for 
the simulation of spatial association under the condition of the graph structure. 
Commonly used graph convolution methods include spatial domain graph convo-
lution and frequency domain graph convolution that extends Fourier transform to 
graph data, which can be collectively referred to as graph convolutional network 
(GCN) [17]. The STGCN method uses a 1D gated CNN to model temporal asso-
ciations and a graph convolution method to model spatial associations [18]. On 
this basis, the improved ASTGCN method [19], based on the one-dimensional 
time series convolution and graph convolution models, adds an attention module 
better to capture the correlation between different moments and sequences. The 
DCRNN method models the spatial dependence in the traffic map data as a diffu-
sion process simulates the spatial correlation through diffusion convolution and 
builds a sequence encoding and decoding structure based on the LSTM model 
[20]. The STSGCN method fuses the graph data of the current moment [21], the 
last moment, and the next moment to construct a spatiotemporal graph containing 
both spatiotemporal features. The MSTIF-Net model integrates GCN structures, 
variational auto-encoders, and Seq2seq model to obtain the joint latent represen-
tation of urban ride-hailing situations that contain both Euclidean spatial features 
and non-Euclidean structural features and capture the spatiotemporal dynamics 
[22]. The ETGCN model combines the gated recurrent unit with GCN to capture 
spatiotemporal dependencies and their changing states to predict traffic velocity 
in the road network accurately [23]. The ASTGNN method uses dynamic graph 
convolution and embedding modules to capture the periodicity and spatial hetero-
geneity of traffic data [24]. The AUTO-DSTSGN method captures the short-term 
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and long-term spatiotemporal correlations by stacking deeper layers with dila-
tion factors in increasing order and achieves good prediction results [25]. The 
DMVST-VGNN method integrates 1D CNN, Multi-Graph Attention Neural Net-
work, and transformer network structures, which strengthen the learning capabili-
ties of spatial dynamics and long-term temporal dependencies [26]. The AUTO-
STS method uses the graph neural network-based architecture search module to 
capture localized spatiotemporal correlations and the convolutional neural net-
work-based architecture search module to capture temporal dependencies with 
various ranges [27].

3  Problem formulation

For the prediction task, assuming that there are N traffic sensors in the predicted tar-
get road network, all traffic flow sequences in the target road network are defined as:

In the formula, xi
t
 represents the corresponding observation value of the i traffic sen-

sor in the target road network at time t. C is the number of traffic sequence features 
input by the prediction model.

In the AD-GNN model, the input is the observed value of traffic flow data col-
lected by each sensor in the target road network during a time series window of a 
specific length, expressed as:

In the formula, Xf  is the input of the model in this section, and T is the time series 
window length of the input historical observation value.

The traffic flow data have a strong periodic characteristic and presents different 
rules with peak and off-peak hours. Moreover, the changing trends of traffic flow 
and average speed in the road network also show a substantial similarity with the 
change of date. Therefore, the traffic prediction model in this paper takes the posi-
tion of the corresponding time in a day as the time feature and inputs it into the 
model together with the traffic flow feature. For the corresponding time feature at 
time t, the calculation method is:

In the formula, t is the current moment, and t0 is the moment that marks the begin-
ning of a day, that is, 0:00:00. Δt is the time span of a day, and pt is the result of time 
feature calculation and marks the position of time t in all moments of a day. Accord-
ing to the number of observed nodes, the time feature et at time t is expanded to 
obtain Pt ∈ RN to match the input dimension of traffic flow features. The final time 
feature input is:

(1)Xt =
(
x1
t
, x2

t
,… xN

t

)
∈ RC×N

(2)Xf =
(
X1,X2,…XT

)
∈ RC×N×T

(3)pt =
t − t0

Δt
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In the formula, PT is the time characteristic corresponding to all nodes at time T.
In order to facilitate the description of the spatial distribution characteristics, this 

section defines the road network as a graph structure G, where V represents the set of 
nodes, that is, the set of sensors in the target road network. E is the edge set, which 
represents the connection state between sensors in the road network; A is an adjacency 
matrix, which is used to represent the connection relationship in the edge set, and its 
assignment method is:

In the formula, Ai,j is the corresponding element in row i and column j in the adja-
cency matrix, and ⟨vi, vj⟩ represents the node pair composed of node i and node j.

The traffic state at a specific moment corresponds to a set of graph data. Within the 
continuous observation period, traffic graphs at multiple moments form spatiotemporal 
graph data, as shown in Fig. 1.

The target road network is defined as a graph structure, and its corresponding struc-
ture is defined as G. Given a traffic road network composed of N sensor nodes, the time 
series window length is T. The corresponding prediction task is to use the input data to 
generate the predicted values of the traffic flow characteristics of all nodes in the road 
network at H moments in the future. Its relationship is expressed as follows:

In the formula, Xin is the overall input of the prediction model, obtained by con-
catenating the traffic flow feature input Xf  and the time feature P. f is the predicted 
function, and 

Λ

Y  is the predicted value.

(4)P =
(
P1,P2,… ,PT

)
∈ RN×T

(5)Ai,j =

{
1,
⟨
vi, vj

⟩
∈ E(G)

0,
⟨
vi, vj

⟩
∉ E(G)

(6)
[
X in ,G

] f
−→

Λ

Y

Fig. 1  Spatiotemporal graph 
data
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4  Adaptive traffic flow prediction model AD‑GNN

The specific process of using historical observations for traffic prediction pro-
posed in this section is as follows: Firstly, the input traffic flow features and input 
time features are spliced and based on the fully convolutional neural network 
module splicing. The final input data are subjected to feature dimension transfor-
mation. The fully convolutional network module can extract the features of the 
data while changing the dimension of the features, which improves the operation 
efficiency. Afterward, the time series correlation weights at different moments 
in the input time series window are calculated based on the multi-head attention 
mechanism. The time series weighted feature transformation is performed to cap-
ture the correlation of different historical moments dynamically. Afterward, tem-
poral modeling is performed based on the temporal convolutional network, which 
encodes the temporal modality of the historical input information to extract the 
temporal correlation of the input data. For spatial dependence, the node adjacency 
relationship is used as a priori, and the spatial feature transformation process is 
realized through diffusion convolution. In addition, the graph convolution opera-
tion is performed by parameterizing the adjacency matrix to adaptively mine the 
hidden spatial correlation in the road network. The above spatiotemporal feature 
transformation extraction process is combined with the residual connection unit 
and the skip connection unit. So that the model can avoid the problem of gradient 
disappearance or gradient dispersion to improve the feature capture performance 
of the model. After that, the feature dimension is transformed through the con-
volution module. Finally, the traffic flow prediction values corresponding to all 
node sequences in the target road network are obtained at each moment in the 
prediction window period. The process flow of the adaptive traffic flow prediction 
method based on the spatiotemporal graph neural network proposed in this sec-
tion is shown in Fig. 2.

Fig. 2  The architecture of the AD-GNN model
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The AD-GNN model is based on the fully convolutional neural network module 
for feature extraction and feature dimension transformation of model input and out-
put data. Its calculation process is as follows:

In the formula, * is the convolution operation, and ReLU is the activation function. 
Wl

v
∈ RVl×Vl−1×1×1 is the convolution kernel, bl

v
∈ RVl is the paranoid parameter, and 

l is the number of total convolution layers. Xl−1 ∈ RVl−1×N×T is the input feature of 
the full convolution module of this layer, Xl ∈ RVl×N×T is the output feature of the 
full convolution operation of this layer, and Vl and Vl−1 are the feature dimensions of 
the input and output features. In the fully convolutional network module proposed in 
this section, the convolution kernel size is 1*1, and the moving step in the convolu-
tion kernel filtering process is 1. The essence of its operation is to transform the 
feature dimension of multi-dimensional time series data to complete the process of 
increasing or reducing the feature’s dimension without changing the data’s overall 
structure and generating new feature representations.

Considering the characteristics of the traffic flow prediction task, this model uses 
the MSE function as the loss function.

In the formula, Ω is the number of data samples, H is the length of the prediction 
time series window, and ŷi

T+h
 and yi

T+h
 are the predicted value and actual value of the 

ith data sample at the hth time step in the future, respectively.

4.1  Temporal attention mechanism

The time series correlation of traffic flow data presents complex nonlinearity and 
has different time-dependent characteristics in different periods. The traffic state at 
a specific moment is closely related to its adjacent moments and affected by distant 
historical moments. Commonly used time series modeling methods such as LSTM 
have a solid ability to describe time series trends. However, the ability to capture the 
time series correlation implied at different times is weak for a specific period. The 
attention mechanism can solve this problem by extracting the input features and then 
using the obtained representation vector to calculate the weight of the features to 
perform feature allocation to select specific inputs and achieve the effect of optimiz-
ing feature allocation [28].

The traffic flow prediction model proposed in this section uses the TCN 
method for temporal modeling and adds a temporal multi-head attention mecha-
nism. In the process of feature encoding, for each moment in the history window, 
calculate the correlation weights between other time series information and this 
moment, and use the characteristics of other moments to perform feature transfor-
mation on this moment. In this way, the time series correlation can be adaptively 

(7)Xl = ReLU
(
Wl

v
∗ Xl−1 + bl

v

)

(8)MSE =
1

ΩH

Ω∑

i=1

H∑

h=1

|ŷi
T+h

− yi
T+h

|2
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captured in transforming the time series features. The process of the nth group of 
attention calculations corresponding to the output results is:

In the formula, XA ∈ RT is the input timing feature corresponding to the attention 
mechanism; Qn ∈ RT×d is the query vector in the self-attention mechanism; 
Kn ∈ RT×d is the key-value vector, and Vn ∈ RT×d is the value vector. Moreover, d is 
the vector feature dimension. Wn

Q
∈ Rd , Wn

K
∈ Rd , Wn

V
∈ Rd are self-attention. The 

weight parameters in the attention vector calculation process, bn
Q
∈ Rd , bn

K
∈ Rd , 

bn
V
∈ Rd are bias parameters; Sn ∈ RT×T is the feature score matrix. En ∈ RT×T is the 

influence weight of features at different moments in the input data, and headn ∈ RT×d 
is the corresponding output of the nth group of attention calculations result.

For the temporal multi-head attention mechanism, the calculation results 
of multiple sets of attention mechanisms are spliced in the feature dimension. 
xL =

[
head1, head2, ...headn

]
 is the concatenated value of output results for all 

attention channels. The feature transformation is performed on the input features 
in different channels, which can extract richer time series correlations at different 
times to improve the network model’s overall timing correlation simulation per-
formance. The linear dimension adjustment is performed on the feature transfor-
mation results obtained by splicing to obtain the output features of the multi-head 
attention mechanism module.

Figure  3 shows the computational flow of a single-group temporal attention 
mechanism. fQ(x) , fK(x) , and fV (x) are the corresponding calculation functions of 
the query vector, key-value vector, and value vector in the attention mechanism. 
Using the time series attention mechanism to solve the time series correlation 
degree at different moments can optimize the distribution of time series features, 
weight the time series information at different times to specific moments, and bet-
ter model the time series dependence.

(9)Qn = ReLU
(
xAWn

Q
+ bn

Q

)

(10)Kn = ReLU
(
xAWn

K
+ bn

K

)

(11)Sn =
Qn(Kn)
√
d

(12)En
i,j
=

exp
�
Sn
i,j

�

∑T

j=1
exp

�
Sn
i,j

�

(13)Vn = ReLU
(
xAWn

V
+ bn

V

)

(14)headn = EnVn
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4.2  Gated temporal convolutional network

The traditional RNN structure and its variants, such as LSTM and GRU, mainly 
encode continuous time series feature vectors to simulate the continuous change 
trend of features. However, the ability of this type of network structure to process 
temporal features in parallel is weak, which is reflected in the fact that the encoding 
output is more sensitive to feature changes at adjacent moments. In the cyclic decod-
ing process, using the output value at the last moment as the input value at the next 
moment will easily cause error accumulation and affect the prediction performance. 
Therefore, this model uses the time series convolutional network (TCN) as the core 
unit of time series correlation simulation and combines the causal convolution and 
dilated convolution structure to perform time series feature transformation. The 
TCN structure performs parallel convolution calculations on the input time series 
features to improve the perception ability of the prediction framework for informa-
tion at distant historical moments [29]. The causal convolution structure ensures that 
in the time series feature extraction, the features of the future time are only affected 
by the current and historical time features, and the time series constraints are strictly 
followed while extracting the continuous change trend of the sequence. The hol-
low convolution structure helps to reduce the number of network stacking layers to 
improve computational efficiency. The timing convolution calculation method pro-
posed in this section is:

In the formula, xL ∈ RT is the input one-dimensional time series signal, f is the time 
series convolution kernel, and Kt is the size of the time series convolution kernel. df  
is the hole factor representing the distance between adjacent units in the convolution 

(15)xL ∗ f (t) =

Kt−1∑

s=0

f (s)xL
(
t − df × s

)

Fig. 3  Temporal self-attention mechanism
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kernel. When stacking multiple sequential convolutional layers, the receptive field 
of the convolution operation increases accordingly, which can capture multi-level 
complex timing correlations in the global timing mode and obtain information-rich 
timing encoding vectors. Furthermore, due to the existence of the cavity structure, 
the requirement for the depth of the convolution stack is reduced, avoiding the over-
fitting problem caused by the excessive complexity of the parameters.

The timing correlation simulation method proposed in this section combines the 
gating mechanism with the TCN module. Use the same network structure as the 
TCN module to transform the input time series features and use a specific activation 
function to scale the transformed time series features. The dimensional structure 
of the obtained representation vector is the same as the structure of the time series 
information to be processed.  To regulate the amount of the information flow going 
through the gate control unit, the value of each element denotes the ratio that is per-
mitted to pass in the timing information. The timing gating mechanism proposed in 
this section is calculated as follows:

In the formula, XL ∈ RV×N×T is the input timing signal, and XS ∈ RV×N×(T−K+1) is 
the output result of timing-gated convolution. �1 ∈ RV×V×1×K and b1 ∈ RV are the 
convolution kernel and bias parameters used to capture timing correlation, and 
�2 ∈ RV×V×1×K and b2 ∈ RV are the convolution kernel and bias parameters used to 
calculate the value of the gating unit. tanh and � are the tanh activation function 
and sigmoid activation function, and ⊙ represents the Hadamard product operation. 
The value range of the gating unit after the sigmoid activation function mapping 
is between 0 and 1. By multiplying the corresponding elements, the timing feature 
ratio output to the next layer of timing convolution is adjusted, which can further 
improve the timing-dependent simulation performance.

4.3  Diffusion graph convolutional neural network

For different locations in the road network, there are complex spatial correlations. 
The graph convolutional neural network extracts the spatial features of the road 
network by aggregating neighborhood information [30]. Among them, the spatial 
domain graph convolution method simulates the aggregation process of features 
between nodes. It uses the target node and its neighbor nodes to complete the feature 
update process. This method has a solid ability to capture local spatial features and 
has strong interpretability.

The prediction model simulates the spatial correlation of road networks by analo-
gizing the interaction of traffic features at different locations to the process of feature 
diffusion on graph data. Feature diffusion on graph data can be compared to trans-
ferring from one state to another in the Markov chain state space. The following 
state has nothing to do with the historical state, only the current state.

Figure 4 shows the form of the state transition matrix of the graph data. TM is the 
state transition matrix, and the values of the elements in it represent the characteris-
tic transfer probability between the corresponding quantity nodes. Assuming that the 

(16)XS = tanh
(
𝜃1 ∗ XL + b1

)
⊙ 𝜎

(
𝜃2 ∗ XL + b2

)
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initial feature state distribution of the graph data is X, after a single feature transfer, 
its feature state distribution is TMX . After multiple feature transfers, its feature state 
distribution is:

In the formula, � is the transition probability, k is the number of feature transitions, 
and PX is the feature state distribution after the transition. For the graph data com-
posed of all nodes in the traffic road network, its state transition matrix can be solved 
by the adjacency matrix. Let the adjacency matrix of road network graph data be 
A, representing the adjacency relationship of nodes. The corresponding out-degree 
diagonal matrix is DO , representing the number of connections between each target 
node and other nodes in the road network. The diagonal elements represent the num-
ber of connections, and the other position elements are all zero. The corresponding 
state transition matrix is D−1

O
A . When the road network graph is a directed graph, 

the corresponding input diagonal matrix is DI , which represents the number of other 
nodes in the road network connected to each target node. The corresponding reverse 
state transition matrix is D−1

I
AT . The two-way diffusion of features between nodes 

can enable the state transition process to have the ability to simulate the correlation 
between upstream and downstream nodes, which improves the flexibility of feature 
transfer. Through the state transition matrix, the feature state distribution after multi-
ple feature transfers between nodes can be calculated as follows:

For the above feature transfer process, when the number of feature transfers k tends 
to infinity, PX tends to be stable. For the diffusion convolution module of the AD-
GNN model, the number of feature transfers is limited. Each feature transfer process 

(17)PX =

(
∞∑

k=0

�(1 − �)kTk
M

)
X

(18)PX =

(
∞∑

k=0

�(1 − �)k
(
D−1

o
A
)k
)
X +

(
∞∑

k=0

�(1 − �)k
(
D−1

I
AT

)k
)
X

Fig. 4  State transition matrix of graph data
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is assigned corresponding trainable convolution parameters. The calculation method 
of feature diffusion of road network nodes is:

In the formula, A ∈ RN×N is the adjacency matrix of the road network graph struc-
ture, AT ∈ RN×N is the transposition matrix of the adjacency matrix, and DO ∈ RN×N 
and DI ∈ RN×N are the out-degree diagonal matrix and in-degree diagonal matrix 
of the road network graph structure. �k,O ∈ RM×F and �k,I ∈ RM×F are the k steps 
features convolution parameters of feature transfer and reverse feature transfer cor-
responding to the diffusion process. M and F are the dimensions of the input and 
output features of the diffusion graph convolution operation; K is the number of fea-
ture diffusion steps; X ∈ RN×M is the node input; and XZ ∈ RN×F is the output cor-
responding to the output features. Using the diffusion mentioned above convolution 
operation, it is possible to effectively simulate the spatial correlation within a lim-
ited number of steps and aggregate local traffic features. Moreover, the bidirectional 
structure of feature transfer enables the structure to describe spatial correlations, 
such as the upstream and downstream influences of roads when facing complex road 
networks, so it is more flexible to capture spatial dependencies.

4.4  Adaptive graph convolutional network

The spatial dependence between different nodes in the traffic road network often 
presents complex characteristics. Taking the adjacency relationship or straight-line 
distance as the basis for the node characteristics of the aggregation graph can only 
capture the local spatial correlation inside the road network. However, for nodes 
with long adjacency relationships or straight-line distances in the road network, the 
traditional graph convolution structure cannot capture their spatial dependence [31], 
then resulting in the lack of spatial correlation information, which reduces the per-
formance of structure feature simulation.

The traffic flow prediction framework uses the adaptive adjacency matrix to cap-
ture the hidden deep spatial dependence in the road network structure and adds dis-
crimination to the feature transfer process between the same node and correspond-
ing different adjacent nodes. In addition, the adaptive adjacency matrix establishes 
the implicit connection relationship between nodes with distant or nonexistent adja-
cency in the road network. It describes its spatial dependence state, effectively sup-
plementing the spatial features lost by the localized diffusion convolution operation. 
Constructing the adaptive adjacency matrix and the adaptive convolution module 
does not require knowledge such as node adjacency or straight-line distance as a 
priori, making the model structure more concise. The adaptive adjacency matrix cal-
culation process proposed in this section is:

(19)XZ =

K∑

k=0

(
D−1

O
A
)k
X�k,O +

K∑

k=0

(
D−1

I
AT

)k
X�k,I

(20)M1 = tanh
(
�E1�1

)
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In the formula, � is the hyperparameter that controls the saturation rate of the activa-
tion function, E1 ∈ RN×U and E2 ∈ RN×U are the embedding representation vectors 
of the road network nodes, and �1 ∈ RU×U and �2 ∈ RU×U are the matrix parameters 
of the embedding representation vector transformation. Moreover, U is the hidden 
state dimension in constructing the adaptive matrix; M1 ∈ RN×U and M2 ∈ RN×U 
generate the required variable matrix for the adaptive matrix. The calculation result 
Aadp is the adaptive adjacency matrix. The adaptive adjacency matrix obtained by 
the above calculation method has a lower triangular matrix structure with zero val-
ues at the upper right of the diagonal. So it is more suitable for capturing the space 
in the process of one-way feature transfer between nodes. In addition, the number of 
nodes that are spatially associated with nodes is usually limited. If all nodes are con-
sidered to be associated with other nodes, it will increase the computational over-
head of the spatial dependency capture process. Therefore, based on the adaptive 
adjacency matrix Aadp , for each node in the road network, keep the k nodes clos-
est to its adjacency relationship as spatially associated nodes, and keep the corre-
sponding values in the adjacency matrix. Furthermore, for other nodes, the corre-
sponding value in the adjacency matrix is zero, and the adaptive adjacency matrix ∼

Aadp is obtained after processing. The spatial node correlation implied by 
∼

Aadp is 
more in line with the actual situation in the traffic scene, so the ability to capture 
the spatial dependence of the road network is substantial, and the matrix structure is 
more sparse, which significantly reduces the computational overhead. The calcula-
tion process of graph convolution operation using an adaptive adjacency matrix is as 
follows:

In the formula, 
∼

Aadp ∈ RN×N is the adaptive adjacency matrix, and 
∼

AT
adp

∈ RN×N is 
the transpose matrix of the adaptive adjacency matrix. �k,OA ∈ RM×F and 
�k,IA ∈ RM×F are the feature transfer and reverse feature transfer volumes corre-
sponding to the k step feature diffusion process in the adaptive graph convolutional 
neural network product parameters. M and F are the dimensions of the input and 
output features of the adaptive graph convolution operation; K is the number of steps 
for feature transfer; and X ∈ RN×M and XA ∈ RN×F are the node input and output fea-
tures corresponding to the diffusion graph convolution operation. Through the graph 
convolution operation, the implicit spatial correlation between road network nodes 
can be mined from the data features to break through the limitations of the adja-
cency relationship and straight-line distance between nodes and capture the deep 
spatial dependence in the road network. For the two transfer directions of features 
between nodes, the adaptive graph convolution operation is performed separately, 
which conforms to the asymmetric nature of the spatial influence of the road 

(21)M2 = tanh
(
�E2�2

)

(22)Aadp = ReLU
(
tanh

(
�
(
M1M

T
2
−M2M

T
1

)))

(23)XA =

K∑

k=0

Ãk
adp

X𝜃k,OA +

K∑

k=0

ÃT
adp

X𝜃k,IA
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network structure and can adaptively extract the correlation between nodes from the 
data.

4.5  Residual connection unit and skip connection unit

The traffic flow prediction model stacks multilayer temporal convolutional networks 
and spatial graph convolutional networks to describe the spatiotemporal patterns in 
traffic flow information. However, as the number of network layers increases, the 
gradient will disappear due to the multiplication effect, and the convergence speed 
during network training will also be significantly reduced. The AD-GNN model 
applies the residual connection and skip connection to the multilayer spatiotemporal 
feature extraction process. After the residual connection unit maps the input features 
of each layer of the spatiotemporal extraction network, the output features corre-
sponding to this layer are summed. The skip connection unit maps the shallow spati-
otemporal features and sums them with the final calculation results of spatiotempo-
ral feature extraction. The feature mapping process of the residual connection unit 
and the skip unit is also completed through the fully convolutional network. The 
feature mapping calculation process is as follows:

In the formula, * is the convolution operation, Wj
res ∈ RF×F×1×1 and Wj

skip
∈ RF×F×1×1 

are the convolution kernels, bjres ∈ RF and bj
skip

∈ RF are the paranoid parameters, 
and F is the feature dimension of the hidden state in the spatiotemporal feature 
extraction process. j is the number of layers corresponding to the current feature 
extraction module, and Xj ∈ RF×N×T is the input data of the spatiotemporal feature 
extraction network module of the jth layer. The method is based on the fully convo-
lutional network to complete the corresponding feature mapping of the residual con-
nection and skip the connection process.

For each layer of spatiotemporal extraction network module, the calculation 
method of combined residual connection unit is:

In the formula, f jst is the feature mapping function of spatiotemporal feature extrac-
tion, and f jres is the feature mapping function of the residual connection unit. Moreo-
ver, Xj

st ∈ RF×N×T and Xj+1
st ∈ RF×N×T are the input data of the jth layer and j + 1 th 

layer spatiotemporal feature extraction network modules, respectively. The identity 
mapping structure is established through the residual connection unit, which solves 
the problem of gradient disappearance caused by the increase in network layers to a 
certain extent.

(24)Xj
res

= ReLU
(
Wj

res
∗ Xj + bj

res

)

(25)X
j

s k i p
= ReLU

(
W

j

s k i p
∗ Xj + b

j

skip

)

(26)X
j+1
st = f

j

st

(
X
j

st

)
+ f j

res

(
X
j

st

)
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For the overall output representation of the spatiotemporal feature extraction net-
work, the calculation method combined with skip connection units is:

In the formula, J is the number of layers of the spatiotemporal feature extraction 
network, and fskip is the feature mapping function of the skip connection unit. 
Xst ∈ RF×N×T is the overall output representation after the spatiotemporal feature 
extraction network operates the J layer, and 

∼

Xst ∈ RF×N×T is the spatiotemporal pre-
diction output combined with the skip connection features of each layer characteri-
zation. The skip connection unit introduces the shallow network information into the 
output result so that the output representation obtained by the deep feature extrac-
tion module contains different levels of mode information, and the description of the 
implicit spatiotemporal correlation of the data is complete.

The process of the AD-GNN model is shown as follows.

Algorithm 1 The adaptive traffic flow prediction model AD-GNN
1: Concatenate the input traffic flow features with the input time features
2: Transform the feature dimension of the input data
3: Calculate the timing correlation weights at different moments
4: while start time!=end time do
5: Encoding temporal modalities to extract temporal associations
6: Using diffusion convolution to realize spatial feature transformation
7: Adaptively mining hidden spatial associations by parameterized matrix
8: Using residual connected unit to improve the capture performance
9: for each moment in the time window do

10: if the current time equals end time then
11: Get the output of the model as the predicted flow value
12: else
13: Cycling the spatio-temporal feature transformation process
14: end if
15: end for
16: end while

5  Experimental simulations

5.1  Environment introduction

In order to measure the predictive performance of our model, we conducted a 
series of related experiments. The hardware environment and software environment 
are  shown in Tables 1 and 2.

This paper uses three real public datasets for performance evaluation experi-
ments, namely PeMSD4 dataset, PeMSD8 dataset and 2020-CCF spatiotempo-
ral training dataset. Among them, the PeMS series of datasets are collected by 
the California Department of Transportation’s Performance Measurement System 

(27)X̄st = Xst + f 1
s k i p

(
X1
st

)
+ f 2

skip

(
X2
st

)
+…+ f J

s k i p

(
X
j

st

)
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(Performance Measurement System, PeMS for short). The system deploys traffic 
sensors in significant areas of California’s highway network with data collection 
intervals of 30 s. The 2020-CCF spatiotemporal training dataset was provided by 
Didi for the 2020-CCF Big Data and Computational Intelligence Competition.

Among them, the specific content of each dataset is as follows.
PeMSD4 dataset: The period is from January 1, 2018, to February 28, 2018, 

which contains traffic flow data from 307 San Francisco Bay Area traffic sensors. 
It contains three sequences of traffic flow, lane occupancy, and average speed.

PeMSD8 dataset: The period is from July 1, 2016, to August 31, 2016, which 
contains traffic flow data from 170 traffic sensors in San Bernardino County. It 
contains three sequences of traffic flow, lane occupancy, and average speed.

2020-CCF spatiotemporal training dataset: The period is from July 1, 2019, 
to July 31, 2019, which contains topological information on different roads in Xi 
’an city in July 2019 and road conditions at other times.

Table 2  Software environment Options Parameters

Operating system Ubuntu 18.04
Python 3.8
CUDA 10.2
PyTorch 1.6

Table 3  Experimental parameter 
settings

Parameter Value

Batch size 64
Learning rate 0.001
Dropout 0.3
Hidden size 32
Weight decay 0.0001
The number of attention heads 2
The number of layers 3
Optimizer Adam

Table 1  Hardware environment Options Parameters

CPU Intel(R) Core(TM) 
i5-10400F CPU @ 
2.90GHz

RAM 16.0GB
GPU NVIDIA GeForce RTX 1650
Graphics memory 8.0GB
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5.2  Baseline models and evaluation metrics

In order to verify the effectiveness of the model, this paper uses multiple pub-
lic datasets to conduct performance evaluation experiments and uses the classical 
time series prediction model and the spatiotemporal traffic flow prediction model 
as the benchmark model to compare the prediction performance with the AD-
GNN model. The baseline models used in the experiment are as follows:

(1) Autoregressive Integrated Moving Average Model (ARIMA) [11]: 
Transform non-stationary series by differential method, and combine autoregres-
sive and moving average methods for time series prediction.

(2) Vector autoregression (VAR) [12]: The univariate autoregression method 
is extended to multivariate series, which can simulate the linear relationship 
between variables.

(3) Spatiotemporal Graph Convolutional Network (STGCN) [18]: Use tem-
poral and graph convolutional neural networks to construct spatiotemporal blocks 
and stack multiple convolutional blocks for traffic flow prediction.

(4) Diffusion Convolutional Recurrent Neural Network (DCRNN) [20]: 
Capture spatial dependencies through diffusion graph convolution and temporal 
dependencies through recurrent neural networks. Then, introduce a planned sam-
pling mechanism to build an encoding-decoding structure to improve long-range 
time series prediction performance.

(5) Adaptive Graph Convolutional Recurrent Network (AGCRN) [32]: An 
adaptive parameter learning module is proposed to capture specific node patterns. 
Furthermore, a data generation module is proposed to derive the dependencies 
between traffic sequences and capture the time sequence through loop structure 
dependencies.

(6) Evolution Temporal Graph Convolutional Network (ETGCN) [23]: The 
ETGCN model first fuses multiple graph structures and utilizes graph convolu-
tional network (GCN) to model spatial correlation. Then, the gated recurrent unit 
is combined with GCN to capture spatial-temporal correlations and their chang-
ing status, simultaneously.

(7) Attention based Spatial–Temporal Graph Neural Network (ASTGNN) 
[24]: The ASTGNN method uses dynamic graph convolution and embedding 
modules to capture the periodicity and spatial heterogeneity of traffic data.

(8) Automated Dilated spatiotemporal Synchronous Graph Network 
(AUTO-DSTSGN) [25]: The Auto-DSTSGN method captures the short-term and 
long-term spatiotemporal correlations by stacking deeper layers with dilation fac-
tors in increasing order and achieves good prediction results.

(9) Automated Spatiotemporal Synchronous Model (AUTO-STS) [27]: 
The AUTO-STS method uses the graph neural network-based architecture search 
module to capture localized spatiotemporal correlations and the convolutional 
neural network-based architecture search module to capture temporal dependen-
cies with various ranges.

To compare the prediction performance, this paper uses the following indica-
tors to evaluate the model’s prediction performance.
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MAE: The mean value of the absolute value of the error between the predicted 
value and the actual value, which can intuitively reflect the size of the prediction 
error.

RMSE: The square root of the error between the predicted value and the actual 
value, which is more sensitive to errors with high dispersion.

MAPE: The ratio of the absolute value of the error between the predicted value and 
the true value to the true value, reflecting the relative size of the error.

In the formula, Ω is the number of data samples, H is the length of the prediction 
time series window, and ŷi

T+h
 and yi

T+h
 are the predicted value and actual value of the 

ith data sample at the hth time step in the future, respectively.

5.3  Analysis of results

The relevant parameters are set  in Table 3.
For the three real traffic datasets mentioned above, we predict the traffic flow in 

the next hour (H=12). The specific prediction results are as follows:
Tables 4, 5 and 6 show the prediction evaluation of the AD-GNN model and other 

prediction models on the three datasets. The smaller the evaluation index value, that 

(28)MAE =
1

ΩH

Ω∑

i=1

H∑

h=1

|ŷi
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− yi
T+h

|

(29)RMSE =
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|

Table 4  Comparison of predictive performance between AD-GNN and other models on PeMSD4 dataset

MAE RMSE MAPE(%)

ARIMA 29.24/33.83/43.67 50.12/56.57/68.69 19.78/25.71/29.84
VAR 22.36/24.34/27.51 35.81/38.35/42.32 14.63/16.37/18.79
STGCN 20.27/22.72/27.08 32.29/35.68/41.34 13.03/14.83/17.85
DCRNN 19.72/21.73/25.43 31.30/34.40/39.82 12.96/14.28/16.94
AGCRN 19.02/20.14/22.65 30.42/32.10/35.71 12.93/13.79/15.41
ETGCN 18.83/19.78/22.31 30.27/31.88/35.19 12.71/13.24/14.93
ASTGNN 18.56/19.44/21.92 29.85/31.29/34.61 12.48/12.82/14.19
AUTO-DSTSGN 18.07/18.95/20.45 28.97/30.45/33.54 11.32/11.98/13.02
AUTO-STS 18.21/19.16/21.47 29.41/30.91/34.07 11.96/12.21/13.65
AD-GNN 17.82/18.70/19.89 28.68/30.10/32.89 10.80/11.65/12.77



15263

1 3

An adaptive traffic flow prediction model based on…

is, the higher the prediction accuracy. Among them, the predictive performance of 
the model in this paper is marked in bold, and the predictive performance of the 
model with the second predictive performance is underlined. As shown in Tables 4, 
5 and 6, the AD-GNN model proposed in this paper outperforms other baseline 
models in predicting traffic flow in the next 15 min, 30 min, and 60 min.

As the prediction period increases, the traffic state becomes more complex, 
resulting in degraded prediction performance. Compared with other baseline mod-
els, the AD-GNN model has a smaller prediction performance decrease as the time 
span increases and has better time series stability.

5.4  Parameter sensitivity experiment

To further study the influence of the setting of some parameters on the predictive 
performance of the model, sensitivity analysis of the critical parameters in the model 

Table 5  Comparison of predictive performance between AD-GNN and other models on PeMSD8 dataset

MAE RMSE MAPE(%)

ARIMA 24.24/30.78/38.67 42.69/48.26/56.10 17.54/21.26/24.93
VAR 16.87/19.82/24.22 25.19/29.31/35.13 11.63/13.37/14.92
STGCN 16.14/17.89/21.24 24.33/27.93/32.94 10.33/11.18/12.86
DCRNN 15.02/16.56/19.39 23.36/25.88/29.88 9.65/10.62/12.45
AGCRN 14.75/15.79/17.92 23.25/25.12/28.54 9.36/10.62/11.19
ETGCN 14.53/15.38/17.41 22.98/24.68/27.91 9.19/10.24/11.03
ASTGNN 14.16/15.14/17.13 22.31/24.19/27.23 9.01/9.89/10.84
AUTO-DSTSGN 13.62/14.49/16.09 21.65/23.35/25.84 8.70/9.65/10.52
AUTO-STS 13.96/14.87/16.63 21.89/23.67/26.67 8.83/9.71/10.65
AD-GNN 13.42/14.24/15.50 21.44/23.05/25.19 8.59/9.30/10.41

Table 6  Comparison of predictive performance between AD-GNN and other models on 2020-CCF spati-
otemporal training dataset

MAE RMSE MAPE(%)

ARIMA 6.46/7.19/8.34 8.75/10.24/11.01 15.52/19.87/22.37
VAR 6.42/7.08/7.77 8.54/9.69/10.12 15.37/19.61/21.98
STGCN 6.19/6.85/7.15 8.37/9.21/9.79 15.21/19.26/20.84
DCRNN 6.13/6.66/7.04 8.26/8.96/9.64 15.08/18.75/20.36
AGCRN 6.09/6.62/6.98 7.18/7.77/8.53 14.89/18.54/19.77
ETGCN 5.78/6.31/6.65 6.86/7.49/8.05 14.68/17.98/18.96
ASTGNN 5.59/6.12/6.40 6.61/7.12/7.51 14.03/17.36/18.14
AUTO-DSTSGN 5.05/5.49/5.82 6.12/6.64/7.01 13.07/15.65/16.92
AUTO-STS 5.32/5.81/6.09 6.37/6.89/7.27 13.41/16.41/17.45
AD-GNN 4.94/5.31/5.67 5.88/6.39/6.78 12.86/15.09/16.56
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was carried out in this paper to compare the predictive performance of the model 
under different conditions. The parameters involved include the number of heads of 
the attention mechanism and the number of layers of the model, and the correspond-
ing predictive performance is as follows:

Figures 5 and 6 demonstrate the impact of the above parameters on the model’s 
predictive performance. As shown in the figures above, as the number of attention 
heads increases, the timing information that the attention mechanism can simulate 
is more abundant, but the module space complexity also increases. The AD-GNN 
model proposed in this paper achieves the best prediction performance when the 
number of heads of the temporal attention mechanism is 2. Similarly, when the num-
ber of layers is 3, the model’s prediction performance reaches the best. The sensitiv-
ity analysis of the above parameters proves that the setting of critical parameters in 
the prediction model is reasonable.

Fig. 5  The effect of different number of attention heads on different datasets

Fig. 6  The effect of different number of layers on different datasets
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5.5  Ablation experiment

In order to verify the effectiveness of the different modules in the AD-GNN model, 
this section removes each part of the network modules in the model through ablation 
analysis, forms a variant model of the AD-GNN model, and evaluates the prediction 
performance separately. Verify the necessity of the corresponding module. Ablation 
experiments include the following variant models: 

(1) AD-GNN-TA: Based on the AD-GNN model, the temporal attention module is 
removed.

(2) AD-GNN-AA: Based on the AD-GNN model, the adaptive graph convolution 
module composed of the parameterized adaptive adjacency matrix is removed.

(3) AD-GNN-DC: Based on the AD-GNN model, the diffusion convolution module 
is removed.

Fig. 7  Predictive performance of AD-GNN and its variant models on PeMSD4 dataset

Fig. 8  Predictive performance of AD-GNN and its variant models on PeMSD8 dataset
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Figures  7,   8 and   9 show the prediction evaluation index values of each vari-
ant model proposed in this section on the three datasets. As shown in the figure, 
the adaptive graph convolution module in the AD-GNN model significantly influ-
ences the prediction performance. Based on the data-driven method, this module 
captures the road network’s complex and deep spatial correlations, so the model has 
a better prediction performance. The temporal attention mechanism can dynamically 
describe the temporal dependence of each input moment and improve the model’s 
ability to capture temporal dependence. The diffusion graph convolution module 
introduces road network structure information to supplement the spatial correlation 
captured by adaptive graph convolution, thus improving the prediction performance.

6  Conclusion and future works

Given the complexity and uncertainty of traffic flow data, this paper proposes 
an adaptive traffic flow prediction model AD-GNN. It uses the gated time series 
convolutional network to extract the multi-level time series correlation in the 
traffic flow data. The graph convolutional networks is also used to capture the 
spatial associations of road network nodes. The experimental results show that 
the AD-GNN model has better performance for traffic flow prediction in differ-
ent periods, and the accuracy is higher than other baseline models; at the same 
time, with the increase in period, the prediction performance is stable. However, 
some concerns need to be addressed in the next research work. This paper does 
not consider the influence of external factors in the traffic scene, such as weather 
factors and sudden accidents. Furthermore, the prediction model itself also has 
a certain complexity. In the following work, we will use external information to 
supplement the traffic flow prediction results, taking into account the relevance 
of the road network to a greater extent so that the prediction model has better 
universality.

Fig. 9  Predictive performance of AD-GNN and its variant models on 2020-CCF spatiotemporal training 
dataset
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Appendix A: List of variables and abbreviations

See Table 7.
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Table 7  Parameter settings for 
the baseline models

Parameter Value

The graph convolution kernel size of STGCN 3
The temporal convolution kernel size of STGCN 3
The recurrent layers of DCRNN 2
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The number of heads in ASTGNN 8
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