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Abstract
Pedestrian trajectory prediction is a necessary component of autonomous driving 
technology. However, current methods face two troubles when utilized to the actual 
world, one is the distribution difference between training and testing environments, 
and the other is catastrophic forgetting. These two issues will lead to an inevitable 
drop in the overall performance of the model in real-world scenarios. To tackle these 
two issues, we propose a framework that consists of modules for domain adaptation 
and continual learning. Specifically, a pedestrian interplay modeling method based 
totally on pedestrian social habits is proposed. Moreover, we add a domain adapta-
tion module to analyze the data distribution difference between the source domain 
and the target domain, so as to alleviate the domain difference problem. Finally, a 
continual learning module is introduced to retain the information which is learned 
to limit the change of model parameters to deal with the catastrophic forgetting. We 
design trajectory prediction experiments that conform to real-world activities, and 
the experimental results verify the superiority of our proposed model. To the best of 
our knowledge, we are the first work that attempts to apply domain adaptation and 
continual learning methods to remedy real-world trajectory prediction problems.
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1  Introduction

Trajectory prediction technology is becoming increasingly important with the 
development of intelligent society, especially in the applications of autonomous 
driving and surveillance systems. In autonomous driving, accurate prediction of 
the future trajectories of pedestrians around the vehicle can enable the vehicle to 
take corresponding actions in advance to avoid collisions or perform emergency 
braking [1, 2].

Due to the complex interactions between pedestrians and the surrounding envi-
ronment, it is difficult to predict the future trajectories of pedestrians. Various 
factors can affect a pedestrian’s trajectory, such as obstacles, other pedestrians, 
vehicles, traffic signals, and even the pedestrian’s own subjective agency. Accord-
ing to [3], 70% of pedestrians tend to walk in groups. Interaction between pedes-
trians is primarily driven by subjective agency and social norms. The difficulty of 
pedestrian trajectory prediction is greatly increased due to the many factors that 
can influence it, such as: 1. Different social behaviors of pedestrians themselves. 
For example, when walking parallel to others, pedestrians maintain a group status 
and avoid crossing through the group when someone is walking toward them. 2. 
Randomness from the movement itself, as pedestrians can turn, stop, move, etc., 
at any time, making trajectory prediction more difficult. 3. Pedestrians can inter-
act with surrounding objects or other pedestrians, but this interaction is too com-
plex and subtle to accurately quantify. Due to the above reasons, the challenge of 
trajectory prediction is significantly increased.

To solve the above difficulties, Social-LSTM [4] designs a pooling layer to 
transfer the interaction information between pedestrians, and then applies a long 
short-term memory (LSTM) network to predict future trajectories. Following 
such a pattern, methods have been proposed [5–9] to share interaction informa-
tion through different mechanisms, such as attention mechanisms and similarity 
measures. Meanwhile, in order to reflect the diversity of trajectories, some gen-
erative adversarial network (GAN) methods [10–15] learn to generate multiple 
feasible trajectoties rather than predict a certain one. These works [16, 17] have 
also given good inspiration.

The above methods have some limitations, as they usually follow the princi-
ple of homogeneity between training and testing sets, i.e., training and testing 
are conducted on datasets with the same data distribution. Therefore, the test-
ing results obtained in this way do not have generality and cannot adapt to the 
prediction of pedestrian trajectories in the real world. [18] Quantitatively and 
objectively evaluated the potential domain differences between the ETH and 
UCY experimental datasets. Table 1 provides specific numerical statistics for five 
trajectory domains, including the number of pedestrians, walking speed, accel-
eration, etc. According to this table, it is clear that there are huge differences in 
the number of pedestrians among the trajectory domains. In terms of pedestrian 
movement patterns, the average pedestrian movement speed in ETH is the high-
est, almost three times that of HOTEL. In addition, the average pedestrian move-
ment acceleration in ETH is also the highest, nearly five times that of ZARA2. 



15581

1 3

Adaptive trajectory prediction without catastrophic…

The E-D value and S-D value also reveal huge differences between the five dif-
ferent trajectory domains. The situations faced in real life are undoubtedly more 
complex and diverse. Pedestrian trajectory prediction will face different scenar-
ios, such as in shopping malls, where pedestrians are crowded and dense, and 
their trajectories are more curved, constantly changing to avoid collisions. How-
ever, on sidewalks, pedestrians are sparse and almost always walk in the same 
direction, and their trajectories are mostly straight lines. One case represents two 
different scenarios, and a network learned in a shopping mall environment may 
contain more redundant information for sidewalks, thus affecting the accuracy of 
pedestrian trajectory prediction.

To overcome the above two limitations, we add a domain adaptation module 
and a continual learning module to the original model. First, we substitute the 
aggregation layer by means of modeling pedestrian trajectories in the source and 
target domains as spatio-temporal graphs. Then, we use MMD (maximum mean 
discrepancy) to quantitatively achieve the distance between the distributions of 
the two datasets in the source domain and the target domain and measure the sim-
ilarity of the two datasets. MMDLOSS is used to reduce training problems caused 
by different data distributions. Finally, a reward and punishment mechanism is 
delivered to the parameter training of the model through EWC regularization, so 
as to avoid forgetting the knowledge of the old dataset when training with the new 
one. Therefore, our model has both desirable generalization ability and is capable 
to overcome catastrophic forgetting.

In summary, our proposed model makes the following contributions in total: 

1.	 We propose a more detailed division for pedestrian interaction, which compre-
hensively considers elements such as distance and direction. We believe that this 
division can be extensively used for pedestrian prediction.

2.	 We embed a domain adaptation module to enhance the learning ability of the 
model on new datasets by calculating the similarity of the data distribution in the 
target and source domains.

Table 1   Statistics of five different scenes, ETH, HOTEL, UNIV, ZARA1, and ZARA2

NoS denotes the number of sequences to be predicted, NoP denotes the number of pedestrians, AN 
denotes the average number of pedestrians in each sequence, AV denotes the average velocity of pedes-
trians in each sequence, and AA denotes the average acceleration of pedestrians in each sequence. E-D 
represents extreme deviation and S-D represents standard deviation

Metric Trajectory domains E-D S-D

ETH HOTEL UNIV ZARA1 ZARA2

NoS 70 301 947 602 921 877 383.63
NoP 181 1053 24334 2253 5833 24153 10073.07
AN 2.586 3.498 25.696 3.743 6.333 23.11 9.78
AV (m/s) 0.437 0.178 0.205 0.369 0.206 0.259 0.11
AA (m/s⌃2) 0.131 0.06 0.035 0.039 0.026 0.105 0.04
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3.	 We introduce a continual learning module to preserve its potential to remem-
ber previous data via limiting parameter changes, effectively relieving the cata-
strophic forgetting problem of the model after studying a new dataset.

4.	 To the best of our knowledge, this is the first paper to propose a combination of 
domain adaptation and continual learning methods for trajectory prediction, in 
the seek of the real-world utility with deep learning-based trajectory prediction 
models.

2 � Related work

2.1 � Forecasting pedestrian trajectory

Pedestrian trajectory prediction is used to predict the future position of the target 
agent based on their past positions and the surrounding environment. Early research 
attempted to use traditional mathematical models [19] for prediction, such as Gauss-
ian models [20, 21] and Markov decision models [22]. However, traditional math-
ematical models rely heavily on manually annotated prior knowledge, which is 
costly and lacks accuracy. With the development of deep learning, a large number 
of deep learning methods have been applied to solve this problem. In Social-LSTM 
[4], pedestrians are modeled using recurrent neural networks (RNN), and a designed 
pooling layer is used to integrate the hidden states of pedestrians, including shared 
human–machine interaction features. However, RNN-based models suffer from the 
problems of gradient disappearance and difficulty in scalability during the training 
process, so many works [3, 5–9, 23] have combined other networks to improve pre-
diction performance. In addition, considering the subjective initiative and uncer-
tainty of pedestrians’ walking, pedestrian trajectory prediction methods based on 
GAN have been proposed [10–15], which introduce the idea of adversarial thinking 
into the task and overcome the shortcomings of previous methods that are mostly 
based on optimizing the distance between pedestrians and predicting only one aver-
age trajectory. Furthermore, trajectory prediction methods based on spatio-temporal 
graphs [24] have also been widely applied. In the prediction task, the spatio-tempo-
ral graph is divided into two dimensions: time and space, which respectively model 
the pedestrian’s historical trajectory and simulate social interaction between pedes-
trians. Attention mechanisms have also been introduced into this task [25–27], and 
they encode the different importance of adjacent pedestrians for trajectory predic-
tion to improve prediction accuracy. The attention mechanism breaks the sequential 
dependence of the RNN network and provides a more intuitive method for simulat-
ing the topological structure of pedestrians in a shared space.

2.2 � Domain adaptation

Domain adaptation is a type of transfer learning that deals with the problem of 
different data distributions between the source and target domains. In deep learn-
ing, researchers usually assume that the training dataset and the target test dataset 
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have the same data distribution. However, in real life, this assumption is often dif-
ficult to satisfy. When there is a large difference in data distribution between the 
training dataset and the target test dataset, overfitting can easily occur, causing the 
trained model to perform poorly on the test dataset. To solve this problem, research-
ers have proposed three methods: feature adaptation, instance adaptation, and model 
adaptation.

Feature adaptation involves extracting the features of the source and target 
domains into a common feature space where the distance between the source and 
target domains is close enough to align them, thus improving the performance of the 
target domain. Instance adaptation assigns weights to the source domain data that 
are similar to the target domain data and uses these data to train the model, which 
performs relatively well on the target domain. Model adaptation finds some param-
eters for transfer learning to improve the performance of the target domain.

In our task, we use the first method, feature adaptation. We use a mathematical 
formula to measure the distance between the source and target domains and use this 
distance as a loss function in the deep learning network to minimize the distance and 
align the features of the source and target domains. Popular distance metrics include 
MMD [28], CORAL [29], and adversarial [30].

2.3 � Continual learning

Deep learning-based AI models have achieved suitable performance, even surpass-
ing humans on individual tasks. But deep learning models are mostly trained on 
static identically distributed datasets and cannot adapt or scale their behavior over 
time. In order to allow deep models to have the equal human-like ability to learn 
multiple tasks and cross-apply multiple types of knowledge, the concept of continual 
learning [31–33] is proposed. Ring (1997) defines continual learning as a process 
of continual development based on complex environments and behaviors, and the 
establishment of more complicated competencies on pinnacle of the that is already 
learned.

Continuous learning on deep neural networks has two goals: one is to deal with 
the catastrophic forgetting problem [34] naturally existing in neural networks due 
to their own design; the other is to make the training model more general, meaning 
that the model has the ability to learn new knowledge and memorize old knowledge 
at the same time. Continuous learning can be subdivided into the following four cat-
egories: (1) task-incremental CL, (2) class-incremental CL, (3) domain-incremen-
tal CL, and (4) task-agnostic continuous learning (task-agnostic CL), which is the 
most challenging continual learning scenario. In our work, we deal with domain 
incremental continual learning. It means that the data arriving at different times 
belong to the same category of the same task, but the data arrive in batches, and 
the distribution of the input data has changed. Therefore, its basic assumptions are: 
(1).P(xt) ≠ P(xt+1) , (2).yt = yt+1 , (3).P(yt) ≠ P(yt+1) , with P(⋅) representing the pos-
sibility of classification.

Domain incremental continual learning is different from domain adaptation, 
which aims to transfer knowledge from old tasks to new tasks and only considers 
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the generalization ability on new tasks, while domain incremental continual learning 
needs to overcome catastrophic forgetting and maintain performance on old tasks 
as well as new ones. Our method combines the characteristics of continual learning 
and domain adaptation, hoping to inherit the advantages of both.

3 � Problem description

Given one person i observed trajectory Vi =
{

vi
1
, ..., vi

obs

}

 from step T1 to Tobs , aim to 

predict the future trajectory Vi =
{

vi
obs+1

, ..., vi
pred

}

 from step Tobs+1 to Tpred , where 
vi
t
= (xi

t
, yi

t
)�R2 denote the coordinates at time t. Considering all the pedestrians in 

the scene, the goal is to predict trajectories of all the pedestrians simultaneously by a 
model f (⋅) with parameter W∗ . So, the entire representation is:

where V̄  is the set of future trajectories of all the pedestrians, N evinces the number 
of pedestrians, and W∗ represents the set of all learnable parameters in the model.

4 � Our methods

4.1 � Social behavior classification

In the model, we follow the Social-STGCNN model: spatio-temporal convolutional 
neural network (ST-GCN) and temporal extrapolator convolutional neural network 
(TXP-CNN). In this model, a set of spatial graphs Gt is first constructed, which rep-
resent the relative positions of pedestrians at each time step t in the scene. Gt is 
defined as Gt = (Vt,Et) , where Vt = vi = (xt

i
, yt

i
),∀i�1, ....,N is a set of vertices of 

the graph G. (xt
i
, yt

i
) represent the position of the pedestrian at time t ∣ t�1, ..., tobs . 

Et = ei,j ∣ ∀i, j�1, ..., n is a set of edges of a graph G, which represent the interac-
tion between node i and node j. In order to model the strength of mutual influence 
between two nodes, an adjacency matrix At representing the weight relationship 
needs to be established.

According to the actual situation in real life, the essence of the interaction 
strength between pedestrians is whether the trajectories of pedestrians will intersect. 
Generally speaking, pedestrians will change their walking habits in two cases. One 
is subjective initiative, that is, the target address changes; the other is to avoid other 
pedestrians who may collide. For the sake of define At more specifically, we pro-
pose a new definition method: social behavior classification (SBC). We divide the 
possibilities of pedestrian trajectories into the following categories: 1. Pedestrians 
walk in groups. 2. Pedestrians are too far away. 3. Pedestrians walk on their backs. 
4. Pedestrians walk in opposite directions without collision. 5. Pedestrians walk on 
opposite sides and collide. 6. Pedestrians walk in different directions without colli-
sion. 7. Pedestrians will collide when walking in different directions. In Fig. 1, we 

(1)V̄ =
{

f (V1, ...,VjN ∣ W∗)
}

..
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define that when the distance between pedestrians is less than r, it can be regarded 
as the group has no influence on each other. Then, we define a pedestrian circle with 
a radius of R, and consider the outside of the circle as infinity, and all pedestrians 
outside the circle have no interaction with the target agent.

For the latter cases, we introduce the concept of direction angle: � , � . When both 
� and � are obtuse angles, the mutual influence is 0. When both � and � are acute 
angles, the mutual influence is positive. But even if both � and � are acute angles, 
there are cases where the mutual influence is 0, such as example 4 and 6 in Fig. 2. In 
order to distinguish these two cases, we define a new variable � . If the extension line 
in the final pedestrian speed direction has an intersection, it means that there will be 
a collision, � = 1 , otherwise � = 0 . So, At is defined as:

More specifically:

(2)At = � ∗ l(vi, vj) ∗ D(�, �).

(3)l(vi, vj) =

{

0, vi − v2
j
< r or vi − v2

j
> R

1

vi−v
2
j

, Otherwise

(4)D(𝛼, 𝛽) =

{

cos𝛼cos𝛽,
𝜋

2
<= 𝛼, 𝛽 <= 𝜋

0, Otherwise

Spa�o-Temporal 
Graph 

representa�om

Spa�o-Temporal Graph 
representa�om

Spa�o-Temporal 
Graph CNN

Spa�o-Temporal 
Graph CNN

TCN

Source Trajectory
t = 1,2,…,Tobs

Target Trajectory
t = 1,2,…,Tobs

MMD loss:Distribu�on Difference

Target trained Model tests Source Trajectory

EW
C loss

Predicted  Trajectory
T = Tobs+1,...,Tpred

1

3
2

4
5

Fig. 1   Our model flowchart shows that given the trajectories of source domain and target domain, we 
first construct the spatial feature graph G of both through social behavior classification method, then 
extract the spatio-temporal node embedding of graph G through spatio-temporal graph convolution ST-
GCNN, and finally predict the final trajectory through TXP-CNN. Note that when training the target 
domain, it is necessary to calculate the distribution difference between the source domain and the target 
domain first, and the magnitude of the parameter change during training should be calculated to construct 
an importance matrix and combine MMD loss and EWC loss to train the target domain
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4.2 � Domain adaptation module

Most of the existing trajectory prediction methods are using targeted datasets for 
training, validation and testing. This means that the data distribution of the data-
set used for training and testing is the same, which is very different from the real-
life situation. To address the problem of different data distributions, we introduce a 
domain adaptation module into the model. We use the maximum mean discrepancy 
(MMD) loss function to measure the distribution distance between the source and 
target domains. MMD loss is defined as follows:

The key of MMD is how to find a suitable �() as a mapping function, but this map-
ping function may be different in different tasks, and this mapping may be in a 
high-dimensional space, so it is difficult to select or define. In our method, we use 
a Gaussian kernel function: K(u, v) = e

−
∣u−v∣2

�  . The reason is that the Gaussian ker-
nel can map the space of infinite latitude. For MMD loss, we have the following 
formula:

After obtaining the maximum mean difference loss, we use the loss reward and pun-
ishment mechanism to align the distribution and further strengthen the generaliza-
tion ability of the model, rather than being limited to the dataset used for training, 
which contributes to solving the complex data distribution in real life.

4.3 � Continual learning module

Catastrophic forgetting has always been a challenge for data-driven models. When 
the model is trained on a new dataset, it is difficult to guarantee that the newly 
trained model can still maintain the prediction accuracy of the previously trained 
dataset. Trajectory prediction faces complex and diverse situations in actual life. 
When new data enters the model processing, how to ensure knowledge retention of 
previously encountered situations becomes a top priority. In the training process of 
the neural network, the change of the parameters represents the learning ability of 
the network, then the parameters retain the knowledge learned on the dataset. Fac-
ing different datasets, some parameters vary greatly and some parameters vary less. 

(5)MMD(X, Y) =
1

n

n
∑

i=1

�(xi) −
1

m

m
∑

j=1

�(yj)
2.

(6)

MMD(X, Y) =
1

n2

n
∑

i

n
∑

i�

(

xi, x
�
i

)

−
2

nm

n
∑

i

m
∑

j

k
(

xi, yi
)

+
1

m2

m
∑

j

m
∑

j�

k
(

yi, y
�
i

)

Fig. 2   The 7 categories defined by the SBC method, v represents the walking direction of the pedestrian 
V
i
 at time T, � and � represent the angle between the walking direction and the line between the agents, 

and d represents the distance between the agents

▸
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A parameter with large variation indicates that has a higher contribution to learning 
the dataset, while a parameter with a small change indicates that has a limited con-
tribution to the learning of the dataset. Based on this, we believe that the previously 
learned knowledge can be preserved by limiting the variation of distinct parameters 
of the network, as shown in Fig. 3. First, we use the Fisher matrix to measure the 
importance of parameters. The Fisher matrix is defined as follows:

where � represents learnable parameters. Actually, we can caculate the Fisher matrix 
by gradient. Thus, the formula can be rewritten as:

where A represents task A, � represents learnable parameters.
After getting the importance matrix, we can start the reward and punishment 

mechanism of the parameters. EWC loss can be defined as:

where � represents learnable parameters and IA represents the importance matrix.

(7)I(�) = E

[

(

�

��
logf (x ∣ �)

)2

∣ �

]

,

(8)I(�) =
1

N

∑

(x,y)i�A

(

�lL(�∣(x,y)i)

��

)2

,

(9)lewc = −

params
∑

i=1

[IA]ii
(�i − [�i]

∗
A
)2

2
,

Fig. 3   On the basis of task A, the schematic diagram of using EWC regularization, L2 regularization, 
and penalty-free learning direction for task B, respectively. This figure appears in [35] for the first time
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4.4 � Objective function

The overall objective function consists of three parts, the prediction loss Lpred is used 
to predict the future trajectory prediction, the alignment loss Lmmd is used to align 
the distribution of the source trajectory domain and the target trajectory domain, and 
the EWC loss Lewc is used to ensure the learning direction of the target domain and 
the source domain. The prediction loss Lpred is the negative log likelihood as follows:

The entire model is jointly trained by Lpred, Lmmd, Lewc , thus we have:

where � and � are hyperparameters for balancing these three terms.

5 � Experiments

In this section, we first present the definition of our proposed new setting as properly 
as the evaluation protocol. Then, we carry out extensive evaluations on our proposed 
model under this new setting, in comparison with previous existing methods.

Dataset Experiments are conducted on two real-world datasets, ETH [36] and 
UCY [37], as these two public datasets are widely used in this task. ETH consists 
of two scenes named ETH and HOTEL, and UCY consists of three scenes named 
UNIV, ZARA1, and ZARA2. The dataset contains a large number of interactions 
between pedestrians and their surroundings, including pedestrian–pedestrian inter-
actions and pedestrian–environment interactions, such as pedestrian crossing, group 
and individual movements, crowd gathering and dispersal, and collision avoidance. 
In the scenes of the ETH dataset, most trajectories are simple straight lines, and 
there is not much social or spatial interaction between pedestrians. In contrast, the 
scenes of the UCY dataset tend to show more social interactions between pedestri-
ans and interactions between pedestrians and the surrounding environment.

Experimental settings We introduce a new experimental setting that treats each 
scene as a trajectory domain. The model is first trained on one domain, then sepa-
rately trained on the validation set of the other four domains, and then tested on 
the target and source domains, respectively. Given 5 trajectory domains, we have 
a total of 20 trajectory prediction tasks: A− > B�∕C�∕D�∕E� , B− > A�∕C�∕D�∕E� , 
C− > A�∕B�∕C�∕D�∕E� , D− > A�∕B�∕C�∕E� , E− > A�∕B�∕C�∕D� . Among them, A, 
B, C, D, and E represent ETH, HOTEL, UNIV, ZARA1, and ZARA2, respectively. 
This setup is somewhat challenging due to the catastrophic forgetting problem and 
domain differences.

Evaluation protocol To ensure a fair comparison under the new setting, an exist-
ing baseline is trained using a validation set of the source and target trajectory 
domains. Specifically, taking A− > B� as an example, an existing baseline is trained 

(10)Lpred = −

Tpred
∑

t=Tobs+1

log(P((xi
t
, yi

t
) ∣ 𝜇̂i

t
, 𝜎̂i

t
, 𝜌̂i

t
)).

(11)L = Lpred + �Lmmd + �Lewc,
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training set of A and validation set of B, and then evaluated on test set of A and B. 
Note that the validation and test sets are independent of each other, and there are no 
overlapping samples between them.

Baselines Five state-of-the-art methods are compared with our proposed method 
under the new setting and the evaluation protocol: Social-STGCNN [38], Star [24], 
LB-EBM [39], SGCN [40], and SocialVAE [41]. Each model corresponds to 20 
tasks, for a total of 80 comparison tasks.

Evaluation metric Following two metrics are used for performance evaluation. In 
these two metrics, Nt is the total number of pedestrians in target trajectory domain, 
v̄i
t
 are predictions, and vi

t
 are ground-truth coordinates.

•	 Average displacement error (ADE): 

•	 Final displacement error (FDE): 

Implementation detail Similar with previous baselines, 8 frames are observed and 
the next 12 frames are predicted. The number of ST-GCN layers is set as 1, and 
TXP-CNN layers is set as 5. In the training phase, the batch size is set as 128, � is 
set as 1, and � is set as 1. The whole model is trained for 250 epochs, and Adam is 
applied as the optimizer. We set the initial learning rate as 0.01 and change to 0.002 
after 150 epochs. In the inference phase, 20 predicted trajectories are sampled and 
the best among 20 predictions is used for evaluation.

5.1 � Quantitative analysis

Tables  2 and 3 show the evaluation results of our method and 4 baselines on 20 
tasks. From these two tables, we can see that our method outperforms these base-
lines in some cases. In the case where the target domain only trains the validation 
set, the amount of data is very different from the source domain, so the test effect 
of the model in the target domain will be greatly limited. However, our model has 
added domain adaptation. This module can better judge the data distribution of the 
target domain and the source domain, so our method has shown better results in 
ADE/FDE on the target domain. For the source domain, when the model is trained 
on the target domain, the learning direction will inevitably be biased toward the tar-
get domain and ignore the knowledge retention of the source domain, which is the 
problem of catastrophic forgetting. Even after training on the target domain with 
much smaller data than the source domain, all these baseline methods degrade 
significantly on the source domain, basically reaching the 70% drop metric. How-
ever, because the EWC module can control the parameter changes and retain the 

(12)ADE =

∑Nt

i=1

∑Tpred

t=Tobs+1
∥ vi

t
− v̄i

t
∥2

Nt(Tpred − Tobs)
.

(13)FDE =

∑Nt

i=1
∥ vi

pred
− v̄i

pred
∥2

Nt
.
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knowledge of the source domain, our model still maintains good insurance in the 
source domain, and the reduction index is controlled within 15%.

To verify the effectiveness of our proposed SBC method, we replace the ker-
nel function in Social-STGCNN with SBC, and the results are shown in Table 4. 
The results show that our SBC method has a positive effect on pedestrian trajec-
tory prediction. In most cases, we outperform the original kernel function, which 
means that distance is not the only factor that affects pedestrian interaction, and 
pedestrians’ social habits, etc., also affect pedestrian trajectories.

To verify the effectiveness of each module, we conducted further ablation 
experiments on the network structure of this paper. We used the ETH dataset as 
the source dataset and the hotel dataset as the target dataset. After training on the 
source dataset, we obtained the ADE/FDE results of the test set. Then, we trained 
on the validation set of the target dataset and tested on the test set to verify the 
effectiveness of the domain adaptation module. Finally, we tested the perfor-
mance of the model on the test set of the source dataset to verify the effectiveness 
of the continual learning module.

As shown in Table 5, compared with 1.2, the network structure with the domain 
adaptation module achieved better performance on the target dataset. However, 
due to the existence of the domain adaptation module, the network parameters 
quickly approached the target dataset, resulting in severe knowledge loss on the 
source dataset and leading to a significant drop in performance when returning 
to train on the source dataset. Compared with 1.3, the continual learning mod-
ule effectively mitigated the catastrophic forgetting problem. After training on the 
target dataset, the network still maintained good predictive performance on the 
source dataset. Compared with 1.2.3.4, we found that the network could achieve 

Table 4   ADE/FDE results obtained by replacing the kernel function with the SBC method in Social-
STGCNN

Bold represents the result with the smallest ADE/FDE under the same conditions

Method eth Hotel Univ Zara1 Zara2 AGV

Social-STGCNN 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
Social-STGCNN/SBC 0.65/1.10 0.33/0.45 0.39/0.68 0.30/0.56 0.27/0.44 0.39/0.65

Table 5   ADE/FDE results of domain adaptation module and continuous learning module ablation exper-
iments

Number Model components Source dataset 1 Target dataset Source dataset 2

Domain 
adaptation

Continual 
learning

1 No No 0.70/1.19 0.58/0.81 1.32/2.44
2 Yes No 0.71/1.31 0.33/0.45 2.01/3.74
3 No Yes 0.73/1.24 0.38/0.50 0.76/1.31
4 Yes Yes 0.70/1.21 0.35/0.42 0.75/1.28
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our expected results, that is, to maintain the predictive performance on the source 
dataset while improving the predictive performance on the target dataset with the 
combined action of the domain adaptation and continual learning module.

6 � Conclusion

In this paper, we propose a unified model that incorporates graph neural networks 
and temporal convolutional neural networks for future trajectory prediction and 
adds domain adaptation and continual learning modules to mitigate domain dif-
ferences and catastrophic forgetting. Extensive experiments demonstrate the 
superiority of our model in future trajectory prediction. Our work is the first to 
combine domain adaptation and continual learning to study future trajectory pre-
diction, making an appropriate attempt for the application of trajectory prediction 
based on deep learning in real life. In the future work, we will conduct more in-
depth research on the factors affecting pedestrian trajectory.
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