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Abstract

In this paper, we design and develop some algorithms by using the piecewise lin-
ear interpolation polynomial for solving the partial fractional differential equations
involving Caputo derivative, with uniform and non-uniform meshes. For designing
new methods, we select the mesh points based on the two equal-height and equal-
area distribution. Furthermore, the error bounds of proposed methods with uniform
and equidistributing meshes are obtained. We also show that our numerical method
is stable and convergent with the accuracy of O(x2 + h). Also, some numerical
examples are constructed to demonstrate the efficacy and usefulness of the numeri-
cal methods. Finally, a comparative study for different values of parameters is also
presented.
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1 Introduction

The study of fractional calculus dates back to times when Leibnitz and Newton
invented differential calculus. Fractional calculus deals with derivatives and integrals
of arbitrary real order. It is a powerful tool for modeling phenomena arising in diverse
fields such as mechanics, physics, engineering, economics, finance, medicine, biology,
and chemistry [1-6]. In the past few decades, fractional differential equations (FDEs)
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have been used in increasingly more applications. Recently, there has been a tremen-
dous increase in the use of fractional differential equations to simulate dynamics in
many fields, e.g., physics, chemistry, biology, engineering and so on. For example,
ultrasonic wave propagation in human cancellous bone [7], modeling of speech signals
[8], modeling the cardiac tissue electrode interface [9], the sound waves propagation
in rigid porous materials [10], lateral and longitudinal control of autonomous vehicles
[11], the theory of viscoelasticity [12], fractional differentiation for edge detection [13],
fluid mechanics [14], Electrical spectroscopy impedance [15], Frequency-dependent
acoustic wave propagation in porous media [16], etc.

In general, there does not exist method that yields an exact solution for fractional dif-
ferential equations. Several analytical methods have been suggested to solve fractional
differential equations, such as, the homotopy perturbation method [17], Adomian’s
decomposition method [18-20], homotopy analysis method [21], the Laplace transform
method, fractional Green’s function, Power series method, and method of orthogonal
polynomials [22-25].

There have been several numerical methods published for producing approximate
solutions for fractional differential equations. These methods include the Implicit
Quadrature method, introduced by Diethelm [26], the Predictor-Corrector method,
discussed by Diethelm, Ford and Freed [27], the Approximate Mittag-Leffler method,
considered by Diethelm and Luchko [28], a Collocation method, described by Blank
[29], the Finite Differences method, discussed by Gorenflo [6], etc. [30-36].

The modeling of real-world problems and physical systems leads to partial FDEs
(PFDEs). Analytical solutions as in the case of PFDEs are available only for a few sim-
ple PFDEs. Though researchers have developed efficient numerical solution methods
for partial FDESs, in general, the literature on the numerical approximation of partial
fractional derivative and present a simple general efficient numerical methods for the
solution of PFDEs, are limited. Some analytical techniques are presented in the litera-
ture for solving PFDEs, such as, method of separating variables [37], decomposition
method [38], variational iteration method [39], and homotopy-perturbation method
[40]. To study numerical methods for solving partial fractional differential equations,
see [36, 41-50, 52].

One of the disadvantages of finite difference methods by uniform meshes for solving
fractional differential equations is its high computational cost. We show that the com-
putational cost of the non-uniform meshes scheme is lower compared to the method of
uniform meshes scheme and does not lose the numerical accuracy of this method.

This paper focuses on designing a new numerical method by uniform and non-uni-
form meshes for the partial fractional differential equation as:

ou(x, 1)

= /lagD:u(x, H+fx,0, t>0, xe[0,L],
ux,0)=gx), 0<a<l, (D
M(O, t) = M](t)’ M(L’ t) = ,Mz(t),

where, A, < 0and L > 0 are constants. Also, the fractional derivative operator CODX"
is Caputo’s derivative as [22]
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1 o ZO(s)
CDZ(x) = ds, n—1<a<n. 2
0 IFn—a) Jo (x— s @

In this paper, an initial value problem for the partial fractional differential equa-
tion is considered. We design new methods with uniform meshes and non-uniform
meshes. The error bounds are obtained for solving our problem. Finally, some exam-
ples are presented, and also, we compared results obtained by the new methods with
uniform and non-uniform meshes.

The rest of this paper is organized as follows. In Sect. 2, a new numerical method
with uniform meshes is presented. In Sect. 3, a new numerical method with non-uni-
form meshes is developed. We perform the error analysis for those methods in Sect. 4.
In Sect. 5, examples illustrating the performance of the new numerical schemes are
presented. In the last section, conclusions are given.

2 Numerical method with uniform meshes

The purpose of this section is to present a new numerical method by using the piece-
wise linear interpolation polynomial with uniform meshes for solving the partial frac-
tional differential Eq. (1). We partition [0, L] into a uniform mesh with the space step
size h = L/M and the time step size t = T /N, where M, N are two positive integers.
Also we have, x, = nhforn =1, ..., M and i =jkforj=1,..,N.

By using Eq. (2), we can write

ou(x,t) .
- = 28D ux, 1) + f(x, 1)
A ou(z, 1) ©)
- % Y e A 1),
F(l—a)/(x T) 5 T+ f(x, 1)
0
if we take, x =x,,,, 1= 1, we have
(5151 ou(r, 1)
UXpg 15 G Aq S
o Ti—a ) S T Tt )
0
Ao f du(z, 1)
=—2 /(xn+] -7)7 dr
I'a-a) ot )
0
ia Xnt1 . au(r’ tj)
+ m (xn+1 -17) P dr +f(x,,+l, tj)

Xn

=1+ 1L+ (x4, 15).

The integral I, approximate by the piecewise linear interpolation at the nodes x,, and
X, for u, by the following approach
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Aa n+1
Lh=ri=g ) G =7
x/l

X1

— Aa
T I -a)

xll

_ Ml [ j
- rQ-a) U

('xn+1

-

_a oJu(r, t ) du(r, t. )d
o dTF r(l—a)/(x"“ or F

¢ 0 Xn+1 i T—X,
*— W+ 74
) ot [x ~ Xn+1 " Xn+1 — n+l]

|

&)

where i is the piecewise linear interpolation for u and ui, = u(x,, tj). Also, the inte-
gral I, approximate by the piecewise linear interpolation at the nodes x; and x;,

withk=0,1, ...,

XH
] = —*
1 ra _a),o/(xn+l

Q

Irl-aw

A n—1 Xy

= Z / (xn+1

Ta-a /4,

n—1

A
- ¥ |

r(2—¢1)k=0[ i

)’ h—(l n

=« R L -
= Z [pk,nH + /’k,n+1]”]k

I'2-a)y
AN

n— I

= Z:pkn+1[

Ir2-a) i

-1)

xﬂ
f (xn+1 - 7'-)
0

ul

n — 1 for u, by the following approach

du(r,t,)
—dr

_,0u(r.1) Ay b

dT Z / ('xn+1

at Iri-a) /5 M

da(z, 1)
d

)% T

T —

el

—x
u(xk,t)+ k u(xk+1,tj)] dr
X

A
_k)l—a

X~ Xkt1
](n+1—[k+l])l o _(n+1
Tk + 11 - k)
Ao n2l ,
TQ2-a) kz() pkn+lul +p£+|,n+1“§<+|]

A h o n
] m ZPMH &

k+1

j
uk+1

(6)

where it is the piecewise linear interpolation for # and

M+ 1=+ 1D —(n+1 -kl

0<k<n-1,

Penr1 =
07

07

L —
pk,n+l -

m+1=[k=1D"% = (n+1 k)@

>

(k+1]1-k)

k=n,
@)
k=0,

1<k<n.

s

(k—[k—=1D

By using Egs. (6) and (7), we can write

Pin+1

Suppose, we take
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n+l ASODZM(an )+ (40, 1)
Ay 7“( . ou(r, tj)d F 0
= — .Xn - T T xn Jt
F(l - a) / +1 +12 % (9)
AT J A .
- % — u/ ]
I'2-a) [ ] T2 —-a Z ety oy

Thus, we approximate solution by using the Crank—Nicolson scheme for Eq. (1). So
we apply numerical method to Eq. (1) as follows.

Letu(x,,t) = u,, f(x,,)=f,. Then,
W =l
n+1 n+1 j—1
e LA | 10y

Therefore, after some calculations for Eq. (10) by using (9), we have

Agkh™® [ ] Akh™® Z
n+l 22 — a) n 2F(2 _ 0() Pr, n+1

n j -1
—L/_l A kh™@ [uj_l uf'l] Agkh™® ZP - N )
= Py - k1l F

2I'2 — a) n 2F(2 - 2 ’
(11)
finally, we can write
n+l n+l f
- n+1 n+1
1 Z kn+1”] “]n+1 Z PR f, (12)
where
—A kh™®
. Q2 — [pkn+l P 1n+1]’ k=12,..n,
lI/k,n+l = iy K/’l_ (13)
—2 —— k=n+1.
M2 —-a) "
By using Eq. (12) and (13), introducing
v 0 0 0
Wi, Vi 0
W!X wa wa
D = '1*3 .2,3 :";,3 i (14)
Yot Yoot Vimo 0
Yy Vom Yium U Vi

and
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V=10, ... )", (15)

Eq. (12) takes the matrix-form as:

(I+D)UV =I-D)U +F, (16)
where
[« [, -1 [ i-1] 7]
Ef{ +1 =¥ ”:)+”€) |
N P . -
slged] v g
N T . -
Fo| st Y [t
K [ . B . ._17
E_IJVIl+JdM 1] 0M1 b’i)"'”i)
K| g J—1 a j j—1
_EfM"'fM ] _lPO,M 7”6"'”{) |

3 Numerical method with non-uniform meshes

In Sect. 2, we designed the proposed scheme with uniform meshes (12-13), to
approximate the integral fox" dr by

ou(x,, |, t) ()u(r, t)
ot a) / O = P
- (17
I _,duz. 1)
+m (xn+1—r) “ . dT+f(Xn+1,l‘j)

Xn

Since (x,,; — 7)™" decays with power a, we can actually select lesser number of
mesh points of [0, L], as 0 = oy, < 0y, < 0,, < ... < 0, , = X, to approximate the

integral fox” dr.
3.1 Algorithms for selecting the equidistributing meshes

For selecting the equidistributing meshes, we introduce two algorithms in this sub-
section [51].

Algorithm 1:  Equal — height distribution algorithm [51]

Assume that we have already got the points o, ,, we have two principles for select-
ing the next point 6;,, ,. By this two principles, the numerical method does not lose
the accuracy but reduce the computation cost.

Principle 1: The next point ¢;,, is at least one step away from o;,. The function
values u(t) = (x,,; — 7)~% are as equally distributed as possible, i.e.,
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Giy1,, = Max { solve(6y1, = 61 = s Gy ), ) }, (18)

solve(u(6;41,) — u(o;,) = Au, 6,44,

where Au is a given small positive real number and solve(equ, var) means the solu-
tion of equ with unknown variable var, e.g., solve(u(,,,) — u(c;,) = Au,6;,,,)
means solving

(X — f_’i+1,n)_a = (X1 — O-i+1,n)_a = Au. (19)
Therefore, we have
-1
_ —a — 20
Oitin = Xpy1 — [(xn+1 - O-i,n) + Au] @ ( )
Principle 2: To avoid involving non-equally divided nodes, we take
61' 1,n
Oitin = l ; J h. @1
therefore, we have o, ,, = o;, + hor
(xn+l - O-i+1,n)_0( - ('xn+1 - O-i,n)_a < Au. (22)

This algorithm is called equal — height distribution algorithm [51] (see
Algorithm 1).

Algorithm 2: Equal — area distribution algorithm [51]

Principle 1: For design second algorithm to choosing the mesh points o, ,, we
integrate of u(z) = (x,,, —7) " as

Gitin
/ (x,41 — 7)"%d7T = A4S,

Oin

where AS is a given small positive real number. For 6;,, ,,, we approximate it by
u
Givtn = X1 = [y = 0;,)' 7" = (1 = @)AS] e (23)

Principle 2: To avoid involving non-equally divided nodes, we take

6-1' n
o-i+1,n = l -;ll! J * h’ (24)

therefore, 6,, , belongs to the uniform nodes {x;}’_,. It can be checked that

(xn+1 - Ui,k)l_a - ('xn+1 - O-i+1,n)l_a < (1 - C()AS, or C;i+1,n =0, +h (25)

This algorithm is called equal — area distribution algorithm [51] (see Algorithm 2).
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Algorithm 1 The equal-height distribution algorithm for (18-22)

Function GENXI (n,h,0t,Au)
i=0; 0;,=0; % In this stage we have oy, =0
o.=0; % In this stage, current node is oy,
while x, < x, do
Oi+1,n = Xn+1 — [(xn-H - O-c)_a +Au} %;
if Oitln > Xn then
Oitln = Xn;
break;
end if
x if u = (x,.1 — )~ % changes too fast, go to the following stage
if Oit+1,n— Oc < h then

Oit1,n = O+ h; % make 0;1, be one step away from o; ,
else
Cit1k = V”;l] ‘”J xh; % let 0j11, belong to the uniform mesh {t;}_
end if
O = O-iJrl,n;i =i+l
end while

End Function

Algorithm 2 The equal-area distribution algorithm for (23-25)

Function GENXII (n,h,,AS)
i=0;0;,=0; % In this stage we have oy, =0
o.=0; % In this stage, current node is 6y,
while x. < x,, do
O in = Tne1 — (1 — 0)! =% = (1 - @) AS] a
if 0,11, > x, then
Oi+1,n = Xn;
break;
end if
x if u = (x,11 —7)~ % changes too fast, go to the following stage
if 6,41, — 0, < h then

Oit1n = Oc+h; % make 0;41 , be one step away from o; ,
else
Oit1h = L%J x % let 041, belong to the uniform mesh {tj};?zo
end if
O =Op1pii=i+1;
end while

End Function
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3.2 Formulation of numerical method with equidistributing meshes

In the second section, we partition the interval [0, L] into a uniform mesh. The non-
uniform mesh points o;, chosen from Algorithm 1 or 2 still belong to the set of the
uniform meshes. Also, we take x, = 0and Xy, = Xy Thus,0;, =x,, i=0,1,...,m
Now, we assume that

X = {XO,xl,xZ, ...,xn},

. 26)
o(i) = {GO,n’ O > O +es O'ml_’n}. (
To design a new numerical method with the non-uniform mesh points, we have
ouC,,t) A _ou(z.1)
ot =F(1 — (Z) (xn+l - T) or dr +f(xn+1a tj)
0
o / Gy
= X1 — T T
ra- + ot 7
_ ( 1)
F(l — (xn+] 7)™ % dr +f(xn+1,t)
=Il +1, +f(xn+1, ).
We approximate 1 1 as
S i au(T’ t) ﬂ n —a aﬁ(Ts tj)
Il F(l _ f(xn+l 07: dT F(l _ /(xn+l T) T
Ay sl T du(r, 1;)
—a d
TTa-w ,Zo § G2 '
ﬂ -1 % Nit1 a T — . M[ T _xn MI
-a Y r+ + i d
F(l - a) zz(:) _)\/ (xn+1 T) ot xn, X Mit1 ni+1 _xn i ‘
_ A 1 [ L ](n+1—n)l C—(n+1l-n )"
re-a S L (i —my)
A hme m—l . A e m—l .
=285 [or et ]M:a— i+ 0Lt
]"(2 — a) i§0 [ ln+1 in+l |7 I"(2 C() lz() tn+l i+1,n+1
3 /1 h® mzl 9 I:u] M] 3 Zn 0
- ]"(2 — (1) in+1 I—v(2 _ ln+1
(28)

where @ is the piecewise linear interpolation for u at the nodes x, and x, = with
i=0,1,..,m,—1,and
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-

n+l-n )" —m+1-n)"

ok = ( ) D o<i<m -1,
in+l = y (R —ny)

0, i=m,,

: (29)

0, i=0,
L _ _ I—a _ _ l-a
O =7 _(n 1 "i)( n +)1 ") <<,

n;—n;_

Also, the integral I, is approximated by Eq. (5). By using Eqgs. (28) and (29), we
have

Oippr =08 +0F .00 ——9§n+1. (30)

in+1 in+1° Zi+ln+l T

Remark 1 1f we take, n, = k, 0 < k < n (for uniform meshes), we can write

n n—1
P ® . L .
Z Picns1tly = Z [/’k,n+1”§< + /’k+1,n+1"2+1]
k=0 k=0
m,—1n; -1

- Z Z Phenst [”i_”iﬁl]'

i=0  k=n;

€1y

For non-uniform meshes case, we take

J’i+1 =/150D§u(xn+1, ) +f (X5 1))
xn+1
Ag _,ou(z, 1)
:—F(l — / (g1 — 7) . dt + f(x,41,1;)
0

(32)

A g A "G o
= - +— 0, . +F, .
Q2 -—a)l ! ”] Ire—-a) Z(; L+l ot
Let we take, u(x,,?;) = u{,, u(x, 1) = u{1 and f(x,, 1) = ﬁ Then, by using the
Crank—Nicolson scheme for Eq. (1), numerical method for Eq. (1) is as the follow-
ing form.
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. i1
I/l]

n+l — Tatl 1 j —1
=3t 33)
Therefore, Eq. (33) by using (32) will be as the following form
A kh™ y A &
-— u’
ml (2 — a)[ ntl ] A2 —a) “ 2 it
, A ch™ [ . Ah™ &
=iy “—[Ld‘l - u/—l] Opatd”! 34
n+1 21'*(2 _ a) n+1 n 21—~(2 _ (1) 2 in+1 ( )
+ (fn+l +fn+1
2 9
after some calculations, we have
my,+1 m,+1
K(f,, +1
1 — n+1 n+1
n+l + Z ¢n ”+1th = uil+1 z ¢n n+lu] 2 ’ (35)
where
—A kh™* [ "
Ak [gr R ],i:l,z,...,m
o _ 21—*(2 _ix) i,n+1 i—1,n+1
n;,n+1 _)' K]’l N 1
M2—a) '~ M
If we take U/ = [u’ , ué, il 1,17 therefore, Eq. (35) takes the matrix-form as:
I+D)WU =1-D)U"+&, (36)
where
— K— r . —l a —
S o [+
PR .
§f£+ 2] ] _Qn [uno+u]”0 ]
or -
o | Ees] ol
K[ ; _
E ] +f] ] an[u]”o+u]"0]
i )
_E_fiJ\/I-i-ﬂ/[]_ no,M[u{%-i_u{%] h

and matrix D will be introduced in the next subsection.
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3.3 An algorithm for generating the matrix D

In this subsection, we design an algorithm for generate the matrix D by using the Algo-
rithm 1 or 2.

Algorithm 3: Marrix Generation's Algorithm 3

We use the function GENXI or GENXII to generate the matrix D by using the non-
uniform mesh points on [0, L] chosen from Algorithm 1 (equal-height distribution
algorithm) or 2 (area-height distribution algorithm). We design an algorithm for gener-
ating the matrix D, as the following process:

Step 1 We partition [0, L] into a uniform mesh with the space step size » = L/M and
the time step size t = T /M, where M is a positive integer. Also we have, x,, = nh for
n=1,...M andtj =jkforj=1,..,N.

Step 2 In this stage, we use the function GENXI or GENXII to selecting non-uni-
form mesh points on [0, L] by Algorithm 1 (equal-height distribution algorithm) or 2
(area-height distribution algorithm). We consider these non-uniform meshes as a vector
and call it X as:

X = [ng,n;,n,, ...,nmn].
In the partition [0, L] into a uniform mesh, we replace zero instead of unused points.
We consider these meshes as a vector and call it X as:
X =10,..,0,n,,0,..,0,n,,0,...,0,...,0,...,0, n, 1.
Step 3 In this stage, we look for the coefficients of u’l., which are the matrix elements.
If the i-th element of the vector X is zero, this coefficient will be zero. And if the i-th
element is nonzero, the coefficient is obtained from the following relation:
b= ThKH (= X@)'T - (= XG4 1)
L TArQ2 — a) X@i+1) = X(@0)
n=XG+ 1) - -Xi+2)'™
XGE+2)—-X@G+1))

; 2 <i<length(X)

— Aok N —AKhTY
— [2 - 2] and D, =——,i=1,..,n.
2Ir2—a) T 2I2-a)

With these three steps, all the matrix elements will be obtained (see Algorithm 3).

also, D, ;=

@ Springer



New numerical methods for solving the partial fractional... 14469

Algorithm 3 Matrix Generation Algorithm for non-uniform meshes’ method
Input: o, Ay, h, m,, M and Au or AS.
Output: Matrix D for proposed method by using non-uniform meshes.

for n =m, to M do
X= Function GENXI (n,h,a,Au); % GENXI is equal-height algorithm

OR
X= Function GENXII (n,h,a,AS); s GENXII is area-height algorithm
X=[0,0,0....,0]; x X is a zero’s vector with n-dimension

for k =2 to length(X) do
X(X(k) 4 1)=X (k);%X=0,...,0,11,0,..,0,12,0,..1,0,....0,...0, 71 1,0,0.0,711, ]

end for A o
. —AoKh™ - ) .
D; 1= = m [2 “ —2], K Wy, = cbl?fn-«-l
for k=1tondo
Permt = =2 "% The diagonal elements of Matri
= = —————: x The diagonal elements of Matrix
k k= 0k k A (2—a) g
end for
j=L

for / = 2 to length(X) do
if X(I) = 0 then

Dy 1=, ;-1 =0; ,% The other elements of Matrix

else
A  Aakh % [(n=X(1) T~ (n—X(I+1))
D=1 = 01 = 5555 XU+1)—x(1)
(n—X{I+1)" %~ (n—X(1+2))" %]
B X(I+2)—X(+1)) ’
end if
I=l+1;
end for
end for

Remark 2 For Computing the total times of the nodes (N) being used in the our
methods, we design Algorithm 4. For example, the total times of the nodes (V)
which used in proposed method with uniform meshes for solving PFDEs compute
form N = n(n + %) So N is 650, 4600, 34400 and 265600, respectively, when
h=x=1/10,1/20,1/40,1/80 and T =1, L=1. So, the computation cost of
numerical method with uniform meshes for solving the PFDEs is increasing.
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Algorithm 4 The Algorithm for computing the total times of nodes(N)

k=3; % Three starting points are known.
=3
while k <n+1do
N = n(p+length(c(k))); % Sums up all the points used before o (k).

p=N;k=k+1;
end while

4 Error analysis of methods

In this section, we study error analysis of methods with uniform meshes and non-
uniform meshes. So, let A be a matrix d X d and ||.|| be a norm in C%. Let Al Agy s Ag
be the eigenvalues of a matrix A. Then, its spectral radius will be as:

p(A) = max {| 4], | Aa]s s | 4] }-

Lemma 1 [53] ( Gelfand’s Formula) Given any matrix norm||.|| on C?
1
p(A) = lim [|A"]]. (37

if A|,A,, ..., A, are matrices that all commute, by using Gelfand’s formula, we can
write

p(A1A,. A) < p(ADp(Ay)...p(A,,), (38)
because

1
n

PAIA2 - - - As) = Tim [[(A1A2 - - - As)’|| = lim ||[(A1"A2" - - - As")"

< lim [JA1"|[+ Tim [|A2"]|" - - - lim ||As"]|" 39)
=p(A1)p(A2) - - - p(As)

Theorem 1 The proposed method with uniform meshes is obtained as the following
form,

I+D)WUV =I-D)U™ +F, (40)

for every initial vector U°, is stable.

Proof Since all eigenvalues of matrix D are nonzero, thus the matrix (I + D)~! is
invertible. We can write

UV=I+D)'U-D)U ' +I+D)'F.

If we take
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A=UI+D)'U-D), B=U+D)",

therefore, we have
U =AU"+B.

suppose v;, i = 1,2, ..., M, be eigenvalues of matrix D. Since we have for matrix D,
—A kh™®

v, = “ZakB >0, i=1,2,....M. We can write
2I'2 — a)

pd-D)<1, p(+D)H<1. 41)
Also, we can write
I=I+D)(I+D)!
=(D"'D+D™'DD)(I + D)™!

= (D' + D"'D)D(I + D)~
=D~'(I + D)D{ + D)"!

D'+ D)I+D)'D=D"'(I+D)DU+ D)
—(I+D)"'D=-D(I+ D)
I+D)'—UI+D)'D=U+D)"' =D +D)!
(I+D)""I-D)=(I-D)I+D)',

thus, (I + D)~ and (I — D) are commutative matrices. Therefore, by using Lemma 1
and (41), we have

p(A) = p(( + D)~'(I - D))

< p((I+ D) Hp(U — D))
< 1.

Thus, the proposed method with uniform meshes (12) is stable. O

Lemma2 Letu € C*[0,L]and 0 < a < 1, then
Xnt1
/ (Xpey — T)—“ai [u(z, 1) — i(z,1)|dr| < Ch.
T
0

Proof By using the Taylor theorem, for = € [x;,x;,,], there exist & € [x;,x;, ]
Therefore,
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/ (g1 — T)_"% [u(z, 1) — iz, 1)|dr
0

n i+1
< ; / (o — 1)—“£|M(T,z.) ~ iz, |

/ (1 —

<% / (Gt — )77 = x; = 33,
2 i=0

(T —x)(T—x

y 2L
i+1 2972 o=t

<= 2 Z / (xn+1 - T) |'xl+1 |dT

_ (xn+l = x)' 7 = (G =X )' " _ ()"
22 O - a2 s

0%u(t, t)

where M, = sup 3
T

z€[0,L]

7=
Lemma 3 [54] Let S be a positive definite matrix of order m — 1. Then, for any
parameter 1 > 0, the following inequalities hold:

la+nsa—ns)| <.

By using Lemma 2, we study convergence of the method. So, for the method (16), we
can write

W — i 1

a

- > (§D%uCx, 1. 1) +§ D u(x,1.1,1)) + O(K?),

Aok dh 2
AoDiuCin ) = F o [ =] + To—a 2 Pratt + OCh).

Thus, the local truncation error of (12) can be written as:

T,; = O(<> + Kkh).
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Theorem 2 Let U/ and i be the numerical solution and exact solution of (12),
respectively. Then, we have

o7 =], < cou + . 43)
where C is a positive constant.
Proof We can write
n+l n+1 f
1 i—1 n+l n+l 3
n+1 + Z kn+l Ui;+] Z kn+1U§¢ +— + O(x” + kh)
(44)
and
R . K ) +f,i+1>
)+ Z ){/k,n+l”1 ":z+1 Z '{/kn+lul , 45)
k=0

Let us set e’ = U]: — u’ and by using (44) and (45), we have
. Z kn+lek = e;+]1 Z 1€ '+ 00 + xh), (46)
k=0 k=0
thus, matrix—vector form of (46) can be expressed as
(I+DE = -DFE"+0k> +«xh)y,
where B/ = [e’l,e’z,. wé1Tand y =[1,1,..., 1]7. Let us take
=I+D)'U-D), E=0k+«xh){I+D)",
therefore, we can write
E=0F"'+=
By iterating, we have
E=0@"'"+072+..+DE.

Since the eigenvalues of matrix D are positive, then matrix D is a positive definite
matrix. By Lemma 1 and Lemma 3, we can write

@ Springer
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[¥]. <o | [+ oz
<A+1+..+ DB
<jO(k® + kh) = TO(k? + h).

Finally,
HHLgcmﬁ+m
O

Theorem 3 Let u e C[0,L] and a € (0, 1), then for the equal-area distribution
method, we have

F(l — fl(xn+1 )" [au(a: ) - auf;’ t')] 7| < C% 47)
and, for the equal-height distribution method
faf_ T - Yﬂmﬁf)—WZﬁqm-sc%, 48)
specifically, when AS = O(h?) or Au = O(K?), then
el ou(r,t;) 0u(r,t;)
F(l—— [ Gy — r)“’[ 3. ]dr < Ch, (49)

where @t is the piecewise linear interpolation for u at the method with uniform
meshes and u is the piecewise linear interpolation for u at the method with non-
uniform meshes.

Proof Let it and & are the piecewise linear interpolations for u at the method with
uniform meshes and the method with non-uniform meshes, respectively. Thus, for
the equal-area distribution method, by using (25), we can write

('xn+1 - xn,»)l_a - (xn+1 - ng)l_a < (1 - a)AS’

thus, we have

L g (-

[(n+1-n)"" —(n+1-n,) e

IA

(50)

By using (50), (6) and (28), we can write
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Xutl . dir,t;)  du(z,1;) J
r(1— S G =) [ or  oc ]T
i z W =30,
- F(2—a) pk,n+1 pard i,n+1%n;
) 1”:+1_1
=F(2—a) Z Z /’kn+1("l +1) Z 91n+1 ”lnﬂ)
P Mo ou 0
= — -|—— —_
re-a lzo Z [ =555
oou(Gyyst) m ) .
o+ | T [ -
au(§ K j) ha mnl iy —1
Ny R
™ (5, =X, )| < TCo—a) E) k; (/’kn+1 Prns1)
. h—¢ au m,—1
R R
(01n+l 6i,n+l)]u]"i + F(Z—a) a o lz(:) (x”+1 - ”f 01n+l|
h™* ()M ! l—a l1-a
< Te—allax 20 0, =X )|+ 1T =)™ =+ 1—=n, )7
b auxa)_xn ul 4s
_F(Zs_a) o ! hl-a T I -a)||ox|e n
< C—
h
We assume
X"i*+l x”i+l
/x (ot =0 " = Mar / (1 — )", 52)
by using (22), we have
('xn+1 - xni*+])_a - ('xn+1 - 'xni* )—a < AM,
thus, we can write
(xn+1 _xni*+1)_a < (xn+1 _'xni* )—a + Au. (53)

Therefore, we can write

x”i*ﬂ
[ o =0 < G = )G, =)
(54)

< [@r =%, )7 + Auf(x, . —x, )

P41

by means of the mean value theorem for u(r) = (x,,; — 7)7%, there is a x,,  that we
can write
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- —a—1

(xn+l _xn‘-H) — (xn+l _xni) “ N(Xnm _xni)(_a)(xn+1 _xnl-*) “
—a—1

=h(ny = n)(=a) 0,y — X, )"

< Au,

therefore, we have

Au
m(xnﬂ —X,.)- (55)

(xn+1 - xn,-* )—a <
By using (54) and (55), we can write

Ty
/ ('xn+1 - T)_adT S h( )('xn+1 'x",'*) + Au] ('xn,’*ﬂ - xni* ) (56)
X,

npx

Finally, by using (51), and the following relation

1—
(41 - ) = (1 - ”i+1)1_a] - (hl—aa) (41 — 7)1,
we can write
Xop on(rt)  Oa(r.)
F(l _ / (x Xn+l — [_m_ v ]d‘r'
—a 9 m,
“ l—a l—a
Slﬂ(2—06) aQQ%(x o |+ 1=n)'™ = (n+ 1= n )]
h * a) x”i+l —a
F(Z - 06) o % (5 "f hl—a . (X — ) %7
X”i*+l —
- F(l —Ol)h dx Z (x x",-) ‘/'Xn (41 — )7
X du Au
1 — + A —
- F(l — a)h ax [h( (X) (xn+1 xni*) I/L] (xn1*+1 xni*)
Au
<C%

5 Numerical experiments

In this section, some examples to illustrate the error bounds of the two methods
with uniform and non-uniform meshes are presented.

Example 1 Consider the following partial fractional differential equation:
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ML SDruten +f ), x€ 10,11

u(x,0) = (1 —x?% 0<a<l, (57)
u@©0,)=0, u(l,n=0

where

IS 2r@x=  rEx-e
I'G-a) IT(@d-a TG-al

fx,0)==x*(1 —x)’e" + ¢!
The exact solution of (57) is u(x, r) = x2(1 — x)%e~".

For solving this example by uniform and equidistributing meshes, different values
of o, h = x, Au and AS with T = 1,L = 1 are utilized. In Tables 1 and 2, we have
reported the results of this problem. This process has more benefits since the pro-
posed method by equidistributing meshes does not lose computational accuracy and
the computation cost of the methods (36) is decreased compared to the computation
cost of the proposed method by uniform meshes(16) (see column N at Tables). Other
numerical results are shown in Fig. 1.

Collections of Au and AS in Algorithm 1 or Algorithm 2 for collecting the point
meshes are very important. Because this process depends on # = k, @ and Au or
AS. Therefore, if we choose suitable Au and AS, then the computation cost of the

Numerical Solution by using Numerical Solution by using
equal-area distribution meshes equal-height distribution meshes Exact Solution

0.06
0.05.

0.04.
\

‘ \\\

\ f“ if(\‘ii‘
\\\§

n‘ \\f
0.2 ”IIIIA N
i \“\\\\\\\

A

\ tt‘t‘t‘{t\
llllll\ \\\\\\\\\\\‘

i
IIII “

Fig.1 The exact and numerical solutions by (16) and (36) (by using Algorithm 1 and 2), for example 1
(57),atT =1, L=1landa=0.2, Au=h, AS=2h, h=1/20
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non-uniform method (36) is decreased compared to the computation cost of the uni-
form method (16). Also, the numerical accuracy of non-uniform method does not
decrease.

Example 2 We consider the following PFDEs as:

t
au(a);’ d o §Druten + g, x€(0.1)

u(x,0) =x2(1 — x>, 0<a<l, (58)
u(0,0)=0, wu(l,r)=0,

where g(x, 1), define as:

FEX— 2r@x =  rew-

= —x%(1 = x)%si
g(x, 1) = —x“(1 — x)~sin(¢) + cos(¥) I'G-a T(@d-a TG-al

For this example(58), the exact solution is u(x, ) = x*(1 — x)>cos().

In Tables 3 and 4, we show the absolute errors of proposed methods with uniform
(16) and non-uniform meshes (36). In those Tables, the results of proposed methods
for different values of & = k, Au, AS and a, with T = 1, L = 1 are compared. Tables 3

Numerical Solution by using Numerical Solution by using
equal-area distribution meshes equal-height distribution meshes Exact Solution

=

—

—
—"

—
—
—

—
—

I

—=

A
N
=
A=
—
A
N ——
N—
A\
N—)

Fig.2 The exact and numerical solutions by (16) and (36) (by using Algorithm 1 and 2), for example 2
(58),atT =1, L=1landa =0.5, Au=5h, AS=10h, h=1/20
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and 4 show that the proposed method with non-uniform meshes works well and con-
vergence order of our proposed method with uniform meshes is O(k? + h). Other
results are shown at Figs. 2 and 3.

Example 3 Consider the following partial fractional differential equation:

0 t
M(a-x; ) +g Dj:u(x’ t) = O’ X € [0, 1]5
u(x,0) =x*(1-x?% O<a<l, >

u(0,1) =0,u(l, 1) =0,

the exact solution for 59 is unavailable.

In Table 5, by using proposed methods with uniform and equidistributing meshes,

we have reported numerical solutions of this problem at x =1and r =1 (u(lhf) and

h
n _ 3
1,1~ %

(h)

1 is numerical

with different values of a, & = x, Au and AS. Where u

solution of example 3 at x = 1 and ¢ = 1 with step size 4. Other results are shown at
Fig. 4.

6 Conclusion

In this paper, we design and develop some algorithms by using the piecewise lin-
ear interpolation polynomial for solving the PFDEs, with uniform and non-uniform
meshes. The equal-height and equal-area distribution meshes are product by means
of these algorithms. Also, we have used these algorithms ( the equal-height or equal-
area distribution algorithm) to generate the matrix at the proposed method with non-
uniform meshes. Next, the error bounds of the proposed methods are obtained. The
computation cost of numerical method with uniform meshes for the PFDEs is non-
linearly increasing with time. This work shows that the computation cost of numeri-
cal method with non-uniform meshes for solving PFDEs increases linearly and the
numerical accuracy of these methods dose not lose. Finally, we proved that the pre-
sented numerical method has a convergence order of O(x? + h).
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2 Exact solution
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0
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£ Exact solution
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0.01 O Uniform method
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u(x,1)

0.015
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0=0.5
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0 0.2

0.4 08 1

Fig.3 The exact and numerical solutions by (16) and (36) (by using Algorithm 1 and 2), for example 2,
with different Au, As, a and h = 1/40, respectively
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Fig.4 The numerical solutions by (16) and (36) (by using Algorithm 1 and 2), for example 3, with differ-
ent Au, As, a and h = 1/40, respectively
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