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Abstract
Cross-domain sentiment analysis (CDSA) aims to overcome domain discrepancy 
to judge the sentiment polarity of the target domain lacking labeled data. Recent 
research has focused on using domain adaptation approaches to address such domain 
migration problems. Among them, adversarial learning performs domain distribu-
tion alignment via domain confusion to transfer domain-invariant knowledge. How-
ever, this method that transforms feature representations to be domain-invariant 
tends to align only the marginal distribution, and may inevitably distort the original 
feature representations containing discriminative knowledge, thus making the con-
ditional distribution inconsistent. To alleviate this problem, we propose adversarial 
domain adaptation with model-oriented knowledge adaptation (Moka-ADA) for the 
CDSA task. We adopt the adversarial discriminative domain adaptation (ADDA) 
framework to learn domain-invariant knowledge for marginal distribution align-
ment, based on which knowledge adaptation is conducted between the source and 
target models for conditional distribution alignment. Specifically, we design a dual 
structure with similarity constraints on intermediate feature representations and final 
classification probabilities, so that the target model in training learns discriminative 
knowledge from the trained source model. Experimental results on a publicly avail-
able sentiment analysis dataset show that our method achieves new state-of-the-art 
performance.
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1 Introduction

Sentiment analysis aims to judge the sentiment polarity of the given textual data. 
Recently, with the development of deep networks and pre-trained language model, 
the performance of sentiment analysis has been greatly improved. Whereas, most 
existing works heavily rely on a large amount of labeled training data to train 
separate sentiment classifiers for each domain, which are both time-consuming 
and labor-intensive to obtain [1]. Thus, it is very necessary to leverage the labeled 
data-rich domain (source domain) to help sentiment analysis on the labeled data-
poor domain (target domain). Therefore, the cross-domain sentiment analysis 
(CDSA) task becomes a worthy research direction.

The major challenge of CDSA is domain discrepancy between the source and 
target domains. Domain adaptation is a widely studied field of research that can 
be effectively used to tackle this problem [2], which can be grouped into three 
major categories. First, pseudo-labeling techniques [3, 4], use a model trained 
on the source labeled data to produce pseudo-labels for unlabeled target data 
and then train a model for the target domain in a supervised manner. Second, 
pivot-based methods [5, 6], aim to select domain-invariant features and use them 
as a basis for cross-domain mapping. Third, adversarial training approaches [7, 
8], aim to learn a domain-independent mapping for input samples by adding an 
adversarial cost during model training, that minimizes the distance between the 
source and target domain distributions.

Adversarial domain adaptation performs adversarial training to confuse the 
distribution between two domains by maximizing domain difference while mini-
mizing classification error. The representative work includes adversarial dis-
criminative domain adaptation (ADDA) [8], which incorporates discriminative 
modeling, untied weight sharing, and GAN-based loss. Specifically, the source 
encoder and classifier are first trained with labeled source data and the source 
encoder weights are copied to the target encoder. Then, the target encoder and 
discriminator are alternately optimized in a two-player adversarial game similar 
to GANs [9]. In terms of its purpose, the discriminator learns to distinguish the 
source and target domains, while the target encoder learns to fool the discrimina-
tor by acquiring domain-invariant knowledge.

Although adversarial training approaches such as ADDA can largely reduce 
the domain discrepancy, they are flawed when matching the feature distribution 
of the source domain to that of the target domain, and their discriminability of 
features may not be guaranteed. As shown in Fig. 1b, they mainly tend to align 
only the marginal distribution between the two domains to bridge the domain 
gap. However, this may not be efficient enough, since there is still a conditional 
distribution inconsistency as shown in Fig. 1c. The reason is that the original fea-
ture representations containing discriminative knowledge are distorted, leading to 
an enlarged error of the ideal joint hypothesis. Based on the domain adaptation 
theory [10, 11], the error of the ideal joint hypothesis is an explicit quantifica-
tion of the adaptability between the two domains. When the adaptability is poor, 
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we can hardly expect to learn a classifier with low target error by minimizing the 
source error as well as the distance between the two domain distributions.

To resolve the above problem, we propose adversarial domain adaptation with 
model-oriented knowledge adaptation (Moka-ADA) for the CDSA task, which 
aims to simultaneously align the marginal and conditional distributions as shown 
in Fig. 1d. In this work, we adopt ADDA as a base adversarial training framework 
to learn domain-invariant knowledge for marginal distribution alignment. Mean-
while, to learn discriminative knowledge to align conditional distribution, we first 
consider measuring and minimizing the distance of intermediate feature represen-
tations by maximum mean difference (MMD) [12] to reduce domain discrepancy. 
Wang et al. demonstrate that minimizing MMD leads to an increase in intra-class 
distance, while the relationship between intra-class and inter-class distances is one 
decreasing and the other increasing [13]. Thus, we further perform knowledge distil-
lation (KD) [14] at the final classification probabilities to facilitate knowledge trans-
fer, which helps to increase the inter-class distance and thus decrease the intra-class 
distance. Therefore, we propose the complete model-oriented knowledge adaptation 
(Moka) module, including intermediate feature representations similarity constraint 

a.a.a. b.b.

d.d.c.c.

SourceSource TargetTarget ClassifierClassifier
Marginal / Conditional distributionMarginal / Conditional distribution
Source Target Classifier
Marginal / Conditional distribution

Fig. 1  An illustration of domain adaptation. a A classifier trained on the source domain does not apply 
well to the target domain before domain adaptation. b Aligning the marginal distribution via adversarial 
learning. c The inconsistency of the conditional distribution in (b) may lead to still high classification 
error of the target domain. d The marginal and conditional distributions are aligned simultaneously by 
our method



13727

1 3

Moka‑ADA: adversarial domain adaptation with model‑oriented…

(ISC) and final classification probabilities similarity constraint (FSC), which aims to 
help the target model in training to learn discriminative knowledge from the trained 
source model, so that the effectiveness of adversarial domain adaptation (ADA) can 
be improved. In particular, the ablation study indicates that this possibly prevents a 
mode collapse phenomenon in adversarial training.

The main contributions are summarized as follows:

• We propose a new method, Moka-ADA, to learn domain-invariant and discrimi-
native knowledge to ensure that the marginal and conditional distributions are 
aligned simultaneously.

• We design a model-oriented knowledge adaptation module containing dual 
structure with similarity constraints, which enables the target model in training 
to learn discriminative knowledge from the trained source model.

• We adopt knowledge distillation to facilitate the transfer of discriminative knowl-
edge, which helps to increase inter-class distance and thus reduce intra-class dis-
tance, and enhance the stability of adversarial domain adaptation.

• We conduct extensive experiments on the Amazon reviews benchmark datasets 
with an average accuracy of 94.25%, improving the state-of-the-art performance 
of the CDSA task by 1.11%.

2  Related work

2.1  Cross‑domain sentiment analysis

The CDSA task investigates the problem of cross-domain sentiment transfer. There 
are many approaches that have been proposed, such as word embedding-based tech-
niques [15, 16], pivot and non-pivot-based methods [17, 18], and domain adapta-
tion-based approaches [19, 20]. Recently, as pre-trained language models have 
evolved, they have brought tremendous performance improvements in numerous 
natural language processing tasks including CDSA. Du et al. pose domain adversar-
ial training in the context of pre-trained language model BERT [21]. Karouzos et al. 
have highlighted the merits of using language modeling as an auxiliary task during 
fine-tuning [22]. Zhou et al. pre-trains a sentiment-aware language model (SentiX) 
via domain-invariant sentiment knowledge from large-scale review datasets [23]. In 
this work, we utilize the pre-trained language model to extract feature representa-
tions containing semantic information and then apply them to domain adaptation 
methods.

2.2  Domain adaptation

Domain adaptation aims to acquire transferable information by reducing domain 
discrepancy, which is widely used in various cross-domain tasks. Traditionally, the 
main direction has been to minimize some measure of distance between the source 
and target feature distributions. Deep Domain Confusion (DDC) [24] introduces an 



13728 M. Zhang et al.

1 3

adaptation layer to minimize maximum mean discrepancy in addition to classification 
loss on the source data. Deep Adaptation Network (DAN) [25] applies multiple kernels 
to multiple layers based on previous work. Recently, adversarial training approaches 
to minimize domain discrepancy have received much attention. Domain Adversarial 
Neural Network (DANN) [7] proposes a domain binary classification with a gradient 
reversal layer to train in the presence of domain confusion. Adversarial Discrimina-
tive Domain Adaptation (ADDA) [8] trains two feature extractors for the source and 
target domains respectively, and produces embeddings fooling the discriminator. How-
ever, during adversarial training, there is a distortion of the original feature representa-
tions containing discriminative knowledge, which will lead to an enlarged error of the 
ideal joint hypothesis in domain adaptation theory. Based on existing studies, we adopt 
ADDA as a base adversarial training framework and attempt to improve it further by 
designing a model-oriented knowledge adaptation module.

2.3  Knowledge distillation

Knowledge distillation (KD) transfers knowledge from a trained teacher model to 
a student model in training [14]. Originally, KD is a model compression technique 
that transfers knowledge from a cumbersome model to a tiny model that is more 
suitable for deployment [27]. But Furlanello et al. found that given the student and 
teacher models of the same size, it is possible to make the student model outperform 
the teacher model [28]. Wang et al. point out that hard label is sensitive to incor-
rectly predicted samples, which may mislead the modeling process of label-induced 
loss [29]. Zhang et al. utilize softer final classification probabilities for the teacher 
model as the learning objective for the student model, while adjusting an appropri-
ate distillation temperature to mitigate the negative transfer phenomenon [30]. In 
our model-oriented knowledge adaptation module, the student and teacher models 
have the same network structure, and the aligned KD objectives include intermedi-
ate feature representations and final classification probabilities, thereby facilitating 
knowledge transfer.

3  Methodology

3.1  Problem definition and notations

The CDSA task aims to generalize a robust classifier trained on labeled source 
data to judge the sentiment polarity of unlabeled target data. Let �S and �T repre-
sent the source and target sample distributions, respectively, yd

s
 and yd

t
 is the cor-

responding domain label. In the source domain, XS =
{
(xi

s
, yi

s
)
}ns

i=1
 are ns labeled 

source domain samples, where xs means a sentence and ys is the corresponding 
polarity label, (xs, ys) ∼ �S . In the target domain, there is a set of unlabeled samples 

XT =
{
(xi

t
)
}nt

i=1
 , where nt is the number of unlabeled target domain samples, xt ∼ �T

.
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As shown in Fig. 2, the underlying network of our model consists of three com-
ponents, including two feature extractors Es and Et that extract feature representa-
tions h , a classifier Cs that maps the feature representations h to the classification 
logits p , and a domain discriminator Cd that maps the feature representations h to 
the domain probabilities q.

3.2  Model‑oriented knowledge adaptation

To make the target encoder in training learn discriminative knowledge from the 
trained source encoder, we design a model-oriented knowledge adaptation module 
, including intermediate feature representations similarity constraint (ISC) and final 
classification probabilities similarity constraint (FSC).

3.2.1  Intermediate similarity constraints (ISC) based on the reproducing kernel 
hilbert space

The source and target encoders map the source data to a common feature space to 
obtain the feature representations, which are then transformed to the reproducing 
kernel Hilbert space (RKHS) by using kernel functions, for increasing their match-
ing probability in the high-dimensional space. Still, there is no known pairwise cor-
respondence between them, so pairwise testing is not possible. Thus, we can formu-
late the problem as a two-sample test, and consider measuring the distance by the 
maximum mean difference (MMD). By minimizing MMD to reduce the distance 
between intermediate feature representations, the knowledge of the source model 
is transferred to the target model, resulting in better feature representations and 
improved generalization ability of the model.

Given the source data xs ∼ �S , we can obtain the feature representations 

hs = Es(xs) and ĥt = Et(xs) . Let HS = {(hi
s
)}n

i=1
∼ ℍS , HT = {(ĥ

i

t
)}n

i=1
∼ ℍT , where 

ℍS and ℍT are the respective feature distribution and n is the set cardinality. Thus, 
the distance between ℍS and ℍT can be defined below:

Fig. 2  The overall framework of our proposed method, where E
s
 and E

t
 are the feature extractors, C

s
 is 

the classifier, and C
d
 is the domain discriminator; h denotes the feature representations, p denotes the 

classification logits, and q denotes the domain probabilities
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where H is a RKHS, function class F = {f ∶ ‖f‖ ≤ 1} , and infinite dimensional 
feature map �(⋅) ∶ X → H . In addition, the feature map �(⋅) corresponds to a posi-
tive semi-definite kernel k so that k(u, v) = ⟨�(u),�(v)⟩H , thus Eq. (1) can be rewrit-
ten in terms of k. Therefore, the objective function of similarity constraints in the 
“intermediate" can be written as:

where h′
s
 is an independent copy of hs with the same distribution, and ĥ

′

t
 is an inde-

pendent copy of ĥt . As for the kernel function k, we choose to use a linear combina-
tion of multiple Gaussian kernels over a range of standard deviations, such as 
k(u, v) =

∑m

i=1
exp

�
−

1

2�
i

‖u − v‖2
2

�
 , where m is the number of kernel functions and 

�i denotes the standard deviation of the i-th Gaussian kernel.

3.2.2  Final similarity constraints (FSC) based on the knowledge distillation

The trained classifier will receive the feature representations and map them to the clas-
sification logits for judgment. The traditional training directly takes one-hot encoded 
labels as the target, which is prone to result in overfitting during repeated training 
epochs. To alleviate this problem, we utilize knowledge distillation (KD) to control the 
degree of knowledge transfer by producing a softer probability distribution. Unlike the 

(1)

MMD[F,hs, ĥt]

= sup

f ∈ F

‖f‖H ≤ 1

�
𝔼hs∼ℍS

f (hs) − 𝔼ĥt∼ℍT
f (ĥt)

�

= sup

f ∈ F

‖f‖H ≤ 1

�
𝔼hs∼ℍS

⟨�(hs), f ⟩H − 𝔼ĥt∼ℍT
⟨�(ĥt), f ⟩H

�

= sup

f ∈ F

‖f‖H ≤ 1

�
𝔼hs∼ℍS

�(hs) − 𝔼ĥt∼ℍT
�(ĥt), f

�

H

=
���𝔼hs∼ℍS

�(hs) − 𝔼ĥt∼ℍT
�(ĥt)

���H,

(2)

min
Et

LISC(xs)

= MMD2[F, hs, ĥt]

=
‖‖‖𝔼hs∼ℍS

�(hs) − 𝔼ĥt∼ℍT
�(ĥt)

‖‖‖
2

H

= 𝔼hs,h
�
s
∼ℍS ,ℍS

k(hs, h
�
s
)

− 2𝔼hs,ĥt∼ℍS ,ℍT
k(hs, ĥt)

+ 𝔼
ĥt ,ĥ

�

t
∼ℍT ,ℍT

k(ĥt, ĥ
�

t
),
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hard label, which focuses only on the label value of maximum probability, the soft label 
describes the probability distribution by multiple probability values, which can better 
handle noise and uncertainty. Moreover, it contains information about the correlation 
between different classes, which can help to increase the inter-class distance and thus 
reduce the intra-class distance.

Given the acquired feature representations hs and ĥt , the trained classifier Cs will 

map them to the classification logits ps = Cs(hs) and p̂t = Cs(ĥt) , respectively. As with 
KD, we obtain the softer classification probabilities P = �(ps∕T) and Q = �(p̂t∕T) , 
where �(⋅) is the softmax function and T is temperature value that controls the degree 
of knowledge transfer. Therefore, the objective function of similarity constraints in the 
“final" can be conducted by using the Kullback–Leibler divergence between P and Q:

where P ≜ [P1,⋯ ,PK] ∈ ℝ
1×K , 

∑K

k=1
Pk = 1 and Q ≜ [Q1,⋯ ,QK] ∈ ℝ

1×K , 
∑K

k=1
Qk = 1 , Pk and Qk is the probability of the k-th class, and K is the number of 

classes.
In summary, the inputs to the source and target encoders are the same, and the 

target encoder imitates the source encoder in terms of “intermediate" and “final", 
thereby transferring discriminative knowledge for conditional distribution alignment.

3.3  Adversarial domain adaptation with model‑oriented knowledge adaptation

In order to compensate for the deficiencies of adversarial domain adaptation in dis-
criminative knowledge via model-oriented knowledge adaptation, we propose the 
Moka-ADA, which guarantees that both domain-invariant knowledge and discrimi-
native knowledge are fully learned. Figure 2 illustrates the overall framework of our 
proposed model, which consists of three steps. Step 1: Supervised training the source 
encoder Es and classifier Cs on the source data. Step 2: Adversarial training the target 
encoder Et and discriminator Cd to align the source and target domain distributions. 
Step 3: Inferring with the trained target encoder Et and classifier Cs on the target data.

In Step 1, we aim to train a well-performing source model using labeled data 
from the source domain, which serves as a “teacher” for subsequent training of the 
target model. The source error can be minimized through supervised training of the 
source encoder Es and classifier Cs on (xs, ys) by using the Cross-Entropy loss:

(3)

min
Et

LFSC(xs)

= T2
⋅ KL(P‖Q)

= T2
⋅ �xs∼�S

K�

k=1

Pk log
Pk

Qk

,

(4)

min
Es,Cs

Lcls(xs, ys)

= �(xs,ys)∼�S
−

K∑

k=1

1[k=ys] log �(ps),
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where ps = Cs(hs) , hs = Es(xs) , �(⋅) is the softmax function, and K is the number of 
classes.

Then, the source encoder parameters are frozen, which fixes the source domain 
feature distribution. Thus, we obtained the reference distribution for adversarial 
training, which is analogous to the real image distribution in the GANs setting [9]. 
Prior to adversarial training, we first initialize the target encoder weights with the 
source encoder weights, as this practice can improve the convergence properties.

In Step 2, the discriminator Cd aims to infer the domain probabilities qs or qt of 
an sample, i.e., coming from the source or target domain. Thus, the discriminator Cd 
is optimized on (xs, yds = 0) and (xt, ydt = 1):

where qs = Cd(hs) , hs = Es(xs) , and

where qt = Cd(ht) , ht = Et(xt).
According to Eqs. (5) and  (6), we can obtain the final objective function of the 

discriminator Cd:

To adversarially train the target encoder Et , it is encouraged to fool the discrimina-
tor Cd by reversing the domain label. Thus, the target encoder Et is optimized on 
(xt, y

d
s
= 0):

where qt = Cd(ht) , ht = Et(xt).
Based on Eq. (2) and Eq. (3) in Sect. 3.2 and Eq. (8), the final objective function 

for training the target encoder Et can be defined as:

(5)

min
Cd

L
dis
s
(xs, y

d
s
)

= �xs∼�S
− [yd

s
log qs + (1 − yd

s
) log(1 − qs)]

= �xs∼�S
− log(1 − qs),

(6)

min
Cd

L
dis
t
(xt, y

d
t
)

= �xt∼�T
− [yd

t
log qt + (1 − yd

t
) log(1 − qt)]

= �xt∼�T
− log qt,

(7)

min
Cd

Ldis(xs, xt, y
d
s
, yd

t
)

= min
Cd

[
L
dis
s
(xs, y

d
s
) + L

dis
t
(xt, y

d
t
)

2

]

=
�xs∼�S

− log(1 − qs) + �xt∼�T
− log qt

2
.

(8)

min
Et

Lgen(xt, y
d
s
)

= �xt∼�T
− [yd

s
log qt + (1 − yd

s
) log(1 − qt)]

= �xt∼�T
− log(1 − qt),
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Through Eq.  (7) and Eq.  (9), the discriminator Cd and target encoder Et are alter-
nately optimized in a two-player adversarial game similar to GANs [9], as in the 
ADDA framework [8].

In Step 3, we can finally use the trained target encoder Et and classifier Cs to 
make inferences on the target data used for testing, whose sentiment polarity label 
can be predicted as below:

where pt = Cs(ht) , ht = Et(xt).
The overall iterative training procedure of Moka-ADA is summarized in 

Algorithm 1.

3.4  Theoretical analysis

We provide a theoretical understanding of why our method can enhance adversarial 
domain adaptation based on the domain adaptation theory from Ben-David et  al. 
[10, 11], a key outcome of which is the following theorem:

(9)
min
Et

Ltgt(xs, xt, y
d
s
)

= min
Et

[Lgen(xt, y
d
s
) + LISC(xs) + LFSC(xs)].

(10)ŷt = argmax pt,
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Theorem 1. Let H be the hypothesis space, �S and �T be the generalization error 
on the source domain �S and the target domain �T , respectively. Then for any 
h ∈ H , there is

where dHΔH is the HΔH-divergence  [31] to measure the domain discrepancy 
between �S and  �T , defined as:

where h and  h′ are two sets of hypotheses in H , and � is the error of the ideal joint 
hypothesis h∗ , where h∗ is defined as h∗ = argmin

h∈H

�S(h) + �T (h) , such that

From Eq. (11), the generalization error on the target domain �T (h) is upper bounded 
by a combination of the generalization error on the source domain �S(h) , the domain 
discrepancy dHΔH , and the error of the ideal joint hypothesis � . First, it is easy to 
minimize �S(h) by supervised training with labeled source data. Then, dHΔH can be 
reduced by aligning the marginal distribution via adversarial domain adaptation. 
Moreover, the dual structure with similarity constraints can yield lower � and fur-
ther reduce dHΔH by acquiring discriminative knowledge for conditional distribution 
alignment.

4  Experiments

4.1  Datasets

We evaluate our method on the Amazon reviews benchmark datasets collected by 
Blitzer et al. [32], which is publicly available and widely used for the CDSA task. 
It includes reviews from four product domains: Books (B), DVDs (D), Electron-
ics (E), and Kitchen appliances (K). Each domain contains 2000 labeled samples, 
of which 1000 are negative and 1000 are positive. Following the previous works 
[22, 33], we construct 12 cross-domain tasks of source-target domain pairs. For 
each domain pair, 1600 labeled source samples and the same number of unla-
beled target samples are used for training, and the remaining 400 labeled source 
samples for validation. Then, we perform a test with all the labeled target sam-
ples. Table 1 lists the relevant statistics.

(11)�T (h) ≤ �S(h) + dHΔH

(
�S,�T

)
+ �,

(12)
dHΔH ≜ sup

h,h�∈H

|�
xs∼�S

[
h(xs) ≠ h�(xs)

]

−�
xt∼�T

[
h(xt) ≠ h�(xt)

]
|,

(13)� = �S(h
∗) + �T (h

∗).
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4.2  Implementation details

We adopt SentiX as the context feature extractor, which is a sentiment-aware pre-
trained language model proposed by Zhou et al. [23]. For all experiments, we limit 
the maximum sequence length is 256, while the batch size is set to 32. The opti-
mizer is Adam with learning rate 10−5 , �1 = 0.9, �2 = 0.999. During the supervised 
training, we train for 5 epochs and use the validation dataset to choose an appropri-
ate epoch to save the model. For adversarial training, we train for 1 to 5 epochs to 
report the average results and empirically set some hyperparameters with a gradient 
norm of 1.0, a clip value of 0.01, and a knowledge distillation temperature of 20 for 
more stable adversarial training.

4.3  Compared methods

We consider the following methods for comparison, including PERL [34], DAAT  
[21], p+CFd [35], UDALM [22], DA-SDS [33], and AdSPT [36]. We present the 
best results reported in the original paper of these approaches. Besides, we adopt the 
SentiX model as a baseline and design several variants of our model:

• Baseline: The sentiment-aware pre-trained language model SentiX.
• ISC-ADA: A variant of the proposed model, which only imposes similarity con-

straints on intermediate feature representations.
• FSC-ADA: A variant of the proposed model, which only imposes similarity con-

straints on final classification probabilities.
• Moka-ADA: The full model introduced in Sect. 3.3.

4.4  Experimental results

In Table 2, we report the accuracy results of the compared methods on 12 cross-
domain tasks. Compared with most other works, the baseline achieves better perfor-
mance, which is mainly attributed to its learning of sentiment knowledge through 
pre-training with large-scale review datasets. Notably, our Moka-ADA can improve 
the average accuracy by 1.57% compared to the baseline and has an improvement 
of 6.75%, 4.13%, 3.62%, 2.51%, 2.77% and 1.11% compared to other methods, 
respectively.

Table 1  Statistics of the 
Amazon reviews benchmark 
datasets

Domain Class Positive Negative Train Validation Test

Books 2 1000 1000 1600 400 2000
DVDs 2 1000 1000 1600 400 2000
Electronics 2 1000 1000 1600 400 2000
Kitchen 2 1000 1000 1600 400 2000
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As shown in Fig. 3, it can be observed that our methods outperform the base-
line in almost all domain pairs, which proves that either ISC-ADA or FSC-ADA 
can effectively conduct similarity constraints to enhance adversarial domain 
adaptation. Compared to ISC-ADA and FSC-ADA, the full Moka-ADA per-
formed better on 7 of the 12 domain pair tasks, and has mostly relatively smaller 
standard deviations, indicating greater robustness.

4.5  Visualization of features

To more intuitively assess the effect of model-oriented knowledge adapta-
tion on the feature distribution, we further visualize the feature representations 
of the source and target data for the B → D task. The visualization of the fea-
ture representations is performed using the t-SNE algorithm to transform the 
768-dimensional feature space into a two-dimensional space. In Fig. 4, the visu-
alization results of Baseline, ISC-ADA, FSC-ADA, and Moka-ADA are presented 
separately.

In Fig. 4a, we observe that samples of different polarities in the source domain 
are well separated, while for the target domain, some samples of different polari-
ties are mixed together with unclear decision boundaries. In Fig. 4b, the situation 
has improved and samples of the same polarity across domains tend to be consist-
ent, indicating that ISC-ADA reduces the distance between feature representations 
across domains and thereby reduces discrepancy in domain distributions. In Fig. 4c, 
although samples of the same polarity across domains are less aligned, FSC-ADA 
increases the inter-class distance and reduces the intra-class distance, making the 
decision boundaries more clear. In Fig. 4d, the Moka-ADA not only makes samples 
of the same polarity across domains become compact and aligned, but also has bet-
ter decision boundaries.

4.6  Ablation studies

To analyze the effect of our method on adversarial training, we conduct ablation 
experiments and the results are shown in Tables 3 and 4, where the Only-ADA rep-
resents adversarial training without model-oriented knowledge adaptation. By com-
parison, it is easy to observe that our methods are effective and robust, while the 
Only-ADA experiences a dramatic decrease with increasing training epochs.

For further study, we perform feature visualization of the Only-ADA for the K 
→ B task as shown in Fig. 5. In the first subplot, all samples belong to four clus-
ters, which indicates that adversarial training brings domain awareness to the model. 
Nonetheless, in the remaining subplots, it appears that samples of different polarities 
in the target domain gradually mix into the same cluster, which is a mode collapse 
phenomenon in adversarial training. In contrast, our models have better stability 
and flexibility of adversarial training, which effectively prevents the mode collapse 
phenomenon.
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5  Conclusion and future work

In this study, we propose a novel method, Moka-ADA, for cross-domain senti-
ment analysis. It aims to learn domain-invariant and discriminative knowledge 
to ensure that the marginal and conditional distributions are aligned simultane-
ously. The model-oriented knowledge adaptation module we designed can effec-
tively facilitate knowledge transfer. Extensive experiments show that our Moka-
ADA outperforms the state-of-the-art result on the Amazon reviews benchmark 
datasets. Theoretical analysis and ablation studies verify the reasonableness and 
effectiveness of our method.

In future, we would like to adapt our method to more realistic and challenging 
scenarios, such as multi-source domain [37] and sparsely labeled source domain 
[38], and further explore applications for other cross-domain tasks in the direc-
tion of natural language processing and computer vision.

Fig. 3  Accuracy results of our methods compared to the baseline
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Fig. 4  Feature visualization for the B → D task using the t-SNE algorithm
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Fig. 5  Feature visualization of the Only-ADA at different adversarial training epochs for the K → B task

Table 3  Experimental results of 
the Only-ADA

Epochs 1 2 3 4 5

B → D 92.30 92.30 91.30 50.35 50.00
B → E 94.45 91.95 94.15 50.00 50.00
B → K 96.00 96.15 94.85 50.00 50.00
D → B 70.35 50.05 50.00 50.00 50.00
D → E 93.85 92.40 50.05 50.00 50.05
D → K 96.00 95.90 95.70 95.40 95.70
E → B 92.70 50.05 50.00 50.00 50.00
E → D 92.40 92.25 49.70 50.20 50.00
E → K 96.00 94.75 90.05 95.30 95.30
K → B 92.65 69.80 49.50 49.95 50.00
K → D 91.35 91.90 49.95 52.80 49.95
K → E 93.10 69.75 50.00 50.00 50.00
Average 91.76 82.27 67.94 57.83 57.58

Table 4  Experimental results of 
the Moka-ADA

Epochs 1 2 3 4 5

B → D 93.05 93.00 93.15 93.05 93.30
B → E 94.35 94.60 94.60 94.90 94.75
B → K 96.75 96.40 96.45 96.50 96.40
D → B 93.15 93.20 93.35 92.55 92.95
D → E 94.45 94.80 94.90 94.60 95.00
D → K 96.35 96.40 96.45 96.30 96.25
E → B 92.90 92.80 92.75 92.85 92.75
E → D 92.65 92.95 93.00 93.35 93.15
E → K 96.30 96.35 96.05 95.95 95.95
K → B 93.45 93.25 93.10 92.90 93.10
K → D 92.55 92.45 92.50 92.30 92.25
K → E 95.00 95.15 95.05 95.05 95.15
Average 94.25 94.28 94.28 94.19 94.25
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Appendix A supplemental experimental results

See Tables 5 and 6.
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Table 5  Experimental results of 
the ISC-ADA

Epochs 1 2 3 4 5

B → D 92.85 93.10 92.90 92.75 92.80
B → E 94.35 94.60 94.35 94.70 94.70
B → K 96.65 96.45 96.20 96.15 96.25
D → B 93.15 93.45 93.35 93.30 93.30
D → E 94.70 94.95 94.85 95.05 95.00
D → K 96.35 96.25 96.20 96.40 96.35
E → B 92.80 92.80 92.60 92.40 92.40
E → D 92.50 92.20 93.10 92.75 93.10
E → K 96.30 96.20 96.15 96.15 95.85
K → B 92.75 92.95 93.00 93.05 92.85
K → D 92.10 92.35 92.50 92.50 92.40
K → E 95.25 95.00 94.95 94.95 94.90
Average 94.15 94.19 94.18 94.18 94.16

Table 6  Experimental results of 
the FSC-ADA

Epochs 1 2 3 4 5

B → D 93.30 92.90 92.70 92.45 92.80
B → E 94.40 95.00 94.70 95.05 94.80
B → K 96.50 96.60 96.40 96.50 96.45
D → B 93.20 93.30 93.00 92.90 92.55
D → E 94.55 94.80 94.85 94.80 94.70
D → K 96.35 96.55 96.45 96.50 96.50
E → B 92.50 92.85 92.60 92.95 92.70
E → D 92.75 92.55 92.90 92.70 92.95
E → K 95.80 96.15 96.05 96.15 96.25
K → B 92.95 93.20 92.80 93.05 92.60
K → D 92.15 92.20 92.40 92.45 92.00
K → E 94.85 94.75 94.90 94.90 95.05
Average 94.11 94.24 94.15 94.20 94.11
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