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Abstract
Gait recognition is a crucial video-based biometric approach that allows for the iden-
tification of pedestrians from the motion of their walk over a distance without direct 
contact. Despite significant advances in this field, most existing approaches for gait 
recognition rely on silhouette sequence extraction, which can result in redundant 
information when the behavior of pedestrians changes, such as with the addition of 
coats or bags. To alleviate this, we propose an end-to-end gait recognition method 
based on 3D human body reconstruction to effectively remove this redundant infor-
mation and generate compact, discriminative gait representations. Furthermore, 
to make full use of the spatial characteristics of pedestrians, we propose a multi-
granular feature fusion module to model gait representations at multiple granulari-
ties. Our method is evaluated on the Outdoor-Gait and CASIA-B datasets and shows 
improved performance and robustness.
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1  Introduction

Vision-based biometric technology has made significant advancements in the 
computer vision community. Popular techniques include fingerprint recognition 
[1], vein biometrics [2], face identification [3], iris biometrics [4], and gait recog-
nition [5]. Among these, gait recognition is a relatively new method that aims to 
identify individuals from a distance without any physical contact. This contact-
less and long-distance recognition approach has many advantages, such as the 
lack of need for cooperation, difficulty in camouflage, and strong adaptability to 
different environments. As such, it has great potential for use in medical motion 
analysis [6], security monitoring, criminal investigations, and other monitoring 
systems in the future. However, there are still many challenges to be addressed 
before gait recognition can be fully integrated into real-world applications.

Current gait recognition methods primarily focus on extracting features from 
the gait silhouette sequence, which can lead to a lack of local information in 
pedestrian contour segmentation, such as missing legs or feet in certain frames 
of a video. Additionally, clothing and accessories worn by pedestrians, such as 
coats and backpacks, can also negatively impact recognition performance. These 
additional factors not only obscure the pedestrian’s walking posture but also add 
irrelevant information, which can greatly hinder subsequent learning, particularly 
in cross-condition recognition [7].

In order to deal with the issues of occlusion, clothing, and accessories, some 
researchers have proposed using human pose estimation networks to generate skel-
eton sequences for extracting gait features. While methods based on human pose 
estimation can be robust, they often fail to capture important visual information such 
as the details of the human body, resulting in poor recognition performance.

To address the issues previously mentioned, we propose an end-to-end gait rec-
ognition method based on 3D human body reconstruction. Our method generates a 
new gait contour sequence using a 3D human body reconstruction method. Usually, 
3D view gait descriptor-based techniques [8] require a complex and costly setup of 
multiple calibrated cameras, limiting their use to controlled environments. However, 
our proposed method overcomes this limitation by allowing for 3D reconstruction 
directly from original video frames, eliminating the need for costly camera setups, 
and expanding applicability to a wider range of environments. In comparison with 
silhouette sequences, the 3D reconstruction method does not include any redundant 
information other than the body, which means that previous problems such as cloth-
ing and accessories will not affect the analysis. Additionally, the 3D reconstruction 
allows for the extraction of more informative features that can effectively reflect the 
pedestrian’s gait. A visual comparison of different gait representations is shown 
in Fig.  1, where it can be observed that the gait information extracted from 3D 
human body reconstruction is clearer and more complete than that from silhouette 
sequences. Furthermore, to fully utilize the global and local spatial information of 
pedestrians, we propose a multi-granular feature fusion module which models tem-
poral–spatial dependencies at multiple levels to achieve better representation ability. 
Our contributions can be summarized as follows:
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•	 our proposed method leverages the power of 3D human body reconstruc-
tion to overcome the challenges posed by changes in pedestrian appearance 
and attire, such as coat wearing and bag carrying. Our approach generates a 
new gait contour sequence that contains information about the pedestrian’s 
body, eliminating the need to consider irrelevant or redundant information. 
Unlike traditional methods that require a setup of multiple calibrated cameras 
or preprocessing of video streams, our model can be directly applied to the 

Fig. 1   Comparison of different gait representations. The first row is the original video frames, the second 
row is the silhouette images, and the third row is the pose sequence



12109

1 3

Gait recognition based on 3D human body reconstruction and…

original video frames. This greatly simplifies the gait recognition process and 
enhances its robustness and efficiency.

•	 To address the issue of underutilizing spatial features in gait recognition meth-
ods, we introduce a multi-granular feature fusion module that effectively captures 
the temporal–spatial information representation of pedestrians from both global 
and local perspectives. This allows for a more comprehensive understanding of 
the gait characteristics and helps in enhancing recognition performance.

2 � Related works

2.1 � Model‑based approaches

2.1.1 � Traditional gait recognition

The traditional gait recognition techniques mainly focus on utilizing information 
about the human body structure and the motion patterns of various body parts to 
identify gait characteristics. This information is then used to generate gait features 
for recognition purposes. For instance, Lee and Grimson [9] divided the pedestrian 
gait silhouette into 7 regions, each of which is fitted by an elliptic curve and then 
calculated the elliptic parameters as gait feature representation. Cunado et al. [10] 
considered that the leg motions follow the simple harmonic motion and then mod-
eled this rule for gait recognition. In order to analyze the gait motion, Yoo et al. [11] 
utilized 2D stick shaped to represent the human body model and obtained the angle 
signals of various parts of the body through linear regression analysis. Yam et al. 
[12] used the pendulum model to guide the process of motion extraction. Urtasun 
et al. [13] extended the method of Cunado et al. [10] to 3D space and proposed a 
3D human motion model based on principal component analysis (PCA) in order to 
overcome the influence of occlusion and motion direction changes. Dockstader et al. 
[14] proposed a hierarchical structure model which used a group of dots and lines to 
represent the human body and a periodic swing model to describe the gait pattern. 
Most of these traditional methods rely on specific environments and devices, such as 
fully controllable multi-camera collaborative environments, making such methods 
difficult to apply in practice. In contrast, our approach relies only on common cam-
eras, greatly simplifying the constraint mention of recognition scenes.

2.1.2 � Method based on RGB video frame

The methods for gait recognition based on RGB images can be separated into two 
categories: human pose estimation and 3D reconstruction. These techniques have 
garnered much attention in recent years and offer valuable insight into the field of 
gait recognition. By using human pose estimation instead of silhouette extraction, 
the gait recognition method based on human pose sequences represents a depar-
ture from traditional methods. Liao et al. [15] proposed a gait recognition method 
PTSN based on human pose sequences for the first time. It used the open-source 
pose estimation algorithm to extract human posture information from the original 
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video sequence. After obtaining the standardized gait pose sequence, it used a pose-
based temporal–spatial network to learn gait feature representation. Inspired by the 
success of GCNs in skeleton-based action recognition, Teepe et al. [16] combined 
skeleton poses with graph convolution network (GCN) [17] to obtain a modern 
model-based gait recognition method. The gait recognition methods based on pose 
estimation ignore the information of human body shape, which reduces the accu-
racy of gait recognition. To make up for the lack of body shape in human pose-
based gait recognition methods, some researchers have started to try to replace 
human pose sequences with 3D human reconstruction. Li et al. [18] extracted pose 
and shape features by fitting the SMPL model and subsequently feed the pose and 
shape features to a recognition network. Several of the above methods do not take 
into account multiple perspectives, so Khan et  al. [19] proposed a view-invariant 
gait representation for cross-view gait recognition using the temporal–spatial motion 
characteristics of walking conditions.

2.2 � Appearance‑based approaches

2.2.1 � Gait recognition based on template

The process of constructing gait templates involves subtraction of the background 
and creation of a human contour through a weighted average of each frame. These 
templates come in various forms, including Gait Energy Image (GEI) [20], Gait 
Entropy Image (GEnI) [21], Gait Flow Image (GFI) [22], and Chrono-Gait Image 
(CGI) [23]. Currently, GEI is considered the simplest and most efficient among 
these gait template types. Gait recognition methods based on the template can fall 
into two categories. The first is to extract gait features for discrimination using tra-
ditional metric learning methods (e.g., linear discriminant analysis [20], tensor rep-
resentation discriminant analysis [24], random subspace [25], combined intensity 
and spatial metric learning [26]), or deep neural network [27–30]. The second is to 
generate gait representations under different conditions into the same covariate con-
ditions using subspace analysis methods [32–36] or generative adversarial networks 
(GANs) [38, 39]. The template-based gait recognition method takes a single image 
after weighted averaging as input and does not make full use of the temporal infor-
mation of the video, while our method takes video frames as input and learns short-
range temporal–spatial features through the motion capture module.

2.2.2 � Method based on gait silhouette sequence

The methods based on gait silhouette sequence use the silhouette sequence as the 
input directly. It is divided into three categories based on the way of extracting tem-
poral information: 3DCNN based [40, 41], LSTM based [42], and set based [43, 
44]. The 3DCNN-based methods directly extract the temporal–spatial features of 
gait sequences through 3D convolution network, but these methods usually have 
more parameters and are difficult to train. Zhang et al. [42] proposed a new auto-
encoder framework to extract gait-related features from the original RGB video and 
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used three-layer LSTM to model the temporal changes of gait sequence. However, 
the LSTM-based method is considered to retain the unnecessary constraints of peri-
odic gait. To avoid this problem, GaitSet [43] assumed that the appearance of the 
silhouette contains its position information and proposed to take the gait as a set to 
extract temporal–spatial features in the way of temporal pooling, which is simple 
and effective. Further, based on GaitSet, GaitPart [44] designed a temporal–spatial 
model for each part of the human body, making full use of the part-level features of 
pedestrians. The silhouette-based gait recognition method uses silhouette sequences 
as input. The silhouette sequences not only lose local body information in the pro-
cess of generation but also contain redundant information such as coats and back-
packs, which has a negative impact on gait recognition, while the 3D reconstructed 
sequences can effectively remove these redundant information.

3 � Proposed method

3.1 � Overall framework

In this study, we propose an approach for gait recognition where the original video 
frames of a pedestrian are taken as input and the length of the gait sequence is 30. 
New gait contour sequences are generated using the Human Mesh Recovery (HMR, 
3D human body reconstruction) [45]. The frame-level part feature extractor (FPFE) 
[44] is then used to extract pedestrian gait features on the gait contour sequences. 
The multi-granular feature fusion (MGFF) module is employed to model the tem-
poral–spatial representations of pedestrians from multiple granularities based on the 
generated spatial convolution features. Subsequently, the full connection layer (FC) 
is utilized to produce column vectors for identifying instances. Finally, the entire 
network is trained using the triplet loss function. The overall framework of our 
approach is depicted in Fig. 2.

Fig. 2   The framework of our method. s, R, t, � and � , respectively, represent the camera scaling, the rota-
tion, translation parameters, shape parameters, and attribute parameters. SMPL is a parametric 3D model 
of human body. Block1, Block2, and Block3 are convolutional blocks of FPFE. HP indicates horizontal 
pooling. MCM is motion capture module. a, b, and c represent the weight of each granularity
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3.2 � 3D human body reconstruction

Traditional gait recognition methods can be challenged by variations in the input 
video, such as changes in clothing or carrying objects, which are commonly 
encountered in real-world scenarios. To tackle this issue, we adopt a 3D human 
body reconstruction approach to generate a compact and discriminative gait rep-
resentation, instead of relying on the silhouette feature that has been commonly 
used but may contain redundant information. 3D human body reconstruction is 
capable of generating 3D human mesh sequences that incorporate parametric 
pose and shape features. These sequences are advantageous for gait recognition in 
cross-state scenes since they do not include redundant information other than the 
human body, such as clothing and accessories, which is the case with silhouette 
gait sequences. Compared with simple human pose sequences, 3D human recon-
struction produces more refined results that contain both body shape and pose 
information, resulting in better discrimination for gait recognition. Therefore, 3D 
human body reconstruction is an effective approach for gait recognition tasks. 
Our method uses the Human Mesh Recovery module to reconstruct the mesh 
of the human body from a single RGB image. The HMR is based on the prin-
ciples of generative adversarial networks and consists of an encoder and a dis-
criminator. The i-th image is fed through the encoder, whose backbone network 
is a ResNet-50, to extract image features. Then, a parametric regression (itera-
tive 3D regression network) is performed on the features to learn an 85-dimen-
sional vector Θi = {s,R, t, �, �} that includes the camera parameters, such as scal-
ing, rotation, and translation, as well as the shape and attitude parameters of the 
individual. The shape parameter � describes the height, weight, and body propor-
tions, while the attitude parameter � describes the joint locations. The learned 
parameters 𝜃i and 𝛽i are then input into the SMPL [46] model, which results in the 
3-D joint coordinate of the model. The 3-D joint is then projected onto the image 
plane using the camera parameters to obtain a predicted 2D image. The SMPL 
model refers to the Skinned Multi-Person Linear Model, which is a parameteriza-
tion of the human body.

With the help of the 3D human body reconstruction module (i.e., HMR), we 
have generated a new 5-dimensional gait representation vector with the size of 
N × S × C × H ×W  , where N represents the batch size, S stands for the number 
of frames, C is the number of channels, and H ×W  indicates the resolution of the 
generated gait feature maps.

3.3 � Frame‑level part feature extractor

With the aim of enhancing the learning of fine-grained features of frames, we 
employ the frame-level part feature extractor to extract the local spatial features 
of each frame. FPFE consists of three blocks, and each block is composed of two 
focal convolution layers (FConv) that divide the previous feature maps horizon-
tally into n predefined parts, followed by regular convolution operations on each 
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part. After three blocks, the output feature maps are concatenated. The detailed 
network structure is shown in Table 1.

3.4 � Multi‑granular feature fusion module

To make the most of the spatial features of pedestrians, we propose the multi-granu-
lar feature fusion module to model the multi-granularity features of pedestrians. The 
MGFF module consists of three branches, each of which ( MGFF(i,⋅) ) is responsible for 
modeling the short-range temporal–spatial representation of a specific granularity using 
the motion capture module (MCM). The first branch, MGFF(1,⋅) , extracts global tempo-
ral–spatial features, while the second branch, MGFF(2,⋅) , and third branch, MGFF(3,⋅) , 
extract two-part and four-part features, respectively, to focus on finer-grained details. 
Unlike the most of existing gait recognition methods that only consider either global or 
local features, our approach models multiple levels of features for improved discrimina-
tive performance. Figure 3 shows the specific structure of MGFF(2,⋅) as an example.

Let p(i,j) represent the j-th level of the i-th branch in the multi-granular feature fusion 
module. The part-level generative features are obtained by inputting the vector p(i,j) into 
MCM(i,j) , as expressed by:

In Eq. 1, the motion capture module is designed to learn a more fine-grained gait 
representation. The MCM is composed of the Micro-motion Template Builder (MTB) 
module and the temporal pooling (TP) module. The MTB module maps the part-level 
feature vector p(i,j) to q(i,j) , i.e., q(i,j) = MTB(p(i,j)) . The TP module then extracts the 
most discriminative motion feature vector v(i,j) , i.e., v(i,j) = TP(q(i,j)).

3.4.1 � MTB module

The MTB module includes two similar parts, each with a different convolution 
kernel size. The first part, ConvNet1d, is a small network composed of two 1-D 

(1)v(i,j) = MCM(i,j)(p(i,j)).

Table 1   The structure of frame-
level part feature extractor. In-C, 
Out-C, Kernel, Pad, and n are 
input channels, output channels, 
the size of kernels, padding, 
and the number of predefined 
blocks in FConv, respectively. 
MaxPool and stride represent 
the maximum pool operation 
and the distance of a kernel 
movement

Frame-level part feature extractor

Block Layer In-C Out-C Kernel Pad n

Block1 FConv1 1 32 5 2 1
FConv2 32 32 3 1 1

MaxPool, kernel size=2, stride=2
 Block2 FConv3 32 64 3 1 4

FConv4 64 64 3 1 4
MaxPool, kernel size=2, stride=2
 Block3 FConv5 64 128 3 1 8

FConv6 128 128 3 1 8
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convolution layers. As shown in Fig. 3, ConvNet1d is utilized to produce a tempo-
rary vector p1(i,j) , which is depicted as:

The second part, Tempfunc, utilizes the concept of a Gait Energy Image to average 
multiple frames in the sequence. By applying two statistical functions, Tempfunc 
generates another temporary vector p2(i,j) . This can be expressed as:

Further, to obtain a more discriminative micro-motion representation, the channel 
attention mechanism is introduced in the MTB module. This mechanism reweights 
the feature vector at each time, resulting in the final micro-motion representation 
q(i,j) . Mathematically, it can be formulated as:

3.4.2 � TP module

After MTB, we get several gait motion representations, from which part-level fea-
tures can be extracted by TP module. TP module uses max(⋅) as the statistical func-
tion, i.e.,

where t is the number of frames.

(2)p1(i,j) = ConvNet1d(p(i,j)).

(3)p2(i,j) = Avgpool1d(p(i,j)) +Maxpool1d(p(i,j)).

(4)q(i,j) = p2(i,j)⋅Sigmoid(p1(i,j)).

(5)TP(qt
(i,j)

) = max(q1
(i,j)

, q2
(i,j)

, ..., qt
(i,j)

),

. . . . . .

Sliding
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Fig. 3   The structure of MGFF(2,⋅) . ConvNet1d is a small network composed of two 1-D convolutional 
layers, Tempfunc is a template function composed of Avgpool1d and Maxpool1d functions, and s is a 
sigmoid function. TP is a temporary pooling
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For obtaining the part-level feature vector v(i) , we sum the outputs v(i,⋅) of each 
branch MGFF(i,⋅) using the following equation:

Finally, by weighting the feature vectors of each branch, we can obtain the final fea-
ture vector v:

where a, b, and c are the weights of each branch.

3.5 � Loss function

We use the separate Batch All (BA+) triplet loss function to optimize our model, 
which helps bring samples with the same ID closer in the feature space and sepa-
rates samples with different IDs further apart. We also utilize the popular triplet loss 
for video detection tasks. The triplet loss calculates the Euclidean distance between 
an anchor sample, a positive sample, and a negative sample in the embedding space 
and aims to make the distance between the anchor and positive samples closer than 
the distance between the anchor and negative samples. Specifically, given a triplet 
of image sequences, i.e., anchor sample a, positive sample p, and negative sample n, 
the triplet loss function can be expressed as:

where f (xi
a
) , f (xi

p
) and f (xi

n
) are the features from anchor samples, positive samples, 

and negative samples, respectively. D(,  ) denotes the Euclidean distance measure 
between features, and � is the margin.

4 � Experiment

4.1 � Datasets and metric

4.1.1 � Outdoor‑Gait

The Outdoor-Gait [47] dataset is a comprehensive Outdoor-Gait dataset, consist-
ing of 138 individuals and three scenes for each person. Each scene is divided into 
3 walking conditions, including 4 normal walking (NM) sequences, 4 walking 
sequences wearing coat and jacket (CL), and 4 walking sequences with bag (BG). 
Each walking sequence consists of a single view (90◦) of the person walking, and 
there are 3 ∗ (4 + 4 + 4) = 36 sequences for each person. During the training pro-
cess, 69 individuals are used as the training set and the remaining 69 individuals are 

(6)v(i) =

j
∑

⋅=0

v(i,⋅).

(7)v = av(1) + bv(2) + cv(3),

(8)L = [D(f (xi
a
), f (xi

p
)) − D((f (xi

a
), f (xi

n
)) + �]+,
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used as the test set. The dataset includes both original video frame sequences and 
gait silhouette sequences.

4.1.2 � CASIA‑B

The CASIA-B [48] dataset is a large-scale, multi-view gait dataset consisting of 124 
individuals. Each individual has three walking conditions including 6 normal walk-
ing sequences (NM), 2 walking sequences wearing a coat and jacket (CL), and 2 
walking sequences with a bag (BG). Each walking sequence is captured from 11 
views (0◦, 18◦, 36◦, ..., 180◦) , spanning from 0◦ to 180◦ . In total, each individual has 
(6 + 2 + 2) ∗ 11 = 110 sequences. The first 74 individuals in the database are used 
for training, and the last 50 individuals are used for testing. The dataset includes 
both original video frame sequences and gait silhouette sequences.

4.1.3 � Rank‑1

In our experiments, the effectiveness of the proposed model was evaluated using 
the Rank-1 recognition accuracy, which measures the ability to correctly identify a 
sequence in the gallery that has the same ID as the sequence in the Probe. Specifi-
cally, the Rank-1 accuracy was calculated by comparing the probe sequence with all 
sequences in the gallery and determining whether the highest ranked match has the 
same ID as the probe.

4.2 � Implementation details

In this section, we will provide a detailed explanation of the implementation and 
network structure of our experiments, including the FPFE and MTB modules.

In our experiments, we selected 30 frames for each sequence to be used for train-
ing, and the separate Batch All (BA+) triplet loss is used to train the network where 
the margin � in Eq. 8 was set to 0.2. The batch size for the Outdoor-Gait dataset 
was set to (4, 8), and the input frame resolution was cropped to 128 × 88 . For the 
CASIA-B dataset, the batch size was set to (8, 16), and the input frame resolution 
was cropped to 64 × 44 . We perform 160k iterations for both datasets. In addition, 
the Adam optimization algorithm was used with a learning rate of 1e-4 and momen-
tum of 0.9. Prior to training, the 3D reconstruction network was pretrained on the 
MSCOCO-2017 object dataset [49].

The frame-level part feature extractor module is designed to extract meaningful 
features from gait sequences that represent the unique gait patterns of pedestrians. 
This module comprises multiple focal convolution network layers and MaxPooling 
layers, as shown in Table 1. The notations In-C, Out-C, Kernel, and Pad represent 
the number of input channels, the number of output channels, the size of the ker-
nel, and padding, respectively. The Micro-motion Template Builder module is used 
to learn the micro-motion representations from the part-level gait features obtained 
from the FPFE. As seen in Table 2, the MTB module consists of convolution layers 
and pooling layers. The notations used for the MTB are the same as those used for 
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the FPFE. In addition, we use the symbols C and s to denote the number of channels 
and the compression ratio between the input and output channels, separated by a ‘ ∣ ’ 
symbol.

4.3 � Main results

In this experiment, we validated our method on the Outdoor-Gait dataset. It is worth 
noting that previous gait recognition methods have mostly been based on GEI or 
silhouette sequence data, as shown in the middle row of Fig. 1. These binary images 
are generated from the original RGB video frames, meaning that previous works 
have rarely performed gait recognition directly on the original RGB video frames. 
Additionally, the reliance on silhouette sequence data as input introduces an extra 
step of image preprocessing into the gait recognition task, and the recognition accu-
racy is greatly impacted by the quality of silhouette sequence generation, leading to 
decreased robustness and increased noise.

The proposed method uses a novel approach based on 3D human body recon-
struction and trains on original RGB video data directly. Unlike existing works, our 
model eliminates the need for GEI or silhouette sequence data, making it more prac-
tical and easier to implement in real-world scenarios. The results of cross-condition 
recognition experiments conducted on the Outdoor-Gait dataset are presented in 
Table 3. The table compares our method with other gait recognition methods based 
on GEI or silhouette sequence data and shows that the mean accuracy of our method 
outperforms these methods in recognizing the same pedestrian under different walk-
ing conditions. While our method may show a slight deficiency when the cross-con-
ditions between gallery and probe are the same, i.e., Gallery-NM→Probe-NM, Gal-
lery-BG→Probe-BG, Gallery-CL→Probe-CL, it shows a huge gap over comparative 
methods in other scenarios. This result is twofold: first, our method avoids the nega-
tive effect of redundant information such as coat wearing or bag carrying that seri-
ously impacts the performance of other methods when the conditions between the 
gallery and probe are different. Second, our method is more feasible for real-world 
applications as it utilizes original RGB video sequences rather than carefully labeled 
silhouette data, which may result in a loss of compact and discriminative representa-
tion when the conditions between the gallery and probe are the same. Despite this 
trade-off, our method directly uses original video data and has higher mean accu-
racy, making it a promising alternative for gait recognition.

Table 2   The structure of Micro-
motion Template Builder. C and 
s represent the input channel and 
the squeeze ratio, respectively. 
‘|’ is used to divide MTB1 and 
MTB2

Module MTB1  MTB2

Layer Conv1d-1 Conv1d-2 Avgpool1d Maxpool1d

In-C C|C C/s|C/s × ×

Out-C C/s|C/s C|C × ×

Kernel 3|3 1|3 3|5 3|5
Pad 1|1 0|1 1|2 1|2
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Our model was further validated through experiments on the large CASIA-B gait 
dataset, as seen in Table 4. The results demonstrate that our model produces rela-
tively satisfied results even when raw video frames are used as input. In the GBG-
based models, the accuracy of our model is better than others. However, it is impor-
tant to note that the CASIA-B dataset, being published earlier, contains many poor 
quality data in its 3D human body reconstruction which negatively impacts recog-
nition accuracy. In contrast, the Outdoor-Gait dataset features higher pixel quality 
and provides more effective 3D human body reconstruction for gait representation, 
leading to better results. It should be mentioned that the CASIA-B dataset has 11 
different viewing angles for each walking condition, and the recognition accuracy is 
calculated as the average across these 11 angles.

Our experiments suggest that our method is effective and competitive in gait rec-
ognition tasks. As demonstrated in Tables 3 and 4, our proposed approach achieves 
the highest mean accuracy compared with other silhouette sequence-based models 
on the high-resolution dataset. Furthermore, when compared with the RGB-based 
models, our method exhibits higher recognition accuracy. During the process of 3D 
human body reconstruction, there may be some failed cases. In our experiments, the 
main reasons for failures are the presence of deviations in body tilt angles and slen-
der limbs, resulting in inaccurate reconstruction of the true human contour, as shown 
in Fig. 4. There may be two reasons for these situations: firstly, some original RGB 
images have poor image quality, which affects the precision of human body recon-
struction; secondly, the 3D human body reconstruction method used in our experi-
ments has limitations in reconstructing fine-grained details of the human body.

4.4 � Ablation study

To demonstrate the effectiveness of our proposed method, we conducted ablation 
experiments on both the Outdoor-Gait and CASIA-B datasets. Our method was 
compared against several state-of-the-art methods that rely on GEI and silhouette 
sequences as inputs, without the use of 3D human body reconstruction. As seen 
from Tables 5 and 6, the integration of the multi-granular feature fusion module has 
led to a improvement in the recognition accuracy on both datasets compared to cur-
rent approaches.

Table 4   Experimental results on 
CASIA-B dataset

Type Gallery NM

Probe NM BG CL

Silhouette-based CNN-LB [28] 89.9 72.4 54.0
GaitSet [43] 95.0 87.2 70.4
GaitPart [44] 96.2 91.5 78.7

RGB-based PoseGait [15] 60.5 39.6 29.8
GaitMesh [51] 76.6 42.0 32.8
GaitGraph [16] 87.7 74.8 66.3
Ours 88.2 77.8 70.5
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To further demonstrate the efficacy of the multi-granular feature fusion module, 
we conducted additional experiments on the CASIA-B dataset. We performed abla-
tion tests to evaluate each component of the multi-granular feature fusion module 

Table 5   Results on Outdoor-
Gait dataset

Gallery NM

Probe NM BG CL

GEI+PCA [50] 85.0 38.9 29.5
GEI-Net [27] 93.2 59.2 55.8
GaitNet [47] 96.9 89.1 60.2
Ours 97.6 91.0 84.0

Fig. 4   The failure cases of 3D human body reconstruction

Table 6   Experimental results of MGFF on CASIA-B dataset

Gallery NM#1-4 0◦−180◦ Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6 CNN-LB [28] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9
GaitSet [43] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitNet [47] 91.2 92.0 90.5 95.6 86.9 92.6 93.5 96.0 90.9 88.8 89.0 91.6
GaitPart [44] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
Ours 94.0 99.0 99.6 98.5 95.0 92.5 96.0 98.5 99.6 98.4 91.0 96.6

BG#1-2 CNN-LB [28] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitSet [43] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitNet [47] 83.0 87.8 88.3 93.3 82.6 74.8 89.5 91.0 86.1 81.2 85.6 85.7
GaitPart [44] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
Ours 88.7 94.4 96.0 94.8 89.0 84.6 89.9 94.9 95.9 94.0 86.1 91.7

CL#1-2 CNN-LB [28] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitSet [43] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitNet [47] 42.1 58.2 65.1 70.7 68.0 70.6 65.3 69.4 51.5 50.1 36.6 58.9
GaitPart [44] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
Ours 71.9 84.5 89.2 85.1 80.0 74.9 79.2 83.7 84.2 82.6 68.2 80.3
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separately and compared them to our complete model. As seen in Table 7, the results 
reveal that the multi-granular feature fusion module consistently delivers improved 
performance across different walking conditions. To account for the 11 viewing 
angles in the CASIA-B dataset, the final results were obtained by taking the average 
recognition accuracy across all 11 angles.

4.5 � Visual analysis

In order to show a more intuitive performance of our model effectively, we present a 
visualization of our results in Fig. 5. The figure is comprised four parts, each repre-
senting the original video frames (a), silhouette image sequences (b), pose sequences 
(c), and image sequences after our 3D human body reconstruction (d). In each row, 
the first row represents the BG condition, the second row represents the CL condi-
tion, and the third row represents the NM condition.

As seen in Fig. 5, the 3D human body reconstruction effectively eliminates the 
negative impact of extraneous information, such as coats and backpacks, on the per-
formance of gait recognition. Furthermore, it effectively compensates for the lack of 
local information in the original video frames. Consequently, our proposed method 
with 3D human body reconstruction performs much better than existing methods 
that only rely on silhouette image sequences. This leads to more robust and superior 
results, due to the compact and discriminative gait representation provided by our 
model.

5 � Conclusion

We have designed a novel end-to-end gait recognition method that leverages 3D 
human body reconstruction to improve recognition performance. By using a HMR 
module to generate a compact and discriminative gait representation that elimi-
nates the negative effects of redundant information, our method avoids the issues 
that plague existing methods when dealing with huge changes in video. To fur-
ther enhance the recognition ability, we introduced a multi-granular feature fusion 
module that effectively leverages global and local features of pedestrians at mul-
tiple granularities. Our method was conducted on two popular gait recognition 
datasets, the Outdoor-Gait and CASIA-B, and it was shown to outperform similar 

Table 7   Ablation study on the 
CASIA-B dataset. In the first 
column, a, b, and c indicate the 
weight of different granularity

a b c Gallery NM

Probe NM BG CL

1 Accuracy 95.9 90.6 78.4
1 96.0 90.0 78.8

1 96.2 91.5 78.7
1 1 1 96.6 91.7 80.3
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state-of-the-art methods. Visualization results illustrate that our 3D reconstruction-
based model can learn a more discriminative and nonredundant gait representation, 
greatly contributing to improved gait recognition performance.

Fig. 5   Visualization results. a Original video frames, b silhouette image sequences, c pose sequences, 
and d image equences after 3D human body reconstruction. For each row, the first row is the BG condi-
tion, the second row is the CL condition, and the third row is the NM condition
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