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Abstract
The Internet of Things (IoT) designates a network that helps to relate a diversity of 
heterogeneous devices, various technologies, and other items to the Internet for flex-
ible access and data exchange. Recent smart real-time application design requires 
the integration of ‘things’ in IoT with cloud infrastructure to offer valuable services 
to end-users. However, such a combination could raise various security concerns 
which become the most critical problem nowadays. For protected communication 
between smart devices interconnected through IoT and cloud servers, authentica-
tion becomes one of the crucial security requirements. There exist many strategies 
specifically for authentic key exchange between smart devices in the IoT environ-
ment and the cloud server. But according to the improved Canetti–Krawczyk (xck) 
rival model which is considered a more appropriate model for evaluating authen-
tication-based security systems, none of the systems is safe and is vulnerable to a 
variety of assaults. Thus, we explored xck rival model to prove the limitations of 
the existing approach and presented an Elliptic Curve Cryptographic reliant strategy 
to overcome such limitations. The soundness and correctness of our approach were 
evaluated using scyther verification method. The evaluation results confirm that our 
method is robust and secure under xck model and incurs minimal overhead.

Keywords  Authentication · ECC · Cloud · IoT · Security

1  Introduction

IoT is a grid of interconnected computer-reliant ‘things’ such as smart gadgets, digi-
tal machines, sensors, heart monitors, or people, who are assigned an identifier to 
be exclusive among all entities and have the tendency to transport data across a net-
work automatically. Entities in IoT environment can be used for unlawful boundary 

 *	 K. Selvi 
	 selvikphd@gmail.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05135-0&domain=pdf


12192	 K. Selvi et al.

1 3

contact, recognition of dangerous radiation and chemical leakage, and revealing gas 
leakage in industrialized environments with regard of emergency and secure appli-
cations [1]. The entities can be used for soil quality monitoring, greenhouse climate 
control, and smart irrigation in smart agriculture. Surveillance, continuous moni-
toring of real-time appliances, water saving, and energy are just a few of the smart 
home uses. IoT can be used to generate applications like wireless body sensor net-
works, automatic monitoring of smart devices in the medical industry, and geriatric 
aid [2].

Important security concepts and services that should be provided and ensured 
while accessing real-time applications through an open network are:

	 (i)	 Trust—The distributed and dynamic nature of IoT systems necessitates trust.
The importance of ensuring the trustworthiness of interacting devices can-
not be overstated. Restriction of power usage is also an important aspect of 
developing a trust management system.

	 (ii)	 Confidentiality — Ensuring the confidentiality of messages exchanged between 
two entities in an open network must be protected. Data monitoring, gathering, 
sharing, and security are all areas where privacy is a problem.

	 (iii)	 Reliability – This is a must-have feature that ensures data and service acces-
sibility.

	 (iv)	 Session Key Usability—In any authentication strategy, the usage of a session 
key is critical. It is primarily used to protect communications against third-
party assaults.

Smart real-time applications built on the Internet of Things must be secure [3]. 
Traditional security methods can be used to provide secure communication with 
smart devices to the cloud server. However, because IoT devices have limited 
resources, simple message exchanges between smart devices residing in the sensi-
tivity layer and server are becoming a hot topic of research [2]. Additional security 
services offered between the perception layer and server are built on the founda-
tion of authentication, integrity, and session key exchange [4]. Many approaches for 
protecting communication exchange between smart devices residing in IoT environ-
ments and cloud servers have been proposed in the past. A mutual authentication 
technique with a unique identifier verification protocol was suggested by Liao and 
Hsiao [5]. However, Roel and Hermans [6] point out, the method is vulnerable to 
server impersonation assaults.

Kalra and Sood [7] presented an Elliptic Curve Cryptography (ECC) reliant 
mutual authentication system to resist a wide range of attacks. The approach, 
however, contains design flaws with regard to reciprocal verification, insider 
assaults, and the discovery of their traces. Chang et  al. [8] discovered flaws in 
the work proposed by Kalra and Sood, particularly with regard to shared authen-
tication along with the mistress of sensitive information like session key. Thus, 
Chang et al. proposed a better strategy that circumvented Kalra and Sood’s flaws. 
Similarly, about concerning device anonymity, insider attacks, session/secret key 
agreement, and mutual authentication. Kumari et  al. [9] discovered the flaws in 
Kalra and Sood’s scheme concerning impersonation-reliant attacks and proposed 
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a better scheme. To circumvent these restrictions, Kumari et  al. proposed an 
ECC-reliant approach. Wang et  al. [10] discovered the flaws concerning imper-
sonation-based attacks in Chang et al. scheme and proposed a better solution.

Rostampour et al. [4] suggested an ECC-reliant technique for IoT edge device 
authentication with the cloud server. Rostampour et al. examined various existing 
solutions [8–10] in detail and claimed that they were vulnerable to traceability 
attacks. In [13], Ummer et al. explored the flaws present in Rostampour’s scheme 
and presented a better solution. When linking an implant device to the cloud, the 
most important factor to consider is security. Shared authentication between the 
implant devices and the cloud server is also required. ECC scheme is the popular 
and the strongest public-key cryptography option when storage space, memory 
area, and power are restricted and more security by a short key is desired [11, 12]. 
Furthermore, using the xck adversary model (ad-model), an enhanced approach 
for proving authentication and a secret key contract between smart devices in IoT 
and the server, namely sd-to-cs has been developed.

1.1 � Contributions

Three previous authentication schemes, Kumari, Rostampour, and Ummer, 
addressed security concerns between fog computing devices and the cloud server 
by leveraging ECC to defend against various attacks. Although session key expos-
ing is one of the most important security issues that aids in achieving mutual vali-
dation and device secrecy, we show in this paper that Kumari, Rostampour, and 
Ummer’s strategy fails in this regard. We have proposed an improved ECC-reliant 
authentication mechanism that has been designed specifically for IoT and cloud 
servers to address the aforementioned weakness of the Kumari, Rostampour, and 
Ummer schemes. The suggested approach was modeled after the Scyther compro-
mise. The results of the XCK rival prototype demonstrate the security and safety 
of the method.

1.2 � Paper organization

The rest of the paper is formatted as follows. Section 2 contains the preliminaries. 
Three existing approaches, namely Kumari et  al., Rostampour et  al., and Umar 
Iqbal et  al. approaches are reviewed in Sect.  3 along with its recognized secu-
rity verification using the xck rival model. The proposed ECC-reliant system for 
authenticating between smart devices residing in the IoT environment and the 
cloud server is detailed in Sect. 4. The outcome of a formal security investigation 
utilizing the scyther against the xck ad-model is provided in Sect.  5. Section  6 
briefs about security analysis of the suggested scheme by exploring BAN logic. 
The proposed scheme is compared to other appropriate authentication schemes 
given in Sect. 7. Finally, in Sect.  8, we conclude our work.
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2 � Preliminaries

Table 1 lists the various notations used in the next sections.

2.1 � Rival model

An ad-model expresses the attacker’s prospective capabilities. Dolev and Yoa [14, 
15], namely DY, Canetti–Krawczyk referred to as CK, and its improved version 
(xck) models [16] are examples of adversarial models. The communication chan-
nel is completely unsafe in all of the models; nevertheless, they contrast in their 
challenger query abilities. The communicating parties are deemed honest in the 
DY threat model and can have several sessions between them. The communica-
tion medium is entirely unsafe and completely controllable by the opponent, who 
can able to perform operations like the record, delete, replay, reroute, reshuffle, and 
manage the message list. In the middle, the adversary can behave as a legitimate 
user and conduct different kinds of attacks. The xck and CK schemes for key sharing 
and authentication procedures are the most extensively utilized.

In this adversary scenario, an attacker can breach the pseudo-random number 
generator (PRNG) and gain access to the session’s secret randomness. An opponent 
is also expected to be able to conciliate the session and gain access to it. Long-term 
keys can also be obtained by an attacker [18]. The xck paradigm differs from the CK 
model in that the adversary can obtain ephemeral secrets, resulting in an ephemeral-
secret-key-leakage attack.

Table 1   Notations used Notation Remark

EP(a, b) Elliptical curve
CS Cloud server
SDi ith smart device in IoT
SIDi Identity of SDi

PDi Passcode of SDi

IDCS Identity of CS
Ni Random number
XCS Private secret key of CS
KCS Private secret key of SDi

ESi Short-lived secret of SDi

Et Expiration time
Ti Timestamp
G(x,y) Generator point of EP(a, b)
SK Session key shared between CS and SDi

h(.) Hash-based function
 ⊕  Exclusive-OR operation
P + Q Point addition over elliptical curve
X, G Scalar multiplication over elliptical curve
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2.2 � Elliptical curve cryptography

The application of elliptic-curve in cryptographic systems was first advocated by 
Koblitz [19] and Miller [20]. ECC is one of the most general and widely utilized 
encryption algorithms, yet it is also one of the least well-known. It is the famous 
next-generation and more secure public-key cryptography method. When compared 
to a first-generation public key cryptographic system like RSA, it provides far more 
security. Elliptical curve cryptography, with a key size of 160 bits, provides a similar 
level of security as RSA, which makes it perfectly suitable for power-constrained 
devices [21]. Because of its lower key length and capability to preserve security, 
ECC has gained prominence in recent years. This tendency is projected to remain 
as the requirement for secure devices grows in response to the growing key length, 
affecting the vital resources of smart devices. This is the reason why understanding 
the encryption process in ECC in the context of low-power devices is critical [21].

ECC is one of the popular and secure public cryptography schemes that relied on 
the algebraic organization of elliptical curves well-defined over a finite field. When 
compared to non-ECC encryption, ECC delivers equivalent safety for a lower key. 
The elliptic curve cryptosystem was first established as the cornerstone of the pub-
lic-key cryptographic system, and suggestion has demonstrated that it is a critical 
component of the system. Cryptography in the modern era ECC has relied on the 
fundamentals of elliptic curves. The ECC’s security relied on the effort of handling 
the elliptical curve’s complex algorithm. Over a finite field, K an elliptical curve, 
i.e., E over K is defined as given in Eq. 1 [21].

A few important operations to be applied on elliptic curves are itemized below.

(i)	 Addition of two points—The addition of two different points M1 = (x1, y1) and 
M2 = (x2, y2) of an elliptic curve can be calculated using the formulas as follows.

In equation 2, x3 is computed as λ2 – x1 – x2, the value of y3 is computed as λ (x1 
– x3) – y1, and

(b)	 Scalar Multiplication—An elliptic curve’s scalar multiplication represents an 
operation which adds a unique point ‘P’ to the curve k number of times.

Q = kM = M + M +···+ M, k number of times.

(1)EK(x, y) ← y2 ∶ x3 + ax + b. where x, y ∈ K

(2)M1 + M2 = M3 =
(
x3, y3

)

� =

⎧
⎪⎨⎪⎩

(y2−y1)

(x2−x1)
, if M1≠M2

(3x21+a)

(2y1)
, if M1=M2

⎫⎪⎬⎪⎭
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Where M is an elliptical curve point, and k denotes a large positive integer.

	 (iii)	 Discrete Logarithm on Elliptic Curve—Let an elliptic curve, E, and its points, 
A and B, with B = kA = (A + A + … + A) – k times for some k. The discrete 
logarithm issue for elliptic curves is the task of locating such a k. There is no 
efficient algorithm or good general attacks for computing discrete logarithm 
problems for elliptic curves. The cryptography based on elliptic curves is 
grounded on these facts.

2.3 � Scyther simulation

Simulation of a Scyther Cremers [17] designed Scyther, a tool for assessing and cer-
tifying security protocols. It’s software that can perform security risk assessments 
and attack simulations. Scyther verifies security protocols using an endless num-
ber of sessions. Scyther also provides for the verification of multiprotocol assaults. 
In Scyther, a security protocol is represented using the SPDL (Scyther proto-
col description language) to verify and validate it. When attacks are found, attack 
graphs are generated in scyther tool but not in AVISPA tool. This is one of the noted 
features of scyther tool.

When an attack is detected, a trace pattern is produced as either an XML rep-
resentation or a visual graph. The sender and receiver principals’ communication 
pattern is defined by roles in the SPDL representation of security protocol. To 
express the various security needs, the phrase claim is utilized. Dolev and Yoa are 
the default opponent models in the Scyther version. In comparison to the conven-
tional Scyther version, the ScytherCompromise provides more support for diverse 
opponent models. Scyther Compromise tool version 0.9.2 was utilized in this paper 
to generate different claims and attacks.

3 � Review of appropriate existing schemes

3.1 � Preview of Kumari et al. method

Kumari et al. [9] proposed an ECC cryptosystem-reliant authentication approach for 
smart devices in the Internet of Things. The protocol is divided into three phases, 
which are detailed below.

3.1.1 � Registration phase

The registering stage takes place through a secure connection between the SD and 
CS. The steps are as follows:

	 (i)	 SDi computes Li = h(SIDi || PDi) and transmits it to CS over a secure com-
munication medium for registration purposes.
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	 (ii)	 After the registration is successfully processed, CS generates a ran-
dom number Ni and computes the pseudo-identity for SIDi as h(Ni || 
IDCS|| Li). Afterward, it computes a few other vital secret information 
a s  fo l l ows :  Ci = h(Ni||XCS||Et||Li),Ci = Ci × G, Ti = Ni ⊕ h(XCS||SDi),Mi
= h(Ni ⊕ h(XCS||SDi)⊕ Li ⊕ Ci),Mi = Mi × G . In addition, SDi calculates 
ti = Ti ⊕ XCS,mi = Mi ⊕ XCS , and et = (Et ⊕ XCS) and keeps it in the database. 
Then, ‘CS’ transmits SIDi, C

|
i
 to SD using a secure channel. After{SIDi,C

|
k
 ) is 

received by the SD, it keeps all data safely in a protected memory area. After 
the time expiration of cookies, Ci is re-computed asCi = h(Ni||XCS

||||Et
||||SIDi)

.

3.1.2 � Login phase and validation phase

	 (i)	 Initially, SDi selects a random number N1 and then determines (M1, M2) where 
M1 = (N1.G) and M2 = h

(
N1.C

|
i

)
 and asks for login demand to SD.

	 (ii)	 After successfully receiving login credentials, SD computes 
Ns = Ti ⊕ h(XCS||SIDi) and Ci = h

(
Ns||XCS||Et||SIDi

)
 . SD re-computes M∗

2
 

value as h(M1. Ci) and cross-check with the received M2. If both are the same, 
the SDi proceeds further otherwise the request was discarded.

	 (iii)	 Now, the SD selects a random number N2, and calculates another point over 
ECC as M3 = (N2. G) and M4 = (N2. Mi) and transmits (M3, M4) along with Ti 
to SDi.

	 (iv)	 Upon receiving M3, M4, and Ti, SD assessMi = TiLiCi),M∗
4
= M3.Mi

 . Then, 
SDi validates the received M4 value against the computed M4 value. If 
matches, login is successful, otherwise asks to re-login again.

	 (v)	 Then, SIDi generates the new session key i.e., SY = (N1. M3) = (N1.N2.G), and 
Oi = h(N1. Ci) || SY and then transmits Oi to the cloud server.

	 (vi)	 After receiving Oi, CS re-computes the session key to validate against the 
received SY. If matches, authentication is successful.

3.2 � Security attacks and flaws in Kumari scheme

3.2.1 � Security attacks

(i)	 Exposing session-key information–If the random number selected for generat-
ing a session key is exposed to the adversary in some means, SK’s secrecy is 
jeopardized. In Kumari et al. approach’s the session key is computed using only 
the session’s ephemeral secrets, which is (N1.N2.G) where N1 and N2 are random 
numbers chosen by SIDi and CS, respectively.

The random numbers created for a particular session are one-of-a-kind, and they 
must be deleted once the procedure has been completed. Assume that attacker A has 
access to the random numbers N1 and N2. As G is a public key, A will be able to 
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calculate the session key with ease, as it does not rely depend on other confidences. 
As a result, the authentication mechanism is vulnerable to this attack.

(b)	 Denial of Service attack (DoSA) – A can perform DoSA by performing the fol-
lowing operations.

a.	 A intercepts login operation is involved between SDi and CS.
b.	 At any point, after the original message has been transmitted, A can explore 

the captured message to CS and launch a DoSA assault.
c.	 Due to accurate {M1, M2, and SIDi}, CS will validate A. As a result, A can 

pretend to be a legitimate user. Then, CS replies to A with the message {M3, 
M4, Ti}.

3.2.2 � Ineffective authentication and login phases

	 (i)	 Let’s say A obtains the device, but the device does not know this because 
it never confirms its user. EDi will continue to carry through the proce-
dures even if the user enters the password, identity, or both, incorrectly. It 
immediately generates a random number to start the procedure, then it does 
M1 = (N1.G)andM2=h(N1.C

|
i
) . Now that M1 has been stored, A sends the 

request message {M1, M2, SIDi} to the server, which appears to be an appro-
priate request for a login to the control server. Because it allows any user to 
log in as a legal user, the strategy becomes ineffective.

	 (ii)	 A can perform a replay attack to compromise the authentication phase. 
After CS accepts the login request, CS finds Ns matching to SIDi 
asNs = Ti ⊕ h

(
XCS||SIDi

)
 ). Afterward, CS computes Ci and M∗

2
 and veri-

fiesM2? = M∗
2
 . It holds M∗

2
= h

(
M1.Ci

)
= M2 . This operation helps to authen-

ticate A legally. This is one of the design flaws of the Kumari scheme.
	 (iii)	 An authentication protocol must include the password-changing phase. This 

is necessary if the user forgets or loses their password, or if the old password 
is vulnerable to attack. Once the password is revealed, there should be a way 
to prevent it from being used illegally. By regularly changing passwords, you 
lower the chance that A will gain access. However, Kumari et al., do not pro-
vide a password-changing method that could stop an attacker from impersonat-
ing a legitimate user.

3.3 � Formal security investigation of Rostampour’s scheme

Rostampour’s method consists of two different phases, namely (i) Registration phase 
(ii) Login phase followed by the authentication phase. The SPDL using property-
driven model checking is utilized to reveal the Rostampour scheme as given in 
Fig. 1.
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Roles I and R are included in the SPDL modeling where the communication 
of the SDi is modeled by role I, while the S is modeled by role R. Using send1() 
method, SDi sends (M1, M2, SIDi) to the server. Using the recv1() function, the 
server obtains (M1, M2, SIDi). S uses send2() to send (M3, M4) to the DDi. Using 
the recv2() function, the SDi obtains the (M3, M4). Finally, SDi uses send3() to send 
Vi to the server. Utilizing the recv3() method, the server obtains the Vi. The N1, N2 
must remain a secret throughout the conversation, according to the claim_i1 that 
belongs to role I besides claim_r1 that resides roles I and R. The SPDL properties-
driven model has been primarily conducted under DY model setup as indicated in 
Fig. 1.

The authentication outcome of the Rostampour et al. system under the DY setup 
in Scyther Compromise version suggests that the method is secure and involves no 
attacks. Next, the method was performed under the xck rival scenario illustrated in 
Fig. 2. The Scyther authentication findings under xck are displayed in Fig. 3. The 
outcomes show that the system is not secure.

Figure 4 displays the assault trace of the Rostampour technique beneath the xck 
rival model failed to resist against session key disclose, according to the attack 
trail; as a result, the adversary can leak the secret key. In addition, the Rostampour 
scheme’s design flaw in computing the session key is the main cause of this. The 
session key used by Rostampour et al. is calculated using the formula (N1.N2.G). 
Only the temporary session secrets N1 and N2 are a source of the session key. For 
the revelation of short-standing secrets to expose the session key, the session key 
must also be reliant on long-standing secrets.

Fig. 1   Scyther setting for DY 
adversary models
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3.4 � Formal security investigation of Ummer Iqbal et al. scheme

Ummer Iqbal et al. presented a design of an ECC-reliant technique to offer authen-
tication between smart devices in IoT and the cloud server under the xck challenger 
model is put forth to get over the drawback of Rostampour’s method. However, using 
the Scyther Compromise simulation version, we automated the security validation 
and verification scheme of the Ummer Iqbal et al. under the xck challenger model. 
The validation shows that, according to the xck adversary model, the technique is 

Fig. 2   Scyther settings for the 
xck adversary model

Fig. 3   Scyther verification results of the Rostampour et al. scheme under the xck model
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Fig. 4   Attack graph for Rostampour et al. scheme under the xck model

Fig. 5   Scyther authentication results of the Ummer Iqbal et al. scheme under the xck model
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not safe and is defenseless to various attacks. The Scyther proof of the Ummer Iqbal 
et al. scheme under the xck model is displayed in Fig. 5, and attack graph is given in 
Fig. 6. The outcomes indicate that the system proposed by Ummer Iqbal et al. is also 
not secure.

Figure 6 shows the trace of the Ummer et al. method under the xck rival model 
which is weak against replay and session key disclosing, according to the attack sim-
ulation. As a result, the adversary can act as a legitimate device. In Ummer et al. 
scheme, M1, M2, M3, and M4 values are sent to the server in plain format, thus, the 
challenger can determine the session key which becomes a main cause to compro-
mise the entire system.

4 � Proposed security scheme

The suggested scheme covers two different phases, namely (i) Registration phase, 
(ii) Login phase, and Validation through the Authentication phase. An IoT device 
must be registered with the server during the registration step. The registration is 
carried out over a secure channel, much like with other methods [4]. As there are no 
shared credentials or a trusted third party used in the smart device, the requirement 

Fig. 6   Attack graph for Ummer Iqbal et al. scheme under the xck model
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for a secure registration method is stressed. The following is a list of the actions 
that were conducted between the smart device in the IoT environment and the cloud 
server after the registration phase begins.

4.1 � Registration phase

Step 1: Device SDi selects its identification ITYi and secret key KCS.

Step 2: The smart device computes SIDi according to Eqs. 3 and 4 and transmits 
SIDi to CS as given in Eqs. 3 and 4.

Step 3: CS calculates h
(
SIDi

)

 and generates two subkeys i.e.,S1
CS

 and S2
CS

 of the same size from XCS . Also, ensures 
that S1

CS
≠ S2

CS
 . The CS computes:

The cloud server stores ( (SIDi, h(SIDi) ) pair along with C1
i
 and C2

i
 in its database 

and transmits:S → SDi ∶ EKCS
(C1

i
||C2

i
).

Step 4: SDi decrypts the received message and stores both C1
i
 and C2

i
 in it write 

protected memory area.

4.2 � Login phase and authentication phase

The smart device starts the process of logging in to the cloud server at this phase. 
The server then verifies the device’s identity and if it passes muster, a session key is 
created which can be used between SDi and CS. The following important steps are 
carried out between SDi and CS during the period of login and authentication.

Step 1: Device SDi selects ephemeral secret (ESi) and computes M1 value and M2 
value as listed in Eqs. 7 and 8

.

(3)SID
i
= K

cs
⋅ ITY

i
⋅ G

(4)ITYi ← CS ∶ EKCS
(SIDi||T1)

(5)C1
i
= SIDi ⋅ S

1
CS

(6)C2
i
= SIDi ⋅ S

2
CS

(7)M1 = (C1
i
+ C2

i
).ESi ⋅ h

(
SIDi

)
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Then, SDI transmits (M1, M2) to CS as given in Eq. 9.

Step 2: Upon receiving the message, CS authenticates ITYi

 by executing the steps as follows.

	 (i)	 The cloud server, CS computes h(SIDi) using SIDi which exists in its database.
	 (ii)	 Also, CS computes the multiplicative inverse of h(SIDi) as h(SIDi)

−1 and deter-
mines(M1.[h

(
SIDi

)
]
−1) = M|

1
.

	 (iii)	 CS checks if (M|
1
≠ M2) then

	 (iv)	 {

}

else
discard “login request”.

(v)	 CS generates a session key,SKk = (M2.ESs) = (XCS.Ksc.SIDi.G.ESi.ESs).
(w)	 CS transmits M3 and M4 to SDi i.e.,CS → SDi : EKi

(M3||M4) . Afterward, SDi 
authenticates the received data by performing the following operations.

(x)	 SDi computes the multiplicative inverse of h(SIDi) as h(SIDi)
−1 and deter-

mines(M3.[h
(
SIDi

)
]
−1 ). ES−1

i
 = M|

3
.

(y)	 CS: if (M|
3
≠ M4) then

(z)	 Authentication “Successful”
()	 else
()	 discard “login response”
()	 SDi generates a session key,SKk = (M4.ESi) = (XCS.KCS.SIDi.G.ESi.ESs).
()	 SDi transmits SK to SDi i.e., SDi → CS : ESKi

(h(ES)).
()	 Finally, CS decrypts the received ESNi

(h(ES)) and checks whether the acknowl-
edged ‘h’ value is not equal to the computed ‘h’ value i.e., h|. If so, the smart 
device is legitimate.

The overall graphical diagram of the suggested method is given in Fig.  8, and 
Fig. 7 depicts its SPDL model.

(8)M2 = (C1
i
+ C2

i
) ⋅ ESi

(9)ITYi → CS ∶ EKCS
(M1||M2)

(10)M3 = M1.ESs

(11)M4 = (C1
i
+ C2

i
).ESi
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5 � Formal proof of the suggested scheme

To validate the proposed protocol’s security strength on Scyther Compromise 0.9.2 

Fig. 7   Graphical representation of the proposed method
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beneath the xck challenger model, it was modeled using SPDL. The roles Device 
and Server represent the Di and S’s communication patterns, respectively. The send1 
function is utilized by the role Device to start the login phase and authentication 
phase. When the role server receives (M1, M2) using the recv1 function, it transmits 
(M3, M4) to the device using the send2 function. Finally, the smart device uses the 
send3 function to send ESK[H(SK)] to the server. The claim_i1 belongs to the Device 
role and the claim_r1 resides in the server role specifying that the Ki and XS be kept 
private during communication.

The claim_i2 belongs to the role device and claim_r2 resides in the role 
server specify whether the session key of the adversary rule can reveal 
Sk = Xs.Ksc.SIDi.G.Si.Ss . The purpose of all claims is to check if the authentica-
tion operation concerning the security claim (Nisynch, Niagree) is still work-
ing. As shown in Fig. 8, the SPDL prototype of the proposed method was vali-
dated and verified on the Scyther Compromise 0.9.2 using the xck challenger 
model and Fig.  8 depicts its outcome. Under the strict xck adversary model, 

Fig. 8   SPDL code of the proposed method
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Fig. 9 shows that the suggested protocol is secure and does not weak against any 
attacks.

5.1 � Security analysis

5.1.1 � Replay attack

This type of attack permits a challenger to archive and retransmit messages being 
exchanged between communicating parties in the future to acquire unauthorized 
access. Three messages are exchanged between the smart device residing in the IoT 
environment and the cloud server in the proposed protocol:

Assume that a challenger can eavesdrop on the messages exchanged and keep 
(M1, M2, M3, M4) along with EKSC

[h(ES)] during the commencement of the login 
phase and validation through the authentication phase to perform a replay attack. 
Allow a challenger to replay the session values (M1, M2) to acquire unauthorized 
access as given in Eq. 15.

The server checks the request using the time stamp and produces M3 and M4 
with a fresh ephemeral secret when it receives (M1, M2). A fresh ephemeral secret 
is given to the opponent. The adversary has to identify SIDi and the ephemeral 
secret formerly used for computation to validate (M3, M4) and then produce a ses-
sion key. Due to the elliptic curve discrete logarithm (ECDL) problem’s exponen-
tial time complexity [22–24], the attacker does not have access to either. Because 

(12)SDi → CS ∶ EKsc
(M1||M2)

(13)CS → SDi ∶ EKsc
(M3||M4)

(14)SDi → CS ∶ EKSC
[h(ES)]

(15)Adversary → CS ∶ EKsc
[h(M1||M2)]

Fig. 9   Verification results of the proposed scheme
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the adversary is unable to provide a valid session key SK for the recent session, 
EKSC

[h(ES)] cannot be computed. Furthermore, the server will not validate the 
adversary’s old EKSC

[h(ES)] because the present SK is created on the server’s new 
ephemeral secret. In addition, a small change in one bit in ES will affect many bits in 
the receiver side when re-computing the hash code. As a result, the scheme’s design 
prevents replay attacks.

5.1.2 � Impersonation attack

A challenger attempts to mimic a legitimate smart device in an impersonation 
attack. Computing is the first step in the login process and verification process (M1, 
M2). An opponent must have access to information about (C1

i
,C2

i
) and H in order 

to compute (M1, M2) and (SIDi). Over a secure channel, the (C1
i
,C2

i
) , and H(SIDi) 

are exchanged between the smart device residing in the IoT environment and the 
server. Furthermore, because of the computational difficulties of the ECDL prob-
lem, although the challenger eavesdrops on (M1, M2) of any preceding login process 
and verification of session information between the smart device residing in IoT and 
CS, the (C1

i
,C2

i
) , and H(SIDi) can never be derived from (M1, M2). Thus, a result, 

a valid (M1, M2) cannot be computed without knowledge of (C1
i
,C2

i
) , and H(SIDi), 

as a challenger cannot mimic any genuine smart device by calculating a malevolent 
(M1, M2).

5.1.3 � Message integrity‑based attack

The communication sent from the smart device to the cloud server cannot be dis-
guised. During the conversation, the smart device resides in the IoT layer and CS 
exchange the following messages: M1, M2, M3, M4 and EKSC

[h(ES)] . Assume an 
attacker intercepts M1, M2, M3, M4, and ESK[H(SK)] and wishes to construct malev-
olent: MS1, MS2, MS3, MS4. However, the enemy must access XS and Ki to generate 
MS1, MS2, MS3, and MS4. XS and Ksc are unavailable to the adversary. Furthermore, 
due to the computational difficulty of the ECDL problem, extracting the private key 
of XS from M1, M2, M3, and M4 takes an exponential amount of time. As a result, the 
computational infeasibility of the ECDL problem protects the integrity of M1, M2, 
M3, and M4. Furthermore, because it is secured using the symmetric key encryption 
algorithm and the one-way hash, the message EKCS

[h(ES)] cannot be changed.

5.1.4 � Man in middle (MIM) attack

In this type, a remote invader can snoop, masquerade, and modify communication 
in the middle of a MIM assault by forging any sensitive information shared between 
the smart device and the server. If the opponent in the middle of the transmission 
can construct malicious: MS1, MS2, MS3, and MS4 then the MIM attack will be suc-
cessful. However, the opponent must be able to forge (C1

i
,C2

i
) in order to generate 

malicious MS1, MS2, MS3, and MS4:
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The adversary must access XS to forge ( C1
i
 , C1

i
,Xs) is not accessible to the oppo-

nent. Furthermore, due to the ECDL problem’s exponential complexity, XS cannot 
be retrieved from M1, M2, M3, or M4. The MIM attack is alleviated in the proposed 
approach since the attacker cannot fake M1, M2, M3, or M4 and sufficient authentica-
tion is used prior to key formation.

(16)C1
i
= SIDi ⋅M1 ⋅ S

(17)C2
i
= SIDi ⋅M2 ⋅ S

Table 2   Symbols used in BAN 
logic

Symbol Remark

X| ≡ MG D trusts M
X| ← MG D obtains a message M
X| ∼ MG The previously sent message by D to M
X|| ∼ MG The recent message by D to M
X1 → F D has control over Z
#(MG) M is new
→

PUrX PUr denotes the public parameter generated using PRX

X→YN N denotes the key shared between X and Y
{X}N N is the key used to enciphering X
(C1 / C2) If C1 is true then C2 also true

Table 3   BAN claims Rules Representation

R1 (X| ≡ →
PUr Y,X ← {MG}Y∕X| ≡ Y| ∼ MG)

R2 (X| ≡ #(MG),X ≡ Y| ∼ MG∕X| ≡ Y| ≡ MG)

R3 (X| → MG,X| ≡ Y| ≡ MG∕X| ≡ MG)

R4 (X| ← MG1,X| ← Y| ≡ MG2∕X| ← (MG1,MG2))

R5 (X| ≡ MG1,X| ≡ MG2∕X| ≡ (MG1,MG2))

R6 (X| ≡ #(MG1)∕X| ≡ #(MG1,MG2))

R7 (X| ≡ #(N),X| ≡ Y| ≡ Z∕X| ≡ X→Y PRXY . Z is part of N
R8 (X| ← MG1X| ← (MG1,MG2)

R9 (X|≡ Y| ∼ MG1X| ≡ Y| ∼ (MG1,MG2)

R10 X|≡ Y| ∼ (MG1,MG2)X| ≡ Y| ∼ MG1

R11 X|≡ Y| ∼ MG1X| ≡ #(MG1)
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5.1.5 � DoS attack

The login processes taking place between SDi and CS can be intercepted by eaves-
dropper ‘A’. A can investigate the captured message to CS and attempt to conduct 
a DoS attack at any time after the original message has been broadcast. A cannot 
launch a denial-of-service attack because all sensitive data transferred between SDi 
and CS is protected by enciphering and hashing functions.

6 � Security study through BAN logic

The suggested scheme’s security validity is assessed using BAN logic. The 
communication principles are denoted by X and Y, while their private keys are 
denoted by PRI and PRJ, respectively. The BAN symbols are listed in Table  2 
[23], and Table 3 lists the BAN claims. Additionally, as deduced in [27], Table 4 
lists the synthesis rules.

Assumptions  A1 ∶ X1 ≡→ C1
i
,C2

1
 I.

A2 ∶ Y1 ≡→ C1
j
,C2

1
 J.

A3 ∶ X| ≡ #(Y I).
A4 ∶ Y| ≡ #(Y Y).
A5 ∶ Y|≡ X| → Y I.
A6 ∶ X|≡ Y| → YY.

Idealized form

X → Y;{Q1,Q2}PRI
MG1

Y → X;{Q3,Q4}PRJ
MG2

Table 4   Security comparison

TA1- Traceability; TA2- Impersonation; TA3- Replay; TA4- Mes-
sage Integrity; TA5- MIM; TA6- xck

Scheme Type of attack (TA)

TA1 TA2 TA3 TA4 TA5 TA6

Chang et al No No Yes Yes Yes No
Kumari et al No No Yes Yes No No
Rostampour et al Yes Yes Yes Yes Yes No
Ummer Iqbal et al Yes Yes Partial Partial Yes Yes
Proposed scheme Yes Yes Yes Yes Yes Yes
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Goals

BAN analysis
With MG1, we obtain

From (2), A1 and Rule1, we obtain

YI is part of Q1, Q2. So, as per A3 and Rule6, we obtain

From 3 and 4, we obtain

From 7 and S4, we obtain

From 3 and 6 by applying Rule2, we obtain

YI is the part of Q1 and Q2. As a result, by using Rule 5, we obtain

As a result of A5, A8, and Rule3, we now have

Rules 3 and 10 give us the following

G1 ∶ Y| ≡ X→YPRXY

G2 ∶ Y|≡ X| ≡ X→YPRXY

G3 ∶ X| ≡ X→YPRXY

G4 ∶ X|≡ Y| ≡ X→YPRXY

1 ∶ X| ≡ {Q1,Q2}PRI

2 ∶ X ≡ {Q1,Q2}PRI

3 ∶ X| ≡ Y| ∼ {P1,P2}PRI

4 ∶ X| ≡ #(Q1,Q2)

5 ∶ Y| ≡ X| ∼ (Q1,Q2)

6 ∶ Y| ≡ #(Q1,Q2)

7 ∶ Y| ≡ X| ≡ Q1,Q2

8 ∶ Y|≡ X| ≡ YI

9 ∶ Y| ≡ YI

10 ∶ Y| ≡ X| ∼ YI
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A3 and A10 gives the following

Rule4 and Rule11 gives the following

SI is a component of N. As a result, we achieve

From 8, 13 and Rule7, we obtain.
14 ∶ Y| ≡ X→YPRX Y(Goal G1).
The protocol’s symmetry characteristic makes it possible for,
15 ∶ Y|≡ X| ≡ Y→YPRX X(Goal G2).
From MG2, we infer that

Form 17, Rule1 and A2, we obtain

The PRJ is a component of Q3 and Q4. Thus, in accordance with A4 and 
Rule6, we obtain

From 17 and 19, we obtain

From 20 and Rule11, we obtain

Applying Rule 1 to 18, 21, we obtain

The YY component of the Q3 and Q4 formulas. As a result, while using Rule 5, we 
obtain

As a result of A6, 23 and Rule3, we now have

Rule 10 and Rule 18 give us

11 ∶ Y| ≡ X|| ∼ YI

12 ∶ Y| ≡ #(SI)

13 ∶ Y| ≡ #(N)

16 ∶ Y| ≡ {Q3,Q4}PRJ

17 ∶ Y ← {Q3,Q4}PRJ

18 ∶ X|≡ Y| ∼ {Q3,Q4}PRJ

19 ∶ Y| ≡ #(Q3,Q4)

20 ∶ X|≡ Y| | ∼ Q3,Q4

21 ∶ X| ≡ #(Q3,Q4)

22 ∶ X|≡ Y| ≡ Q3,Q4

23 ∶ X|≡ Y| ≡ YY

24 ∶ X| ≡ YY
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A4 and 25 give us

From Rule4 and 26, we obtain

Using Rule 6, we obtain

Using 22, 28, and Rule 7 in combination, we arrive at

The protocol’s symmetry characteristic makes it possible for,

7 � Performance comparison with existing schemes

7.1 � Based on security

Table 4 compares the proposed scheme’s security to that of relevant existing sys-
tems. Chang et al. solution is susceptible to impersonation and traceability attacks 
and only TA3 and TA4 traits are supported by Kumari et  al. Rostampour et  al.’s 
design is the only one that offers TA1–TA5 among the available schemes. Rostam-
pour et al., Kumari et al., and Chang et al. schemes have been analyzed using the xck 
adversary model, according to Table 1. Rostampour et al. formal validation under 
xck adversary demonstrate that the technique is not secure against the xck model. In 
Ummer et al. scheme, values exchanged between the smart device and the server are 
not secured. This permits the opponent to violate the message integrity and replay 
attack possible (TA3 – TA4). The suggested method meets all of the TA1 to TA5 
security requirements and is secure under the xck paradigm.

7.2 � Based on computational overhead

Table 5 shows the assessment concerning computational overhead. TSM: scalar mul-
tiplication, TAP: point addition, TOH: one-way hash, TSE/TSD: symmetric encryption, 
and TMI: multiplicative inverse is among the time complexities considered. The 
most computationally intensive operation is TECM. Because smart devices in IoT are 
resource constrained, the computational cost of these smart devices has a signifi-
cant impact on the scheme’s efficiency, as the cloud server becomes computation-
ally influential. Table 5 shows that the suggested solution requires a computational 

25 ∶ X|≡ Y| ∼ YY

26 ∶ X|≡ Y|| ∼ YY

27 ∶ X| ≡ #(YY)

28 ∶ X| ≡ #(N)

29 ∶ X| ≡ X→YPRXY

30 ∶ Y|≡ X| ≡ X→YPRXY
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overhead of 1 TSM for the smart device, 4 TSM for the server, and 8 TSM in total. 
Both, Chang et al. and Kumari et al. schemes require 8TSM + 8 TOH in total. The 
Rostampour et  al. method has the largest device overhead (7 TSM). As the smart 
device is power constrained, the proposed scheme incurs less computation compared 
to Ummer et al. scheme. When it comes to scalar multiplication (TSM) overhead, the 
suggested system requires the same number of scalar multiplications as the other 
strategies under consideration.

7.3 � Based on communication overhead

The cost of communication is calculated based on the length of bits shared among 
the smart device in the IoT layer and the cloud server. We assume a 160-bit elliptical 
curve E(a,b). The symmetric encryption used generates a 128-bit ciphertext. Three 
messages are exchanged in the proposed method between SDi and the server, includ-
ing (M1, M2), (M3, M4), and ESK[H(SK)]. [(320 + 320), (320 + 320)+128] = 1,408 
bits are required for completion. Fig. 10 shows the communication cost of the pro-
posed scheme including existing solutions.

Table 5   Comparison of computational Overhead [13]

TSM: scalar multiplication, TAP: point addition, TOH: one-way hash, TSE/SD: symmetric encryption, and 
TMI: multiplicative inverse

Scheme Computational overhead

Device Server Total

Chang et al 4TSM + 4 TOH 4TSM + 4 TOH 8TSM + 8 TOH

Kumari et al 4TSM + 3 TOH 4TSM + 4 TOH 8TSM + 7 TOH

Rostampour et al 7TSM + TPA 6TSM + TAP 13 TSM + 2 TAP

Ummer Iqbal et al TSM + TPA + 2 4 TSM + TAP + 2 8 TSM + 2TAP + 4 TOH + 2
Proposed scheme TSM + TPA + 1 3 TSM + TAP + 2 6 TSM + 2TAP + 4 TOH + 2

Fig. 10   Performance comparison based on Communication overhead
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7.4 � Based on energy overhead

Fig. 11 shows the time spent by different important actions as mentioned in [25] on 
a MicaZ [26] for assessing the energy spent on a smart IoT device. E = I × V × T 
[13] is used to calculate how much energy is wasted, where I refers to the current 
strained, V denotes the voltage, and T refers to the time it takes to complete the 
process. For a MicaZ mote value i.e., when I = 8 mA and V = 3 V, the proposed 
approach has a 278.16 mJ energy overhead. Ummer et al. also incur almost the same 
energy overhead. Figure  11 shows a comparison of the suggested plan’s energy 
expenditure with that of the relevant current scheme. The Rostampour et al. method 
has incurred maximum energy overhead at 477.6 mJ.

Under the xck rival model, Rostampour et al. are insecure. The energy overheads 
of Ummer et al., Rostampour et al., Kumari et al., and Chang et al. are 278.16 mJ, 
477.6  mJ, 271.2  mJ, and 278.16  mJ correspondingly. In addition, Rostampour 
et al., Kumari et al., besides Chang et al. on the other hand, do not satisfy all secu-
rity necessities and Ummer et  al. scheme partially incorporated replay and mes-
sage integrity security features. The proposed technique complies with all security 
requirements and is the only one that has been formally validated by exploring the 
xck rival model. Therefore, with a computational cost of 272.07 mJ and a communi-
cation cost of 1,408 bits, our suggested method is also secure against the xck adver-
sary and satisfies all vital security requirements.

Fig. 11   Performance Analysis based on Energy overhead
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8 � Conclusion

For establishing secure IoT-based smart applications, providing authentication 
between smart devices that specifically reside in the IoT environment and the 
cloud server is essential. The xck adversary model has not been used to validate 
the existing approaches for authentic keys shared between smart devices in IoT 
environments and cloud services. This article presents an improved and light-
weight ECC-reliant authentication method between smart devices residing in the 
IoT environment and the cloud server. The suggested approach is safe and pro-
tected under the xck model, according to the Scyther Compromise simulation. 
In comparison to existing schemes, the proposed method incurs low communica-
tion and energy overhead. As, the cloud server is used as a trusted authority, the 
whole system is dependent on the cloud server which becomes the limitation of 
the suggested work. Hence, in future we would like to strengthen the security of 
the cloud server.
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