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Abstract
In clouds, various services run on respective containers and have service-level 
objectives (SLO) that significantly impact service qualities. However, Kubernetes, 
a widely used container orchestration platform, does not schedule containers with 
respect to the network SLOs. This paper proposes a new container scheduling tech-
nique consisting of a cloud-level and node-level scheduler. The cloud-level sched-
uler selects a node that is best suited for satisfying the network SLO, and the node-
level scheduler adjusts the CPU allocation for the container to satisfy SLOs on 
the selected node. We implement the cloud-level scheduler in Kubernetes and the 
node-level scheduler in the Linux kernel module and evaluate them using simulation 
and actual deployment. The evaluation results show that the cloud-level scheduler 
reduces the scheduling overhead by 22× compared to DRF, a representative multi-
resource scheduling technique. Also, the node-level scheduler increases the number 
of containers that satisfy SLOs by 2.5× compared to native Kubernetes, which will 
significantly enhance the service quality of user-facing services.

Keywords Container scheduling · Service-level objectives · Service quality · 
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1 Introduction

Kubernetes [1] is the de-facto container orchestration platform that dynamically cre-
ates and manages multiple containers simultaneously. Due to its simple interface 
and powerful functionalities, Kubernetes is utilized in many industrial fields [2, 3]. 
When a tenant requests to create a container with a description file that specifies the 
resource demand, such as the number of CPU cores and memory size for the con-
tainer, Kubernetes performs container scheduling that examines nodes to find the 
most suitable one to run the container.

The container scheduling of Kubernetes examines the number of available CPU 
cores and the free memory size of nodes. Then, it selects a node with available 
CPU cores and memory space larger than the resource demand. However, currently, 
Kubernetes does not check the available network bandwidth of nodes in the node 
selection. When the network bandwidth demand (called SLO – service-level objec-
tives [4, 5]) is specified, it can exceed the network capacity of the node so that the 
SLO is not satisfied. This can cause Kubernetes to prevent containers from satis-
fying network SLOs. As the network SLO determines the service quality of many 
cloud applications, such as user-facing services [6–9], it is crucial to take the net-
work SLO into account in Kubernetes container scheduling.

Previous studies [10, 11] for satisfying network SLOs are based on multi-resource 
scheduling that allocates multiple resources such as CPU, memory, and network to 
containers simultaneously. The amount of resource allocation is determined by the 
resource demands specified by tenants. Dominant resource fairness (DRF) [11] is a 
representative multi-resource scheduling that enables multi-resource scheduling for 
high performance and efficient resource utilization  [12, 13]. However, DRF-based 
multi-resource scheduling has a drawback: The scheduling overhead becomes very 
significant with the increase in the number of tenants because the DRF algorithm 
calculates the dominant share of every tenant [14].

This paper proposes cloud-level and node-level schedulers designed to satisfy the 
network SLO and incur low scheduling overhead. First, our cloud-level scheduler 
investigates the available network bandwidth of nodes. Then, it selects a set of nodes 
with available network bandwidth larger than the SLO. Then, our scheduler checks 
the number of available CPU cores of the selected nodes and chooses the one with 
the largest number of CPU cores available. This is because it has been reported that 
a “proper” amount of CPU has to be provisioned in order for a node to achieve net-
work SLOs  [15]. For example, the experiment results in [15] show that the CPU 
usage of a container increases by two times when the network SLO increases from 
50 Mbps to 100 Mbps. So our scheduler considers both the network bandwidth and 
the number of available CPU cores. This is distinct from the current Kubernetes 
scheduler, which only considers the number of available CPU cores and free mem-
ory space.

Second, our node-level scheduler works on the chosen node. Because it is not 
known how many CPU cores are required for the network SLO, our node-level 
scheduler monitors the actual network bandwidth. Then, the scheduler dynami-
cally adjusts the CPU allocation in the direction to minimize the gap between the 
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SLO and the actual network bandwidth. We adopt the idea of [15] and modify it 
to work with our node-level scheduler. Our scheduler works in hybrid architecture 
that divides container scheduling into cloud-level and node-level, which differs from 
DRF.

There are many previous studies [5, 6, 16] on scheduling network bandwidth in 
container virtualization. The studies mostly aim to allocate network bandwidth to 
respective containers. However, our technique suggests allocating network band-
width at the cloud-level scheduling while enforcing the CPU allocation at the node-
level scheduling. Thus, multiple resource scheduling seems the most appropriate 
study for comparison because multiple computing resources, such as CPU and net-
work bandwidth, are allocated together.

We implement the cloud-level scheduler in Kubernetes and the node-level sched-
uler as a Linux kernel module1. Our performance evaluation results include large-
scale simulations for the cloud-level scheduler and experiments using actual deploy-
ment for the node-level scheduler. The results show that our cloud-level scheduler 
reduces the scheduling overhead by 22× compared to DRF. Moreover, our node-
level scheduler improves the number of containers that satisfy SLOs by 2.5× com-
pared to native Kubernetes while reducing the number of containers that fail to sat-
isfy SLOs by 7 ×.

2  Background and motivation

This section first explains the container scheduling of Kubernetes. Then, we describe 
dominant resource fairness (DRF) and its limitation, which motivates this paper.

2.1  Kubernetes container scheduling

Figure  1 illustrates the container scheduling in Kubernetes. First, when a tenant 
requests to create a container by specifying computing resources, the master node of 
Kubernetes receives the request. The request is forwarded to the API Server, and the 

Fig. 1  Container scheduling in Kubernetes

1 The source code of the prototype implementation can be found at https:// github. com/ kiiim es/ DepCon.

https://github.com/kiiimes/DepCon
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Kubernetes scheduler (i.e., kube-scheduler) recognizes the request. Kube-scheduler 
handles the filtering process to create a list of nodes that can satisfy the specification 
of the container. This means kube-scheduler searches worker nodes that can offer 
CPU cores and memory size to satisfy the specification. Note that kube-scheduler 
does not check the available network bandwidth of worker nodes.

Based on the list of worker nodes, the scheduler performs the scoring process. 
In the scoring process, the scheduler selects a worker node with the highest priority 
by calculating the weight of the worker nodes in the list according to the schedul-
ing policy configured by system administrators. By default, the scheduler computes 
weights based on the available CPU cores and memory size of the worker nodes. 
After selecting a worker node, the scheduler notifies the kubelet agent running on 
the selected worker node to create the container. When kubelet receives a request to 
create a container, kubelet allocates computing resources for the container by using 
the ������� API (e.g., ������ , ���.���_�����_��).

If a network bandwidth is specified, the network bandwidth is managed only by 
kubelet using tc rather than kube-scheduler �� . This indicates that the network band-
width specified in the description file is not considered in the filtering and scoring 
process of kube-scheduler and is only applied in the worker node using �� . As a 
result, when multiple containers running on a worker node have their demand for 
the network bandwidth, the sum of the network bandwidth can exceed the network 
capacity of the worker node, which inevitably hampers the service quality.

2.2  Dominant resource fairness scheduling

Dominant Resource Fairness (DRF)  [11] is a fair sharing model that generalizes 
max-min fairness to multiple resource types. DRF receives the resource demand that 
includes the amount of computing resources such as CPU and memory required for 
a job from tenants, similar to the container scheduling in Kubernetes. Then, from 
the resource demand, DRF finds a dominant resource with a larger fraction among 
multiple resources. For example, when a tenant requests to create a container with 
1 CPU and 100 MB in a cluster that consists of servers equipped with 10 CPU and 
10 GB memory, the dominant resource for the tenant is the CPU. This is because the 
CPU for the container has a larger share (i.e., 0.1) than memory (i.e., 0.01) when the 
container runs on the server with the requested resources.

In addition, DRF operates as follows in multi-tenant clouds: Assume that there 
are two tenants (t1 and t2) and the tenants have different resource demands (t1 = 
(100 Mbps, 200%) and t2 = (300 Mbps, 100%). When the total capacity of the two 
servers is (2000 Mbps, 2000%), resource share is calculated as (requested/total 
capacity), so t1’s resource share is (1/20, 1/10) and t2’s resource share is (3/20, 
1/20). In other words, t1’s dominant share is 1/10 (CPU resource share), and t2’s 
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dominant share is 3/20 (network resource share). After calculating dominant shares 
for every tenant, DRF compares the dominant shares of all tenants and allocates 
resource demand to the tenant’s job with the smallest dominant share.

Even though DRF and its variants improve resource utilization with the fairness 
guarantee between tenants, it brings significant scheduling overhead with large num-
bers of tenants. The reason is that the DRF algorithm iterates all tenants to calculate the 
dominant share of every resource for each tenant [14]. As a result, the scheduling delay 
caused by the DRF algorithm can increase as the number of tenants increases.

3  Design and Implementation

This paper proposes the cloud-level scheduler and the node-level scheduler as follows: 
(1) the cloud-level scheduler finds the suitable worker node to create containers that can 
offer the network bandwidth specified as the SLOs in the description file as in Algo-
rithm 1. (2) To achieve network SLOs, the node-level scheduler allocates the “proper” 
amount of CPU resources to containers depending on the network SLOs.

3.1  Cloud‑level scheduling algorithm

Cloud-level container scheduling plays a key role as it determines the applica-
tion performance, resource utilization, and even power consumption of the nodes in 
clouds [17–19]. In this paper, we focus on container scheduling for achieving the net-
work SLOs of containers with low overhead. To minimize the overhead of cloud-level 
scheduling, we construct a scheduling algorithm depicted in Algorithm 1 that consists 
of two phases: bandwidth filtering and CPU scoring. Note that Table 1 describes each 
notation and the meaning in Algorithm 1.

Table 1  Notations for Algorithm 1

Notation Meaning Notation Meaning

N The total number of worker nodes C
SLO

Network SLO of a container
S A set of the entire worker nodes s

i
ith worker node

AS A set of available worker nodes as
i

ith available worker node
s
i
.netIdle Idle network bandwidth of s

i
s
i
.cpuIdle The number of idle CPU cores of s

i
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Given that there is a cloud data center with N worker nodes represented by 
S={s1...sN } with the idle network bandwidth and the number of idle CPU cores 
indicated by s.netIdle and s.cpuIdle, respectively. The value of s.netIdle and 
s.cpuIdle ranges from zero to the maximum capacity of the node. Bandwidth fil-
tering first investigates the value of s.netIdle for every worker node in the cloud 
because the goal of bandwidth filtering is to find worker nodes with a larger net-
work bandwidth than containers demand. For example, when a container requests 
200 Mbps of network bandwidth, it can only run on worker nodes with available 
network bandwidth larger than 200 Mbps.

From lines 1 to 9 in Algorithm  1, we describe bandwidth filtering, which 
creates a list of nodes (AS) with available network bandwidth larger than the 
requested network SLO ( CSLO ). In other words, the worker node, si , with si.netIdle 
larger than CSLO is included in AS. Thus, the maximum value of count would be 
N. When there is no worker node with available network bandwidth larger than 
the SLO, count remains as zero, and the scheduler rejects the request for creating 
containers.

In CPU scoring, the scheduler assigns a weight to each node in the list based 
on the number of idle CPU cores (lines 10-15). It examines the number of idle 
CPU cores ( asj.cpuIdle ) of the worker nodes in AS sequentially. The value of 
asj.cpuIdle is stored in FW where the largest number of available CPU cores 
among the worker nodes in AS is stored. FW is compared to the number of idle 
CPU cores of the next worker node ( asj+1.cpuIdle ). Only the larger value of 
asj.cpuIdle remains in FW, and the corresponding worker node is selected as the 
worker node (FS) that creates the container. This indicates that the worker node 
with the largest number of available CPU cores receives the highest priority. High 
priority is assigned to the worker nodes with a large number of available CPU 
cores because we do not know the “proper” number of CPU cores for achieving 
network SLOs. If the node with the largest number of available CPU cores does 
not satisfy the SLO, no worker node can achieve the SLO because of insufficient 
CPU cores.
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3.2  Cloud‑level scheduler

Figure  2 depicts how the cloud-level scheduler works. When the cloud-level 
scheduler receives a request to create a container with 100 Mbps network SLO 
from a tenant, it creates a list of nodes with available network bandwidth of more 
than 100 Mbps among three nodes, which are Node 1 (N1) and Node 2 (N2) in 
Fig.  2. Between N1 and N2, the cloud-level scheduler selects a node with the 
larger number of available CPU cores. So, N1 is selected as the node to create the 
container with a network SLO of 100 Mbps. When the container is created on N1, 
the available bandwidth of N1 decreases from 300 Mbps to 200 Mbps. The node-
level scheduler on N1 receives the information of the created container and the 
network SLO from the cloud-level scheduler.

In terms of overhead, our cloud-level scheduler offers a low scheduling over-
head compared to the DRF-based scheduling algorithm. The DRF-based sched-
uling algorithm iterates resource allocation for the number of tenants (T) and 
resource types (R). Hence, the time complexity of the DRF-based algorithm is 
O(R2T)  [14] in which the scheduling overhead increases with the increase of the 
number of tenants and resource types. On the other hand, our method does not 
iterate resource allocation for the number of tenants or resource types, only for 
the number of nodes (N). Thus, the worst-case time complexity of our cloud-
level scheduler is O(N). For example, when there is only one worker node that 
has available network bandwidth larger than the network SLO of containers, the 
number of total operations for bandwidth filtering and CPU scoring is N and 1, 
respectively. When the entire worker nodes have sufficient network bandwidth for 
containers, the number of total operations for CPU scoring increases to N while 
that for bandwidth filtering is N independent of the number of CPU scoring. 

Fig. 2  Overall design
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Thus, the maximum number of operations for bandwidth filtering and CPU scor-
ing is 2N, which leads to O(N).

We implement the cloud-level scheduler of Algorithm  1 in kube-scheduler of 
Kubernetes. Note that the modified kube-scheduler conducts Algorithm 1 in addi-
tion to the existing native kube-scheduler algorithm. For example, when a container 
has the resource demands for memory and network bandwidth, the modified kube-
scheduler finds a suitable worker node with sufficient free memory size and avail-
able network bandwidth. This can support containers that have resource demands 
for multiple computing resources such as CPU, memory, and network bandwidth. In 
addition, as our cloud-level scheduler selects a node with the largest available CPU 
cores, it assigns a higher weight to the CPU cores (i.e., 10) than the memory size 
(i.e., 1). For example, when there are two nodes (N1 and N2) with available CPU 
cores (N1=50%, N2=70%) and memory sizes (N1=70%, N2=50%), our scheduler 
selects N2 with the larger available CPU cores and less available memory than N1.

3.3  Node‑level scheduler

Our node-level scheduler monitors the actual network bandwidth in a period and 
calculates the proper CPU as follows:

where CPUprev and CPUalloc indicate the CPU allocation in the previous period and 
current period. CPUalloc is calculated to be proportional to the difference between 
the SLO ( NS ) and the actual bandwidth ( NP ). In Eq. 1, k is a tunable parameter that 
determines the convergence speed. For example, the large value of k increases the 
speed for achieving the SLOs by increasing the CPU allocation in big steps. How-
ever, this can result in a large fluctuation in the network performance. When k is 
small, the performance of containers does not fluctuate much. But, as the CPU allo-
cation is changed at a slow pace, which leads to slow convergence to the network 
SLO.

We implement our node-level scheduler as a Linux kernel module (LoC is 317). 
Also, we modify the source code of the kubelet agent in order for kubelet to deliver 
the information of containers to the kernel module when the container is initialized. 
The container information includes the specifications in the description file, pro-
cess IDs, and the virtual network interface the container utilizes in the worker node. 
Based on the container information, our node-level scheduler periodically moni-
tors the number of packets processed in the virtual network interface of containers. 
When the actual performance becomes lower than the network SLO, our scheduler 
adjusts the CPU allocation using Eq. 1 by utilizing the Linux ������� . When the 
actual performance exceeds the network SLO, our node-level scheduler adjusts CPU 
allocation to reduce the allocation for the containers. In our implementation, the 
period is set to one second, which is found to be the best empirically [15]. Note that 
our cloud-level and node-level schedulers are designed to be separate components in 
the hybrid architecture.

(1)CPUalloc = CPUprev + CPUprev ∗ k ∗ {(NS − NP)∕NS}
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4  Evaluation

We conduct two sets of experiments. First, we evaluate the scheduling overhead of 
the proposed technique using large-scale simulation. Also, we compare the overhead 
with that of native Kubernetes and DRF to show that our cloud-level scheduler only 
incurs negligible overhead, which is much lower than DRF. Second, we measure the 
actual performance of containers on a rack-scale cluster environment when multiple 
containers run concurrently.

4.1  Scheduling Overhead Analysis

Because container scheduling deals with numerous nodes and containers, it is essen-
tial to offer low scheduling overhead for high scalability [20]. We evaluate the sched-
uling overhead by measuring the scheduling completion time (SCT). SCT indicates 
the time spent selecting the appropriate node for containers.

4.1.1  CloudSim evaluation

For the experiment, we utilize a representative cloud simulator, CloudSim [21], and 
measure the total SCT for creating the entire containers. Figure 3 shows the results 
of the CloudSim where there are 400 nodes and 300 containers. For the native 
Kubernetes (i.e., k8s) experiments, we assign the resource demand of containers for 
CPU and memory in a random manner, while we (Ours in Fig. 3) use the proposed 
technique for network SLOs for the experiments. Also, for DRF experiments, we 
vary the number of tenants (i.e., x-axis) denoted as DRF-N, DRF-N/4, and DRF-
N/8, which indicate the number of tenants in each experiment, where N means the 
number of containers. In other words, DRF-N/4 indicates that the number of tenants 
is 300

4
.

Figure 3 illustrates that the proposed technique only increases scheduling over-
head by 2% compared to native Kubernetes on average. This is because the band-
width filtering and CPU scoring of the proposed technique do not require complex 
arithmetic calculations. Moreover, our implementation based on native Kubernetes 

Fig. 3  CloudSim result
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utilizes the existing operations of native Kubernetes and embeds several func-
tionalities for our scheduler. For example, in native Kubernetes, kube-scheduler 
retrieves the worker node information, such as the number of available CPU cores 
and free memory size. We modify kube-scheduler to include the available network 
bandwidth in addition to the existing worker node information. As our cloud level 
minimizes the additional operations in kube-scheduler, the overhead caused by the 
proposed technique becomes negligible. On the other hand, the SCT values with 
DRF-N, DRF-N/4, and DRF-N/8 increase by 10%, 8%, and 7%, respectively, com-
pared to that with native Kubernetes. The reason is that the dominant fair share of 
each tenant needs to be calculated and updated to guarantee fairness between the 
tenants. As a result, with the largest number of tenants, DRF requires 112 ms on 
average to create 300 containers, while the proposed technique only consumes 104 
ms on average.

4.1.2  Support for different configurations

Next, we conduct a simulation with various configurations, such as the number of 
nodes and containers. Under each configuration, we measure the total SCT for creat-
ing the entire containers. For the experiment, we had to build our simulator due to 
the scalability issue of CloudSim, which cannot run more than 700 containers. Also, 
we present the results as the normalized SCT, where one indicates the results of 
DRF-N. This is because the values of SCT in the simulation vary depending on the 
configurations and the experiment environments. Figure  4a shows the normalized 
SCT with the increasing number of nodes when the number of containers is fixed 
as 2,000. As in the previous experiment, the number of tenants increases from N/10 
to N. The scheduling overhead of our cloud-level scheduler increases by 1.8× (from 
0.072 to 0.135) as the number of nodes increases from 100 to 300. This is because 
the time complexity of Algorithm 1 is only dependent on the number of nodes.

With 300 nodes, our cloud-level scheduler reduces the overhead by 640% and 
45% compared to DRF-N and DRF-N/5, respectively. However, our scheduler offers 
scheduling overhead higher than that of DRF-N/10. This is because the time com-
plexity of our cloud-level scheduler and DRF is O(N) and O(T), respectively, where 
N denotes the number of nodes while T indicates the number of tenants. As there are 
2000 containers, the number of tenants with DRF-N/10 is 200, less than the number 

Fig. 4  Scheduling overhead of our technique and DRF with different configurations
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of nodes. As a result, the overhead of our cloud-level scheduler can become higher 
than that of DRF when the number of nodes is larger than the number of tenants.

Figure  4b depicts the scheduling overhead comparison between DRF and our 
scheduler when the number of nodes is fixed to 200 with increasing containers from 
2000 to 4000. We find that our technique outperforms all DRF cases. This is because 
the scheduling overhead of DRF increases as the number of containers and tenants 
also increases. This is different from our technique, which is not affected by the 
number of tenants. Moreover, when the number of containers increases, the schedul-
ing overhead of our technique does not increase but decreases. This is because the 
absolute SCT of DRF-N increases with the increase in containers. For example, the 
absolute SCT of DRF-N increases by 3.6× (from 0.54 to 1.94) when the number of 
containers increases from 2000 to 4000. On the other hand, the absolute SCT of 
our technique only increases by 1.9× , which decreases the normalized SCT of our 
technique.

At last, Fig. 4c illustrates the change of scheduling overhead when the number of 
nodes and containers increases. We increase the number of nodes from 100 to 400 
while increasing the number of containers from 2000 to 4000. The result shows that 
our cloud-level scheduler offers the lowest scheduling overhead independent of the 
number of nodes and containers. For example, with 200 nodes and 4000 contain-
ers, the proposed technique reduces the scheduling overhead by 22× compared to 
DRF-N. Even though DRF-N/5 and DRF-N/10 offer low scheduling overhead com-
pared to DRF-N, they show some increase in scheduling overhead as the number of 
nodes and containers increases. However, our scheduler does not show any increase 
in scheduling overhead but decreases when the number of nodes and containers 
increases. Although this does not mean a decrease in the absolute SCT, it indicates 
that the SCT of our scheduler does not increase linearly with the increase in nodes 
and containers.

4.2  Container performance analysis

Now, we run two sets of experiments to evaluate the performance of containers run-
ning with the proposed technique. For experiments, we utilize the actual deployment 
that consists of 10 physical servers connected via a 10 GbE network switch. Each 
server runs either native Kubernetes or modified Kubernetes with our implementa-
tion on Ubuntu 18.04 and Linux kernel version 5.3. Note that the version of Kuber-
netes is 1.18.3, while the container runtime is Docker version 19.03. The servers 
are equipped with an Intel Xeon CPU E5-2650v3@2.3 GHz (10 cores), 128 GB 
memory, and 256 GB SSD.

First, we utilize four servers among 10 servers and configure the experimental 
environment with one master node, two worker nodes, and an evaluation machine. 
We create 30 containers on the two workers, and the containers have two different 
SLOs in a random manner (100 Mbps or 300 Mbps). Second, we utilize 10 serv-
ers in total and assign one master node, six worker nodes, and three evaluation 
machines. Then, we increase the number of containers for experiments to 100 while 
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specifying four different SLOs (e.g., 100 Mbps, 200 Mbps, 300 Mbps, and 400 
Mbps) randomly to each container. Note that we specify the network SLOs in the 
description file of containers without any resource demand for CPU or memory for 
both the proposed technique and native Kubernetes.

For experiments, we utilize the Netperf [22] benchmark to measure the network 
performance of containers and configure the containers running on the worker node 
to transmit 64 B TCP packets to the evaluation machine. Note that we present the 
cumulative distribution function (CDF) (y-axis) of normalized performance (y-axis) 
in which one indicates the value of SLOs. At last, we compare the results of our 
technique with that of native Kubernetes (i.e., k8s).

Figure 5a shows that most of the containers satisfy SLOs with the proposed tech-
nique. Among 30 containers, only three (i.e., 10%) achieve network performance 
less than 90% of the SLO, while the rest satisfy the SLO. On the other hand, with 
native Kubernetes, 40% of containers achieve network performance less than 90% of 
the SLO. This means that our scheduler shows 4 × better performance than Kuber-
netes. Note that we set the degree of SLO achievement to 90% which is generally 
utilized as the low bound in most of the previous studies [23–25].

The major reason for the performance degradation in native Kubernetes is the 
lack of considerations for network SLOs in container scheduling. Native Kubernetes 
does not consider the network SLOs in container scheduling, but the containers have 
different network SLOs, such as 100 Mbps and 300 Mbps, which require different 
amounts of CPU cores. This can bring CPU contention in the worker node that runs 
containers with network SLOs of 300 Mbps. Actually, we find that the containers 
with network SLOs of 300 Mbps suffer from severe performance degradation com-
pared to others with network SLOs of 100 Mbps. The average network bandwidth of 
the containers with network SLOs of 300 Mbps is 270 Mbps while that of the con-
tainers with network SLOs of 100 Mbps is 105 Mbps on native Kubernetes.

On the other hand, our node-level scheduler dynamically allocates CPU cores to 
containers depending on the network SLOs using Eq. 1. This enables containers to 
receive proper CPU cores to achieve the network SLO. Thus, the containers with a 
network SLO of 300 Mbps receive a larger number of CPU cores than those with a 

Fig. 5  Normalized performance of containers with different SLOs
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network SLO of 100 Mbps. In addition, the cloud-level scheduler assigns a worker 
node with the largest amount of available CPU cores among the entire worker nodes. 
If a worker node is busy with multiple containers that require a large number of 
CPU cores, it is not selected by the cloud-level scheduler. As a result, the integrated 
scheduling of the cloud-level and node-level scheduler enables containers to achieve 
the network SLOs effectively.

Figure  5b depicts the normalized performance of 100 containers under native 
Kubernetes and our scheduler, respectively. We find that the increasing number of 
containers and worker nodes aggravates the performance degradation of containers. 
With native Kubernetes, 22 containers achieve low network performance decreasing 
to half of the SLO, while 44 containers achieve network performance of less than 
80% of SLOs. Only 24 containers (i.e., 24%) satisfy SLOs by achieving normalized 
performance ranging from 0.9 to 1.0. Similar to Fig. 5a, the reason for the perfor-
mance degradation is CPU contention in specific worker nodes. When native Kuber-
netes distributes containers to worker nodes, the CPU usage of containers varies 
depending on the network SLOs of the containers. We find that a worker node runs 
the largest number of containers with network SLOs of 400 Mbps, which allows the 
containers on the worker node not to receive sufficient CPU allocation.

Our scheduler mitigates the CPU contention and reduces the number of contain-
ers that achieves 50% of SLOs to three, which is a 7 × reduction. The number of 
containers that achieve normalized performance ranging from 0.9 to 1.0 is 60 with 
our scheduler, which is 2.5× higher than native Kubernetes. Overall, our scheduler 
increases the ratio of containers that satisfy SLOs (normalized performance ranging 
from 0.9 to 1.0) by 1.6× compared to native Kubernetes. Also, it reduces the number 
of containers that fail to satisfy SLOs (normalized performance less than 0.9) by 
41%. This indicates that our node-level scheduler enables containers to satisfy dif-
ferent SLOs simultaneously by offering a proper CPU allocation depending on the 
SLOs.

5  Related Work

This section describes relevant studies to this paper, including multi-resource sched-
uling that has been actively researched for cloud environments. As jobs (e.g., con-
tainers) in clouds share computing resources (e.g., CPU, memory, and network 
bandwidth) simultaneously, they suffer from performance interference and SLO vio-
lation. The primary goal of multi-resource scheduling is to resolve such issues and 
improve resource utilization and system efficiency while offering fairness between 
tenants.

DRF [11] and H-DRF [13] are representative multi-resource schedulers. They aim 
to provide fairness in resource allocation by applying the generalization of max-min 
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fairness that maximizes the minimum allocation received by a tenant in the system for 
multiple resource types. DRF considers the heterogeneous data center applications and 
allocates the same dominant share, the maximum among all tenant shares, to all jobs. 
H-DRF applies a hierarchical structure to DRF to offer multi-resource scheduling for 
Hadoop frameworks. However, DRF and H-DRF have high-computational complexity 
because they calculate resource allocation for every tenant and resource [14].

Other studies  [14, 28–30] achieve fairness in resource allocation while solving sev-
eral issues, such as resource utilization or overhead of DRF. DC-DRF [14] is the adap-
tive approximation of DRF to reduce the time complexity for multi-resource allocation 
at a centralized controller. It presents several optimization techniques, such as parallel-
ism and NUMA-awareness, to improve the scheduling performance of the controller. 
PS-DSF [28] is a server-based DRF extension for the fair resource allocation of mul-
tiple resources in heterogeneous servers with placement constraints. PS-DSF proposes 
the max-min fairness of virtual dominant shares for tenants associated with each server 
to improve resource utilization. Carbyne [29] is an altruistic approach focusing on 
long-term fairness rather than immediate fairness. It improves average job completion 
time and cluster resource utilization by re-locating the leftover resources without vio-
lating fairness. TSF [30] is a new sharing policy that considers multi-resource shares 
for data center jobs with placement constraints. TSF suggests removing the placement 
constraint and allocating the maximum amount of resources. Even though it increases 
resource utilization by providing idle resources to tenants, it increases scheduling over-
head when there are more than 100 tasks configured to run the job, increasing the job’s 
total runtime.

Unlike most of the studies based on DRF, HUG [12] aims to increase resource utili-
zation and guarantee minimal performance, which is similar to this paper. HUG limits 
the bandwidth utilization of each tenant to ensure optimal isolation and high network 
utilization for multiple tenants. Also, HUG can satisfy the network SLOs, as it reserves 
and allocates the minimum network resources to each tenant. Even though the tech-
nique can offer minimum network bandwidth through resource reservation, it cannot 
guarantee sufficient CPU cores for achieving specific network SLOs.

Recently, several Kubernetes-based container scheduling has been introduced [2, 3, 
18, 26, 31]. They aim to optimize the current version of Kubernetes container sched-
uling by resolving performance interference and power consumption issues. However, 
most previous studies focus on allocating CPU and memory rather than network band-
width. Moreover, the studies for network bandwidth allocation do not consider net-
work SLOs. For example, a recent study [31] adopts quality of experience (QoE) as an 
SLO metric. The value of QoE is calculated by the mean opinion score built for video 
streaming services.

Table 2 demonstrates the previous studies relevant to this paper. In addition, as the 
proposed technique adopts a hybrid architecture that combines the cloud-level sched-
uler and node-level scheduler, it can support a single worker node and a cluster that 
consists of numerous worker nodes. This is different from previous studies [7, 15, 16, 
32, 33] that focus on CPU or network bandwidth allocation on a single worker node.
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6  Discussion

This paper focuses on achieving network SLOs by selecting worker nodes with suf-
ficient network bandwidth and available CPU cores. In order to provide sufficient 
CPU cores, the cloud-level scheduler assigns the highest priority to the worker node 
with the largest number of available CPU cores. This is because the required CPU 
usage of a container for achieving a specific network SLO can be found only after 
running the container on a worker node so we employ the dynamic CPU allocation 
of our node-level scheduler, which is a distinct feature of this paper.

7  Conclusion

This paper proposes a new container scheduling technique for achieving network 
SLOs in the Kubernetes environment. The proposed technique consists of the cloud-
level and node-level scheduler that considers the available network bandwidth and 
the available CPU. The cloud-level scheduler performs bandwidth filtering and 
CPU scoring to find a worker node that can offer sufficient network bandwidth and 
CPU cores. The node-level scheduler dynamically adjusts CPU allocation for con-
tainers to achieve specified network SLOs. We design and implement the proposed 
technique in Kubernetes and evaluate the scheduling overhead while measuring 
the actual performance of containers. Our evaluation results show that our tech-
nique reduces the scheduling overhead by 22× compared to DRF. This is because 
the scheduling overhead of the proposed technique is independent of the number 
of tenants different from existing DRF-based techniques. Also, when we measure 
the actual network performance of containers, the number of containers that suffer 
from performance degradation decreases by 7 × compared to native Kubernetes. This 
shows that the proposed technique is effective in achieving network SLOs of con-
tainers running concurrently.

Table 2  Comparison table

Paper Goal Architecture SLO guarantee Overhead

Our work SLO guarantee Hybrid O Low
DRF [11] Fairness Centralized X High
HDRF [13] Fairness Centralized X High
AlloX [26] Fairness, utilization Centralized X High
Kube-Sphere [2] Fairness Centralized X High
DC-DRF [27] Fairness, utilization Centralized X Low
PS-DSF [28] Fairness, utilization Hybrid X Low
Carbyne [29] Fairness, utilization Centralized X N/A
TSF [30] Fairness Distributed X High
HUG [12] Performance isolation, 

utilization
Centralized △ High
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