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Abstract
The process allocation is a problem in high performance computing, especially 
when using heterogeneous architectures involving diverse performance character-
istics such as number of cores and their frequencies, multithreading technologies, 
cache memory etc. In order to improve the application performance, it is necessary 
to consider which processing units are the most suitable to execute the applica-
tion processes. In this paper, PAARes (Process Allocation based on the Available 
Resources) strategy is implemented that automatically collects the system informa-
tion for the process distribution by considering the processing capacity of each node 
in a cluster and their available resources. To demonstrate the efficiency and efficacy 
of the proposed strategy, the NAS (NASA Advanced Supercomputing) parallel 
benchmark is run on homogeneous and heterogeneous clusters under both dedicated 
and non-dedicated environments.
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1 Introduction

In recent years, the use of computer clusters and the Message Passing Interface 
(MPI) tool have been proven to solve large processing simulation problems such 
as: molecular dynamics [1–3], particle diffusion [4, 5], sinoatrial node cells 
synchronization [6], porous networks behavior [7, 8], machine learning [9, 10], 
among many others. This is mainly due to the decreasing price of computing 
infrastructure and the increasing processing capacity.

It is common for clusters to initially maintain a homogeneous infrastructure; 
however, in order to keep clusters updated, new infrastructures haven been fre-
quently incorporated to make them heterogeneous. Due to this fact, when a par-
allel application is executed on a cluster it is convenient to use the most suit-
able nodes, in order to reduce response time. This leads to solve a task allocation 
problem [11, 12] where the most appropriate processors should be selected to 
execute specific application processes.

The process allocation to cluster processors can be as simple as blindly assign-
ing a process to a single core randomly selected; however the response time can 
be affected while selecting nodes with scarce available resources. Another general 
algorithm for process allocation is the one used when running an MPI application 
where processes are assigned to processing units following a cyclic order looking for 
the load balance. More than one MPI process should be allocated when number of 
them is larger than the available processing units. However, this solution may have a 
problem if the slowest processor has to run processes that require a high processing 
time. On the other hand, many hardware characteristics and load information criteria 
could be considered for processor selection, such as: number of logical cores (mul-
tithreading technology), different levels and sizes of cache memories L1, L2, and 
L3, Random Access Memory (RAM) organization—Uniform Memory Architecture 
(UMA) or Non Uniform Memory Architecture (NUMA)—, processing speed, com-
munication latency, etc. However, considering all these elements and resources can 
result in a complex allocation algorithm, requiring specific information provided 
by users about the behavior of their applications (for example, the communication 
graph or a processing cost estimation) or the cluster characteristics.

In this paper we propose PAARes (Process Allocation based on the Available 
Resources), an algorithm for process allocation on cluster nodes that takes into 
account the following resource information of each node: processor type (physical 
or logical cores—Multithreading—), frequency (processor speed), cache memory 
(all levels, for example L1, L2, and L3), and load (number of running processes). 
Based on the aforementioned information, the nodes are ordered considering their 
processing availability. The nodes having higher processing availability are prior-
itized by placing them first and the overloaded are at last of a list. The PAARes 
algorithm works in three phases, firstly, it automatically and transparently gathers 
information about the resources of each node, avoiding the need of a user to provide 
any information. Secondly, a set of keys is generated for comparing the characteris-
tics of different nodes. Thirdly, the construction of an ordered node list is carried out 
and finally, the generated list is used for the allocation of the processes in the nodes.
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To compare the performance of our approach, PAARes is integrated in the dis-
tribution of processes performed by OpenMPI using the applications of NPB (NAS 
Parallel Benchmarks) [13]. Using PAARes, before each execution, the nodes with 
the lowest load or the highest processing capacity are selected, in order to reduce the 
execution time when an MPI application is executed.

The rest of the document is structured as follows: Sect.  2 presents the state of 
the art of process allocation algorithms. In Sect. 3, the proposed PAARes algorithm 
is described. Section 4 shows the experimental setup considered for comparing our 
proposal performance. In Sect.  5 the obtained results are presented, and finally, 
Sect. 6 includes the conclusions and future work.

2  Related works

In order to reduce the execution time of cluster applications, the processes distribu-
tion problem has been studied in several works. Some blind allocation policies do 
not consider any information to choose the processing unit where a process will be 
executed.

In [14, 15] the selection of processors is considered based on the requirements of 
the user application, such as a specific number of nodes, the number of processors 
per node, and a minimum amount of memory. If the required resources are avail-
able, one process is assigned per each processing unit to run the application, and 
otherwise, the application is not executed. The main disadvantage of this allocation 
policy is that heavy processes are not necessarily assigned to the nodes with higher 
processing capacity, but to those that comply with the requirements. Another exam-
ple of this type of allocation is found in MPI implementations.

Most MPI distributions use by default a cyclic Round Robin policy, where an 
assignment can be carried out by Processing Units (PU) or by Nodes [16–18] selec-
tion. Using an assignment generated by PU selection, a process per processor or 
core on a single node is usually assigned, if there are more processes to allocate they 
are distributed to the next node, and so on until all processes are allocated. In an 
assignment completed by Nodes selection, a process per each cluster node is allo-
cated, if the number of processes is greater than the number of nodes the procedure 
is repeated several times until all processes are allocated. Both policies are blind 
since they use a list of node IP addresses or node names provided by the user to 
establish the processes distribution order which is sequentially read by MPI to select 
a node.

Other works [19, 20] take into account theoretical models, assuming that there 
is prior knowledge of the processes behavior such as the time in which a process is 
incorporated into the cluster and the execution time of each process. This informa-
tion is used to define an execution configuration reducing the response time of the 
cluster processes on average. Although theoretical models look for obtaining opti-
mal assignments, it is often difficult (or impossible) to have the information they 
refer to (such as the execution time of a process); besides, the optimal allocation of 
resources is known to be a problem with computational complexity (NP-Complete 
problem [21]).
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Approaches such as [22–25] consider the way in which the processes of an 
application communicate, allocating in the same processor the processes that 
communicate more frequently, thus decreasing network communications and 
reducing latency. In [22, 25] a parallel application is first executed at least once 
to trace the processes interaction and build a communication graph. The pro-
cesses are finally assigned based on the level of communication they maintain, 
following the graph information. In [23] the assignment of processes to cluster 
nodes is done considering the number of network cards that each node has. The 
processes are assigned by network card looking for the balance of communi-
cations and intending to avoid bottlenecks. In [24] a logical tree is generated 
to represent the cluster hardware (nodes, cores per node, etc.) where the cores 
correspond to the leaves of the tree. Then, a communications map is defined 
where the interaction (communication) between the application processes is rep-
resented. Processes that carry out more communications form groups that are 
assigned to nodes based on the generated tree. Assigning them to the same node 
strengthens local communication and reduces cost. Although this solution helps 
reduce latency, it is not practical as it requires the user to provide information 
that is not always available or easy to obtain about how processes interact.

We can also find some assignment policies that analyze more specific infor-
mation about the available hardware to decide processes assignment and improve 
the performance of applications. Some MPI distributions (for example [26–29]) 
consider the hardware of a cluster, allowing a range of possible assignments of 
processes based on the characteristics and quantity of cluster nodes, processors, 
cores, cache memory levels L1, L2 or L3 (without considering their sizes, only if 
they are present), or the memory architecture of nodes (UMA or NUMA). While 
these works consider different aspects of hardware, they have two main disad-
vantages. The first disadvantage is that these assignments are very dependent 
on the specification of the required hardware; for example, if a process defines 
the restriction of using L3 cache to run on one of the most recent computing 
hardware, the nodes that do not have the required cache level will not be consid-
ered for collaboration even though they may have the best available processing 
resources. Another drawback is that developers must indicate (and know) the 
hardware characteristics required for execution. The second disadvantage is that 
if there is a multiprogramming environment where a node executes processes 
from different applications, the assignment of processes made by these MPI dis-
tributions does not consider the overloading that may exist in some nodes.

In this paper we propose a process allocation strategy called PAARes (Process 
Allocation based on the Available Resources) which is based on the construc-
tion of a node list where nodes of a dedicated or non-dedicated cluster are sorted 
considering their available processing capacity. It is achieved by collecting the 
hardware resources and the load state information of each node to determine its 
processing capacity. The assignment of processes to nodes is then guided by the 
ordered node list. In the next section this algorithm is described in detail.
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3  Process allocation proposal

The purpose of this algorithm is to decrease parallel application execution time 
by determining a process allocation based on the generation of a properly ordered 
list of cluster nodes. Considering each node available processing and cache 
capacities; the nodes with higher processing capacity are at the beginning of the 
list while the slower nodes are located at the end of the list. Algorithm 1 shows 
the general PAARes algorithm that should be performed when an MPI paral-
lel application is going to be launched, the list parameter is a list containing the 
names of the existent cluster nodes.

The PAARes strategy is carried out in three main phases or stages which are 
the information gathering, information analysis, and the process allocation. The 
first two phases are executed by the lines 2–5 of Algorithm 1. In these phases, a 
view of the characteristics and load state of the nodes is obtained and analyzed 
to quantify their processing availability by means of the initialization of four key 
values per node. The third phase is performed by lines 4–6, which include the 
ordering of the nodes according to their calculated key values and finally the allo-
cation of the application processes. Each one of these stages are described below.

3.1  Information gathering

A fundamental phase of the PAARes algorithm is the information gathering to 
obtain a measure of the resources usage and workload state of each node on a 
cluster. PAARes works on a Linux-cluster and gathers the following information 
from each node. 

1. The number of processing cores
2. The maximum core frequency in MHz
3. Memory cache characteristics
4. The number of running processes.
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Algorithm 2 details the information gathered to estimate the available resource of 
a node. This includes the number of physical cores per node (line 2), the number 
of logical cores (line 3), the maximum frequency of cores (line 4), the amount 
of cache memory at the different levels (line 5), and the number of running node 
processes (line 6) which uses more than 5% CPU (most system processes use less 
than 5%).

Li is an array that stores the amount of memory in each particular level of 
cache; currently, most nodes have three cache levels: L1, L2, and L3. For sim-
plicity, all cache memories are considered to have the same frequency or speed, 
regardless of their level.

These data are extracted from operating system commands that describe the 
hardware. For example, with /proc/cpuinfo, lscpu , or ps system commands it is 
possible to get the amount of cores and their frequencies (Fig. 1 shows an exam-
ple of the output of cpuinfo command). It is worth mentioning that this is not the 
only way to obtain information of the used resources, commands are continuously 
being developed to allow monitoring and obtaining system resources information, 
for example hwloc and numactl [30, 31].

Fig. 1  Processor information 
obtained from a cpuinfo com-
mand
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3.2  Information analysis

After the information gathering of each node, PAARes generates a set of four 
values or keys which refer to the processing capability available in each node. 
The larger the key values, the higher the available processing throughput on a 
node. The four keys generated by PAARes are listed below. 

1. key1 : A numeric value that defines the processing capacity of each node. It is 
calculated by Eq. (1): 

 This key value considers the physical and logical cores, their frequency and 
the number of processes currently running on the node. As it is observed, key1 
is calculated in two parts: firstly, the total number of cores is multiplied by the 
maximum core frequency to obtain a total node processing capacity; although 
the number of logical cores could be equal to this of the physical cores, they do 
not obtain the same processing gain as the physical ones; in [32, 33] the reported 
gains using the logical cores only reached between 30% and 50%. For the above 
mentioned, in key1 the number of logical cores is divided by 2 to obtain a gain 
of 50%. In the second part, a penalty is added by dividing the processing capac-
ity between the number of already running processes on the node, loadi + 1 . 
When a large number of processes is being executed on a specific node, key1 will 
obtain lower values.

2. key2 : It is defined by the maximum amount of L3 cache memory associated with 
a core. If the kernel does not have this cache type, the value of this key is 0.

3. key3 : This key value is initialized with the maximum amount of L2 cache memory 
associated with a core. If the kernel does not have an L2 cache, the value of this 
key is 0.

4. key4 : The maximun amount of L1 cache memory associated with a core initializes 
this key.

Table 1 shows an example of a cluster with 6 nodes. For each node, the informa-
tion about physical cores, logical cores, core frequency, cache memory L3, L2, 
and L1, and the number of processes using more than 5% CPU (Load) is given. 
In this example, it can be seen that not all nodes have logical cores and L3 cache 
memory (it is a heterogeneous cluster). Moreover, the only node that has a Load 
value greater than 0 is node 3. Table 2 shows the calculated key values using the 
algorithm of the last paragraph.

(1)
key1 =

(

info.nb_Pcores +
info.nb_Lcores

2

)

× info.frequency

info.p_load + 1
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3.3  PAARes process allocation

The key values information is taken into account to build a sorted node list. 
Based on the position of nodes in the list, their processing availability is defined. 
The first nodes are those considered to have more available resources (therefore 
the highest processing throughput), and the nodes located at the end of the list are 
identified as the more overloaded. The PAARes strategy to build the sorted list is 
given in Algorithm 3.

The ordering of nodes (lines 2–5) in the list considers the four key attributes. 
All nodes are first sorted by key1 in descending order (line 2), leaving the node 
with the highest key1 value at the beginning of the list.

Whether two nodes get the same key1 value, the key2 , key3 and key4 are used 
to decide which of them should be placed before the other (lines 3–5); in case 

Table 1  Example of a set of 6 cluster nodes and their resources

Nodes Physical cores Logic cores Frequency L3 L2 L1 Load

Node 1 4 0 3 0 2048 32 0
Node 2 4 0 3 0 2048 64 0
Node 3 10 10 4 1408 1024 32 8
Node 4 4 4 3.4 2048 256 32 0
Node 5 4 0 2.4 0 1024 32 0
Node 6 6 6 3.5 1408 1024 32 0

Table 2  Keys values of the 
nodes described in Table 1

Nodes key1 key2 key3 key4

Node 1 12 0 2048 32
Node 2 12 0 2048 64
Node 3 6.6 1408 1024 32
Node 4 20.4 2048 256 32
Node 5 9.6 0 1024 32
Node 6 31.5 1408 1024 32
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all keys have same values, both nodes are placed one after the other, indistinctly, 
illustrated in Tables 2, 3, and 4.

Table 3 shows the nodes of Table 2 after being sorted by key1 . From the table, 
it can be observed that node 6 gets the first position (with key1 value = 31.5) and 
node 3 the last one (with key1 value = 6.6) in the list. Here, nodes 1 and 2 get the 
same key1 value; in this case the algorithm considers the other key values to find out 
which of them should be placed before the other. Since both key2 and key3 values are 
the same for node 1 and node 2, the key4 value is used to decide the final ordering. 
Node 2 (with key4 = 64 ) is then placed before node 1 (with key4 = 32 ), obtaining 
the results given in Table 4.

After the ordering steps, a file called hostfile is generated (line 7 of Algorithm 1) 
storing the sorted list (only considering the name of the nodes or their IP addresses). 
Before the execution of a parallel program, the hostfile file is read (line 8 of Algo-
rithm 1) to first use the nodes with the highest processing availability found at the 
beginning of the file, running the application processes following an assignment by 
PU policy.

4  Experimental setup

The NAS Parallel Benchmarks (NPB) [13] contain a set of MPI programs intended 
to evaluate parallel computers mainly in terms of processing and memory perfor-
mance. In this work the NPB kernel is used to compare the performance of PAARes 
vs the OpenMPI’s default distribution policy which consists of a process mapping by 

Table 3  Example of values of 
the four keys for each node of 
Table 2; nodes ordered by the 
value of key1

Nodes key1 key2 key3 key4

Node 6 31.5 1408 1024 32
Node 4 20.4 2048 256 32
Node 1 12 0 2048 32
Node 2 12 0 2048 64
Node 5 9.6 0 1024 32
Node 3 6.6 1408 1024 32

Table 4  Final arrangement 
obtained by ordering nodes 1 
and 2 by key4

Nodes key1 key2 key3 key4

Node 6 31.5 1408 1024 32
Node 4 20.4 2048 256 32
Node 2 12 0 2048 64
Node 1 12 0 2048 32
Node 5 9.6 0 1024 32
Node 3 6.6 1408 1024 32
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Processing Units (by slot1[18, 34]), using a user-provided node list. The application 
characteristics and the used experimental infrastructure are described below.

4.1  Applications

The characteristics of the five NPB kernel applications are the following: 

1. IS (Integer sorted) application: The main cluster challenge executing this program 
is to perform random accesses in memory.

2. EP (Embarrassingly parallel) application: The objective of this application is to 
execute independent tasks, that is, processing tasks with very little or no com-
munication among them.

3. CG (Conjugate gradient) method: In this application mathematical calculations 
and irregular and distant communications are performed.

4. A simplified MultiGrid (MG) kernel: This program performs structured com-
munications2 which are short and distant, as well as an intensive use of memory.

5. Partial solution using the Fast Fourier Transform (FFT): The objective of this 
application is to evaluate the communication between all the processes.

Each of these applications contains three different classes (different problem sizes) 
represented by letters. Between each class, the problem size is increased by 4 orders 
of magnitude regarding the immediate previous class. For our proposal evaluation 
classes A (the smallest size problem), B, and C (the largest size problem) are used.

4.2  Infrastructure

The experimental infrastructure consists of two clusters, a homogeneous cluster 
(cluster 1) and a heterogeneous cluster (cluster 2). The hardware specifications and 
the operating system of each cluster are shown in Tables 5 and 6. All nodes are con-
nected through a Gigabit Ethernet switch.

The software specifications are: gcc 4.8.5 compiler version, OpenMPI version 
1.10.2, and java 1.8.0_25 SDK.

4.3  Test scenarios

The proposed PAARes strategy is compared in two scenarios: dedicated and non-
dedicated functioning. In the dedicated scenario NPB application is executed at a 
time, without the existence of external processing tasks affecting the system per-
formance. In case of a dedicated homogeneous cluster, the selection of nodes to 
allocate processes is indistinct since they all have the same characteristics and all 
their processing capacity is available, so PAARes behaves the same as OpenMPI 

2 Communications where the sender, receiver and message are well defined

1 In OpenMPI a slot is an allocation unit for a process.
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obtaining same performance; for this reason this document only presents the results 
where a difference is observed. With a dedicated scenario using a heterogeneous 
cluster PAARes considers the different processing capacities of nodes to build the 
hostfile and place the NPB processes.

The non-dedicated scenario considers a homogeneous/heterogeneous cluster 
where external interfering processes are being executed in one or more nodes to gen-
erate additional load on them. In our experiments the external load was generated by 
the execution of stress3 processes.

5  Results

In this section, the evaluation of the PAARes strategy versus the default OpenMPI 
processes distribution executing the NPB MPI applications is given, considering the 
test scenarios previously presented. The default OpenMPI process allocation algo-
rithm (assignment by slot) considers, for the heterogeneous cluster, a hostfile con-
taining a list of nodes whose order of appearance is given in Table 6, with the most 
recent nodes at the bottom. For the case of the homogeneous cluster, the hostfile 
list contains the names of nodes 1 to 6 from Table 5, all of them having the same 
characteristics.

Each reported NPB application execution time is the average of the three classes 
(A, B, and C) for the same number of processes. For each test, five comparatives 
(one per each NPB application) are presented. It is worth mentioning that PAARes 
does not need to know the intercommunication graph between processes nor the 
number of calculations of each application process, whether class A, B or C applica-
tion. To simplify the results presentation, the default OpenMPI processes distribu-
tion is named MPI. In each result graph, the number of used processes is varied, in 
cluster 1 from 2 to 32 and in cluster 2 from 2 to 64 processes.

5.1  Non‑dedicated homogeneous cluster

In a homogeneous cluster with some nodes overloaded through the execution of 
more than one application, PAARes first tries to allocate processes based on the least 
loaded nodes and then on the most loaded ones. Figure 2 shows five graphs (one per 
each NPB application) plotting the execution times obtained by PAARes and MPI. 
Here, only one node has extra load executing one stress process. As described in 
Sect. 4.1, each application in the NPB has different characteristics; we can see that 
for all application types PAARes obtained shorter times than the default MPI dis-
tribution, i.e., 1.9% (IS with 32 processes) and 73.5% (CG with 2 processes) less 
execution time.

3 Process that generates load on the CPU performing floating point operations.
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Fig. 2  Average execution for the NPB applications on the non-dedicated homogeneous cluster (cluster 1)

Fig. 3  Average execution for the NPB applications on the dedicated heterogeneous cluster (cluster 2)
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5.2  Dedicated heterogeneous cluster

In a dedicated heterogeneous cluster, PAARes first selects the nodes with more process-
ing capability in order to obtain better execution time in most cases. Figure 3 shows a 
comparison between PAARes vs MPI (one per each NPB application) using the cluster 
2. In this scenario, for the FT application with 2 and 4 processes, only the problem sizes 
A and B were executed due to memory constraints that arose while running class C. In 
general, the execution time of PAARes is better in most NPB applications. As seen in 
the figure, for 64 processes while using the entire cluster the execution time is almost 
similar; however, in some cases MPI got reduced times. This is due to two factors, (i) 
the problem size and (ii) the default nodes organization of MPI. From the beginning, 
PAARes uses the nodes with the most available resources, while MPI uses them only 
when the execution involves 64 processes because the fastest nodes are at the end. As 
the characteristics of the processes regarding the processing or communications to be 
carried out are not priorly known, it could be the case that the firstly assigned processes 
have a lower cost than the last ones, resulting in no improvement in PAARes times. 
However, the results obtained after executing the NPB applications demonstrate that 
this is a rare case which only happen when all the cluster cores are used.

5.3  Non‑dedicated heterogeneous cluster

A non-dedicated heterogeneous cluster adds another parameter to consider in pro-
cess allocation which in turn increases the degree of heterogeneity. Since the nodes 

Fig. 4  Average execution times for the NAS applications on the non-dedicated heterogeneous cluster 
(cluster 2)
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have different processing capabilities, the fastest ones will not be at the top of the list 
if they are executing extra load and the slowest ones will not be at the bottom if they 
are lightly loaded. Figure  4 shows a comparison between PAARes and MPI (one 
graph for each NPB application) using the cluster 2, with 50 % overloaded nodes in 
order to obtain a higher degree of heterogeneity. For the FFT application with 2 and 
4 processes, only the problem sizes A and B are averaged. Similar to the previous 
results, in most cases PAARes results in improved timing. It can be observed that 
when 64 processes are used, the results are very similar.

It is worth mentioning that the results in the case of MPI will depend on how the 
programmer ordered the nodes on the hostfile, while PAARes guarantees that nodes 
with less workload or more available resources will always be used first due to its 4 
keys-based sorting strategy.

6  Conclusions and future work

The allocation of processes is a challenge in applications that require high process-
ing capacity. In this paper, we proposed a process allocation strategy called PAARes 
which works in dedicated and non-dedicated environments. The algorithm proposes 
the creation of a machine file containing a sorted node list which takes into account 
the available processing capacity of the nodes, considering the physical and logical 
cores, their frequency, the different levels of cache memory existing at each node, 
and the number of running processes. In the algorithm, it is not necessary for the 
user to provide these information manually, PAARes automatically obtains informa-
tion. With the collected information, PAARes use four keys to quantify it. These 
keys are the basic criteria to perform the ordering of processing nodes.

To evaluate the proposal we employed the NAS Parallel Benchmark considering 
its 5 kernel applications executed on homogeneous and heterogeneous clusters. We 
compared the performance of PAARes with respect to the default distribution of 
OpenMPI executing the benchmark in dedicated and non-dedicated scenarios. The 
results show that PAARes give better performance compared to MPI that does not 
consider the physical and logical node characteristics for process allocation. This 
allows us to claim that by having a process assignment that takes into account more 
detailed information about the characteristics and load state of cluster nodes, in most 
cases it is possible to reduce the execution time of parallel applications without hav-
ing a previous knowledge of their communication or processing cost.

The future work is oriented to consider other information about the architecture 
of processors; for example, NUMA architecture, connected I/O devices. In case the 
information about the communication graph of the parallel applications is availa-
ble, PAARes could be extended to consider it as an additional key with the aim of 
improving performance.
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