
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:10423–10441
https://doi.org/10.1007/s11227-023-05085-7

1 3

PAARes: an efficient process allocation based
on the available resources of cluster nodes

J. L. Quiroz‑Fabián1 · G. Román‑Alonso1 · M. A. Castro‑García1 ·
M. Aguilar‑Cornejo1

Accepted: 27 January 2023 / Published online: 8 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
The process allocation is a problem in high performance computing, especially
when using heterogeneous architectures involving diverse performance character-
istics such as number of cores and their frequencies, multithreading technologies,
cache memory etc. In order to improve the application performance, it is necessary
to consider which processing units are the most suitable to execute the applica-
tion processes. In this paper, PAARes (Process Allocation based on the Available
Resources) strategy is implemented that automatically collects the system informa-
tion for the process distribution by considering the processing capacity of each node
in a cluster and their available resources. To demonstrate the efficiency and efficacy
of the proposed strategy, the NAS (NASA Advanced Supercomputing) parallel
benchmark is run on homogeneous and heterogeneous clusters under both dedicated
and non-dedicated environments.

Keywords Process allocation · Message passing interface · Load distribution ·
Parallel computing · Cluster

 * J. L. Quiroz-Fabián
 jlqf@xanum.uam.mx

 G. Román-Alonso
 grac@xanum.uam.mx

 M. A. Castro-García
 mcas@xanum.uam.mx

 M. Aguilar-Cornejo
 mac@xanum.uam.mx

1 Universidad Autónoma Metropolitana, Mexico City, Mexico

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05085-7&domain=pdf

10424 J. L. Quiroz-Fabián et al.

1 3

1 Introduction

In recent years, the use of computer clusters and the Message Passing Interface
(MPI) tool have been proven to solve large processing simulation problems such
as: molecular dynamics [1–3], particle diffusion [4, 5], sinoatrial node cells
synchronization [6], porous networks behavior [7, 8], machine learning [9, 10],
among many others. This is mainly due to the decreasing price of computing
infrastructure and the increasing processing capacity.

It is common for clusters to initially maintain a homogeneous infrastructure;
however, in order to keep clusters updated, new infrastructures haven been fre-
quently incorporated to make them heterogeneous. Due to this fact, when a par-
allel application is executed on a cluster it is convenient to use the most suit-
able nodes, in order to reduce response time. This leads to solve a task allocation
problem [11, 12] where the most appropriate processors should be selected to
execute specific application processes.

The process allocation to cluster processors can be as simple as blindly assign-
ing a process to a single core randomly selected; however the response time can
be affected while selecting nodes with scarce available resources. Another general
algorithm for process allocation is the one used when running an MPI application
where processes are assigned to processing units following a cyclic order looking for
the load balance. More than one MPI process should be allocated when number of
them is larger than the available processing units. However, this solution may have a
problem if the slowest processor has to run processes that require a high processing
time. On the other hand, many hardware characteristics and load information criteria
could be considered for processor selection, such as: number of logical cores (mul-
tithreading technology), different levels and sizes of cache memories L1, L2, and
L3, Random Access Memory (RAM) organization—Uniform Memory Architecture
(UMA) or Non Uniform Memory Architecture (NUMA)—, processing speed, com-
munication latency, etc. However, considering all these elements and resources can
result in a complex allocation algorithm, requiring specific information provided
by users about the behavior of their applications (for example, the communication
graph or a processing cost estimation) or the cluster characteristics.

In this paper we propose PAARes (Process Allocation based on the Available
Resources), an algorithm for process allocation on cluster nodes that takes into
account the following resource information of each node: processor type (physical
or logical cores—Multithreading—), frequency (processor speed), cache memory
(all levels, for example L1, L2, and L3), and load (number of running processes).
Based on the aforementioned information, the nodes are ordered considering their
processing availability. The nodes having higher processing availability are prior-
itized by placing them first and the overloaded are at last of a list. The PAARes
algorithm works in three phases, firstly, it automatically and transparently gathers
information about the resources of each node, avoiding the need of a user to provide
any information. Secondly, a set of keys is generated for comparing the characteris-
tics of different nodes. Thirdly, the construction of an ordered node list is carried out
and finally, the generated list is used for the allocation of the processes in the nodes.

10425

1 3

PAARes: an efficient process allocation based on the available…

To compare the performance of our approach, PAARes is integrated in the dis-
tribution of processes performed by OpenMPI using the applications of NPB (NAS
Parallel Benchmarks) [13]. Using PAARes, before each execution, the nodes with
the lowest load or the highest processing capacity are selected, in order to reduce the
execution time when an MPI application is executed.

The rest of the document is structured as follows: Sect. 2 presents the state of
the art of process allocation algorithms. In Sect. 3, the proposed PAARes algorithm
is described. Section 4 shows the experimental setup considered for comparing our
proposal performance. In Sect. 5 the obtained results are presented, and finally,
Sect. 6 includes the conclusions and future work.

2 Related works

In order to reduce the execution time of cluster applications, the processes distribu-
tion problem has been studied in several works. Some blind allocation policies do
not consider any information to choose the processing unit where a process will be
executed.

In [14, 15] the selection of processors is considered based on the requirements of
the user application, such as a specific number of nodes, the number of processors
per node, and a minimum amount of memory. If the required resources are avail-
able, one process is assigned per each processing unit to run the application, and
otherwise, the application is not executed. The main disadvantage of this allocation
policy is that heavy processes are not necessarily assigned to the nodes with higher
processing capacity, but to those that comply with the requirements. Another exam-
ple of this type of allocation is found in MPI implementations.

Most MPI distributions use by default a cyclic Round Robin policy, where an
assignment can be carried out by Processing Units (PU) or by Nodes [16–18] selec-
tion. Using an assignment generated by PU selection, a process per processor or
core on a single node is usually assigned, if there are more processes to allocate they
are distributed to the next node, and so on until all processes are allocated. In an
assignment completed by Nodes selection, a process per each cluster node is allo-
cated, if the number of processes is greater than the number of nodes the procedure
is repeated several times until all processes are allocated. Both policies are blind
since they use a list of node IP addresses or node names provided by the user to
establish the processes distribution order which is sequentially read by MPI to select
a node.

Other works [19, 20] take into account theoretical models, assuming that there
is prior knowledge of the processes behavior such as the time in which a process is
incorporated into the cluster and the execution time of each process. This informa-
tion is used to define an execution configuration reducing the response time of the
cluster processes on average. Although theoretical models look for obtaining opti-
mal assignments, it is often difficult (or impossible) to have the information they
refer to (such as the execution time of a process); besides, the optimal allocation of
resources is known to be a problem with computational complexity (NP-Complete
problem [21]).

10426 J. L. Quiroz-Fabián et al.

1 3

Approaches such as [22–25] consider the way in which the processes of an
application communicate, allocating in the same processor the processes that
communicate more frequently, thus decreasing network communications and
reducing latency. In [22, 25] a parallel application is first executed at least once
to trace the processes interaction and build a communication graph. The pro-
cesses are finally assigned based on the level of communication they maintain,
following the graph information. In [23] the assignment of processes to cluster
nodes is done considering the number of network cards that each node has. The
processes are assigned by network card looking for the balance of communi-
cations and intending to avoid bottlenecks. In [24] a logical tree is generated
to represent the cluster hardware (nodes, cores per node, etc.) where the cores
correspond to the leaves of the tree. Then, a communications map is defined
where the interaction (communication) between the application processes is rep-
resented. Processes that carry out more communications form groups that are
assigned to nodes based on the generated tree. Assigning them to the same node
strengthens local communication and reduces cost. Although this solution helps
reduce latency, it is not practical as it requires the user to provide information
that is not always available or easy to obtain about how processes interact.

We can also find some assignment policies that analyze more specific infor-
mation about the available hardware to decide processes assignment and improve
the performance of applications. Some MPI distributions (for example [26–29])
consider the hardware of a cluster, allowing a range of possible assignments of
processes based on the characteristics and quantity of cluster nodes, processors,
cores, cache memory levels L1, L2 or L3 (without considering their sizes, only if
they are present), or the memory architecture of nodes (UMA or NUMA). While
these works consider different aspects of hardware, they have two main disad-
vantages. The first disadvantage is that these assignments are very dependent
on the specification of the required hardware; for example, if a process defines
the restriction of using L3 cache to run on one of the most recent computing
hardware, the nodes that do not have the required cache level will not be consid-
ered for collaboration even though they may have the best available processing
resources. Another drawback is that developers must indicate (and know) the
hardware characteristics required for execution. The second disadvantage is that
if there is a multiprogramming environment where a node executes processes
from different applications, the assignment of processes made by these MPI dis-
tributions does not consider the overloading that may exist in some nodes.

In this paper we propose a process allocation strategy called PAARes (Process
Allocation based on the Available Resources) which is based on the construc-
tion of a node list where nodes of a dedicated or non-dedicated cluster are sorted
considering their available processing capacity. It is achieved by collecting the
hardware resources and the load state information of each node to determine its
processing capacity. The assignment of processes to nodes is then guided by the
ordered node list. In the next section this algorithm is described in detail.

10427

1 3

PAARes: an efficient process allocation based on the available…

3 Process allocation proposal

The purpose of this algorithm is to decrease parallel application execution time
by determining a process allocation based on the generation of a properly ordered
list of cluster nodes. Considering each node available processing and cache
capacities; the nodes with higher processing capacity are at the beginning of the
list while the slower nodes are located at the end of the list. Algorithm 1 shows
the general PAARes algorithm that should be performed when an MPI paral-
lel application is going to be launched, the list parameter is a list containing the
names of the existent cluster nodes.

The PAARes strategy is carried out in three main phases or stages which are
the information gathering, information analysis, and the process allocation. The
first two phases are executed by the lines 2–5 of Algorithm 1. In these phases, a
view of the characteristics and load state of the nodes is obtained and analyzed
to quantify their processing availability by means of the initialization of four key
values per node. The third phase is performed by lines 4–6, which include the
ordering of the nodes according to their calculated key values and finally the allo-
cation of the application processes. Each one of these stages are described below.

3.1 Information gathering

A fundamental phase of the PAARes algorithm is the information gathering to
obtain a measure of the resources usage and workload state of each node on a
cluster. PAARes works on a Linux-cluster and gathers the following information
from each node.

1. The number of processing cores
2. The maximum core frequency in MHz
3. Memory cache characteristics
4. The number of running processes.

10428 J. L. Quiroz-Fabián et al.

1 3

Algorithm 2 details the information gathered to estimate the available resource of
a node. This includes the number of physical cores per node (line 2), the number
of logical cores (line 3), the maximum frequency of cores (line 4), the amount
of cache memory at the different levels (line 5), and the number of running node
processes (line 6) which uses more than 5% CPU (most system processes use less
than 5%).

Li is an array that stores the amount of memory in each particular level of
cache; currently, most nodes have three cache levels: L1, L2, and L3. For sim-
plicity, all cache memories are considered to have the same frequency or speed,
regardless of their level.

These data are extracted from operating system commands that describe the
hardware. For example, with /proc/cpuinfo, lscpu , or ps system commands it is
possible to get the amount of cores and their frequencies (Fig. 1 shows an exam-
ple of the output of cpuinfo command). It is worth mentioning that this is not the
only way to obtain information of the used resources, commands are continuously
being developed to allow monitoring and obtaining system resources information,
for example hwloc and numactl [30, 31].

Fig. 1 Processor information
obtained from a cpuinfo com-
mand

10429

1 3

PAARes: an efficient process allocation based on the available…

3.2 Information analysis

After the information gathering of each node, PAARes generates a set of four
values or keys which refer to the processing capability available in each node.
The larger the key values, the higher the available processing throughput on a
node. The four keys generated by PAARes are listed below.

1. key1 : A numeric value that defines the processing capacity of each node. It is
calculated by Eq. (1):

 This key value considers the physical and logical cores, their frequency and
the number of processes currently running on the node. As it is observed, key1
is calculated in two parts: firstly, the total number of cores is multiplied by the
maximum core frequency to obtain a total node processing capacity; although
the number of logical cores could be equal to this of the physical cores, they do
not obtain the same processing gain as the physical ones; in [32, 33] the reported
gains using the logical cores only reached between 30% and 50%. For the above
mentioned, in key1 the number of logical cores is divided by 2 to obtain a gain
of 50%. In the second part, a penalty is added by dividing the processing capac-
ity between the number of already running processes on the node, loadi + 1 .
When a large number of processes is being executed on a specific node, key1 will
obtain lower values.

2. key2 : It is defined by the maximum amount of L3 cache memory associated with
a core. If the kernel does not have this cache type, the value of this key is 0.

3. key3 : This key value is initialized with the maximum amount of L2 cache memory
associated with a core. If the kernel does not have an L2 cache, the value of this
key is 0.

4. key4 : The maximun amount of L1 cache memory associated with a core initializes
this key.

Table 1 shows an example of a cluster with 6 nodes. For each node, the informa-
tion about physical cores, logical cores, core frequency, cache memory L3, L2,
and L1, and the number of processes using more than 5% CPU (Load) is given.
In this example, it can be seen that not all nodes have logical cores and L3 cache
memory (it is a heterogeneous cluster). Moreover, the only node that has a Load
value greater than 0 is node 3. Table 2 shows the calculated key values using the
algorithm of the last paragraph.

(1)
key1 =

(

info.nb_Pcores +
info.nb_Lcores

2

)

× info.frequency

info.p_load + 1

10430 J. L. Quiroz-Fabián et al.

1 3

3.3 PAARes process allocation

The key values information is taken into account to build a sorted node list.
Based on the position of nodes in the list, their processing availability is defined.
The first nodes are those considered to have more available resources (therefore
the highest processing throughput), and the nodes located at the end of the list are
identified as the more overloaded. The PAARes strategy to build the sorted list is
given in Algorithm 3.

The ordering of nodes (lines 2–5) in the list considers the four key attributes.
All nodes are first sorted by key1 in descending order (line 2), leaving the node
with the highest key1 value at the beginning of the list.

Whether two nodes get the same key1 value, the key2 , key3 and key4 are used
to decide which of them should be placed before the other (lines 3–5); in case

Table 1 Example of a set of 6 cluster nodes and their resources

Nodes Physical cores Logic cores Frequency L3 L2 L1 Load

Node 1 4 0 3 0 2048 32 0
Node 2 4 0 3 0 2048 64 0
Node 3 10 10 4 1408 1024 32 8
Node 4 4 4 3.4 2048 256 32 0
Node 5 4 0 2.4 0 1024 32 0
Node 6 6 6 3.5 1408 1024 32 0

Table 2 Keys values of the
nodes described in Table 1

Nodes key1 key2 key3 key4

Node 1 12 0 2048 32
Node 2 12 0 2048 64
Node 3 6.6 1408 1024 32
Node 4 20.4 2048 256 32
Node 5 9.6 0 1024 32
Node 6 31.5 1408 1024 32

10431

1 3

PAARes: an efficient process allocation based on the available…

all keys have same values, both nodes are placed one after the other, indistinctly,
illustrated in Tables 2, 3, and 4.

Table 3 shows the nodes of Table 2 after being sorted by key1 . From the table,
it can be observed that node 6 gets the first position (with key1 value = 31.5) and
node 3 the last one (with key1 value = 6.6) in the list. Here, nodes 1 and 2 get the
same key1 value; in this case the algorithm considers the other key values to find out
which of them should be placed before the other. Since both key2 and key3 values are
the same for node 1 and node 2, the key4 value is used to decide the final ordering.
Node 2 (with key4 = 64) is then placed before node 1 (with key4 = 32), obtaining
the results given in Table 4.

After the ordering steps, a file called hostfile is generated (line 7 of Algorithm 1)
storing the sorted list (only considering the name of the nodes or their IP addresses).
Before the execution of a parallel program, the hostfile file is read (line 8 of Algo-
rithm 1) to first use the nodes with the highest processing availability found at the
beginning of the file, running the application processes following an assignment by
PU policy.

4 Experimental setup

The NAS Parallel Benchmarks (NPB) [13] contain a set of MPI programs intended
to evaluate parallel computers mainly in terms of processing and memory perfor-
mance. In this work the NPB kernel is used to compare the performance of PAARes
vs the OpenMPI’s default distribution policy which consists of a process mapping by

Table 3 Example of values of
the four keys for each node of
Table 2; nodes ordered by the
value of key1

Nodes key1 key2 key3 key4

Node 6 31.5 1408 1024 32
Node 4 20.4 2048 256 32
Node 1 12 0 2048 32
Node 2 12 0 2048 64
Node 5 9.6 0 1024 32
Node 3 6.6 1408 1024 32

Table 4 Final arrangement
obtained by ordering nodes 1
and 2 by key4

Nodes key1 key2 key3 key4

Node 6 31.5 1408 1024 32
Node 4 20.4 2048 256 32
Node 2 12 0 2048 64
Node 1 12 0 2048 32
Node 5 9.6 0 1024 32
Node 3 6.6 1408 1024 32

10432 J. L. Quiroz-Fabián et al.

1 3

Processing Units (by slot1[18, 34]), using a user-provided node list. The application
characteristics and the used experimental infrastructure are described below.

4.1 Applications

The characteristics of the five NPB kernel applications are the following:

1. IS (Integer sorted) application: The main cluster challenge executing this program
is to perform random accesses in memory.

2. EP (Embarrassingly parallel) application: The objective of this application is to
execute independent tasks, that is, processing tasks with very little or no com-
munication among them.

3. CG (Conjugate gradient) method: In this application mathematical calculations
and irregular and distant communications are performed.

4. A simplified MultiGrid (MG) kernel: This program performs structured com-
munications2 which are short and distant, as well as an intensive use of memory.

5. Partial solution using the Fast Fourier Transform (FFT): The objective of this
application is to evaluate the communication between all the processes.

Each of these applications contains three different classes (different problem sizes)
represented by letters. Between each class, the problem size is increased by 4 orders
of magnitude regarding the immediate previous class. For our proposal evaluation
classes A (the smallest size problem), B, and C (the largest size problem) are used.

4.2 Infrastructure

The experimental infrastructure consists of two clusters, a homogeneous cluster
(cluster 1) and a heterogeneous cluster (cluster 2). The hardware specifications and
the operating system of each cluster are shown in Tables 5 and 6. All nodes are con-
nected through a Gigabit Ethernet switch.

The software specifications are: gcc 4.8.5 compiler version, OpenMPI version
1.10.2, and java 1.8.0_25 SDK.

4.3 Test scenarios

The proposed PAARes strategy is compared in two scenarios: dedicated and non-
dedicated functioning. In the dedicated scenario NPB application is executed at a
time, without the existence of external processing tasks affecting the system per-
formance. In case of a dedicated homogeneous cluster, the selection of nodes to
allocate processes is indistinct since they all have the same characteristics and all
their processing capacity is available, so PAARes behaves the same as OpenMPI

2 Communications where the sender, receiver and message are well defined

1 In OpenMPI a slot is an allocation unit for a process.

10433

1 3

PAARes: an efficient process allocation based on the available…

Ta
bl

e
5

 C
ha

ra
ct

er
ist

ic
s o

f t
he

 C
lu

ste
r 1

 (h
om

og
en

eo
us

)

N
od

e
C

PU
 M

od
el

Ph
ys

ic
al

 c
or

es
Lo

gi
ca

l c
or

es
Fr

eq
ue

nc
y

(G
H

z)
L1

 (K
B

)
L2

 (K
B

)
L3

 (K
B

)
R

A
M

 (G
B

)
H

ar
d

D
is

k
O

S

1–
6

Q
ua

dC
or

e
A

M
D

 O
pt

er
on

 2
35

6
8

0
2.

4
64

25
6

12
,2

88
8

H
D

D
 2

50
 G

B
C

en
to

s 7

10434 J. L. Quiroz-Fabián et al.

1 3

Ta
bl

e
6

 C
ha

ra
ct

er
ist

ic
s o

f t
he

 C
lu

ste
r 2

 (h
et

er
og

en
eo

us
)

N
od

e
C

PU
 M

od
el

Ph
ys

ic
al

 c
or

es
Lo

gi
ca

l c
or

es
Fr

eq
ue

nc
y

(G
H

z)
L1

 (K
B

)
L2

L3
R

A
M

 (G
B

)
H

ar
d

di
sk

 (G
B

)
O

S

1–
5

Q
ua

dC
or

e
Q

66
00

4
0

2.
4

64
10

24
–

4
50

0
C

en
to

s 7
6–

8
D

ua
l X

eo
n

13
33

4
0

3
64

20
48

–
4

16
0

C
en

to
s 7

9
C

or
e

i5
-7

40
0

4
0

3
64

25
6

15
36

16
10

00
C

en
to

s 7
10

–1
2

In
te

l(R
) C

or
e(

TM
) i

7-
47

70
4

4
3.

4
64

25
6

20
48

16
10

00
C

en
to

s 7
13

In
te

l(R
) C

or
e(

TM
) i

7-
78

00
X

6
6

3.
5

64
10

24
14

08
12

8
10

00
C

en
to

s 7
14

In
te

l(R
) C

or
e(

TM
) i

9-
79

00
X

10
10

4
64

10
24

14
08

32
25

0
C

en
to

s 7

10435

1 3

PAARes: an efficient process allocation based on the available…

obtaining same performance; for this reason this document only presents the results
where a difference is observed. With a dedicated scenario using a heterogeneous
cluster PAARes considers the different processing capacities of nodes to build the
hostfile and place the NPB processes.

The non-dedicated scenario considers a homogeneous/heterogeneous cluster
where external interfering processes are being executed in one or more nodes to gen-
erate additional load on them. In our experiments the external load was generated by
the execution of stress3 processes.

5 Results

In this section, the evaluation of the PAARes strategy versus the default OpenMPI
processes distribution executing the NPB MPI applications is given, considering the
test scenarios previously presented. The default OpenMPI process allocation algo-
rithm (assignment by slot) considers, for the heterogeneous cluster, a hostfile con-
taining a list of nodes whose order of appearance is given in Table 6, with the most
recent nodes at the bottom. For the case of the homogeneous cluster, the hostfile
list contains the names of nodes 1 to 6 from Table 5, all of them having the same
characteristics.

Each reported NPB application execution time is the average of the three classes
(A, B, and C) for the same number of processes. For each test, five comparatives
(one per each NPB application) are presented. It is worth mentioning that PAARes
does not need to know the intercommunication graph between processes nor the
number of calculations of each application process, whether class A, B or C applica-
tion. To simplify the results presentation, the default OpenMPI processes distribu-
tion is named MPI. In each result graph, the number of used processes is varied, in
cluster 1 from 2 to 32 and in cluster 2 from 2 to 64 processes.

5.1 Non‑dedicated homogeneous cluster

In a homogeneous cluster with some nodes overloaded through the execution of
more than one application, PAARes first tries to allocate processes based on the least
loaded nodes and then on the most loaded ones. Figure 2 shows five graphs (one per
each NPB application) plotting the execution times obtained by PAARes and MPI.
Here, only one node has extra load executing one stress process. As described in
Sect. 4.1, each application in the NPB has different characteristics; we can see that
for all application types PAARes obtained shorter times than the default MPI dis-
tribution, i.e., 1.9% (IS with 32 processes) and 73.5% (CG with 2 processes) less
execution time.

3 Process that generates load on the CPU performing floating point operations.

10436 J. L. Quiroz-Fabián et al.

1 3

Fig. 2 Average execution for the NPB applications on the non-dedicated homogeneous cluster (cluster 1)

Fig. 3 Average execution for the NPB applications on the dedicated heterogeneous cluster (cluster 2)

10437

1 3

PAARes: an efficient process allocation based on the available…

5.2 Dedicated heterogeneous cluster

In a dedicated heterogeneous cluster, PAARes first selects the nodes with more process-
ing capability in order to obtain better execution time in most cases. Figure 3 shows a
comparison between PAARes vs MPI (one per each NPB application) using the cluster
2. In this scenario, for the FT application with 2 and 4 processes, only the problem sizes
A and B were executed due to memory constraints that arose while running class C. In
general, the execution time of PAARes is better in most NPB applications. As seen in
the figure, for 64 processes while using the entire cluster the execution time is almost
similar; however, in some cases MPI got reduced times. This is due to two factors, (i)
the problem size and (ii) the default nodes organization of MPI. From the beginning,
PAARes uses the nodes with the most available resources, while MPI uses them only
when the execution involves 64 processes because the fastest nodes are at the end. As
the characteristics of the processes regarding the processing or communications to be
carried out are not priorly known, it could be the case that the firstly assigned processes
have a lower cost than the last ones, resulting in no improvement in PAARes times.
However, the results obtained after executing the NPB applications demonstrate that
this is a rare case which only happen when all the cluster cores are used.

5.3 Non‑dedicated heterogeneous cluster

A non-dedicated heterogeneous cluster adds another parameter to consider in pro-
cess allocation which in turn increases the degree of heterogeneity. Since the nodes

Fig. 4 Average execution times for the NAS applications on the non-dedicated heterogeneous cluster
(cluster 2)

10438 J. L. Quiroz-Fabián et al.

1 3

have different processing capabilities, the fastest ones will not be at the top of the list
if they are executing extra load and the slowest ones will not be at the bottom if they
are lightly loaded. Figure 4 shows a comparison between PAARes and MPI (one
graph for each NPB application) using the cluster 2, with 50 % overloaded nodes in
order to obtain a higher degree of heterogeneity. For the FFT application with 2 and
4 processes, only the problem sizes A and B are averaged. Similar to the previous
results, in most cases PAARes results in improved timing. It can be observed that
when 64 processes are used, the results are very similar.

It is worth mentioning that the results in the case of MPI will depend on how the
programmer ordered the nodes on the hostfile, while PAARes guarantees that nodes
with less workload or more available resources will always be used first due to its 4
keys-based sorting strategy.

6 Conclusions and future work

The allocation of processes is a challenge in applications that require high process-
ing capacity. In this paper, we proposed a process allocation strategy called PAARes
which works in dedicated and non-dedicated environments. The algorithm proposes
the creation of a machine file containing a sorted node list which takes into account
the available processing capacity of the nodes, considering the physical and logical
cores, their frequency, the different levels of cache memory existing at each node,
and the number of running processes. In the algorithm, it is not necessary for the
user to provide these information manually, PAARes automatically obtains informa-
tion. With the collected information, PAARes use four keys to quantify it. These
keys are the basic criteria to perform the ordering of processing nodes.

To evaluate the proposal we employed the NAS Parallel Benchmark considering
its 5 kernel applications executed on homogeneous and heterogeneous clusters. We
compared the performance of PAARes with respect to the default distribution of
OpenMPI executing the benchmark in dedicated and non-dedicated scenarios. The
results show that PAARes give better performance compared to MPI that does not
consider the physical and logical node characteristics for process allocation. This
allows us to claim that by having a process assignment that takes into account more
detailed information about the characteristics and load state of cluster nodes, in most
cases it is possible to reduce the execution time of parallel applications without hav-
ing a previous knowledge of their communication or processing cost.

The future work is oriented to consider other information about the architecture
of processors; for example, NUMA architecture, connected I/O devices. In case the
information about the communication graph of the parallel applications is availa-
ble, PAARes could be extended to consider it as an additional key with the aim of
improving performance.

Author contributions Dr. José Luis and Dr. Graciela wrote the main manuscript text, Dr. Miguel and Dr.
Manuel did the experiments, Dr. José Luis and Dr. Manuel prepared figures, and Dr. Graciela and Dr.
Miguel prepared tables. All authors conceived of the presented idea, discussed the results and contributed
to the final manuscript.

10439

1 3

PAARes: an efficient process allocation based on the available…

Funding Not applicable.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Ethical approval Not applicable.

References

 1. Acun B, Hardy DJ, Kale LV, Li K, Phillips JC, Stone JE (2018) Scalable molecular dynamics
with NAMD on the summit system. IBM J Res Dev 62(6):4–149. https:// doi. org/ 10. 1147/ JRD.
2018. 28889 86

 2. Guo Z, Lu D, Yan Y, Hu S, Liu R, Tan G, Sun N, Jiang W, Liu L, Chen Y, Zhang L, Chen M,
Wang H, Jia W (2022) Extending the limit of molecular dynamics with ab initio accuracy to 10
billion atoms. In: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming. PPoPP’22. Association for Computing Machinery, New York, pp
205–218. https:// doi. org/ 10. 1145/ 35032 21. 35084 25

 3. Morillo J, Vassaux M, Coveney PV, Garcia-Gasulla M (2022) Hybrid parallelization of molecu-
lar dynamics simulations to reduce load imbalance. J Supercomput 78(7):9184–9215. https:// doi.
org/ 10. 1007/ s11227- 021- 04214-4

 4. Pérez-Espinosa A, Aguilar-Cornejo M, Dagdug L (2020) First-passage, transition path, and loop-
ing times in conical varying-width channels: comparison of analytical and numerical results. AIP
Adv 10(5):055201. https:// doi. org/ 10. 1063/5. 00040 26

 5. Qiu H, Xu C, Li D, Wang H, Li J, Wang Z (2022) Parallelizing and balancing coupled DSMC/
PIC for large-scale particle simulations. In: 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp 390–401. https:// doi. org/ 10. 1109/ IPDPS 53621. 2022. 00045

 6. Mata AN, Castellanos Abrego NP, Alonso GR, Castro García MA, Garza GL, God ínez Fernán-
dez JR (2018) Parallel simulation of sinoatrial node cells synchronization. In: 2018 26th Euro-
micro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp
126–133. https:// doi. org/ 10. 1109/ PDP20 18. 2018. 00025

 7. Cordero-Sánchez S, Rojas-González F, Román-Alonso G, Castro-García MA, Aguilar-Cornejo
M, Matadamas-Hernández J (2016) Pore networks subjected to variable connectivity and geo-
metrical restrictions: a simulation employing a multicore system. J Comput Sci 16:177–189.
https:// doi. org/ 10. 1016/j. jocs. 2016. 06. 003

 8. Ando S, Kaneda M, Suga K (2022) Permeability prediction of fibrous porous media by the
lattice Boltzmann method with a fluid-structure boundary reconstruction scheme. J Ind Text
51(4_suppl):6902–6923

 9. Pearson C, Javeed A, Devine K (2022) Machine learning for CUDA+MPI design rules. In: 2022
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp
880–889. https:// doi. org/ 10. 1109/ IPDPS W55747. 2022. 00144

 10. Alemany S, Nucciarone J, Pissinou N (2021) Jespipe: a plugin-based, open MPI framework for
adversarial machine learning analysis. In: 2021 IEEE International Conference on Big Data (Big
Data), pp 3663–3670. https:// doi. org/ 10. 1109/ BigDa ta525 89. 2021. 96713 85

 11. Al-Rahayfeh A, Atiewi S, Abuhussein A, Almiani M (2019) Novel approach to task scheduling
and load balancing using the dominant sequence clustering and mean shift clustering algorithms.
Future Internet. https:// doi. org/ 10. 3390/ fi110 50109

 12. Tyagi R, Gupta SK (2018) A survey on scheduling algorithms for parallel and distributed sys-
tems. In: Mishra A, Basu A, Tyagi V (eds) Silicon Photonics & High Performance Computing.
Springer, Singapore, pp 51–64

 13. Nasa: NASA Advanced Supercomputing Division. https:// www. nas. nasa. gov/ publi catio ns/ npb.
html# url. Accessed April 2022

https://doi.org/10.1147/JRD.2018.2888986
https://doi.org/10.1147/JRD.2018.2888986
https://doi.org/10.1145/3503221.3508425
https://doi.org/10.1007/s11227-021-04214-4
https://doi.org/10.1007/s11227-021-04214-4
https://doi.org/10.1063/5.0004026
https://doi.org/10.1109/IPDPS53621.2022.00045
https://doi.org/10.1109/PDP2018.2018.00025
https://doi.org/10.1016/j.jocs.2016.06.003
https://doi.org/10.1109/IPDPSW55747.2022.00144
https://doi.org/10.1109/BigData52589.2021.9671385
https://doi.org/10.3390/fi11050109
https://www.nas.nasa.gov/publications/npb.html#url
https://www.nas.nasa.gov/publications/npb.html#url

10440 J. L. Quiroz-Fabián et al.

1 3

 14. Feng H, Misra V, Rubenstein D (2007) PBS: a unified priority-based scheduler. SIGMETRICS
Perform Eval Rev 35(1):203–214. https:// doi. org/ 10. 1145/ 12698 99. 12549 06

 15. Zhao T, Gu J, Zhang X (2021) Two-level scheduling technology for heterogeneous clusters using
analytical hierarchy processes. In: 2021 IEEE 6th International Conference on Computer and
Communication Systems (ICCCS), pp 121–127. https:// doi. org/ 10. 1109/ ICCCS 52626. 2021.
94492 23

 16. Intel: Running an MPI Program. https:// www. intel. com/ conte nt/ www/ us/ en/ devel op/ docum
entat ion/ mpi- devel oper- guide- linux/ top/ runni ng- appli catio ns/ runni ng- an- mpi- progr am. html.
Accessed April 2022

 17. mpich: Using the Hydra Process Manager. https:// wiki. mpich. org/ mpich/ index. php/ Using_ the_
Hydra_ Proce ss_ Manag er. Accessed April 2022

 18. openmpi: Running MPI jobs. https:// www. open- mpi. org/ faq/? categ ory= runni ng. Accessed April
2022

 19. Li K (2008) Optimal load distribution in nondedicated heterogeneous cluster and grid computing
environments. J Syst Architect 54(1):111–123. https:// doi. org/ 10. 1016/j. sysarc. 2007. 04. 003

 20. Skenteridou K, Karatza HD (2015) Job scheduling in a grid cluster. In: 2015 International Con-
ference on Computer, Information and Telecommunication Systems (CITS), pp 1–5. https:// doi.
org/ 10. 1109/ CITS. 2015. 72977 38

 21. Ullman J (1975) Np-complete scheduling problems. J Comput Syst Sci 10:384–393
 22. Cao H, Jin H, Wu X, Wu S, Shi X (2010) DAGMap: efficient and dependable scheduling of DAG

workflow job in grid. J Supercomput 51(2):201–223. https:// doi. org/ 10. 1007/ s11227- 009- 0284-7
 23. Ganapathi RB, Gopalakrishnan A, McGuire RW (2017) MPI process and network device affini-

tization for optimal HPC application performance. In: 2017 IEEE 25th Annual Symposium on
High-Performance Interconnects (HOTI), pp 80–86. https:// doi. org/ 10. 1109/ HOTI. 2017. 12

 24. Jeannot E, Mercier G (2010) Near-optimal placement of MPI processes on hierarchical NUMA
architectures. In: Proceedings of the 16th International Euro-Par Conference on Parallel Process-
ing: Part II. Euro-Par’10. Springer, Berlin, pp 199–210. http:// dl. acm. org/ citat ion. cfm? id= 18852
76. 18852 99

 25. Jeannot E, Mercier G, Tessier F (2014) Process placement in multicore clusters: algorithmic
issues and practical techniques. IEEE Trans Parallel Distrib Syst 25(4):993–1002. https:// doi.
org/ 10. 1109/ TPDS. 2013. 104

 26. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P,
Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL, Woodall TS (2004) Open MPI:
Goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest, Hungary, pp 97–104

 27. Goglin B (2014) Managing the topology of heterogeneous cluster nodes with hardware local-
ity (HWLOC). In: 2014 International Conference on High Performance Computing Simulation
(HPCS), pp 74–81. https:// doi. org/ 10. 1109/ HPCSim. 2014. 69036 71

 28. Gropp W (2002) MPICH2: a new start for MPI implementations. In: Kranzlmüller D, Volkert J,
Kacsuk P, Dongarra J (eds) Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Springer, Berlin, pp 7–7

 29. Hursey J, Squyres JM (2013) Advancing application process affinity experimentation: Open
MPI’s lama-based affinity interface. In: Proceedings of the 20th European MPI Users’ Group
Meeting. EuroMPI’13. ACM, New York, pp 163–168. https:// doi. org/ 10. 1145/ 24885 51. 24886 03

 30. Goglin B (2017) On the overhead of topology discovery for locality-aware scheduling in HPC.
In: PDP2017—25th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing. Proceedings of the 25th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP2017). IEEE Computer Society, St Petersburg, p 9.
https:// doi. org/ 10. 1109/ PDP. 2017. 35

 31. Goglin B (2018) Memory footprint of locality information on many-core platforms. In: IEEE
(ed.) 6th Workshop on Runtime and Operating Systems for the Many-core Era (ROME 2018),
Held in Conjunction with IPDPS, Vancouver, BC, Canada, p 10. https:// hal. inria. fr/ hal- 01644
087

 32. Leng T, Ali R, Hsieh J, Mashayekhi V, Rooholamini R (2002) An empirical study of hyper-
threading in high performance computing clusters

 33. Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller AJ, Upton M (2002) Hyper-threading
technology architecture and microarchitecture. Intel Technol J 6(1)

 34. openmpi: mpirun. https:// www. open- mpi. org/ doc/ v4.1/ man1/ mpirun. 1. php. Accessed April 2022

https://doi.org/10.1145/1269899.1254906
https://doi.org/10.1109/ICCCS52626.2021.9449223
https://doi.org/10.1109/ICCCS52626.2021.9449223
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/running-an-mpi-program.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/running-an-mpi-program.html
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
https://www.open-mpi.org/faq/?category=running
https://doi.org/10.1016/j.sysarc.2007.04.003
https://doi.org/10.1109/CITS.2015.7297738
https://doi.org/10.1109/CITS.2015.7297738
https://doi.org/10.1007/s11227-009-0284-7
https://doi.org/10.1109/HOTI.2017.12
http://dl.acm.org/citation.cfm?id=1885276.1885299
http://dl.acm.org/citation.cfm?id=1885276.1885299
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1109/HPCSim.2014.6903671
https://doi.org/10.1145/2488551.2488603
https://doi.org/10.1109/PDP.2017.35
https://hal.inria.fr/hal-01644087
https://hal.inria.fr/hal-01644087
https://www.open-mpi.org/doc/v4.1/man1/mpirun.1.php

10441

1 3

PAARes: an efficient process allocation based on the available…

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	PAARes: an efficient process allocation based on the available resources of cluster nodes
	Abstract
	1 Introduction
	2 Related works
	3 Process allocation proposal
	3.1 Information gathering
	3.2 Information analysis
	3.3 PAARes process allocation

	4 Experimental setup
	4.1 Applications
	4.2 Infrastructure
	4.3 Test scenarios

	5 Results
	5.1 Non-dedicated homogeneous cluster
	5.2 Dedicated heterogeneous cluster
	5.3 Non-dedicated heterogeneous cluster

	6 Conclusions and future work
	References

