
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:10300–10334
https://doi.org/10.1007/s11227-023-05077-7

1 3

Cost‑efficient scheduling algorithms based on beetle
antennae search for containerized applications
in Kubernetes clouds

Hongjian Li1 · Jie Shen1 · Lei Zheng2 · Yuzheng Cui1 · Zhi Mao1

Accepted: 20 January 2023 / Published online: 5 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
With the development of cloud-native technologies, Kubernetes becomes the stand-
ard of fact for container scheduling. Kubernetes provides service discovery and
scheduling of containers, load balancing, service self-healing, elastic scaling, stor-
age volumes, etc. Although Kubernetes is mature with advanced features, it does
not consider reducing the cost in Kubernetes clouds using the factor of communica-
tion frequent between pods while scheduling pods, nor does it have a rescheduling
mechanism to save cost. Hence, we propose a cost-efficient scheduling algorithm
and a rescheduling algorithm to reduce the cost of communication-intensive and
periodically changing web applications deployed in Kubernetes, respectively. Net-
work communication-intensive pods are scheduled to the same node by the schedul-
ing algorithm based on Improved Beetle Antennae Search. According to the chang-
ing pod intimacy relationship, the rescheduling algorithm is completed through the
replacement of new and old pods to reduce the cost. In addition, this paper evaluates
the proposed algorithms in terms of cost and performance on a Kubernetes cloud.
The result shows that the cost consumption of Kubernetes clusters in cloud envi-
ronment is reduced by 20.97% on average compared with the default Kubernetes
framework.

Keywords Kubernetes · Cost-efficient · Scheduling · Rescheduling · Containers

 * Hongjian Li
 lihj@cqupt.edu.cn

1 Department of Computer Science and Technology, Chongqing University of Posts
and Telecommunications, Chongqing 400065, China

2 China Telecom Corporation Limited Chongqing Branch, Chongqing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05077-7&domain=pdf

10301

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

1 Introduction

Docker container technology, as a new generation of virtualization technology,
promotes the development of cloud computing. Compared with virtual machines,
Docker containers have features such as the lightweight, portable deployment of
containers across platforms, and component reuse [1–3]. However, the more the
number of containers increases, the more difficult container management becomes
[4–6].To solve this problem, cloud service providers (CSP) provide open-source
management systems for containers, such as Google’s Kubernetes [7], Docker’s
Swarm [8], and Apache’s Mesos [9]. Among them, Kubernetes provides service
discovery, load balancing, service self-healing, and elastic scaling for the entire
life cycle of containers [7]. Mesos is complex and requires a customized frame-
work when scheduling resources for specific jobs. [9]. Swarm is lightweight,
architecturally simple, and suitable for small to medium-sized clusters. Compared
with Kubernetes, it still has many limitations and instabilities [8]. These differ-
ences have led to the continuously rising popularity and adoption of Kubernetes
in CSP and internet giants.

However, Kubernetes remains with limited cost consumption management
policies that mainly focus on nodes’ configuration, whereas pods’ intimacy rela-
tionship is usually ignored. For instance, when the pod is scheduled, Kubernetes
mostly considers nodes that satisfy the stable operation of the pods [10–12]. This
may cause the nodes to generate fragmented resources, resulting in increased
costs. In addition, Kubernetes clusters mostly consist of offsite nodes. The net-
work communication between offsite nodes also increases the cost of Kubernetes
clusters. Therefore, it is of great significance to get a cost-efficient scheduling
strategy for cloud computing by optimizing the scheduling process of Kubernetes.

Recently, a lot of literature focusing on cost-efficient scheduling strategies
have been widely studied on the deployment of containerized applications for
Kubernetes [13–19]. For example, Zhong et al. [13] proposed a heterogeneous
task allocation strategy (HTAS) for cost-efficient container orchestration through
resource utilization optimization and elastic instance pricing. First, it supports
heterogeneous job configurations to optimize the initial placement of containers
into existing resources by task packing. Then it adjusts cluster size to meet the
changing workload through autoscaling algorithms. Finally, it shuts down under-
utilized VM instances for cost saving and reallocates the relevant jobs without
losing task progress. However, this strategy cannot start the closed nodes in time
when the pods need to be expanded, which will affect the service experience.
Rodriguez et al. [14] proposed a comprehensive container resource management
algorithm. It optimizes the initial placement of containers and scales dynami-
cally cluster resources. Ambati et al. [15] designed TR-Kubernetes. It optimizes
the cost of executing mixed interactive and batch workloads on cloud platforms
using transient VMs. Ding et al. [16] proposed a novel combined scaling method
called COPA. Based on the collected microservice performance data, real-time
workload, expected response time, and microservice instances scheme at runt-
ime, COPA uses the queuing network model to calculate a combined scaling

10302 H. Li et al.

1 3

scheme that aims to minimize the default cost and resource cost. Zhang et al.
[17] realized the model extraction of scheduling module of Kubernetes. And
the K8S scheduling model is improved by combining ant colony algorithm and
particle swarm optimization algorithm. Finally, it is scored, and the node with
the smallest objective function is selected to deploy the pod. The experimen-
tal results show that the proposed algorithm reduces the total resource cost and
the maximum load of the node and makes the task assignment more balanced.
Zhang et al. [18] considered the container image pulling costs, the workload net-
work transition costs from the clients to the container hosts and the host energy
costs. To reduce cost, it employed the integer linear programming model to solve
the native container scheduling problem. Zhu et al. [19] proposed a bi-metric
approach to scaling pods by taking into account both CPU utilization and utili-
zation of a thread pool. It addressed the problem that horizontal pod autoscaler
(HPA) of Kubernetes may create more pods than actually needed.

However, these studies mainly focused on scheduling methods by reducing
the number of worker nodes, adjusting the resource allocation of the cluster,
introducing transient VMs, and allocating appropriate resources to containers.
They did not consider cost-efficient scheduling of containerized applications
from a perspective of the relationship of communication traffic between pods.
And it is difficult to reduce the cost of Kubernetes clouds while ensuring service
experience.

To address this issue in Kubernetes clouds, there are three key concerns:
dynamicity of workload demand, the relationship of communication traffic
between pods, and cost-efficient model. To minimize the costs under a Kuber-
netes cluster, it is required for the Kubernetes system to make proper decisions
during scheduling and rescheduling. Therefore, this paper proposes a cost-effi-
cient scheduling algorithm (CE-K8S) and a rescheduling algorithm using

seasonal autoregressive integrated moving average (SARIMA) based on
the historical access log (RS-BHAL) for cost-efficient container orchestra-
tion to achieve cost optimization. Our work makes the following three key
contributions:

• A cost-efficient model is built for Kubernetes, including the energy cost of
CPU, memory, and network consumed while the pod is running and the cost
of network communication between the offsite nodes.

• Based on the cost-efficient model, the scheduling algorithm is proposed based
on the improved Beetle Antennae search (IBAS) and assigns pods with high
network communication traffic between pods to the same node as much as
possible.

• This paper describes a rescheduling algorithm that adopts the SARIMA tech-
nique to enable the replacement of new and old pods for the purpose of cost
saving while ensuring service experience.

The rest of the paper is organized as follows. Section 2 describes the related work.
Sections 3 and 4 introduce the proposed model and algorithm. Section 5 provides
the evaluation and analysis, followed by the conclusion in Sect. 6.

10303

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

2 Related work

There has been a significant amount of studies in the area of performance-ori-
ented scheduling in Kubernetes, such as improving resource utilization [20–23]
and ensuring cluster load balancing [24–26], etc.

Some studies focus on improving resource utilization of container schedul-
ing [20–23]. The Ursa framework is proposed for container resource allocation,
which makes use of the resource negotiation mechanism between job schedul-
ers and executors [20]. To improve resource utilization and reduce task container
runtime, it enables the scheduler to capture accurate resource demands dynami-
cally from the execution runtime and to provide timely, fine-grained resource
allocation based on monotasks. A new Docker controller is proposed for different
I/O types, I/O access pattern, and I/O size of container applications. The control-
ler decides the optimal batches of simultaneously operating containers in order to
minimize total execution time and maximize resource utilization. It alleviates the
problem of container resource contention and waiting when large I/O tasks and
multiple containers write I/O at the same time [21]. A container-based resource
management framework for data-intensive cluster computing, called BIG-C, is
proposed. The framework devises two types of preemption strategies: immediate
and graceful preemptions, and further develops job-level and task-level preemp-
tive policies as well as a preemptive fair share cluster scheduler. It reduces queu-
ing delays for short jobs and critical jobs and improves resource utilization [22].
An approach of managing container memory allocations dynamically is proposed
to address the problem where resource utilization is low due to allocating large
memory for containers to guarantee the demand at spike moments. By frequently
adjusting the amount of memory reserved for each container during execution,
this autonomous approach aims to increase the average number of containers that
can be hosted on a server [23].

There are some studies focusing on load balancing of container scheduling
[24–26]. Cai et al. [24] proposed a new priorities stage strategy, which takes the
storage and network bandwidth of task nodes into account, then calculates the
weight of each resource, and finally puts it into the scoring formula as the basis
of resource scheduling. Thus, the load of the task nodes in the cluster is more
balanced. Lin et al. [25] established a multi-objective optimization model for the
container-based microservice scheduling, and proposed an ant colony algorithm
to solve the scheduling problem. The algorithm considers not only the utilization
of computing and storage resources of the physical nodes but also the number
of microservice requests and the failure rate of the physical nodes. To improve
the selection probability of the optimal path, a quality evaluation function is also
used. Aruna et al. [26] proposed a new algorithm called ant colony optimization-
based lightweight container (ACO-LWC) load balancing scheduling algorithm,
which achieves load balancing of the cluster by scheduling various process
requests.

There are some studies focusing on other aspects of container scheduling. An
elastic scaling mechanism based on load prediction is proposed for PaaS cloud

10304 H. Li et al.

1 3

platforms. For periodic load changes, a series of time series of resource use are
obtained by applying historical information of operation, and then the Fourier
transform is used to synthesize each time period. Then the Fourier transform
formulas of each time period are compared to find the pattern characteristics
between different time series, so as to make a long-term prediction. Then the
mechanism uses the obtained prediction to schedule containers elastically [27].
A scheduling approach called Caravel that provides better experience to state-
ful applications in dealing with load spikes is proposed. It allows the applica-
tions to overstep the resource request during a burst and use the resources on the
same node while minimizing their evictions. Moreover, the scheduler provides a
fair opportunity to all the stateful applications to use the spare resources in the
cluster [28]. A new architecture for geographic orchestration of network intensive
software components is proposed. It automatically selects the best geographically
available computing resource within the SDDC according to the developed QoS
model of the software component. It also uses both similarity matching of ser-
vices and time-series nearest neighbor regression to predict resource demand to
ensure the QoS of services [29].

A comparison of existing works is shown in Table 1. Most of existing resource
scheduling methods do not reduce the cost of Kubernetes clouds while ensuring ser-
vice experience. However, this paper considers cost consumption, service experi-
ence and workload prediction.

3 Problem formalization

This section enumerates assumptions for container-based applications and cloud
resources, followed by the problem definition.

3.1 System model

It assumes a Kubernetes homogeneous cluster deployed on a cloud platform as a
service provider. Cloud applications are multi-copy situation web-based systems
and are charged by the configuration of the requested resources (CPU, memory,

Table 1 Comparison of related works

Works Service experi-
ence

Workload predic-
tion

Workload

Zhong et al. [13] × × Long-running and batch jobs
Rodriguez et al. [14] × × Long-running and batch jobs
Ambati et al. [15] ✓ × Mixed interactive and batch jobs
Ding et al. [16] ✓ × Long-running service
Zhang et al. [17] × × Long-running service
Zhu et al. [19] × × Long-running service
The proposed methods ✓ ✓ Long-running service

10305

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

network, disk I/O, etc.). The motivation is to ensure the high availability of
multiple replicas and relatively optimal total costs for offsite nodes. Hence, our
assumptions are listed next.

For web systems, pods are assumed to need to meet the following two
requirements:

1. The same type of pod copy set cannot be placed on the same node.
2. The sum of pod affinity on all nodes must meet the maximum. The node resources

can fully satisfy the needs of pods. The pods of all types are placed under the
above first requirement. The resources required by pods on a node will not exceed
the limit of the node.

3. There are no hard scheduling constraints defined in pods configurations.
4. Pods could be migrated without progress loss.
5. Each task may have dependencies on others. Task structure is directed acyclic

graph.

The nodes are deployed offsite, i.e., different servers are selected between multi-
ple regions to form a cluster. The multi-copy web system architecture of Kuber-
netes is shown in Fig. 1. All nodes are homogeneous, i.e., each node has the
same hardware and software resources, and pods are only deployed on the worker
nodes.

Fig. 1 The multi-copy web system architecture of Kubernetes

10306 H. Li et al.

1 3

3.2 Problem definition

For the cost-efficient model, the set of nodes of the Kubernetes clus-
ter is Nodes =

{
Node1,Node2,⋯ ,Nodem

}
 , the set of pod types is

Pods =
{
Pod1,Pod2,⋯ ,Podn

}
 , where n and m represent the number of pod types

and the number of nodes, respectively.
In the case of multi-copy deployment, the number of copies for each type of

pods is not necessarily the same. Therefore, all pods are defined as the following
formula 1:

where Podm,kn is the knth copy of the pod of type m. k1, k2, kn are the number of
each type of pod, respectively. The value of ki needs to be greater than or equal to 2
in order to meet the high availability case. When different copies are located in dif-
ferent nodes, if one node fails, the other replica located in the other node can also
guarantee to provide normal functions to users.

Service access to pods in Kubernetes clusters is done using Round-robin (RR).
When the network traffic between pods of different types is to be counted, the
traffic between each replica of pods of different types is counted. Thus, the net-
work traffic between the pod of ith type and the pod of jth type is expressed as the
following formula 2:

 where NetFlow represents the network traffic between two copies, NetFlowPod is
the network traffic between two pod types. Podi is the pod of the type i, and Podi, �
is � th copy of the pod of the type i. Because the network communication between
pod on the same node is not forwarded by the network card, that is, the forwarding
cost of the network card is not required, if (Podi, �,Podj,�) on the same node, as
shown in the following formula 3:

The pod set with communication relationship of Podi is called APodi , namely pod
set with intimate relationship, then the total traffic NetFlowPods(Podi) of pod of type
i is the following formula 4:

All pods traffic is expressed as the following formula 5:

(1)Pods =

⎡
⎢⎢⎢⎣

Pod1,1 Pod1,2 ⋯ Pod1,k1
Pod2,1 Pod2,2 ⋯ Pod2,k2
⋮ ⋮ ⋱ ⋮

Podm,1 Podm,2 ⋯ Podm,kn

⎤
⎥⎥⎥⎦

(2)NetFlowPod(Podi,Podj) =

ki∑
�=1

kj∑
�=1

NetFlow(Podi,�,Podj,�)

(3)NetFlow(Podi,�,Podj,�) = 0

(4)NetFlowPods(Podi) =
∑

Pod�∈APodi

NetFlowPod(Podi,Pod�)

10307

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

The collection of CPU resources and memory resources consumed for pods is repre-
sented as the following formula 6:

where bi is the number of one of the pods. The total CPU resources consumed by
pods working are expressed as the following formula 7:

The total memory resources consumed by pods are expressed as the following
formula 8:

According to the quantification standard of the energy consumption model in the
data center [30], the total energy consumption cost is expressed as the following
formula 9:

where C0 is the constant, C1 is the coefficient of CPU cost, C2 is the cost coefficient
of MEM, C3 is the cost coefficient of network communication, and Eprice is the
price of electricity. The total energy cost is calculated by computing the utilization
for each resource, including CPU usage CPUtotal , memory usage MEMtotal , and com-
munication traffic usage NetFlowtotal.

The cost of network communication between heterogeneous nodes is expressed
in the following formula 10:

The total cost can be expressed as the following formula 11:

The price of power and network bandwidth are shown in Table 2:

(5)NetFlowtotal =
1

2

∑
p∈Pods

NetFlowPods(p)

(6)RCM = {(cpub1,memb1), (cpub2,memb2),⋯ , (cpubm,membm)}

(7)CPUtotal =

∑
r∈R C M

� cpu
r

(8)MEMtotal =

∑
r∈R C M

�men
r

(9)
EneryCosttotal = (C0 + C1 ⋅ CPUtotal + C2 ⋅ MEMtotal

+C3 ⋅ NetFlowtotal) ⋅ Eprice

(10)Nodecon = NetFlowtotal ⋅ Bprice

(11)Costtotal = Nodecon + EneryCosttotal

Table 2 Price of electricity and
network bandwidth

Name Price

Electricity 0.34¥/kw.h
Network bandwidth 0.8¥/GB

10308 H. Li et al.

1 3

4 Orchestration algorithms

The primary goal in this paper is to reduce the cost consumption of the Kuber-
netes cluster in two ways: (1) by considering pod intimacy relationship to opti-
mize the initial placement of communication-intensive containers. (2) by resched-
uling to enable replacement of new and old pods.

4.1 Scheduling algorithm

To solve the containerized application placement problem, we propose a cost-
efficient scheduling algorithm (CE-K8S) based on the Improved beetle antennae
search (IBAS) described in Sect. 4.1.1.

4.1.1 Improved beetle antennae search (IBAS)

(1) Beetle antennae search.
Inspired by the searching behavior of longhorn beetles, Jiang and Li [31] pro-

posed a new algorithm called beetle antennae search algorithm (BAS), in 2017. It
imitates the function of antennae and the random walking mechanism of beetles
in nature, and then, two main steps of detecting and searching by considering the
odors of food are implemented. The odors of food are an object function. The
position of the beetle is a solution to the objective function. For long-running
services, the scheduling process could be regarded as an offline version of the
bin-packing problem. Solving the bin packing problem allows beetles to iterate
and walk by the searching operation and the detecting operation.

First, to better describe the model of the BAS, xt represents a vector of the
position of the beetle at tth time instant (t = 1, 2,...,n), f(x) represents a fitness
function that describes the concentration of odors at position x. fbest denotes the
denotes maximum of the concentration of odors. xbest denotes the position of bee-
tle with fbest.

Second, to model the searching behavior, a random direction of beetle search-
ing is expressed as follows formula 12:

where rand(⋅) represents a random function that generates a vector of h-dimensional
random values. Furthermore, the searching behaviors of both right-hand and left-
hand sides, respectively, to imitate the activities of the beetle’s antennae are pro-
posed as follows formula 13:

(12)b⃗ =
rand(h, 1)

‖rand(h, 1)‖

(13)

{
xr = xt + dt ⋅ b⃗

xl = xt − dt ⋅ b⃗

10309

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

where xr denotes a position lying in the searching area of right-hand side, and xl
denotes that of the left-hand side. dt is the sensing length of antennae corresponding
to the exploit ability at tth search.

Third, to formulate the behavior of detecting, iterative model as follows to
associate with the odor detection by considering the searching behavior is gener-
ated as follows formula 14:

where sign(⋅) represents a sign function. stept is the step size of tth search.
The update rules of stept and dt are presented as follows formula 15:

where � and � are all variables which need to be set up for specific application
scenarios.

The update rules of fbest are presented as follows formula 16:

where min(⋅) can be replaced by max(⋅) depending on the application scenario.
(2) Improved Beetle antennae search.
Although the principle of BAS is simple and easy to understand, it relies heav-

ily on the setting of the � . If � is set too large, beetle may quickly jump out of the
local search, and the local extrema will not be explored sufficiently, and better
solutions will be missed. If � is set too small, the local extrema will be explored
excessively and the local optimum cannot be jumped out as well as the conver-
gence speed is too slow to find the global optimum. AS a result, we improve the
update rules Eq. 15 of stept of the BAS as follows formula 17 :

where gradf(x) represents the gradient. The improved BAS is called IBAS.

4.1.2 Cost‑efficient scheduling algorithm (CE‑K8S)

The scheduling algorithm that incorporates the IBAS bin packing algorithm in
this paper is named CE-K8S. In Kubernetes, the process of scheduling pods to
nodes is a bin-packing problem with intimacy. The IBAS is a meta-heuristic algo-
rithm. Compared with traditional solution methods, meta-heuristic algorithms
have the advantages of fast convergence speed, higher average performance, and
better results, and are more suitable for large-scale high-dimensional bin-packing
problems [32]. The intimacy relationship between pods is reflected in the applica-
tions as the size of network traffic, and the IBAS bin packing algorithm is used

(14)xt+1 = xt + stept ⋅ �⃗b ⋅ sign(f (xr) − f (xl))

(15)
{

stept+1 = � ⋅ stept

dt+1 = � ⋅ dt + 0.01

(16)fbest = min(f (xt+1), f (xt))

(17)step = step + � ⋅
|gradf (xt+1)| − |gradf (xt)|
||gradf (xt+1)| − |gradf (xt)||

10310 H. Li et al.

1 3

to solve this intimacy packing problem. This paper represents the affinity set
between pod types PodsIntimacies as the following formula 18:

where PI(podi, podj) represents the affinity between pod of the type i and pod of the
type j. Pods of the same type do not communicate with each other, so their closeness
is 0. Pods of different types that do not communicate with each other also have a
closeness of 0.

In solving NP-hard problems like the bin packing problem [33], the dimension of
the algorithm search needs to be set to a two-dimensional matrix of the product of the
number of pod types and the number of nodes, and in each update it is only necessary
to update the coordinates of the algorithm search normally, and then convert the direc-
tion generated randomly each time to a two-dimensional matrix of the product of the
number of pod types and the number of nodes.

The bin packing algorithm designed using IBAS is shown in Algorithm 1. IBAS bin
packing algorithm first initializes the various parameters of the improved Beetle Anten-
nae Search algorithm (line 1-2). Then the algorithm initializes the search dimension
(called Dim) using a product of the number of nodes and the number of pod types (line
3). Then a one-dimensional matrix is created by combining the type name of pods and
the number of each type (line 4). Then an initial position vector of the Dim dimension
of beetles is created using random placements (line 5). After creating the initial position
vector of beetles, an initial direction vector of beetles of the Dim dimension is created
using Eq. 12 (line 7). Based on the direction vector, as shown in Eq. 13, the vector of
the left and right beards is created. Then, the vector of left and right beards is converted
into a two-dimensional matrix (line 8). Afterward, the matrix is sorted in descending
order, and then the subscripts of the row elements in the matrix are output (line 9).
Then, according to the number of copies of each pod, the corresponding elements are
taken from the matrix (line 10). Then the elements are mapped to bags (line 11). If
pods of the same type are on the same node, a new iteration is started (line 12–14).
Then the intimacy between pods in each node in the cluster is calculated. The intimacy
on each node is summed to get the total intimacy (called Maxfit) (line 15). Based on the
total intimacy at tth iteration, the location of Beetle was updated using Eq. 14 (line 16).
Then Maxfit is updated using Eq. 16 (line 17). Then depending on where the Maxfit is
located, the placement strategy of the pods is updated (line 18). Then the step length of
Beetle is updated using Eq. 17 (line 19). Then Iteration number minus one (line 20).
Finally, the placement strategy with the optimal intimacy is obtained (line 22).

(18)PodsIntimacies =

⎡
⎢⎢⎢⎣

0 PI(pod1, pod2) ⋯ PI(pod1, podm)

PI(pod2, pod1) 0 ⋯ PI(pod2, podm)

⋮ ⋮ 0 ⋮

PI(podm, pod1) PI(podm, pod2) ⋯ 0

⎤
⎥⎥⎥⎦

10311

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

10312 H. Li et al.

1 3

The CE-K8S scheduling algorithm can be described by following Algorithm 2.
CE-K8S algorithm first deploys web tasks using the default scheduling algorithm,
and then user requests for web tasks are simulated (line 1). Then the communica-
tion traffic between each type of pod is fetched using Mizu (the API traffic viewer
for Kubernetes) (line 2). Then the set of pod affinity is constructed by the com-
munication traffic using Eq. 18 (line 2). Based on the set of pod affinity, the IBAS
bin packing algorithm 1 is performed (line 3). Then the relative best deployment
solution between pods and nodes regarding cost is obtained (line 3). Finally, pods
scheduling starts to be implemented (line 4–14).

The architecture of CE-K8S is shown in Fig. 2. After obtaining the placement
relationship with the highest closeness, the CE-K8S is implemented through the
Kubernetes plug-in for the web system. The CE-K8S can be described as follows:
First, the default scheduling algorithm is used to obtain the intimacy relation-
ship between pods, and the cost-effective deployment scheme of pods is obtained
through IBAS, and then the deployment of pods is realized through a custom
scheduling plug-in, and if the deployment fails, it is deployed through the default
scheduling algorithm.

Fig. 2 CE-K8S working architecture

10313

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

4.2 Rescheduling algorithm

The reason why pods are rescheduled is that after Kubernetes schedules the pods,
the relationship between pods and nodes is bound, and this binding will continue
until the Pods are deleted. However, as the business changes Kubernetes clusters
may face a situation: if only the cluster business changes, the current resources can
still meet the business needs. The deployment location of pods can be reasonably
adjusted according to the business changes to further reduce the cost of using the
cluster.

The architecture of RS-BHAL is shown in Fig. 3. First, the resource monitoring
system and API traffic monitoring system are built in the cluster. This set of moni-
toring mainly consists of the resource data collection component Node Exporter,
the monitoring component Prometheus, the visualization tool Grafana, the log visu-
alization platform Kibana, the data storage platform ElasticSearch and the Kuber-
netes cluster API traffic monitoring tool Mizu, which monitors various resource
changes in the Kubernetes cluster and communication between all pods in real
time. This system uploads the data to the RS-BHAL rescheduling module, which

10314 H. Li et al.

1 3

analyzes the available data to decide whether and when to initiate the rescheduling
algorithm.

Applications deployed on Kubernetes have periodic workloads. The periodic his-
tory of accesses to the cluster APIs by external traffic can be queried from Elastic-
Search. This record is analyzed to obtain the cyclical changes of the business and
the periodic access to the APIs and the cyclical access. The specific steps are.

1. Get the set of periodic changes in pod closeness about time from the historical
log records (line 1).

2. Get the mapping of the current pod and node deployment and the set of pod affini-
ties (line 1).

3. The pod-node mapping relationship is obtained by the default scheduling algo-
rithm (line 2).

4. The current set of pod affinity cycle changes is used to obtain the new pod-node
mapping relationship by IBAS (line 3).

5. Get the cost of the default and new pod to node mapping relationships by pod
affinity (line 4-5).

6. Compare the cost of the two to decide whether to perform rescheduling. If exe-
cuted, it returns the deployment mapping relationship between pod and node (line
6–10).

The pseudo code of historical log analysis algorithm is shown in Algorithm 3.

Fig. 3 RS-BHAL working architecture

10315

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

To ensure that the impact on the cluster services is minimized during reschedul-
ing, the rescheduling timing should be chosen at the point when the periodic changes
occur, because this is the time when the user requests are the smallest, otherwise it
will cause damage to the services experience.

SARIMA is one of the time series forecasting analysis methods. Because the
periodic variation of a web system is also a kind of time series variation by nature,
the seasonal autoregressive integrated moving average model (SARIMA) is used to
predict the periodic variation of the web system.

The main steps of the SARIMA(p,d,q)(P,D,Q,s) model can be summarized as
follows.

1. Time series sample smoothness test and processing, this process is mainly to
determine whether the data sample is with smoothness, if not, then use the dif-
ference processing to smooth the data.

2. Model selection and parameter estimation, a process used to determine the corre-
sponding values of each parameter in the SARIMA(p,d,q)(P,D,Q,s) model, which
mainly uses ACF and PACF.

3. Model accuracy assessment, this process is mainly used to assess the accuracy of
the model.

Therefore, the algorithm for predicting the rescheduling time using the SARIMA(p,d,q)
(P,D,Q,s) model can be described as the following pseudo-code shown in Algorithm 4.
Rescheduling time prediction algorithm first gets the history log records (line 1). Then
the variable (called times) is created to represent the set of rescheduling time points
(line 2). Then request data is fetched from the history log (line 3). Afterward, request
data is cleaned and filtered in order to eliminate non-user requests (line 4). Then the
data is checked for compliance with smoothness requirements (line 5). Based on the
data, SARIMA is used to get the predicted time points (line 6). If the data do not meet
the smoothness requirement, the data are differenced (line 9).

10316 H. Li et al.

1 3

After the historical log analysis and the rescheduling time prediction algorithm,
the periodic mapping relationship between pod and node and the periodic change
time point of the next phase are obtained. With these two points, a specific resched-
uling algorithm can be executed, which first creates a backup of the pod at the desti-
nation node and then deletes the old pod at the old node. The way it works is shown
in Fig. 4. To avoid damaging application performance, the old pod can serve users
normally while the new one is being created.

The pseudo-code of rescheduling algorithm is shown in Algorithm 5.

Fig. 4 Working mode of rescheduling

10317

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

5 Performance evaluation

To compare the cost and performance of the proposed algorithms (CE-K8S and
RS-BHAL) with related algorithmic works, including the default K8s frame-
work, Tabu, BFD and Descheduler, we implemented the proposed algorithms
and carried out the empirical evaluations by deploying experiments on a Kuber-
netes cloud.

CE-K8S Scheduling Evaluation: Sect. 5.2 compares CE-K8S with three other
containerized application scheduling approaches in terms of the cost and per-
formance using Workload (called Workload 1). These approaches are selected
to solve the containerized application scheduling problem within Kubernetes
clouds.

1. The default K8s framework—Containerized application scheduling problem is
solved from the perspective of balanced resource allocation.

2. BFD—One of containerized application scheduling approaches proposed in [13],
where containerized application scheduling (initializing placement of pods within
Kubernetes clouds) and cost are the focus of scheduling decision-making.

3. Tabu—Algorithm which is meta-heuristic is the same as the type of BAS (Beetle
Antennae search). We use this to demonstrate how the incorporation of improved
BAS(IBAS) results in better placement decisions.

10318 H. Li et al.

1 3

The default K8s framework, BFD, and Tabu are the works that can be adapted
and applied to the scheduling of containerized applications addressed in our
work. So, they are chosen for the comparison of CE-K8S in terms of cost and
performance.

RS-BHAL Rescheduling Evaluation: Rescheduling is live migration.
Sect. subsec5.3 compares RS-BHAL with two other containerized application
rescheduling approaches in terms of the cost using Workload (called Workload
2). These approaches are selected to solve the containerized application resched-
uling problem within Kubernetes clouds.

1. The default K8s framework—We use the prediction model proposed in this paper
to change the scheduling algorithm of the default K8s framework to a reschedul-
ing algorithm. It gets a containerized application migration solution from the
perspective of balanced resource allocation using our workload prediction. We use
this to demonstrate how the consideration of the relationship of communication
traffic between pods and workload prediction results in better migration decisions
in terms of cost.

2. Descheduler—It is a popular Kubernetes sub-project, where balanced resource
allocation is the focus of rescheduling decision-making.

The default K8s framework and Descheduler are the works that can be adapted
and applied to the rescheduling of containerized applications addressed in our
work. So, they are chosen for the comparison of RS-BHAL in terms of the cost.

5.1 Experimental setup

Workload 1: A company’s communication-intensive web system, consisting of
seven microservices, has a set of copies of each service and the required resources
as shown in Table 3.

Workload 2: A company’s web system with periodicity. Because of user habits,
the system faces an increase in the number of users’ requests every day from around
8:00 am to 1:00 pm. In order to reduce the size of the table, entries of the table
represent the number of HTTP requests received by the web application every three
hours from Monday to Friday (requests-per-three hour), as shown in Table 4.

This experiment relies on the cloud platform to build a Kubernetes homogene-
ous cluster, which consists of one master node and four worker nodes. All the
nodes in the cluster are considered offsite deployments, and the network commu-
nication between them needs to be costed. Each worker node deployed on VMs
has 8 G CPU cores and 16GB RAM. The operating system of each worker node
is Centos 6.5. Since they are connected to one network backbone, the number
of hops a packet traverses from source to destination is between 12 and 14 hops
[34]. Therefore, different network distances do not affect site selection.

Other software and hardware parameters are shown below.
Software: GoLand2019, PyCharm2021, Go1.16, Python3.6.
Network plug-in: Flannel.

10319

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

5.2 Workload 1

In this section, 100, 500, 1000, 2000, 3000, 5000, 10000, 15000, 20000 concurrent
accesses to the web interface are performed using the Kubernetes default scheduling
algorithm, BFD bin packing algorithm, forbidden search algorithm (Tabu), and CE-
K8S, respectively. Ten experiments are performed for each request, and the average
CPU usage, average memory usage, average request time, and average network com-
munication traffic between nodes are counted, and finally the cost of each algorithm
is calculated according to the cost formula defined above.

The average CPU usage of the cluster under different concurrent requests is
shown in Fig. 5. The reason why the CPU utilization of the different algorithms
is compared is that the total energy cost (Eq. 9) is calculated. When the number
of concurrent requests is 100, 300 and 1000, the difference between the four algo-
rithms is not very obvious, because the number of concurrent requests is not very
high at this time and the overall CPU consumption is not large. The CE-K8S algo-
rithm can save up to 0.9% CPU cost and down to 0.2% CPU cost compared to other
algorithms. As the number of concurrent requests increases, the effect of the CE-
K8S algorithm starts to show up, but the overall difference is still not very large. At
20,000 concurrent requests, the CPU utilization of the BFD starts to be higher than
that of the default scheduling algorithm, probably because the deployment strategy
of BFD at this point causes most of the frequently communicating pods to belong to
different nodes, which cannot withstand the high concurrency scenario. CE-K8S has

Table 4 History log

0 o’clock 3 o’clock 6 o’clock 9 o’clock 12 o’clock 16 o’clock 19 o’clock 21 o’clock

Monday 101492 55622 228896 914642 647972 731655 492698 261837
Tuesday 92841 57676 247896 1197639 782043 1088065 531711 266626
Wednes-

day
115460 88990 366659 1296082 1060030 1121163 606155 293199

Thursday 113074 87180 335241 1313634 815463 1125282 573913 253010
Friday 102002 81394 308106 1294758 829717 1150607 537227 231938

Table 3 Web system

Microservice
name

Number of
copies

Request CPU Request mem Limit CPU Limit men

A 3 500m 400Mi 800m 500Mi
B 2 300m 300Mi 500m 400Mi
C 3 400m 400Mi 600m 500Mi
D 3 400m 400Mi 600m 500Mi
E 2 300m 300Mi 500m 400Mi
F 2 300m 300Mi 500m 400Mi
G 3 500m 400Mi 800m 500Mi

10320 H. Li et al.

1 3

the lowest average CPU usage compared to other algorithms, i.e., it can complete
the same task with lower resource consumption, saving energy costs.

The average memory usage for each algorithm of the cluster at different concur-
rent request volumes is shown in Fig. 6. The reason why the memory utilization of
the different algorithms is compared is that the total energy cost (Eq. 9) is calcu-
lated. At the concurrent request volumes of 100, 300, and 1000, the difference in
the effectiveness of the four algorithms is not very obvious, and the CE-K8S saves
an average of 0.8% memory overhead compared to the other algorithms, with the
lowest saving of 0.4% memory overhead. As the number of concurrent requests
increases, the effect of the CE-K8S algorithm starts to show up, thanks to the fact
that the CE-K8S algorithm schedules pods with higher network traffic on the same
node and reduces the data sent to another node, thus reducing the memory buffer
usage and memory.

Figures 7 and 8 represent the average request time and the average inter-node
traffic for each algorithm of the cluster under different concurrent request volumes,
respectively. Formula 5 is used in Fig. 8. As can be seen from the figures, the CE-
K8S algorithm is able to complete the specified number of concurrent requests in
the shortest time compared to other scheduling strategies, while minimizing the
communication traffic between nodes. Compared to the default scheduling algo-
rithm, CE-K8S reduces the request time by 5.3% on average, and the inter-node net-
work traffic by 35.3%. This is due to the fact that CE-K8S crates the pods reasonably
according to their communication volume, so that the pods with high network traffic
are on the same node.

Figure 9 shows the number of reboots for each algorithm at different concur-
rency levels, and the number of reboots reflects the robustness of the service, and
the smaller the number of reboots, the higher the robustness of the service. As can

Fig. 5 Comparison of average CPU usage

10321

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

be seen from Figure 9, before the concurrency is 5000, the number of reboots of
pods for each algorithm is 0, and the service is equally robust. After the concur-
rency is greater than 5000, the advantages and disadvantages of the four algorithms
start to emerge, where the default scheduling algorithm is the highest at different
subsequent concurrency, the CE-K8S algorithm is the lowest at all. Therefore, the
CE-K8S scheduling algorithm can improve the stability of the system by scheduling
closely communicating pods to a node.

Figure 10 represents the number of request failures for each algorithm at dif-
ferent concurrent volumes. As can be seen from the figure, the CE-K8S algorithm
has the lowest number of request failures under different concurrent request vol-
umes. This is due to the fact that the CE-K8S schedules the frequently communi-
cating pods on the same node, which enables them to complete network requests
faster. Another reason is that the CE-K8S algorithm has the lowest number of
pod restarts for different request concurrency, this is known from Fig. 9, some
requests may just happen during the process of pod hang restarts, so the CE-K8S
algorithm has the lowest number of request failures for different concurrency.
This reflects that the CE-K8S algorithm can improve the stability of the cluster
service from the other side.

Figure 11 shows the energy cost of the cluster at different concurrent request
volumes. When the concurrent request volume is less than 1000, the difference
in energy cost of the four algorithms is not very obvious, because the cluster can
withstand the concurrent volume at this time and the overhead on CPU and mem-
ory is relatively small. When the volume of concurrent requests reaches 3000,
the reason why CE-K8S has a higher energy overhead than Tabu search is that
as shown in Fig. 6, when the volume of concurrent requests reaches 3000, CE-
K8S has a higher memory usage than Tabu search. As the number of concurrent

Fig. 6 Comparison of average memory usage

10322 H. Li et al.

1 3

requests increases, the effect of CE-K8S starts to appear gradually, and compared
with the default scheduling algorithm, Tabu and BFD algorithms, CE-K8S is able
to save 4%, 2.7%, and 3% of energy cost overhead on average. Figure 12 repre-
sents the network bandwidth cost of communication between offsite nodes for dif-
ferent amounts of concurrent network requests, which is proportional to the previ-
ous inter-node network traffic and saves an average of 35.3% network bandwidth

Fig. 7 Comparison of average request completion time

Fig. 8 Comparison of average network traffic between nodes

10323

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

cost compared to the default scheduling algorithm. Formula 11 is used in Fig. 13.
Figure 13 represents the total cost of the cluster, and CE-K8S reduces the clus-
ter cost by 20.97%, 8.82%, and 21.13% on average compared to the other three
algorithms. It shows that the CE-K8S proposed in this paper can save the energy
cost and network bandwidth cost of the cluster by scheduling the frequently

Fig. 9 Comparison of number of pod restarts

Fig. 10 Comparison of number of request failures

10324 H. Li et al.

1 3

communicating pods to one node when targeting the web system on a Kubernetes
cluster composed of offsite nodes.

5.3 Workload 2

5.3.1 Prediction of rescheduling time

To verify whether the system meets the requirements of SARIMA time series
forecasting, it is necessary to make a test on the periodic log change data of the
system.

(1) Data stability test and parameter determination.
The stability test was first performed on the data from July 1 to 5, 2021, and the

original data is shown in Fig. 14. The unit root test is shown in Fig. 15. If the pvalue
is large, the data need to be differenced, and the first-order differencing process is
shown in Fig. 16. By analyzing the correlation between ACF and PACF in Fig. 15,
we can only roughly determine the range of p and q within the second order, so we
need to further determine the values of p and q by the AIC information criterion,
and the smaller the value of AIC information criterion means the more accurate the
model is fitted.

Because it can be considered smooth after first-order differencing, d = 1, the
value of s is set to 24 according to the period, and the value of D is 0. Therefore,
only the parameter values of p, q, P, and Q need to be determined. Here, the four
parameters are combined in ranges, and the best combination of parameters is deter-
mined by AIC through the SARIMAX package to exclude the combinations that
cannot converge. The AIC values for each combination are shown in Table 5.

As can be determined from Table 5, Akaike information criterion (called AIC) is
a measure of the degree of adaptation of a statistical mode. The smaller the AIC, the

Fig. 11 Comparison of cluster energy cost

10325

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

better the model. The model with the smallest AIC is usually chosen. The minimum
AIC value for the combination of parameters (0,0,1,0) is 1051.950286. Therefore, it
is determined that the best fitting parameter is (0,0,1,0). At this point, all the param-
eters required for the SARIMA model are all determined, and the model will be
tested below.

(2) Model Testing and Forecasting.
As shown in Fig. 17, the residual terms conform to a normal distribution, indicat-

ing that the model meets the requirements.

Fig. 12 Comparison of communication cost of offsite nodes

Fig. 13 Comparison of total cost of cluster

10326 H. Li et al.

1 3

Using the data from July 1 to 5 to make predictions, the results are shown in
Fig. 18. July 6 data is the predicted data, and the trend of the predicted data is in line
with the overall change of the data and meets the requirements. In this paper, the
predicted data is compared with the real data on July 6, and the error of the two data
is about 50,000, which is about 1% and acceptable compared with the daily data

Fig. 14 Original data

Fig. 15 Unit root test and ACF and PACF

Fig. 16 First-order difference

10327

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

records of nearly 5 million. Meanwhile, the difference of cycle change time is within
1 minute, which is acceptable. It indicates that SARIMA is suitable for this system
to predict the cycle change.

5.3.2 RS‑BHAL rescheduling

The six hours of the 9:00–15:00 time period with more obvious cycle changes were
selected, while the business in the morning and the business in the afternoon were
adjusted, so the time period selected was reasonable. In terms of data volume size,
1% of the requests within each minute were randomly selected as the experimental
replay. As for the statistics of the experimental results, the statistics are conducted
every minute, and the comparison algorithm is chosen from the rescheduling algo-
rithm (Descheduler) of the open source community and the default scheduling algo-
rithm of Kubernetes.

For the web system, the resource utilization of the three scheduling policies from
9:00 am to 3:00 pm is shown in Figs. 19 and 20. The reason why the resource uti-
lization of the different algorithms is compared is that the total energy cost (Eq. 9)
is calculated. Before 10:25 a.m, CPU and memory utilization starts to increase as
application accesses increase, but the difference in utilization between the three poli-
cies is not significant because no rescheduling is triggered. After 10:25, as shown
in Fig. 4, the business volume starts to increase, and the RS-BHAL starts to exe-
cute rescheduling based on the rescheduling time predicted by the previous history
logs. The CPU and memory utilization of RS-BHAL algorithm suddenly increases
around 10:20, indicating that pod rescheduling is being executed at this time. How-
ever, the increase in the CPU and the memory utilization of the RS-BHAL algorithm
is temporary, because the backups of pods are created at the destination node during
rescheduling, and then the old pods at the old node are deleted. After rescheduling
around 10:25 to 12:00, the CPU and memory utilization of RS-BHAL algorithm is
obviously smaller than the default scheduling and Descheduler algorithm. At around
1:30 p.m. when the workload is adjusted again, the RS-BHAL is triggered again and
the pods are rescheduled according to the affinity. The CPU and memory utilization
thereafter is smaller than the default scheduler algorithm most of the time. At the
same time, the CPU and memory utilization suddenly increase during rescheduling,
which is due to the fact that the backups of pods are created during rescheduling,
which causes the CPU and memory overhead to increase. Compared with the default
scheduling algorithm and Descheduler, RS-BHAL reduces CPU utilization by

Table 5 Parameter combinations
and their corresponding AIC

Parameters AIC

(0, 0, 1, 0) 1051.950286
(2, 3, 1, 0) 1051.950286
(3, 3, 1, 0) 1118.461490
(2, 3, 1, 1) 1119.191850
(1, 3, 1, 0) 1121.378024

10328 H. Li et al.

1 3

7.08% and 4.66%, and memory by 7.49% and 5.1%, respectively, during the entire
request period.

The network changes between pods corresponding to the three algorithms
throughout the historical request rescheduling period are shown in Fig. 21. For-
mula 5 is used in Fig. 21. It can be seen that the RS-BHAL can reduce the net-
work communication between pods after the execution of rescheduling, but a surge

Fig. 17 Model diagnosis

Fig. 18 Model prediction

10329

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

of communication traffic between pods occurs when the rescheduling is specifi-
cally executed. This is due to the fact that when the old pods are deleted during the
rescheduling, the new pods have not yet taken over the traffic transferred from the
old pods, resulting in a decrease in the number of available pods and an increase in
the communication traffic between pods. Once the rescheduling is completed and
the new pods start to take over the traffic, the communication traffic between pods

Fig. 20 Comparison of memory utilization

Fig. 19 Comparison of CPU utilization

10330 H. Li et al.

1 3

will start to decrease. Through data comparison, RS-BHAL reduces the inter-node
network traffic by 5.65% and 4.7% compared with the default scheduling algorithm
and Descheduler, respectively, during the whole experimental period, which later-
ally reflects that the intimacy gap between pods of this system is not large, i.e., the
network traffic between each other is roughly equivalent. It indicates that the RS-
BHAL rescheduling strategy can reduce the network communication traffic between
cluster business pods.

The average energy cost incurred by the RS-BHAL and the other two algorithms
during the whole experimental period is shown in Fig. 22. The RS-BHAL reduces
the energy cost by 5.8% and 4.8%, respectively, compared to the other two algo-
rithms. Figure 23 represents the network bandwidth cost of the three strategies, from
which it can be seen that RS-BHAL reduces 5.7% and 3.67%, respectively, com-
pared to the other two algorithms, although the network communication volume of
this system is relatively high, the network bandwidth cost saved by RS-BHAL algo-
rithm for this system is not very high, the reason is that the affinity between pods of
this system is approximately the same, i.e., the network traffic between each type
of pod is approximately the same. Formula 11 is used in Fig. 24. Figure 24 repre-
sents the total cost of the three algorithms, and RS-BHAL reduces 5.59% and 4.7%,
respectively, compared to the other two algorithms. The difference shows that the
RS-BHAL proposed in this paper can reduce the cost by periodically rescheduling
the pod in conjunction with the business.

Fig. 21 Comparison of network communication traffic

10331

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

6 Conclusion and future directions

In this paper, a cost-efficient scheduling algorithm (CE-K8S) and a cost-efficient
rescheduling algorithm (RS-BHAL) for Kubernetes are proposed based on cloud. A
new cost-efficient model is built by integrating the energy cost of CPU, memory, and
network consumed while the pod is running and the cost of network communica-
tion between the offsite nodes. Based on this model, our two scheduling algorithms
minimized the total cost of Kubernetes cluster while satisfying the service experi-
ence. The experiment of Kubernetes cluster using communication-intensive work-
load and cycle workload on the cloud shows that the proposed two algorithms can

Fig. 22 Comparison of energy cost of different algorithms

Fig. 23 Comparison of bandwidth cost of different algorithms

10332 H. Li et al.

1 3

efficiently reduce the total cost consumption compared with the traditional schedul-
ing algorithms. The Kubernetes scheduling framework designed in this paper still
has some limitations. Due to the pursuit of lower cluster cost, compared with other
performance-oriented scheduling frameworks, the algorithm pervasiveness and clus-
ter resource balancing may not be improved too much. In the future work, we will
consider the balance optimization and locality factor of cluster resources. And we
will also try to improve the applicability of the algorithm on the expansion, such as
focus on MySQL, Redis, and other databases.

Acknowledgements This work was supported by Chongqing science and Technology Commission Pro-
ject (Grant No.: cstc2018jcyjAX0525), Key Research and Development Projects of Sichuan Science and
Technology Department (Grant No.: 2019YFG0107).

Author Contributions HL: Proposed an idea, Experiment, Wrote the manuscript. JS: Proposed an idea,
Experiment, Wrote the manuscript. LZ: Experiment, Helped to write also several sections of the man-
uscript, Proofreading. YC: Helped to write also several sections of the manuscript, Proofreading. ZM:
Helped to wrote also several sections of the manuscript, Proofreading.

Data availability The datasets generated during the current study are available from
the corresponding author on reasonable request.

Declarations

Conflict of interest None. The authors declare that they have no known conflict financial interests or per-
sonal relationships that could have appeared to influence the work reported in this paper.

Fig. 24 Comparison of total cost of different algorithms

10333

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…

References

 1. Boettiger C (2015) An introduction to docker for reproducible research. ACM SIGOPS Oper Syst Rev
49(1):71–79

 2. Wan X, Guan X, Wang T, Bai G, Choi B-Y (2018) Application deployment using microservice and docker
containers: Framework and optimization. J Netw Comput Appl 119:97–109

 3. Bugnion E, Devine S, Rosenblum M, Sugerman J, Wang EY (2012) Bringing virtualization to the x86
architecture with the original vmware workstation. ACM Trans Comput Syst (TOCS) 30(4):1–51

 4. Kaur K, Garg S, Kaddoum G, Ahmed SH, Atiquzzaman M (2019) Keids: Kubernetes-based energy
and interference driven scheduler for industrial iot in edge-cloud ecosystem. IEEE Internet Things J
7(5):4228–4237

 5. Toka L, Dobreff G, Fodor B, Sonkoly B (2021) Machine learning-based scaling management for Kuber-
netes edge clusters. IEEE Trans Netw Serv Manage 18(1):958–972

 6. Zheng S, Huang F, Li C, Wang H (2021) A cloud resource prediction and migration method for container
scheduling. In: 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS).
IEEE, pp 76–80

 7. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016) Borg, omega, and Kubernetes. Commun
ACM 59(5):50–57

 8. Soppelsa F, Kaewkasi C (2016) Native docker clustering with swarm. Packt Publishing Ltd
 9. Dubhashi D, Das A (2016) Mastering Mesos. Packt Publishing Ltd
 10. Wojciechowski Ł, Opasiak K, Latusek J, Wereski M, Morales V, Kim T, Hong M (2021) Netmarks:

Network metrics-aware kubernetes scheduler powered by service mesh. In: IEEE INFOCOM 2021-
IEEE Conference on Computer Communications. IEEE, pp 1–9

 11. Carrión C (2022) Kubernetes scheduling: taxonomy, ongoing issues and challenges. ACM Computing
Surveys (CSUR)

 12. Burns B, Beda J, Hightower K (2019) Kubernetes: up and running: dive into the future of infrastruc-
ture. O’Reilly Media

 13. Zhong Z, Buyya R (2020) A cost-efficient container orchestration strategy in Kubernetes-based
cloud computing infrastructures with heterogeneous resources. ACM Trans Internet Technol (TOIT)
20(2):1–24

 14. Rodriguez M, Buyya R (2020) Container orchestration with cost-efficient autoscaling in cloud comput-
ing environments. In: Handbook of research on multimedia cyber security. IGI global, pp 190–213

 15. Ambati P, Irwin D (2019) Optimizing the cost of executing mixed interactive and batch workloads on
transient VMS. Proc ACM Measur Anal Comput Syst 3(2):1–24

 16. Ding Z, Huang Q (2021) Copa: a combined autoscaling method for kubernetes. In: 2021 IEEE Interna-
tional Conference on Web Services (ICWS). IEEE, pp 416–425

 17. Wei-guo Z, Xi-lin M, Jin-zhong Z (2018) Research on Kubernetes’ resource scheduling scheme. In:
Proceedings of the 8th International Conference on Communication and Network Security, pp 144–148

 18. Zhang D, Yan B-H, Feng Z, Zhang C, Wang Y-X (2017) Container oriented job scheduling using lin-
ear programming model. In: 2017 3rd International Conference on Information Management (ICIM).
IEEE, pp 174–180

 19. Zhu C, Han B, Zhao Y (2022) A bi-metric autoscaling approach for n-tier web applications on Kuber-
netes. Front Comp Sci 16(3):1–12

 20. Jin T, Cai Z, Li B, Zheng C, Jiang G, Cheng J (2020) Improving resource utilization by timely fine-
grained scheduling. In: Proceedings of the Fifteenth European Conference on Computer Systems, pp
1–16

 21. Bhimani J, Yang Z, Mi N, Yang J, Xu Q, Awasthi M, Pandurangan R, Balakrishnan V (2018) Docker
container scheduler for i/o intensive applications running on nvme ssds. IEEE Trans Multi-Scale Com-
put Syst 4(3):313–326

 22. Chen W, Zhou X, Rao J (2019) Preemptive and low latency datacenter scheduling via lightweight con-
tainers. IEEE Trans Parallel Distrib Syst 31(12):2749–2762

 23. Nicodemus CH, Boeres C, Rebello VE (2020) Managing vertical memory elasticity in containers. In:
2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). IEEE, pp
132–142

 24. Zhiyong C, Xiaolan X (2019) An improved container cloud resource scheduling strategy. In: Proceed-
ings of the 2019 4th International Conference on Intelligent Information Processing, pp 383–387

10334 H. Li et al.

1 3

 25. Lin M, Xi J, Bai W, Wu J (2019) Ant colony algorithm for multi-objective optimization of container-
based microservice scheduling in cloud. IEEE Access 7:83088–83100

 26. Aruna K, Pradeep G (2021) Development and analysis of ant colony optimization-based light weight
container (aco-lwc) algorithm for efficient load balancing

 27. Zhong C, Yuan X (2019) Intelligent elastic scheduling algorithms for paas cloud platform based on load
prediction. In: IEEE 8th Joint International Information Technology and Artificial Intelligence Confer-
ence (ITAIC). IEEE, pp. 1500–1503

 28. Deshpande U (2019) Caravel: Burst tolerant scheduling for containerized stateful applications. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, pp 1432–1442

 29. Paščinski U, Trnkoczy J, Stankovski V, Cigale M, Gec S (2018) Qos-aware orchestration of network
intensive software utilities within software defined data centres. J Grid Comput 16(1):85–112

 30. Luo L, Wu W-J, Zhang F (2014) Energy modeling based on cloud data center. J Softw 25(7):1371–1387
 31. Jiang X, Li S (2017) Bas: beetle antennae search algorithm for optimization problems. CoRR arXiv:

abs/ 1710. 10724
 32. Hopper E, Turton BC (2001) An empirical investigation of meta-heuristic and heuristic algorithms for a

2d packing problem. Eur J Oper Res 128(1):34–57
 33. Medvedeva MA, Katsikis VN, Mourtas SD, Simos TE (2021) Randomized time-varying knapsack

problems via binary beetle antennae search algorithm: emphasis on applications in portfolio insurance.
Math Methods Appl Sci 44(2):2002–2012

 34. Van Mieghem P (2009) Performance analysis of communications networks and systems. Cambridge
University Press

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/1710.10724
http://arxiv.org/1710.10724

	Cost-efficient scheduling algorithms based on beetle antennae search for containerized applications in Kubernetes clouds
	Abstract
	1 Introduction
	2 Related work
	3 Problem formalization
	3.1 System model
	3.2 Problem definition

	4 Orchestration algorithms
	4.1 Scheduling algorithm
	4.1.1 Improved beetle antennae search (IBAS)
	4.1.2 Cost-efficient scheduling algorithm (CE-K8S)

	4.2 Rescheduling algorithm

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Workload 1
	5.3 Workload 2
	5.3.1 Prediction of rescheduling time
	5.3.2 RS-BHAL rescheduling

	6 Conclusion and future directions
	Acknowledgements
	References

