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Abstract
With the development of cloud-native technologies, Kubernetes becomes the stand-
ard of fact for container scheduling. Kubernetes provides service discovery and 
scheduling of containers, load balancing, service self-healing, elastic scaling, stor-
age volumes, etc. Although Kubernetes is mature with advanced features, it does 
not consider reducing the cost in Kubernetes clouds using the factor of communica-
tion frequent between pods while scheduling pods, nor does it have a rescheduling 
mechanism to save cost. Hence, we propose a cost-efficient scheduling algorithm 
and a rescheduling algorithm to reduce the cost of communication-intensive and 
periodically changing web applications deployed in Kubernetes, respectively. Net-
work communication-intensive pods are scheduled to the same node by the schedul-
ing algorithm based on Improved Beetle Antennae Search. According to the chang-
ing pod intimacy relationship, the rescheduling algorithm is completed through the 
replacement of new and old pods to reduce the cost. In addition, this paper evaluates 
the proposed algorithms in terms of cost and performance on a Kubernetes cloud. 
The result shows that the cost consumption of Kubernetes clusters in cloud envi-
ronment is reduced by 20.97% on average compared with the default Kubernetes 
framework.
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1  Introduction

Docker container technology, as a new generation of virtualization technology, 
promotes the development of cloud computing. Compared with virtual machines, 
Docker containers have features such as the lightweight, portable deployment of 
containers across platforms, and component reuse [1–3]. However, the more the 
number of containers increases, the more difficult container management becomes 
[4–6].To solve this problem, cloud service providers (CSP) provide open-source 
management systems for containers, such as Google’s Kubernetes [7], Docker’s 
Swarm [8], and Apache’s Mesos [9]. Among them, Kubernetes provides service 
discovery, load balancing, service self-healing, and elastic scaling for the entire 
life cycle of containers [7]. Mesos is complex and requires a customized frame-
work when scheduling resources for specific jobs. [9]. Swarm is lightweight, 
architecturally simple, and suitable for small to medium-sized clusters. Compared 
with Kubernetes, it still has many limitations and instabilities [8]. These differ-
ences have led to the continuously rising popularity and adoption of Kubernetes 
in CSP and internet giants.

However, Kubernetes remains with limited cost consumption management 
policies that mainly focus on nodes’ configuration, whereas pods’ intimacy rela-
tionship is usually ignored. For instance, when the pod is scheduled, Kubernetes 
mostly considers nodes that satisfy the stable operation of the pods [10–12]. This 
may cause the nodes to generate fragmented resources, resulting in increased 
costs. In addition, Kubernetes clusters mostly consist of offsite nodes. The net-
work communication between offsite nodes also increases the cost of Kubernetes 
clusters. Therefore, it is of great significance to get a cost-efficient scheduling 
strategy for cloud computing by optimizing the scheduling process of Kubernetes.

Recently, a lot of literature focusing on cost-efficient scheduling strategies 
have been widely studied on the deployment of containerized applications for 
Kubernetes [13–19]. For example, Zhong et  al. [13] proposed a heterogeneous 
task allocation strategy (HTAS) for cost-efficient container orchestration through 
resource utilization optimization and elastic instance pricing. First, it supports 
heterogeneous job configurations to optimize the initial placement of containers 
into existing resources by task packing. Then it adjusts cluster size to meet the 
changing workload through autoscaling algorithms. Finally, it shuts down under-
utilized VM instances for cost saving and reallocates the relevant jobs without 
losing task progress. However, this strategy cannot start the closed nodes in time 
when the pods need to be expanded, which will affect the service experience. 
Rodriguez et al. [14] proposed a comprehensive container resource management 
algorithm. It optimizes the initial placement of containers and scales dynami-
cally cluster resources. Ambati et al. [15] designed TR-Kubernetes. It optimizes 
the cost of executing mixed interactive and batch workloads on cloud platforms 
using transient VMs. Ding et al. [16] proposed a novel combined scaling method 
called COPA. Based on the collected microservice performance data, real-time 
workload, expected response time, and microservice instances scheme at runt-
ime, COPA uses the queuing network model to calculate a combined scaling 
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scheme that aims to minimize the default cost and resource cost. Zhang et  al. 
[17] realized the model extraction of scheduling module of Kubernetes. And 
the K8S scheduling model is improved by combining ant colony algorithm and 
particle swarm optimization algorithm. Finally, it is scored, and the node with 
the smallest objective function is selected to deploy the pod. The experimen-
tal results show that the proposed algorithm reduces the total resource cost and 
the maximum load of the node and makes the task assignment more balanced. 
Zhang et al. [18] considered the container image pulling costs, the workload net-
work transition costs from the clients to the container hosts and the host energy 
costs. To reduce cost, it employed the integer linear programming model to solve 
the native container scheduling problem. Zhu et  al. [19] proposed a bi-metric 
approach to scaling pods by taking into account both CPU utilization and utili-
zation of a thread pool. It addressed the problem that horizontal pod autoscaler 
(HPA) of Kubernetes may create more pods than actually needed.

However, these studies mainly focused on scheduling methods by reducing 
the number of worker nodes, adjusting the resource allocation of the cluster, 
introducing transient VMs, and allocating appropriate resources to containers. 
They did not consider cost-efficient scheduling of containerized applications 
from a perspective of the relationship of communication traffic between pods. 
And it is difficult to reduce the cost of Kubernetes clouds while ensuring service 
experience.

To address this issue in Kubernetes clouds, there are three key concerns: 
dynamicity of workload demand, the relationship of communication traffic 
between pods, and cost-efficient model. To minimize the costs under a Kuber-
netes cluster, it is required for the Kubernetes system to make proper decisions 
during scheduling and rescheduling. Therefore, this paper proposes a cost-effi-
cient scheduling algorithm (CE-K8S) and a rescheduling algorithm using 

seasonal autoregressive integrated moving average (SARIMA) based on 
the historical access log (RS-BHAL) for cost-efficient container orchestra-
tion to achieve cost optimization. Our work makes the following three key 
contributions:

•	 A cost-efficient model is built for Kubernetes, including the energy cost of 
CPU, memory, and network consumed while the pod is running and the cost 
of network communication between the offsite nodes.

•	 Based on the cost-efficient model, the scheduling algorithm is proposed based 
on the improved Beetle Antennae search (IBAS) and assigns pods with high 
network communication traffic between pods to the same node as much as 
possible.

•	 This paper describes a rescheduling algorithm that adopts the SARIMA tech-
nique to enable the replacement of new and old pods for the purpose of cost 
saving while ensuring service experience.

The rest of the paper is organized as follows. Section 2 describes the related work. 
Sections 3 and 4 introduce the proposed model and algorithm. Section 5 provides 
the evaluation and analysis, followed by the conclusion in Sect. 6.
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2 � Related work

There has been a significant amount of studies in the area of performance-ori-
ented scheduling in Kubernetes, such as improving resource utilization [20–23] 
and ensuring cluster load balancing [24–26], etc.

Some studies focus on improving resource utilization of container schedul-
ing [20–23]. The Ursa framework is proposed for container resource allocation, 
which makes use of the resource negotiation mechanism between job schedul-
ers and executors [20]. To improve resource utilization and reduce task container 
runtime, it enables the scheduler to capture accurate resource demands dynami-
cally from the execution runtime and to provide timely, fine-grained resource 
allocation based on monotasks. A new Docker controller is proposed for different 
I/O types, I/O access pattern, and I/O size of container applications. The control-
ler decides the optimal batches of simultaneously operating containers in order to 
minimize total execution time and maximize resource utilization. It alleviates the 
problem of container resource contention and waiting when large I/O tasks and 
multiple containers write I/O at the same time [21]. A container-based resource 
management framework for data-intensive cluster computing, called BIG-C, is 
proposed. The framework devises two types of preemption strategies: immediate 
and graceful preemptions, and further develops job-level and task-level preemp-
tive policies as well as a preemptive fair share cluster scheduler. It reduces queu-
ing delays for short jobs and critical jobs and improves resource utilization [22]. 
An approach of managing container memory allocations dynamically is proposed 
to address the problem where resource utilization is low due to allocating large 
memory for containers to guarantee the demand at spike moments. By frequently 
adjusting the amount of memory reserved for each container during execution, 
this autonomous approach aims to increase the average number of containers that 
can be hosted on a server [23].

There are some studies focusing on load balancing of container scheduling 
[24–26]. Cai et al. [24] proposed a new priorities stage strategy, which takes the 
storage and network bandwidth of task nodes into account, then calculates the 
weight of each resource, and finally puts it into the scoring formula as the basis 
of resource scheduling. Thus, the load of the task nodes in the cluster is more 
balanced. Lin et al. [25] established a multi-objective optimization model for the 
container-based microservice scheduling, and proposed an ant colony algorithm 
to solve the scheduling problem. The algorithm considers not only the utilization 
of computing and storage resources of the physical nodes but also the number 
of microservice requests and the failure rate of the physical nodes. To improve 
the selection probability of the optimal path, a quality evaluation function is also 
used. Aruna et al. [26] proposed a new algorithm called ant colony optimization-
based lightweight container (ACO-LWC) load balancing scheduling algorithm, 
which achieves load balancing of the cluster by scheduling various process 
requests.

There are some studies focusing on other aspects of container scheduling. An 
elastic scaling mechanism based on load prediction is proposed for PaaS cloud 
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platforms. For periodic load changes, a series of time series of resource use are 
obtained by applying historical information of operation, and then the Fourier 
transform is used to synthesize each time period. Then the Fourier transform 
formulas of each time period are compared to find the pattern characteristics 
between different time series, so as to make a long-term prediction. Then the 
mechanism uses the obtained prediction to schedule containers elastically [27]. 
A scheduling approach called Caravel that provides better experience to state-
ful applications in dealing with load spikes is proposed. It allows the applica-
tions to overstep the resource request during a burst and use the resources on the 
same node while minimizing their evictions. Moreover, the scheduler provides a 
fair opportunity to all the stateful applications to use the spare resources in the 
cluster [28]. A new architecture for geographic orchestration of network intensive 
software components is proposed. It automatically selects the best geographically 
available computing resource within the SDDC according to the developed QoS 
model of the software component. It also uses both similarity matching of ser-
vices and time-series nearest neighbor regression to predict resource demand to 
ensure the QoS of services [29].

A comparison of existing works is shown in Table 1. Most of existing resource 
scheduling methods do not reduce the cost of Kubernetes clouds while ensuring ser-
vice experience. However, this paper considers cost consumption, service experi-
ence and workload prediction.

3 � Problem formalization

This section enumerates assumptions for container-based applications and cloud 
resources, followed by the problem definition.

3.1 � System model

It assumes a Kubernetes homogeneous cluster deployed on a cloud platform as a 
service provider. Cloud applications are multi-copy situation web-based systems 
and are charged by the configuration of the requested resources (CPU, memory, 

Table 1   Comparison of related works

Works Service experi-
ence

Workload predic-
tion

Workload

Zhong et al. [13] × × Long-running and batch jobs
Rodriguez et al. [14] × × Long-running and batch jobs
Ambati et al. [15] ✓ × Mixed interactive and batch jobs
Ding et al. [16] ✓ × Long-running service
Zhang et al. [17] × × Long-running service
Zhu et al. [19] × × Long-running service
The proposed methods ✓ ✓ Long-running service
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network, disk I/O, etc.). The motivation is to ensure the high availability of 
multiple replicas and relatively optimal total costs for offsite nodes. Hence, our 
assumptions are listed next.

For web systems, pods are assumed to need to meet the following two 
requirements: 

1.	 The same type of pod copy set cannot be placed on the same node.
2.	 The sum of pod affinity on all nodes must meet the maximum. The node resources 

can fully satisfy the needs of pods. The pods of all types are placed under the 
above first requirement. The resources required by pods on a node will not exceed 
the limit of the node.

3.	 There are no hard scheduling constraints defined in pods configurations.
4.	 Pods could be migrated without progress loss.
5.	 Each task may have dependencies on others. Task structure is directed acyclic 

graph.

The nodes are deployed offsite, i.e., different servers are selected between multi-
ple regions to form a cluster. The multi-copy web system architecture of Kuber-
netes is shown in Fig.  1. All nodes are homogeneous, i.e., each node has the 
same hardware and software resources, and pods are only deployed on the worker 
nodes.

Fig. 1   The multi-copy web system architecture of Kubernetes
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3.2 � Problem definition

For the cost-efficient model, the set of nodes of the Kubernetes clus-
ter is Nodes =

{
Node1,Node2,⋯ ,Nodem

}
 , the set of pod types is 

Pods =
{
Pod1,Pod2,⋯ ,Podn

}
 , where n and m represent the number of pod types 

and the number of nodes, respectively.
In the case of multi-copy deployment, the number of copies for each type of 

pods is not necessarily the same. Therefore, all pods are defined as the following 
formula 1:

where Podm,kn is the knth copy of the pod of type m. k1, k2, kn are the number of 
each type of pod, respectively. The value of ki needs to be greater than or equal to 2 
in order to meet the high availability case. When different copies are located in dif-
ferent nodes, if one node fails, the other replica located in the other node can also 
guarantee to provide normal functions to users.

Service access to pods in Kubernetes clusters is done using Round-robin (RR). 
When the network traffic between pods of different types is to be counted, the 
traffic between each replica of pods of different types is counted. Thus, the net-
work traffic between the pod of ith type and the pod of jth type is expressed as the 
following formula 2:

 where NetFlow represents the network traffic between two copies, NetFlowPod is 
the network traffic between two pod types. Podi is the pod of the type i, and Podi, � 
is � th copy of the pod of the type i. Because the network communication between 
pod on the same node is not forwarded by the network card, that is, the forwarding 
cost of the network card is not required, if (Podi, �,Podj,�) on the same node, as 
shown in the following formula 3:

The pod set with communication relationship of Podi is called APodi , namely pod 
set with intimate relationship, then the total traffic NetFlowPods(Podi) of pod of type 
i is the following formula 4:

All pods traffic is expressed as the following formula 5:

(1)Pods =

⎡
⎢⎢⎢⎣

Pod1,1 Pod1,2 ⋯ Pod1,k1
Pod2,1 Pod2,2 ⋯ Pod2,k2
⋮ ⋮ ⋱ ⋮

Podm,1 Podm,2 ⋯ Podm,kn

⎤
⎥⎥⎥⎦

(2)NetFlowPod(Podi,Podj) =

ki∑
�=1

kj∑
�=1

NetFlow(Podi,�,Podj,�)

(3)NetFlow(Podi,�,Podj,�) = 0

(4)NetFlowPods(Podi) =
∑

Pod�∈APodi

NetFlowPod(Podi,Pod�)
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The collection of CPU resources and memory resources consumed for pods is repre-
sented as the following formula 6:

where bi is the number of one of the pods. The total CPU resources consumed by 
pods working are expressed as the following formula 7:

The total memory resources consumed by pods are expressed as the following 
formula 8:

According to the quantification standard of the energy consumption model in the 
data center [30], the total energy consumption cost is expressed as the following 
formula 9:

where C0 is the constant, C1 is the coefficient of CPU cost, C2 is the cost coefficient 
of MEM, C3 is the cost coefficient of network communication, and Eprice is the 
price of electricity. The total energy cost is calculated by computing the utilization 
for each resource, including CPU usage CPUtotal , memory usage MEMtotal , and com-
munication traffic usage NetFlowtotal.

The cost of network communication between heterogeneous nodes is expressed 
in the following formula 10:

The total cost can be expressed as the following formula 11:

The price of power and network bandwidth are shown in Table 2:

(5)NetFlowtotal =
1

2

∑
p∈Pods

NetFlowPods(p)

(6)RCM = {(cpub1,memb1), (cpub2,memb2),⋯ , (cpubm,membm)}

(7)CPUtotal =

∑
r∈R C M

� cpu
r

(8)MEMtotal =

∑
r∈R C M

�men
r

(9)
EneryCosttotal = (C0 + C1 ⋅ CPUtotal + C2 ⋅ MEMtotal

+C3 ⋅ NetFlowtotal) ⋅ Eprice

(10)Nodecon = NetFlowtotal ⋅ Bprice

(11)Costtotal = Nodecon + EneryCosttotal

Table 2   Price of electricity and 
network bandwidth

Name Price

Electricity 0.34¥/kw.h
Network bandwidth 0.8¥/GB
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4 � Orchestration algorithms

The primary goal in this paper is to reduce the cost consumption of the Kuber-
netes cluster in two ways: (1) by considering pod intimacy relationship to opti-
mize the initial placement of communication-intensive containers. (2) by resched-
uling to enable replacement of new and old pods.

4.1 � Scheduling algorithm

To solve the containerized application placement problem, we propose a cost-
efficient scheduling algorithm (CE-K8S) based on the Improved beetle antennae 
search (IBAS) described in Sect. 4.1.1.

4.1.1 � Improved beetle antennae search (IBAS)

(1) Beetle antennae search.
Inspired by the searching behavior of longhorn beetles, Jiang and Li [31] pro-

posed a new algorithm called beetle antennae search algorithm (BAS), in 2017. It 
imitates the function of antennae and the random walking mechanism of beetles 
in nature, and then, two main steps of detecting and searching by considering the 
odors of food are implemented. The odors of food are an object function. The 
position of the beetle is a solution to the objective function. For long-running 
services, the scheduling process could be regarded as an offline version of the 
bin-packing problem. Solving the bin packing problem allows beetles to iterate 
and walk by the searching operation and the detecting operation.

First, to better describe the model of the BAS, xt represents a vector of the 
position of the beetle at tth time instant (t = 1, 2,...,n), f(x) represents a fitness 
function that describes the concentration of odors at position x. fbest denotes the 
denotes maximum of the concentration of odors. xbest denotes the position of bee-
tle with fbest.

Second, to model the searching behavior, a random direction of beetle search-
ing is expressed as follows formula 12:

where rand(⋅) represents a random function that generates a vector of h-dimensional 
random values. Furthermore, the searching behaviors of both right-hand and left-
hand sides, respectively, to imitate the activities of the beetle’s antennae are pro-
posed as follows formula 13:

(12)b⃗ =
rand(h, 1)

‖rand(h, 1)‖

(13)

{
xr = xt + dt ⋅ b⃗

xl = xt − dt ⋅ b⃗
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where xr denotes a position lying in the searching area of right-hand side, and xl 
denotes that of the left-hand side. dt is the sensing length of antennae corresponding 
to the exploit ability at tth search.

Third, to formulate the behavior of detecting, iterative model as follows to 
associate with the odor detection by considering the searching behavior is gener-
ated as follows formula 14:

where sign(⋅) represents a sign function. stept is the step size of tth search.
The update rules of stept and dt are presented as follows formula 15:

where � and � are all variables which need to be set up for specific application 
scenarios.

The update rules of fbest are presented as follows formula 16:

where min(⋅) can be replaced by max(⋅) depending on the application scenario.
(2) Improved Beetle antennae search.
Although the principle of BAS is simple and easy to understand, it relies heav-

ily on the setting of the � . If � is set too large, beetle may quickly jump out of the 
local search, and the local extrema will not be explored sufficiently, and better 
solutions will be missed. If � is set too small, the local extrema will be explored 
excessively and the local optimum cannot be jumped out as well as the conver-
gence speed is too slow to find the global optimum. AS a result, we improve the 
update rules Eq. 15 of stept of the BAS as follows formula 17 :

where gradf(x) represents the gradient. The improved BAS is called IBAS.

4.1.2 � Cost‑efficient scheduling algorithm (CE‑K8S)

The scheduling algorithm that incorporates the IBAS bin packing algorithm in 
this paper is named CE-K8S. In Kubernetes, the process of scheduling pods to 
nodes is a bin-packing problem with intimacy. The IBAS is a meta-heuristic algo-
rithm. Compared with traditional solution methods, meta-heuristic algorithms 
have the advantages of fast convergence speed, higher average performance, and 
better results, and are more suitable for large-scale high-dimensional bin-packing 
problems [32]. The intimacy relationship between pods is reflected in the applica-
tions as the size of network traffic, and the IBAS bin packing algorithm is used 

(14)xt+1 = xt + stept ⋅ �⃗b ⋅ sign(f (xr) − f (xl))

(15)
{

stept+1 = � ⋅ stept

dt+1 = � ⋅ dt + 0.01

(16)fbest = min(f (xt+1), f (xt))

(17)step = step + � ⋅
|gradf (xt+1)| − |gradf (xt)|
||gradf (xt+1)| − |gradf (xt)||
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to solve this intimacy packing problem. This paper represents the affinity set 
between pod types PodsIntimacies as the following formula 18:

where PI(podi, podj) represents the affinity between pod of the type i and pod of the 
type j. Pods of the same type do not communicate with each other, so their closeness 
is 0. Pods of different types that do not communicate with each other also have a 
closeness of 0.

In solving NP-hard problems like the bin packing problem [33], the dimension of 
the algorithm search needs to be set to a two-dimensional matrix of the product of the 
number of pod types and the number of nodes, and in each update it is only necessary 
to update the coordinates of the algorithm search normally, and then convert the direc-
tion generated randomly each time to a two-dimensional matrix of the product of the 
number of pod types and the number of nodes.

The bin packing algorithm designed using IBAS is shown in Algorithm 1. IBAS bin 
packing algorithm first initializes the various parameters of the improved Beetle Anten-
nae Search algorithm (line 1-2). Then the algorithm initializes the search dimension 
(called Dim) using a product of the number of nodes and the number of pod types (line 
3). Then a one-dimensional matrix is created by combining the type name of pods and 
the number of each type (line 4). Then an initial position vector of the Dim dimension 
of beetles is created using random placements (line 5). After creating the initial position 
vector of beetles, an initial direction vector of beetles of the Dim dimension is created 
using Eq. 12 (line 7). Based on the direction vector, as shown in Eq. 13, the vector of 
the left and right beards is created. Then, the vector of left and right beards is converted 
into a two-dimensional matrix (line 8). Afterward, the matrix is sorted in descending 
order, and then the subscripts of the row elements in the matrix are output (line 9). 
Then, according to the number of copies of each pod, the corresponding elements are 
taken from the matrix (line 10). Then the elements are mapped to bags (line 11). If 
pods of the same type are on the same node, a new iteration is started (line 12–14). 
Then the intimacy between pods in each node in the cluster is calculated. The intimacy 
on each node is summed to get the total intimacy (called Maxfit) (line 15). Based on the 
total intimacy at tth iteration, the location of Beetle was updated using Eq. 14 (line 16). 
Then Maxfit is updated using Eq. 16 (line 17). Then depending on where the Maxfit is 
located, the placement strategy of the pods is updated (line 18). Then the step length of 
Beetle is updated using Eq. 17 (line 19). Then Iteration number minus one (line 20). 
Finally, the placement strategy with the optimal intimacy is obtained (line 22).

(18)PodsIntimacies =

⎡
⎢⎢⎢⎣

0 PI(pod1, pod2) ⋯ PI(pod1, podm)

PI(pod2, pod1) 0 ⋯ PI(pod2, podm)

⋮ ⋮ 0 ⋮

PI(podm, pod1) PI(podm, pod2) ⋯ 0

⎤
⎥⎥⎥⎦



10311

1 3

Cost‑efficient scheduling algorithms based on beetle antennae…



10312	 H. Li et al.

1 3

The CE-K8S scheduling algorithm can be described by following Algorithm 2. 
CE-K8S algorithm first deploys web tasks using the default scheduling algorithm, 
and then user requests for web tasks are simulated (line 1). Then the communica-
tion traffic between each type of pod is fetched using Mizu (the API traffic viewer 
for Kubernetes) (line 2). Then the set of pod affinity is constructed by the com-
munication traffic using Eq. 18 (line 2). Based on the set of pod affinity, the IBAS 
bin packing algorithm 1 is performed (line 3). Then the relative best deployment 
solution between pods and nodes regarding cost is obtained (line 3). Finally, pods 
scheduling starts to be implemented (line 4–14).

The architecture of CE-K8S is shown in Fig. 2. After obtaining the placement 
relationship with the highest closeness, the CE-K8S is implemented through the 
Kubernetes plug-in for the web system. The CE-K8S can be described as follows: 
First, the default scheduling algorithm is used to obtain the intimacy relation-
ship between pods, and the cost-effective deployment scheme of pods is obtained 
through IBAS, and then the deployment of pods is realized through a custom 
scheduling plug-in, and if the deployment fails, it is deployed through the default 
scheduling algorithm.

Fig. 2   CE-K8S working architecture
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4.2 � Rescheduling algorithm

The reason why pods are rescheduled is that after Kubernetes schedules the pods, 
the relationship between pods and nodes is bound, and this binding will continue 
until the Pods are deleted. However, as the business changes Kubernetes clusters 
may face a situation: if only the cluster business changes, the current resources can 
still meet the business needs. The deployment location of pods can be reasonably 
adjusted according to the business changes to further reduce the cost of using the 
cluster.

The architecture of RS-BHAL is shown in Fig. 3. First, the resource monitoring 
system and API traffic monitoring system are built in the cluster. This set of moni-
toring mainly consists of the resource data collection component Node Exporter, 
the monitoring component Prometheus, the visualization tool Grafana, the log visu-
alization platform Kibana, the data storage platform ElasticSearch and the Kuber-
netes cluster API traffic monitoring tool Mizu, which monitors various resource 
changes in the Kubernetes cluster and communication between all pods in real 
time. This system uploads the data to the RS-BHAL rescheduling module, which 
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analyzes the available data to decide whether and when to initiate the rescheduling 
algorithm.

Applications deployed on Kubernetes have periodic workloads. The periodic his-
tory of accesses to the cluster APIs by external traffic can be queried from Elastic-
Search. This record is analyzed to obtain the cyclical changes of the business and 
the periodic access to the APIs and the cyclical access. The specific steps are. 

1.	 Get the set of periodic changes in pod closeness about time from the historical 
log records (line 1).

2.	 Get the mapping of the current pod and node deployment and the set of pod affini-
ties (line 1).

3.	 The pod-node mapping relationship is obtained by the default scheduling algo-
rithm (line 2).

4.	 The current set of pod affinity cycle changes is used to obtain the new pod-node 
mapping relationship by IBAS (line 3).

5.	 Get the cost of the default and new pod to node mapping relationships by pod 
affinity (line 4-5).

6.	 Compare the cost of the two to decide whether to perform rescheduling. If exe-
cuted, it returns the deployment mapping relationship between pod and node (line 
6–10).

The pseudo code of historical log analysis algorithm is shown in Algorithm 3.

Fig. 3   RS-BHAL working architecture
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To ensure that the impact on the cluster services is minimized during reschedul-
ing, the rescheduling timing should be chosen at the point when the periodic changes 
occur, because this is the time when the user requests are the smallest, otherwise it 
will cause damage to the services experience.

SARIMA is one of the time series forecasting analysis methods. Because the 
periodic variation of a web system is also a kind of time series variation by nature, 
the seasonal autoregressive integrated moving average model (SARIMA) is used to 
predict the periodic variation of the web system.

The main steps of the SARIMA(p,d,q)(P,D,Q,s) model can be summarized as 
follows. 

1.	 Time series sample smoothness test and processing, this process is mainly to 
determine whether the data sample is with smoothness, if not, then use the dif-
ference processing to smooth the data.

2.	 Model selection and parameter estimation, a process used to determine the corre-
sponding values of each parameter in the SARIMA(p,d,q)(P,D,Q,s) model, which 
mainly uses ACF and PACF.

3.	 Model accuracy assessment, this process is mainly used to assess the accuracy of 
the model.

Therefore, the algorithm for predicting the rescheduling time using the SARIMA(p,d,q)
(P,D,Q,s) model can be described as the following pseudo-code shown in Algorithm 4. 
Rescheduling time prediction algorithm first gets the history log records (line 1). Then 
the variable (called times) is created to represent the set of rescheduling time points 
(line 2). Then request data is fetched from the history log (line 3). Afterward, request 
data is cleaned and filtered in order to eliminate non-user requests (line 4). Then the 
data is checked for compliance with smoothness requirements (line 5). Based on the 
data, SARIMA is used to get the predicted time points (line 6). If the data do not meet 
the smoothness requirement, the data are differenced (line 9). 
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After the historical log analysis and the rescheduling time prediction algorithm, 
the periodic mapping relationship between pod and node and the periodic change 
time point of the next phase are obtained. With these two points, a specific resched-
uling algorithm can be executed, which first creates a backup of the pod at the desti-
nation node and then deletes the old pod at the old node. The way it works is shown 
in Fig. 4. To avoid damaging application performance, the old pod can serve users 
normally while the new one is being created.

The pseudo-code of rescheduling algorithm is shown in Algorithm 5.

Fig. 4   Working mode of rescheduling
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5 � Performance evaluation

To compare the cost and performance of the proposed algorithms (CE-K8S and 
RS-BHAL) with related algorithmic works, including the default K8s frame-
work, Tabu, BFD and Descheduler, we implemented the proposed algorithms 
and carried out the empirical evaluations by deploying experiments on a Kuber-
netes cloud.

CE-K8S Scheduling Evaluation: Sect. 5.2 compares CE-K8S with three other 
containerized application scheduling approaches in terms of the cost and per-
formance using Workload (called Workload 1). These approaches are selected 
to solve the containerized application scheduling problem within Kubernetes 
clouds. 

1.	 The default K8s framework—Containerized application scheduling problem is 
solved from the perspective of balanced resource allocation.

2.	 BFD—One of containerized application scheduling approaches proposed in [13], 
where containerized application scheduling (initializing placement of pods within 
Kubernetes clouds) and cost are the focus of scheduling decision-making.

3.	 Tabu—Algorithm which is meta-heuristic is the same as the type of BAS (Beetle 
Antennae search). We use this to demonstrate how the incorporation of improved 
BAS(IBAS) results in better placement decisions.
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The default K8s framework, BFD, and Tabu are the works that can be adapted 
and applied to the scheduling of containerized applications addressed in our 
work. So, they are chosen for the comparison of CE-K8S in terms of cost and 
performance.

RS-BHAL Rescheduling Evaluation: Rescheduling is live migration. 
Sect.  subsec5.3 compares RS-BHAL with two other containerized application 
rescheduling approaches in terms of the cost using Workload (called Workload 
2). These approaches are selected to solve the containerized application resched-
uling problem within Kubernetes clouds. 

1.	 The default K8s framework—We use the prediction model proposed in this paper 
to change the scheduling algorithm of the default K8s framework to a reschedul-
ing algorithm. It gets a containerized application migration solution from the 
perspective of balanced resource allocation using our workload prediction. We use 
this to demonstrate how the consideration of the relationship of communication 
traffic between pods and workload prediction results in better migration decisions 
in terms of cost.

2.	 Descheduler—It is a popular Kubernetes sub-project, where balanced resource 
allocation is the focus of rescheduling decision-making.

The default K8s framework and Descheduler are the works that can be adapted 
and applied to the rescheduling of containerized applications addressed in our 
work. So, they are chosen for the comparison of RS-BHAL in terms of the cost.

5.1 � Experimental setup

Workload 1: A company’s communication-intensive web system, consisting of 
seven microservices, has a set of copies of each service and the required resources 
as shown in Table 3.

Workload 2: A company’s web system with periodicity. Because of user habits, 
the system faces an increase in the number of users’ requests every day from around 
8:00 am to 1:00 pm. In order to reduce the size of the table, entries of the table 
represent the number of HTTP requests received by the web application every three 
hours from Monday to Friday (requests-per-three hour), as shown in Table 4.

This experiment relies on the cloud platform to build a Kubernetes homogene-
ous cluster, which consists of one master node and four worker nodes. All the 
nodes in the cluster are considered offsite deployments, and the network commu-
nication between them needs to be costed. Each worker node deployed on VMs 
has 8 G CPU cores and 16GB RAM. The operating system of each worker node 
is Centos 6.5. Since they are connected to one network backbone, the number 
of hops a packet traverses from source to destination is between 12 and 14 hops 
[34]. Therefore, different network distances do not affect site selection.

Other software and hardware parameters are shown below.
Software: GoLand2019, PyCharm2021, Go1.16, Python3.6.
Network plug-in: Flannel.
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5.2 � Workload 1

In this section, 100, 500, 1000, 2000, 3000, 5000, 10000, 15000, 20000 concurrent 
accesses to the web interface are performed using the Kubernetes default scheduling 
algorithm, BFD bin packing algorithm, forbidden search algorithm (Tabu), and CE-
K8S, respectively. Ten experiments are performed for each request, and the average 
CPU usage, average memory usage, average request time, and average network com-
munication traffic between nodes are counted, and finally the cost of each algorithm 
is calculated according to the cost formula defined above.

The average CPU usage of the cluster under different concurrent requests is 
shown in Fig.  5. The reason why the CPU utilization of the different algorithms 
is compared is that the total energy cost (Eq.  9) is calculated. When the number 
of concurrent requests is 100, 300 and 1000, the difference between the four algo-
rithms is not very obvious, because the number of concurrent requests is not very 
high at this time and the overall CPU consumption is not large. The CE-K8S algo-
rithm can save up to 0.9% CPU cost and down to 0.2% CPU cost compared to other 
algorithms. As the number of concurrent requests increases, the effect of the CE-
K8S algorithm starts to show up, but the overall difference is still not very large. At 
20,000 concurrent requests, the CPU utilization of the BFD starts to be higher than 
that of the default scheduling algorithm, probably because the deployment strategy 
of BFD at this point causes most of the frequently communicating pods to belong to 
different nodes, which cannot withstand the high concurrency scenario. CE-K8S has 

Table 4   History log

0 o’clock 3 o’clock 6 o’clock 9 o’clock 12 o’clock 16 o’clock 19 o’clock 21 o’clock

Monday 101492 55622 228896 914642 647972 731655 492698 261837
Tuesday 92841 57676 247896 1197639 782043 1088065 531711 266626
Wednes-

day
115460 88990 366659 1296082 1060030 1121163 606155 293199

Thursday 113074 87180 335241 1313634 815463 1125282 573913 253010
Friday 102002 81394 308106 1294758 829717 1150607 537227 231938

Table 3   Web system

Microservice
name

Number of
copies

Request CPU Request mem Limit CPU Limit men

A 3 500m 400Mi 800m 500Mi
B 2 300m 300Mi 500m 400Mi
C 3 400m 400Mi 600m 500Mi
D 3 400m 400Mi 600m 500Mi
E 2 300m 300Mi 500m 400Mi
F 2 300m 300Mi 500m 400Mi
G 3 500m 400Mi 800m 500Mi
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the lowest average CPU usage compared to other algorithms, i.e., it can complete 
the same task with lower resource consumption, saving energy costs.

The average memory usage for each algorithm of the cluster at different concur-
rent request volumes is shown in Fig. 6. The reason why the memory utilization of 
the different algorithms is compared is that the total energy cost (Eq. 9) is calcu-
lated. At the concurrent request volumes of 100, 300, and 1000, the difference in 
the effectiveness of the four algorithms is not very obvious, and the CE-K8S saves 
an average of 0.8% memory overhead compared to the other algorithms, with the 
lowest saving of 0.4% memory overhead. As the number of concurrent requests 
increases, the effect of the CE-K8S algorithm starts to show up, thanks to the fact 
that the CE-K8S algorithm schedules pods with higher network traffic on the same 
node and reduces the data sent to another node, thus reducing the memory buffer 
usage and memory.

Figures  7 and 8 represent the average request time and the average inter-node 
traffic for each algorithm of the cluster under different concurrent request volumes, 
respectively. Formula 5 is used in Fig. 8. As can be seen from the figures, the CE-
K8S algorithm is able to complete the specified number of concurrent requests in 
the shortest time compared to other scheduling strategies, while minimizing the 
communication traffic between nodes. Compared to the default scheduling algo-
rithm, CE-K8S reduces the request time by 5.3% on average, and the inter-node net-
work traffic by 35.3%. This is due to the fact that CE-K8S crates the pods reasonably 
according to their communication volume, so that the pods with high network traffic 
are on the same node.

Figure  9 shows the number of reboots for each algorithm at different concur-
rency levels, and the number of reboots reflects the robustness of the service, and 
the smaller the number of reboots, the higher the robustness of the service. As can 

Fig. 5   Comparison of average CPU usage
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be seen from Figure 9, before the concurrency is 5000, the number of reboots of 
pods for each algorithm is 0, and the service is equally robust. After the concur-
rency is greater than 5000, the advantages and disadvantages of the four algorithms 
start to emerge, where the default scheduling algorithm is the highest at different 
subsequent concurrency, the CE-K8S algorithm is the lowest at all. Therefore, the 
CE-K8S scheduling algorithm can improve the stability of the system by scheduling 
closely communicating pods to a node.

Figure 10 represents the number of request failures for each algorithm at dif-
ferent concurrent volumes. As can be seen from the figure, the CE-K8S algorithm 
has the lowest number of request failures under different concurrent request vol-
umes. This is due to the fact that the CE-K8S schedules the frequently communi-
cating pods on the same node, which enables them to complete network requests 
faster. Another reason is that the CE-K8S algorithm has the lowest number of 
pod restarts for different request concurrency, this is known from Fig.  9, some 
requests may just happen during the process of pod hang restarts, so the CE-K8S 
algorithm has the lowest number of request failures for different concurrency. 
This reflects that the CE-K8S algorithm can improve the stability of the cluster 
service from the other side.

Figure 11 shows the energy cost of the cluster at different concurrent request 
volumes. When the concurrent request volume is less than 1000, the difference 
in energy cost of the four algorithms is not very obvious, because the cluster can 
withstand the concurrent volume at this time and the overhead on CPU and mem-
ory is relatively small. When the volume of concurrent requests reaches 3000, 
the reason why CE-K8S has a higher energy overhead than Tabu search is that 
as shown in Fig. 6, when the volume of concurrent requests reaches 3000, CE-
K8S has a higher memory usage than Tabu search. As the number of concurrent 

Fig. 6   Comparison of average memory usage
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requests increases, the effect of CE-K8S starts to appear gradually, and compared 
with the default scheduling algorithm, Tabu and BFD algorithms, CE-K8S is able 
to save 4%, 2.7%, and 3% of energy cost overhead on average. Figure 12 repre-
sents the network bandwidth cost of communication between offsite nodes for dif-
ferent amounts of concurrent network requests, which is proportional to the previ-
ous inter-node network traffic and saves an average of 35.3% network bandwidth 

Fig. 7   Comparison of average request completion time

Fig. 8   Comparison of average network traffic between nodes
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cost compared to the default scheduling algorithm. Formula 11 is used in Fig. 13. 
Figure 13 represents the total cost of the cluster, and CE-K8S reduces the clus-
ter cost by 20.97%, 8.82%, and 21.13% on average compared to the other three 
algorithms. It shows that the CE-K8S proposed in this paper can save the energy 
cost and network bandwidth cost of the cluster by scheduling the frequently 

Fig. 9   Comparison of number of pod restarts

Fig. 10   Comparison of number of request failures
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communicating pods to one node when targeting the web system on a Kubernetes 
cluster composed of offsite nodes.

5.3 � Workload 2

5.3.1 � Prediction of rescheduling time

To verify whether the system meets the requirements of SARIMA time series 
forecasting, it is necessary to make a test on the periodic log change data of the 
system.

(1) Data stability test and parameter determination.
The stability test was first performed on the data from July 1 to 5, 2021, and the 

original data is shown in Fig. 14. The unit root test is shown in Fig. 15. If the pvalue 
is large, the data need to be differenced, and the first-order differencing process is 
shown in Fig. 16. By analyzing the correlation between ACF and PACF in Fig. 15, 
we can only roughly determine the range of p and q within the second order, so we 
need to further determine the values of p and q by the AIC information criterion, 
and the smaller the value of AIC information criterion means the more accurate the 
model is fitted.

Because it can be considered smooth after first-order differencing, d = 1, the 
value of s is set to 24 according to the period, and the value of D is 0. Therefore, 
only the parameter values of p, q, P, and Q need to be determined. Here, the four 
parameters are combined in ranges, and the best combination of parameters is deter-
mined by AIC through the SARIMAX package to exclude the combinations that 
cannot converge. The AIC values for each combination are shown in Table 5.

As can be determined from Table 5, Akaike information criterion (called AIC) is 
a measure of the degree of adaptation of a statistical mode. The smaller the AIC, the 

Fig. 11   Comparison of cluster energy cost
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better the model. The model with the smallest AIC is usually chosen. The minimum 
AIC value for the combination of parameters (0,0,1,0) is 1051.950286. Therefore, it 
is determined that the best fitting parameter is (0,0,1,0). At this point, all the param-
eters required for the SARIMA model are all determined, and the model will be 
tested below.

(2) Model Testing and Forecasting.
As shown in Fig. 17, the residual terms conform to a normal distribution, indicat-

ing that the model meets the requirements.

Fig. 12   Comparison of communication cost of offsite nodes

Fig. 13   Comparison of total cost of cluster
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Using the data from July 1 to 5 to make predictions, the results are shown in 
Fig. 18. July 6 data is the predicted data, and the trend of the predicted data is in line 
with the overall change of the data and meets the requirements. In this paper, the 
predicted data is compared with the real data on July 6, and the error of the two data 
is about 50,000, which is about 1% and acceptable compared with the daily data 

Fig. 14   Original data

Fig. 15   Unit root test and ACF and PACF

Fig. 16   First-order difference
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records of nearly 5 million. Meanwhile, the difference of cycle change time is within 
1 minute, which is acceptable. It indicates that SARIMA is suitable for this system 
to predict the cycle change.

5.3.2 � RS‑BHAL rescheduling

The six hours of the 9:00–15:00 time period with more obvious cycle changes were 
selected, while the business in the morning and the business in the afternoon were 
adjusted, so the time period selected was reasonable. In terms of data volume size, 
1% of the requests within each minute were randomly selected as the experimental 
replay. As for the statistics of the experimental results, the statistics are conducted 
every minute, and the comparison algorithm is chosen from the rescheduling algo-
rithm (Descheduler) of the open source community and the default scheduling algo-
rithm of Kubernetes.

For the web system, the resource utilization of the three scheduling policies from 
9:00 am to 3:00 pm is shown in Figs. 19 and 20. The reason why the resource uti-
lization of the different algorithms is compared is that the total energy cost (Eq. 9) 
is calculated. Before 10:25 a.m, CPU and memory utilization starts to increase as 
application accesses increase, but the difference in utilization between the three poli-
cies is not significant because no rescheduling is triggered. After 10:25, as shown 
in Fig. 4, the business volume starts to increase, and the RS-BHAL starts to exe-
cute rescheduling based on the rescheduling time predicted by the previous history 
logs. The CPU and memory utilization of RS-BHAL algorithm suddenly increases 
around 10:20, indicating that pod rescheduling is being executed at this time. How-
ever, the increase in the CPU and the memory utilization of the RS-BHAL algorithm 
is temporary, because the backups of pods are created at the destination node during 
rescheduling, and then the old pods at the old node are deleted. After rescheduling 
around 10:25 to 12:00, the CPU and memory utilization of RS-BHAL algorithm is 
obviously smaller than the default scheduling and Descheduler algorithm. At around 
1:30 p.m. when the workload is adjusted again, the RS-BHAL is triggered again and 
the pods are rescheduled according to the affinity. The CPU and memory utilization 
thereafter is smaller than the default scheduler algorithm most of the time. At the 
same time, the CPU and memory utilization suddenly increase during rescheduling, 
which is due to the fact that the backups of pods are created during rescheduling, 
which causes the CPU and memory overhead to increase. Compared with the default 
scheduling algorithm and Descheduler, RS-BHAL reduces CPU utilization by 

Table 5   Parameter combinations 
and their corresponding AIC

Parameters AIC

(0, 0, 1, 0) 1051.950286
(2, 3, 1, 0) 1051.950286
(3, 3, 1, 0) 1118.461490
(2, 3, 1, 1) 1119.191850
(1, 3, 1, 0) 1121.378024
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7.08% and 4.66%, and memory by 7.49% and 5.1%, respectively, during the entire 
request period.

The network changes between pods corresponding to the three algorithms 
throughout the historical request rescheduling period are shown in Fig.  21. For-
mula  5 is used in Fig.  21. It can be seen that the RS-BHAL can reduce the net-
work communication between pods after the execution of rescheduling, but a surge 

Fig. 17   Model diagnosis

Fig. 18   Model prediction
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of communication traffic between pods occurs when the rescheduling is specifi-
cally executed. This is due to the fact that when the old pods are deleted during the 
rescheduling, the new pods have not yet taken over the traffic transferred from the 
old pods, resulting in a decrease in the number of available pods and an increase in 
the communication traffic between pods. Once the rescheduling is completed and 
the new pods start to take over the traffic, the communication traffic between pods 

Fig. 20   Comparison of memory utilization

Fig. 19   Comparison of CPU utilization



10330	 H. Li et al.

1 3

will start to decrease. Through data comparison, RS-BHAL reduces the inter-node 
network traffic by 5.65% and 4.7% compared with the default scheduling algorithm 
and Descheduler, respectively, during the whole experimental period, which later-
ally reflects that the intimacy gap between pods of this system is not large, i.e., the 
network traffic between each other is roughly equivalent. It indicates that the RS-
BHAL rescheduling strategy can reduce the network communication traffic between 
cluster business pods.

The average energy cost incurred by the RS-BHAL and the other two algorithms 
during the whole experimental period is shown in Fig. 22. The RS-BHAL reduces 
the energy cost by 5.8% and 4.8%, respectively, compared to the other two algo-
rithms. Figure 23 represents the network bandwidth cost of the three strategies, from 
which it can be seen that RS-BHAL reduces 5.7% and 3.67%, respectively, com-
pared to the other two algorithms, although the network communication volume of 
this system is relatively high, the network bandwidth cost saved by RS-BHAL algo-
rithm for this system is not very high, the reason is that the affinity between pods of 
this system is approximately the same, i.e., the network traffic between each type 
of pod is approximately the same. Formula 11 is used in Fig. 24. Figure 24 repre-
sents the total cost of the three algorithms, and RS-BHAL reduces 5.59% and 4.7%, 
respectively, compared to the other two algorithms. The difference shows that the 
RS-BHAL proposed in this paper can reduce the cost by periodically rescheduling 
the pod in conjunction with the business.

Fig. 21   Comparison of network communication traffic
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6 � Conclusion and future directions

In this paper, a cost-efficient scheduling algorithm (CE-K8S) and a cost-efficient 
rescheduling algorithm (RS-BHAL) for Kubernetes are proposed based on cloud. A 
new cost-efficient model is built by integrating the energy cost of CPU, memory, and 
network consumed while the pod is running and the cost of network communica-
tion between the offsite nodes. Based on this model, our two scheduling algorithms 
minimized the total cost of Kubernetes cluster while satisfying the service experi-
ence. The experiment of Kubernetes cluster using communication-intensive work-
load and cycle workload on the cloud shows that the proposed two algorithms can 

Fig. 22   Comparison of energy cost of different algorithms

Fig. 23   Comparison of bandwidth cost of different algorithms
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efficiently reduce the total cost consumption compared with the traditional schedul-
ing algorithms. The Kubernetes scheduling framework designed in this paper still 
has some limitations. Due to the pursuit of lower cluster cost, compared with other 
performance-oriented scheduling frameworks, the algorithm pervasiveness and clus-
ter resource balancing may not be improved too much. In the future work, we will 
consider the balance optimization and locality factor of cluster resources. And we 
will also try to improve the applicability of the algorithm on the expansion, such as 
focus on MySQL, Redis, and other databases.
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