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Abstract
Big data applications based on graphs need to be scalable enough for handling 
immense growth in size of graphs, efficiently. Scalable graph processing typically 
handles the high workload by increasing the number of computing nodes. However, 
this increases the chances of single or multiple node (multi-node) failures. Failures 
may occur during normal job execution, as well as during recovery. Most of the sys-
tems for failure detection either follow checkpoint-based recovery which has high 
computation cost, or follows replication that has high memory overhead. In this 
work, we have proposed an unsupervised learning-based failure-recovery scheme 
for graph processing systems that detects different kinds of failures and allows node 
recovery within a shorter amount of time. It has been able to provide enhanced per-
formance as compared to traditional failure-recovery models with respect to simulta-
neous recovery from single and multi-node failures, memory overload and computa-
tional latency. Evaluating its performance on four benchmark datasets has reinforced 
its strength and makes the proposed model completely fit in with the status quo.
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1  Introduction

Current research on big data analysis has shown the importance of the role of 
graphs. Social network analysis, medical diagnosis, and natural language processing 
are some big data applications where graphs are used to represent complex rela-
tionships and dependencies [1]. Such applications also use several machine learning 
and data mining (MLDM) algorithms [2, 3]. A parallel processing environment [4] 
is the natural choice for executing such complex algorithms where data size grows 
exponentially with time. In order to handle this huge load, graph-based parallel pro-
cessing systems, continuously increase the number of compute nodes. However, 
the increasing number of compute nodes may lead to single or multi-node failures, 
either during job execution, or during recovery. This compels the entire system to 
stop its progress until the failed node recovers. Moreover, as the system overhead 
and computation time for failure recovery is high, subsequent node failures may fur-
ther occur during the recovery of the initially failed node.

The failure recovery mechanisms used by GPSs can be classified into two broad 
categories: Checkpoint-based recovery and Replica-based recovery. In Checkpoint-
based recovery, each node has to save its own information periodically on storage 
(like HDFS) [5]. After a failure occurs, each of the computing nodes reload their 
status from the latest checkpoint and redo all operations. The system recovers when 
all nodes have completed executing all operations that have been completed prior to 
the point of failure. The advantage of using a checkpoint-based recovery is that it 
can handle any type of failures. However, it needs a huge amount of persistent stor-
age to store states of each node in the system as checkpoints. Recovery time is also 
high for such systems. Some of the recent GPSs like Pregel [6], PowerGraph [7] and 
Distributed GraphLab [8] follow checkpoint-based recovery mechanism [9]. Among 
them, Power Graph has been widely used because of its faster graph-processing rate 
and higher scalability though it suffers from high communication complexity [10]. 
Moreover, the messages the node receives during recomputation might not always 
arrive in the same order as they do during regular execution. This enforces an addi-
tional constraint for the system to be insensitive to message ordering [11].

A replica-based recovery system, on the other hand, works by creating a replica 
of each node. This is achieved by local memory access which, in turn, decreases 
computational latency since atleast k + 1 replicas are required to make the system 
recover from k failures [2]. Maintaining replicas, also has a high storage overhead. 
The master vertex and its replicas, here, are synchronized through message passing.

In general, GPSs partition graphs into several sub-graphs which are then placed 
in individual computing nodes. Graph partitioning approaches like edge-cut and ver-
tex-cut are often used for this purpose. After a failure, the sub-graphs that reside in 
a failed node are redistributed over multiple healthy nodes. This leads to reduction 
in computation cost but increase in communication cost [12]. Nevertheless, a good 
partitioning algorithm that balances this trade-off, is lacking. The storage and com-
putational complexity of the two failure recovery mechanisms discussed above, also 
motivates the need for development of a robust and optimal fault-recovery GPS that 
would allow recovery from both single and multi-node failures.
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In this work, we have proposed a scalable failure-recovery mechanism for dis-
tributed GPSs. GPS plays an important role in community applications. Community 
applications need global data pool where people can share their data. Data sharing 
is the sole purpose of such applications. Many variants of such applications demand 
that the data be encrypted during communication. Centrally controlled social appli-
cation service providers also use a global data pool model. However, such applica-
tions require central authorization and thus suffers from issues like single point of 
failure and scalability. Hence, decentralization has been adapted as an alternative 
by most of the open source communities. One such decentralized application Dat 
[13], now known as, Hypercore [14] is used to share large amount of scientific data-
sets between research groups [15]. Secure-Scuttlebutt (SSB) [16] is a similar social 
application that is mainly used for blogging and code development, while Ledger-
Mail [17, 18] is another decentralised email transfer system. These type of social 
applications are only interested in a subset of the global data pool. Thus, it is fea-
sible to locally store the data. Such applications use replicated, authenticated, sin-
gle-writer, append-only log files which consist of event chains for each participant. 
Such log files are replicated through gossip algorithms to produce an eventually-
consistent social application. These types of applications are best suited for small 
and trusted groups [19].

The proposed model has been driven by the single node-single user principle, 
where each user/participant has been considered as a single node with its own stor-
age space. Coordination between participants has been maintained using append-
only data structures. A clustering algorithm has been then used to partition the 
graph of users/participants into several virtual clusters. Each virtual cluster has 
a cluster head, also known as imitator. Every node maintains a log file, which is 
divided into some chunks. The number of chunks has been decided based on the 
number of clusters obtained in the earlier step. The encrypted chunks of the log files 
are sent to the imitator node of each cluster in a round-robin fashion (in ascending 
order of cluster ID), which are accessed only by the owner node during the recov-
ery period. The imitator nodes keep track of the actual location of the chunks. Each 
node periodically sends a heartbeat to its neighbours present in its own cluster. An 
absence of heartbeat from a node for a long period of time, indicates that the node is 
dead. In order to recover a failed node, a broadcast message is sent to all the virtual 
clusters. On receipt of this message, each imitator retrieves the backup files from the 
nodes in its own cluster and sends them to the failed node. The node recovers itself 
upon receipt of backup files from all clusters. The proposed failure-recovery model, 
when evaluated on four benchmark datasets, has shown enhanced performance, ena-
bling simultaneous recovery from both single and multi-node failures within shorter 
amounts of time with low memory overload as compared to traditional GPSs.

2 � Related work

In order to handle the dynamic increase in size of data, a majority of GPSs increase 
the number of computing nodes, which in turn, increases the probability of node 
failures. In checkpoint-based recovery models, each node saves its state periodically 
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in storage, which is reloaded by the failed node during its recovery period [20]. Peri-
odic storing and reloading from storage during failures degrade performance and 
incur additional overhead since it not only involves reloading the checkpoint, but 
also implies recomputation and message passing among all compute nodes. Based 
on the recent checkpoint, it re-executes missing computation of all nodes residing 
in both healthy and failed nodes. A subsequent failure during recovery of the node, 
implies rolling back each compute node and restarting the recovery method from 
scratch [5].

The failure recovery model proposed in [11] is an improvement over conventional 
checkpoint-based recovery where the authors have removed the overhead due to 
high recomputation cost for the sub graphs located in the healthy nodes, since fail-
ures only affect a small fraction of compute nodes. It should be noted that a healthy 
node’s subgraph can contain both its original subgraph (whose computation is never 
lost) and a set of recently received partitions (whose computation is partially recov-
ered) as a result of prior failures. The authors have also split up the recomputation 
duties for the subgraphs in the failing nodes over several compute nodes to increase 
parallelism.

An alternate approach for node recovery [9] combines global check pointing with 
local logging. Once a failure is detected, all remaining vertices are requested to send 
messages to the failed vertices. In this scheme, each node maintains a local log for 
outgoing messages. Hence, no recomputation is needed. A column-wise message 
compression method is used to reduce the logging overhead. The sub-graphs present 
in the failed nodes are re-partitioned and distributed over healthy compute nodes for 
the sake of recomputation towards parallel recovery. After recomputation, partitions 
are again redistributed among all the compute nodes thereby increasing performance 
overhead. The problem associated with this recovery scheme is synchronization 
between local storage and global storage, which, if not done properly, may lead to 
data inconsistency. The storage overhead associated with this kind of recovery is 
also quite high as compared to checkpoint-based recovery methods since both local 
and global storage’s have to be maintained.

Phoenix [21] is a distributed-memory application that has been developed for 
graph analytics. It serves as a substitute for check-pointing which resets the entire 
calculation to its state just prior to the fault. Phoenix reloads graph partitions from 
stable storage on the revived hosts that take the place of the failed hosts whenever a 
fail-stop error has been identified. If any of the nodes on these hosts have proxies on 
surviving or healthy hosts, it may be possible to recover the states of those proxies. 
It is significantly superior to checkpoints and can handle any kind of failures. How-
ever, memory overhead remains a problem since the proxy nodes live within revived 
hosts since it needs to keep stable storage on those hosts. Additionally, because 
synchronisation is required both during regular execution and during the recovery 
mechanism, this method entails synchronisation overhead.

In another recent investigation [2], the authors have employed vertex replica-
tion to handle node failures. Following this scheme, atleast k + 1 replicas need to be 
maintained in order to handle k machine failures. This incurs huge storage overhead 
for storing k + 1 replicas. There is a imitator node which handles replica manage-
ment. The imitator node creates auxiliary replicas for vertices without replication 



9387

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

and synchronizes the full states of a master vertex to its replicas through message 
passing. The locations of the replicas are chosen randomly by the imitator to create 
a fault recovery system. The authors have proposed two approaches for node recov-
ery - Rebirth-based recovery and Migration-based recovery. In Rebirth-based recov-
ery, if a node that has crashed, contains any replica vertex, that vertex would be 
recovered by the master vertex while, in Migration-based recovery, if a node that has 
crashed, contains master vertex then the mirror vertex would be promoted as a mas-
ter vertex. This recovery scheme suffers from huge space overhead since it involves 
storage of mirrors and replicas. Besides, synchronization between master replica and 
mirror replica is expensive as they reside at different sites. Maintaining data consist-
ency between them is also difficult.

Some recent fault recovery protocols do not perform partitioning of graphs for 
failure recovery, rather, they believe in single node-single user architecture. In SSB 
[16, 22], every single user is considered as a single node. Thus, there is no need for 
graph partitioning. This decentralized, peer to peer protocol does not need run-time 
configuration checking, which makes it more efficient. Here, each user in a graph 
stores its data in a log file. This increases integrity of the received data. However, 
usage of gossip-based replication protocols makes them suffer from eclipse attacks 
[23].

In [24], a single node failure recovery method is proposed where each vertex or 
user has been considered as a single node with its own storage space. Here, data 
within a log file of a node has been divided into chunks and distributed to n − 1 
neighbouring nodes. When a node crashes, it receives its chunks from its (n − 1) 
neighbours. However, the recovery model in [24] is constrained by the fact that it 
only focuses on single-node failures. It does not provide any solution when multi-
ple node failures occur simultaneously. In situations where recovery of a node takes 
long, a further node failure may occur within that duration. This may create an end-
less recovery loop and the model proposed in [24] has been inadequate in handling 
such simultaneous failures.

3 � Problem statement

On analyzing the existing state-of-the-art methods for failure recovery in GPSs, we 
have arrived at the conclusion that a recovery mechanism for single and multi-node 
failures that is scalable and less expensive in terms of recovery latency, is lacking at 
present. Most of the recovery approaches consider a server as a compute node (N) 
that contains more than one partition (P), which implies that a node crash would 
result in the crash of all vertices within a partition Pi = (Vi,Ei), where Vi ⊆ V  and 
Ei = (vi, vj) ∈ E|vi ∈ Vi , either because the recovery method suffers from a high 
computational cost as well as high communication costs, or involves high com-
munication overhead. In general, the computational cost ( Tp[i] ) is measured as 
Tp[i] = maxn∈N 

∑
T(v,i){v ∈ A(i)��pi(� (v)) = N} , where T(v, i) denotes the computa-

tion time of v in the normal execution of superstep i. Let A(i) be the set of vertices 
that perform computation and � be the vertex-partition mapping, and � be the map-
ping between a failed partition to a healthy compute node. Then, the communication 



9388	 A. Mukherjee et al.

1 3

cost is measured as Tm[i] =
∑

�(m)∕B {m ∈ M(i)|�pi(� (m.u))) ≠ �(� (m.v))} , where 
M(i) is the set of messages forwarded when re-executing superstep i, m.u, m.v and 
�(m) are the source vertex, destination vertex and size of message m respectively, 
and B is the network bandwidth [11].

However, the present state-of-the-art methods for failure recovery involve reas-
signment and recomputation during recovery, which heavily influences the total 
recovery cost that includes both computational and communication cost. Hence, the 
need to develop a scalable fault recovery mechanism that would enable recovery 
from both single and multi-node failures, while optimizing both communication and 
computational cost [ min

∑
(Tp[i] + Tm[i]) ], has thus become indispensable.

4 � Prerequisites

4.1 � Partial replication

Data replication [25, 26] plays an important role in distributed system as it ensures 
data availability. Full replication increases availability by replicating the entire 
database at every site. However, it makes update operations slower and may lead 
to inconsistencies. In partial replication, each site holds subsets of data in order to 
increase scalability. During execution of a transaction, all data items are not avail-
able at a single site. Thus, to ensure consistent data delivery, inter-site synchroniza-
tion is required. Message passing is used for communication among sites.

4.2 � Distributed graph processing

Graphs represent relationships between data items. A graph consists of (v, e), 
where v represents actor, user or node and e represents edge or relation between 
the nodes. As the number of nodes grows, graphs tend to become larger and sparse. 
A social network with billions of users, web access history, or an online game net-
work demands a graph like structure to represent their interconnections. Such bulk 
amount of information cannot be stored within a single computing node. To enable 
parallel processing, graphs are sometimes partitioned into clusters, each of which 
may then be distributed over several computing nodes. Several data mining algo-
rithms uses distributed graph processing techniques for analysing information. How-
ever, such algorithms demand high parallel computation, efficient data partitioning, 
and communication management mechanisms. Recent models implementing afore-
said high-level programming abstractions include vertex-centric models and neigh-
bourhood-centric models [27].

4.3 � Agglomerative hierarchical clustering

Hierarchical clustering [28, 29] is an unsupervised clustering algorithm which 
organizes similar objects into groups. At the end of this hierarchy we get a 
set of distinct clusters. It can be of two types: agglomerative or divisive. An 
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agglomerative hierarchical clustering uses a bottom up approach to group a set 
of objects into one cluster based on similarity. It is a greedy algorithm, where 
initially each object is treated as an individual cluster. Subsequently, two distinct 
clusters are merged together based on some selection criteria like single-linkage, 
complete-linkage, average-linkage or centroid-linkage. This process is continued 
until we arrive at one single cluster containing all objects. The clustering hierar-
chy is often represented by a dendrogram.

5 � Proposed methodology

In this work, we have proposed a failure recovery model for both single and 
multi-node failures in a distributed graph processing system. Here, every single 
user has been considered as a single node. Initially, we have partitioned the graph 
into multiple clusters. Each user maintains a log file to locally store their outgo-
ing messages. Log-file of each user has been divided into some partitions based 
on the number of clusters and sent to their neighbouring clusters for backup. 
When a node failure occurs, the failure is detected by the neighbouring nodes of 
the failed node and they refrain from sending further messages to the failed node. 
When the failed node wishes to recover, it broadcasts a message to all neighbour-
ing clusters. Subsequently, the neighbouring clusters send the compressed data to 
the failed nodes and it recovers.

The proposed work has been divided into three phases: 

1.	 Phase I or Partitioning: Partitioning the nodes in the graph into several clusters.
2.	 Phase II or Chunk distribution: Splitting the log files of each node and distributing 

them to other virtual clusters
3.	 Phase III or Failure recovery: Recovery of failed nodes.

A schematic diagram of the proposed failure recovery management scheme has 
been depicted in Fig.  1. The assumptions used in this work have been defined 
below:

Definition 1  (File management) Each node within a virtual cluster maintains its own 
log file for communication. Some nodes may have an extra file known as a backup 
file which stores chunks sent by neighbouring cluster. Backup files have been used 
during the recovery process. The number of backup files ( �i ) within a node, is 
decided by the imitator (cluster-head) and depends on the number of neighbouring 
clusters.

Definition 2  (Communication system) Inter- and Intra-communication among the 
virtual clusters obey peer-to-peer distributed network protocol using a push-pull pat-
tern through the TCP channel. Here, a sender node ‘push’ es message into the chan-
nel and the receiver receives the message from the channel through ‘pull’.
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Definition 3  (Network channel) During recovery, a failed node sends a broadcast 
message to other clusters through connection-less protocol (UDP) which decreases 
the latency period. The other data transfer operations of nodes have been done using 
transmission control protocol (TCP), which increases stability and reliability of the 
overall networking process.

Definition 4  (Message types) Several types of messages have been used in this work. 
When a node initiates, it sends a ‘READY’ message to all its neighbouring nodes 
in order to indicate that it is ready for communication. The ‘READY’ message con-
tains an ‘Alive’ signal, cluster_id (cluster identifier) and self_id (unique IP address). 
If a node fails, it tries to initiate recovery on being live again. During recovery, a 
failed node broadcasts a ‘LOST’ message to all neighbouring virtual clusters. The 
nodes in the virtual clusters with backup can help the lost node to recover itself. The 
‘LOST’ message contains a ‘Lost’ signal, cluster_id (cluster identifier) and self_id 
(unique IP address).

Definition 5  (Node state detection) To check whether a node is dead or alive, a 
heartbeat signal is generally used. Here ‘Alive’ Signal has been used as the heartbeat 
of a node. A node that is not able to generate an ‘Alive’ signal for a long time, is 
considered a dead node.

Fig. 1   Proposed framework for failure recovery management
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Definition 6  (Inter-cluster_neighbourhood_list) This neighbourhood list is a tuple 
containing self_id (unique IP address), neighbour_list (containing IP addresses of 
nodes in neighbouring clusters). This list is present with every node, including the 
imitator node.

Definition 7  (Intra-cluster_neighbourhood_list) This neighbourhood list is a tuple 
containing self_id (unique IP address), neighbour_list (containing IP addresses of 
nodes in its own cluster) and uid (universal port address). An universal port has been 
used to broadcast message(s) and listen to broadcast-ed message(s). This list is pre-
sent with every node, including the imitator node.

Definition 8  (Imitator_backup_node_list) This list contains three tuples sender_id 
(unique IP address of sender node from another cluster), cluster_id (cluster identifier 
of the sender node) and a backup_node_list (containing IP addresses of two nodes 
within its own cluster who would hold chunks coming from outside).

5.1 � Phase I: partitioning

In this phase, we have partitioned the set of nodes into several clusters. A graph parti-
tioning problem can be defined as dividing the graph into two sets A and B such that 
weight of edges connecting vertices in A to vertices in B is minimum, and size of A 
and B are similar. This is an NP-hard problem. A graph edge cut or vertex cut has been 
the de facto method to partition a graph. If a fraction of nodes and edges are closely 
connected to one another, they are recognized as one community (or one partition), 
otherwise, they are considered as multiple communities. Hence, the network is par-
titioned such that nodes within a single partition have maximum number of edges 
between them while nodes in different partitions are loosely separated with minimum 
number of edges between them. This is similar to the objective function of a cluster-
ing algorithm where we aim to maximize intra-cluster similarity and minimize inter-
class similarity. This is why we have employed an agglomerative hierarchical clustering 
algorithm to create the initial partitioning. Typically, a clustering algorithm is unsuper-
vised since it does not use ground truth labels. The input to the clustering algorithm is 
the adjacency matrix W(i, j) representing the distances between the nodes i and j where 
i ∈ n and j ∈ n (where n is total number of nodes in a graph) calculated using Breadth 
First Search (BFS). The optimal number of clusters has been decided using Silhouette 
score [30] and Calinski-Harabasz score [31]. Each virtual cluster thus produced, con-
tains a set of users/nodes. The vertex-to-virtual cluster mapping f ∶ ui ⟶ Vi , ui ∈ U , 
Vi ∈ V , where U is the set of users and V is the set of virtual clusters, stores information 
about which user belongs to which virtual cluster. Algorithm 1 explains the working of 
the partitioning phase.
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Algorithm 1: Creating virtual clusters
Input : Input: Graph G(v, e)
Output: Set of virtual clusters V
D ← Calculate distances using BFS(G(v, e))
k ← Find optimal number of clusters using Silhouette score() and
Calinski harabasz score()

linkage ← ‘average’
V ← Agglomerative Hierarchical Clustering(D, k, linkage)

5.2 � Phase II: chunk distribution

Once the virtual clusters are created, each node passes through several states: Initial, 
Ready, Active and Failed. At the Initial state, each node creates its own directory, log 
files and backup files. Every node in the network maintains an Inter-cluster_neighbour-
hood_list and an Intra-cluster_neighbourhood_list, while an imitator node contains the 
above two lists along with the Imitator_backup_node_list. When a node is in Ready 
state, it tries to communicate with other nodes. It then broadcasts a ‘READY’ message. 
On receipt of the ‘READY’ message, the connection is established. Subsequently, all 
sub-processes like communication, file management and node state detection are initi-
ated and the sender node moves into an Active state. Throughout the period of message 
communication, a node remains in Active state. It sends periodical heartbeats following 
a Publisher-Subscriber (pub-sub) manner, to its neighbours. The node state detection 
process runs in the background and checks if a node is running or dead. Once a node is 
detected as dead, we conclude that the node has failed. We call it the Failed state. The 
connection is hence terminated and closed. Apart from these, there are two other sub-
processes like chunk distribution and chunk collection. Chunk distribution is executed 
when a node is in Active state. On detection of failure of a node, the chunk collection 
method is run.

During chunk distribution process, for each cluster, the node with maximum in-
degree, is selected as an imitator. Within every virtual cluster, the imitator node also 
has a mirror copy which is promoted as the imitator if the former fails. After the imi-
tator is selected, the log file of each node within a virtual cluster is divided into k − 1 
chunks (where k is the number of virtual clusters), and sent to k − 1 neighbouring clus-
ters, in a round-robin fashion. This process is repeated at each interval of time. The 
complexity for the same is O(n) (See Theorem 1). The above steps have been drafted in 
Algorithm 2.
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Algorithm 2: Chunk distribution
Input : Input: Set of virtual clusters V , Number of clusters k
Output: Distribution of chunks

/*retsulchcaerofedonrotatimitceleS*/
max ← 0
for each cluster Vi ∈ V do

for each node ui ∈ Vi do
if indegree(ui) > max then

max ← indegree(ui)
im ← i

end
end
Imitator(Vi) ← uim

max ← 0
end
/* indegree(x) finds the degree of node x */
/* Imitator(Vi) holds imitator of a particular cluster */
for each cluster Vi ∈ V do

for each node ui ∈ Vi do
Parts(ui) ← Divide logfiles of ui into (k − 1) partitions
for each data chunk Chunkj ∈ Parts(ui) do

Vk ← Chunkj where k! = i
end

end
end

On receiving a chunk from a node in a neighbouring cluster, the imitator node 
distributes the chunk to two nodes within its own cluster. These two nodes are 
chosen randomly by the imitator. The reason for choosing two nodes is to restore 
backup if anyone of them fails. To keep track of chunk locations, the imitator node 
maintains an Imitator_backup_node_list. The above discussed functions of an Imi-
tator have been depicted in Algorithm 3. This mechanism of storing and retrieving 
backups ensures recovery from multiple-node failures. 

Algorithm 3: Chunk backup by Imitator
Input : Data chunk C from each node
p1, p2 ← Randomly select two nodes from its own cluster.
p1, p2 ← C // Distribute chunks to two backup nodes p1 and p2
Update Imitator backup node list

5.3 � Phase III: failure recovery

Once a faulty node is detected by its neighbours, no further message communica-
tion takes place with the faulty node. On being live again, when the failed node 
tries to recover itself, it broadcasts a ‘LOST’ message to its neighbouring virtual 
clusters available in the Inter-cluster_neighbourhood_list. On receipt of the ‘LOST’ 
message, the imitator nodes of the neighbouring clusters searches the sender_id 
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within its Imitator_backup_node_list. If the sender_id is present, it retrieves the cor-
responding backup files from the backup_node_list . If both the backup nodes are 
alive, it fetches data from any one of them. The data is then compressed and uni-cast 
to the failed node. On receipt of data from all the neighbouring clusters, a failed 
node recovers into a safe state.

On receiving the backup files from the neighbouring clusters, it identifies its own 
cluster and rejoins its cluster. In order to recover further into the current state, it 
then requests other nodes within its own cluster to send information regarding lat-
est communication. The recovered node then moves into Active state once more. It 
has been observed that multiple nodes within the network, if failed simultaneously, 
would recover concurrently since chunks of backup files are distributed on different 
clusters and the same chunk, within a cluster, is replicated twice. The entire recov-
ery mechanism has been explained in Algorithm 4.

Algorithm 4: Algorithm for node recovery
Failed node creates a directory and an empty log file using its self id.
Failed node broadcasts a ‘LOST’ message through uid to k − 1 clusters.
Each cluster imitator receives a ‘LOST’ message and checks
if self id ∈ sender id then

p1, p1 ← Search backup node list for nodes with backup
if status[p1] =‘Alive’ and status[p2]! =‘Alive’ then

Transmit data chunk present in p1 to failed node
else if status[p1]]! =‘Alive’ and status[p2] =‘Alive’ then

Transmit data chunk present in p2 to failed node
else

Transmit data chunk present in p1 or p2 to failed node
end

end
Failed node recovers by receiving backup from all clusters.
Recovered node now resumes communication.

6 � Experimental setup

6.1 � Datasets used

The proposed failure recovery method has been evaluated on four benchmark data-
sets. Datasets 1 and 2 have been derived from two email datasets from two depart-
ments of an European research institution [32]. These datasets consist of nodes and 
edges where a directed edge between two users A and B exists if A has sent an email 
to B. We have assumed all links between nodes to be stable. Dataset 3 has been 
derived from a Facebook ‘circles’ (or ‘friends lists’) data collected through user sur-
vey [33]. Dataset 4 has been derived from LiveJournal which is a social networking 
and journal service that allows users to create and share blogs, journals, and diaries. 
It has over 4 million vertices (users) and approximately 70 million directed edges 
(associations between users). [34]. The number of nodes and edges for all four data-
sets have been shown in Table 1.
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6.2 � Hardware and software setup

We have used the institutional server to carry out the experiments in this study. This 
server is equipped with one PowerEdge R740/R740XD Motherboard, two Intel 
Xeon Silver 4216 2.1G processors, two 22M Cache, four 32GB RDIMM, 2933MT/s, 
Dual Rank, four 10TB 7.2K RPM NLSAS 12Gbps 512e 3.5 in Hot-plug Hard Drive 
and two 480GB SSD. This work has been implemented using Python 3.7.7 on the 
CentOS 7 Operating System.

6.3 � Environmental setup

In this scope of work, we have considered each node as an individual user. At the 
onset, the dataset has been partitioned into a set of k virtual clusters. Within each 
cluster, the node having the maximum in-degree has been considered as the imi-
tator. Every node within a cluster creates two log files: the self_log file and the 
backup_log file. The self_log file stores logs (conversation messages) for the node 
itself, while the backup_log file is created in order to store the backup received by 
the imitator from neighbouring clusters.

Periodically, the content of self_log file is divided into k − 1 partitions, encrypted 
and sent to k − 1 neighbouring clusters in a round robin manner. Chunks contain 
node_id and data in ordered fashion. After being received by the imitator of a neigh-
boring cluster, these chunks are stored within the backup_log file of a node selected 
by the imitator of that cluster. backup_log files are append-only log files and they 
have been named after the node whose backup it contains.

The communication among virtual clusters obey peer-to-peer network topology 
which has been simulated using virtual local area network (VLAN). UDP has been 
used to broadcast signals in order to provide high-speed connection-less communi-
cation. For data transfer, a stable connection is required, which has been established 
through TCP. A producer-consumer mode of communication has been followed 
here. The producer node pushes data into the communication channel and receiver 
pulls data from the communication channel. Message generation follows pub-sub 
pattern.

Nodes send ‘READY’ messages containing ‘Alive’ signal to initiate communica-
tion. When no heartbeat is received from a node for a long period, it is assumed that 
the node has failed. The recovery of the failed node follows the steps described in 
Sect. 5.3.

Table 1   Dataset description Dataset# #Nodes #Edges

Dataset 1 162 1772
Dataset 2 309 3031
Dataset 3 4039 88234
Dataset 4 3, 997, 962 34, 681, 189
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7 � Proof of correctness

Theorem 1  The complexity of chunk distribution is O(n), where n is the total num-
ber of nodes in the network.

Proof  If there are k virtual clusters, the log file of each node is divided into k − 1 
chunks and distributed to all neighbouring clusters. If chunk division and distribu-
tion take constant amount of time c1 and c2 respectively, then, the total time taken 
is equal to (k − 1) × c1 + (k − 1) × c2 . For n nodes in the network, total complex-
ity is thus [(k − 1) × c1 + (k − 1) × c2] × n = n × (k − 1) × (c1 + c2) ≈ O(n) since 
k << n . 	� ◻

Theorem 2  The complexity of failure recovery of a node is O(k + m) , where k is the 
number of clusters and m is the number of nodes within a virtual cluster and k, 
m << n where n is the total number of nodes in the network.

Proof  Recovery of a node is a two-step process. Initially, a failed node receives 
backup from imitators of its neighbouring clusters and reaches a safe state. There-
after, it receives backup of latest state information from the nodes within its own 
cluster and reaches the current state. Complexity for the former step is O(k − 1) , 
where k << n , since there are at most k − 1 neighbour clusters of a node. Consider-
ing m − 1 neighbours of a node within its own cluster, the latter step would have a 
complexity of O(m), where m << n . Thus, total complexity becomes O(k + m) . 	�  ◻

Theorem 3  Multiple node failure recovery can be made concurrently.

Proof  In this work, the log file of each node is distributed to k − 1 clusters. Within 
each virtual cluster, the imitator randomly selects two nodes who would store the 
backup chunks received from a neighbouring cluster. The imitator then keeps track 
of the same using its Imitator_backup_node_list. The reason for selecting two 
backup nodes is to ensure recovery of the failed node even if one of the backup 
nodes fail. In a non-clustered environment, the recovery of a node would depend on 
all its neighbour nodes, many of which may also fail simultaneously. This would pre-
vent recovery of multiple nodes at the same time. In the proposed method, we have 
initially partitioned the nodes in the network into several virtual clusters. A clustered 
environment ensures that the recovery of a failed node depend on its neighbours not 
from its own cluster but from a neighbouring cluster. Thus, distributing backup files 
into multiple clusters ensures better availability. Hence, two failed nodes from differ-
ent clusters can be recovered simultaneously. However, Theorem 3 does not hold if 
both backup nodes fail simultaneously. 	�  ◻

Theorem 4  The Chunk distribution algorithm has a space complexity of O(s × m × k)



9397

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

Proof  The space complexity is determined by the log file size (s), the number of 
clusters (k), and the number of nodes within each cluster (m). In the proposed 
method, each node is considered as an individual user and contains its own log file. 
We assume that the size of the log file for each node is s. Each node divides its 
log file into (k − 1) chunks. As a result, the space consumption of each chunk is 
s∕(k − 1) . Each of these s∕(k − 1) chunks are distributed to each of the (k − 1) virtual 
clusters. Again, each cluster contains m nodes. Therefore, each imitator node in a 
cluster receives chunks from all m nodes in (k − 1) neighboring clusters. The mem-
ory consumption by each Imitator node is thus s∕(k − 1) × m × (k − 1) = s × m . The 
overall memory consumption for k imitator nodes is thus s × m × k = O(s × m × k) . 	
� ◻

Theorem 5  The node recovery algorithm has a space complexity of O(s).

Proof  When the failed node tries to recover itself, it broadcasts a ‘LOST’ message. 
On receipt of the ‘LOST’ message, the imitator nodes of the (k − 1) clusters search 
the sender_id within its Imitator_backup_node_list. If the sender_id is present, it 
retrieves the corresponding backup files from the backup node list. The chunk (hav-
ing size s∕(k − 1)) is then compressed and unicast to the failed node with size. On 
receipt of data from all the (k − 1) clusters, a failed node recovers into a safe state. 
The memory consumption by the failed node is thus s∕(k − 1) × (k − 1) = O(s) . 
In order to progress it then requests that other nodes within its own cluster send 
information about the most recent communication. The space consumption for intra-
cluster communication can be considered insignificant in comparison to inter-cluster 
communication. 	�  ◻

Assertion 1  The proposed failure recovery method shows good synchronization 
capability which preserves the content of the failed node making it consistent.

Proof  The proposed failure recovery method shows good synchronization capabil-
ity which preserves the content of the failed node making it consistent. In the pro-
posed mechanism, the content of the log file is divided into (k − 1) parts, which are 
encrypted at the time of sending with the original line number and node_id. This 
encrypted message is then sent in round-robin fashion to a (k − 1)clusters following 
a push-pull pattern. At the receiving end, the messages are decrypted and stored in 
the receiving cluster based on line numbers.

Once a node fails, it sends a “LOST” message to the (k − 1) clusters, which 
receive and decrypt it to determine if the node_id is present in the neighbour_list. If 
the node_id is present in the neighbour_list, then the node unicasts the data present 
in the log file (with line numbers embedded in it) of the failed node received earlier, 
to the failed node. The failed node then restores to its current configuration. After 
receiving backup files from every other cluster, it will reestablish all the connections 
and successfully recover to its previous full-fledged working condition.
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The presence of line numbers in the log files received as backup ensures synchro-
nization. Further, usage of the push-pull method ensures message synchronization 
and reduces communication overhead [35]. 	�  ◻

Assertion 2  The communication overhead of the proposed method is O(k).

Proof  We have used the gossip protocol in the proposed communication method. 
The expected number of gossip messages is O(mlogd) where m is the number of 
clusters and d is the number of nodes that the initiator sends a message to [36]. In 
the proposed method, a failed node sends chunks to (k − 1) clusters and the Imita-
tor node in each cluster stores the received message in any two nodes at random, by 
linearity of expectation, the total expected number of messages isO((k − 1) ∗ log2) 
= O(k). 	�  ◻

8 � Performance evaluation

The proposed failure recovery model has been evaluated on four benchmark data-
sets. The initial part of the proposed method involves a base clustering step where, 
for each dataset, the nodes have been partitioned into several clusters using an 
agglomerative hierarchical clustering algorithm. We have used two internal validity 
indices Silhouette coefficient [30] and Calinski-Harabasz index [31] to compute the 
number of optimal clusters. The Silhouette score or Silhouette coefficient measures 
the intra-cluster similarity of an observation (cohesion) compared to the inter-cluster 
dissimilarity (separation). It ranges from −1 to +1 . The higher the value, the better is 
the clustering solution. The Calinski-Harabasz index (also known as Variance Ratio 
Criterion) is another measure to evaluate a clustering solution where the within-
cluster variance is compared to the between-cluster variance. The higher the score, 
the better is the clustering performance. To find the optimal value of k (number of 
clusters), we have varied its value from 2 − 10 and selected the k value on which 
both Silhoette score and Calinski-Harabasz score agreed upon. The optimal number 
of clusters for datasets 1, 2 and 3 have been 7, 9 and 8 respectively. For the fourth 
dataset, the optimal number of clusters has been considered as 160, as mentioned in 
its source [11].

Performance evaluation of the proposed failure recovery mechanism has been 
done in two phases. Initially, in order to test the effectiveness of the proposed model, 
we have evaluated it for its failure detection and recovery time in situations concern-
ing both single and multi-node failures for the first three datasets, viz., Dataset 1, 2 
and 3. We have compared the results on these three datasets to those obtained in a 
non-clustered environment, i.e., when no base clustering is used. Subsequently, for 
all the four datasets, the proposed method has been compared with a state-of-the-art 
checkpoint-based failure recovery mechanism proposed in [11].

While comparing performance against a non-clustered environment, we have 
observed that for all the datasets, if the nodes are not partitioned into clusters, 
then only single node failures can be detected and recovered from. Further, to test 
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for single and multi-node failures, we have randomly selected one or more line(s) 
in the log file of a node at which the failure would occur and recorded the time 
required for failure detection and recovery. For evaluation of single node failure 
detection, we have allowed a node to fail at the 20th and 40th lines of the log 
file and recorded the total time required for failure detection. As shown in Fig. 2, 
the proposed method has been proved to be efficient enough since for simultane-
ous failures at both the 20th and 40th line of the log file, the total detection time 
required for the node, using the proposed method, has been much lower than the 
total detection time required when no base clustering is used. This is true for 
all three datasets. We have repeated the experiments multiple times in order to 
ensure robustness of the proposed method. On a similar note, when evaluated for 
single node failure recovery, we have once again observed that for all the three 
datasets, total recovery time required using the proposed method, has been much 
lower than that required when no base clustering is used, as shown in Fig. 3.

As established in exiting works like [24], multi-node failure recovery is not 
possible if no base clustering is used. Hence, subsequently, we have evaluated the 
proposed failure recovery method for multi-node failure detection and recovery. 
We have observed that for all the three datasets, if two nodes fail simultaneously 
at the 20th line and then at the 40th line, the total time required for detection and 
recovery when failure occurs at the 40th line, has been much higher than that 
required when failure occurs at the 20th line. These results have been illustrated 
in Fig. 4.

Likewise, in the next step of evaluation, while comparing the performance of 
the proposed failure recovery mechanism against the state-of-the-art checkpoint-
based failure recovery mechanism, we have allowed a node to fail at the 20th 
and 40th lines of the log file in order to evaluate the performance with respect to 
single node failure recovery. We have then recorded the total time required for 
node recovery. As illustrated in Fig. 5, the proposed method has been proved to 
be efficient enough as compared to the checkpoint-based method since for single 
node failures at both the 20th and 40th lines of the log file, the total recovery time 
required for the node using the proposed method has been significantly less than 
that required using the checkpoint-based method. This is true for all four datasets. 
The reason behind this is that the proposed method considers each user as a sepa-
rate node and remains unaffected by reassignment or recomputation. The robust-
ness of the proposed method has been ensured by repeating the experiments mul-
tiple times. Similarly, when evaluated for multi-node failure recovery, for all four 
datasets, the total recovery time required using the proposed method has been 
significantly lower than that required using the checkpoint-based algorithm, as 
shown in Fig. 6.

Additionally, we have also compared the storage requirement for the proposed 
methodology against other existing methods, viz., the failure recovery method that 
does not use the base clustering step [24] and the check-point based failure recovery 
method [11]. Table 2 shows that the storage requirement for the proposed mecha-
nism is linear, only comparable to the non-clustered approach which however, is not 
capable of handling multi-node failures. The checkpoint-based recovery method, on 
the other hand, has higher storage requirement than the proposed method.



9400	 A. Mukherjee et al.

1 3

(a)

(b)

Fig. 2   a Shows detection time required for single node failure (at the 20th line) for all three datasets with 
and without clustering; b Shows detection time required for single node failure (at the 40th line) for all 
three datasets with and without clustering
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(a)

(b)

Fig. 3   a Shows recovery time required for single node failure (at the 20th line) for all three datasets with 
and without clustering; b shows recovery time required for single node failure (at the 40th line) for all 
three datasets with and without clustering
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(a)

(b)

Fig. 4   a Shows detection time required for multi-node failure when the node fails at the 20th line as com-
pared to when the node fails at the 40th line; b shows recovery time required for multi-node failure when 
the node fails at the 20th line as compared to when the node fails at the 40th line
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(a)

(b)

Fig. 5   a Shows recovery time required for single-node failure for the four datasets in comparison when 
the node fails at the 20th line; b shows recovery time required for single-node failure for the four data-
sets in comparison when the node fails at the 40th line, comparison performed against checkpoint-based 
recovery algorithm proposed in [11]
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(a)

(b)

Fig. 6   a Shows recovery time required for multi-node failure for the four datasets in comparison when 
the node fails at the 20th line; b shows recovery time required for multi-node failure for the four data-
sets in comparison when the node fails at the 40th line, comparison performed against checkpoint-based 
recovery algorithm proposed in [11]
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9 � Discussion and conclusion

In this work, we have developed a scalable, failure-recovery model for distributed 
graph processing systems which is capable of addressing the problem of both single 
and multi-node failure detection and recovery. The proposed failure recovery mech-
anism, when evaluated on four benchmark datasets, has consistently shown better 
performance as compared against existing methods that use a non-clustered environ-
ment as well as against the checkpoint-based failure recovery method.

The advantages of the proposed fault-recovery method are many-fold. Firstly, it 
is an improvement over existing GPSs where graphs are partitioned into several sub-
graphs using edge-cut or vertex-cut, and sub-graphs residing within failed nodes are 
redistributed over multiple healthy nodes, which indirectly leads to increase in com-
munication cost.

Secondly, the method proposed in the current scope of work also improves com-
putational latency by avoiding creation and maintenance of replicas.

Thirdly, the recomputation overhead is avoided by not assigning a failed sub 
graph to a healthy node.

Fourthly, the log file is split up and dispersed among some virtual clusters unlike 
SSB where the log file is disseminated to all neighbour nodes in the network. This 
reduces the storage cost significantly.

Moreover, on failure, a node receives back up not from all neighbouring nodes, 
but only one from each neighbouring cluster. This drastically reduces the time 
needed for recovery of a node (see Theorem 2).

Further, the proposed model has been able to detect and recover from multi-node 
failures since it does not depend on neighbours from its own cluster. Thus, distribut-
ing backup files into multiple clusters ensures better availability and promises recov-
ery of multiple nodes simultaneously (see Theorem 3).

Another important advantage of the proposed method is that it considers each 
user/participant as an individual node and employs an agglomerative hierarchi-
cal clustering algorithm to partition the nodes. Each virtual cluster, thus created, 
consists of a set of nodes or users. Communication between these nodes have been 
maintained using log replication which increases flexibility since it does not require 

Table 2   Space complexity of the proposed methodology as compared to other existing methods for fail-
ure recovery

Methods Complexity Terminology

Proposed methodology O(s × m × k) m ->Number of nodes within each cluster,
k -> Number of clusters,
s-> Size of log file

Non-clustered approach O(N × p × s) N ->Total number of nodes,
p-> Number of neighbors
(Here, p >> k and N >> m)

Checkpoint-based algorithm O(|P| + |P| × |N| + |P|2) P-> Partition (set of vertices),
N -> Total number of compute nodes
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a persistent storage [16, 19]. Records of individual users are stored in single-write, 
append-only data structures which also reduces memory overhead.

Thus, the proposed strategy is a decentralized one that demands little participant 
collaboration avoiding run-time inspections or configuration management. Addition-
ally, log replication creates a distributed system with high resilience by ensuring that 
every interacting component carries a durable copy of the data which is an add-on 
service achieved over conventional distributed systems.

The current scope of work, however has a few limitations. In the proposed 
method, on receiving a chunk from a node in a neighbouring cluster, the imitator 
node distributes the chunk to two nodes (chosen randomly) within its own cluster, in 
order to restore backup if one fails. However, if both these nodes fail simultaneously, 
then only partial recovery is possible by the proposed recovery mechanism. This is 
also the case when an ordinary node fails during chunk distribution.

Nevertheless, in decentralised applications, where addition of users or partici-
pants in real time is critical, the proposed model would make sure that a new node 
be added quickly and its empty log file be bootstrapped from other nodes without 
delay. It would also be beneficial to applications that use local networks between 
small groups of users where clients within a group communicate only over the net-
work local to that group, for example, a team chatting application. Thus, the pro-
posed failure-recovery model provides enhanced performance and is an improve-
ment over conventional centralized systems that have high storage overhead and 
suffer from single point of failure.
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