
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:9383–9408
https://doi.org/10.1007/s11227-022-05028-8

1 3

An unsupervised learning‑guided multi‑node
failure‑recovery model for distributed graph processing
systems

Aradhita Mukherjee1 · Rituparna Chaki2 · Nabendu Chaki1

Accepted: 29 December 2022 / Published online: 13 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Big data applications based on graphs need to be scalable enough for handling
immense growth in size of graphs, efficiently. Scalable graph processing typically
handles the high workload by increasing the number of computing nodes. However,
this increases the chances of single or multiple node (multi-node) failures. Failures
may occur during normal job execution, as well as during recovery. Most of the sys-
tems for failure detection either follow checkpoint-based recovery which has high
computation cost, or follows replication that has high memory overhead. In this
work, we have proposed an unsupervised learning-based failure-recovery scheme
for graph processing systems that detects different kinds of failures and allows node
recovery within a shorter amount of time. It has been able to provide enhanced per-
formance as compared to traditional failure-recovery models with respect to simulta-
neous recovery from single and multi-node failures, memory overload and computa-
tional latency. Evaluating its performance on four benchmark datasets has reinforced
its strength and makes the proposed model completely fit in with the status quo.

Keywords  Distributed graph processing · Failure recovery · Hierarchical clustering

 *	 Aradhita Mukherjee
	 aradhita.mukherjee.2016@gmail.com

	 Rituparna Chaki
	 rchaki@ieee.org

	 Nabendu Chaki
	 nabendu@ieee.org

1	 Department of Computer Science and Engineering, University of Calcutta, JD ‑ II, Sector III,
Salt Lake City, Calcutta 700106, India

2	 A. K. Choudhury School of Information Technology, University of Calcutta, JD ‑ II, Sector III,
Salt Lake City, Calcutta 700106, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-05028-8&domain=pdf

9384	 A. Mukherjee et al.

1 3

1  Introduction

Current research on big data analysis has shown the importance of the role of
graphs. Social network analysis, medical diagnosis, and natural language processing
are some big data applications where graphs are used to represent complex rela-
tionships and dependencies [1]. Such applications also use several machine learning
and data mining (MLDM) algorithms [2, 3]. A parallel processing environment [4]
is the natural choice for executing such complex algorithms where data size grows
exponentially with time. In order to handle this huge load, graph-based parallel pro-
cessing systems, continuously increase the number of compute nodes. However,
the increasing number of compute nodes may lead to single or multi-node failures,
either during job execution, or during recovery. This compels the entire system to
stop its progress until the failed node recovers. Moreover, as the system overhead
and computation time for failure recovery is high, subsequent node failures may fur-
ther occur during the recovery of the initially failed node.

The failure recovery mechanisms used by GPSs can be classified into two broad
categories: Checkpoint-based recovery and Replica-based recovery. In Checkpoint-
based recovery, each node has to save its own information periodically on storage
(like HDFS) [5]. After a failure occurs, each of the computing nodes reload their
status from the latest checkpoint and redo all operations. The system recovers when
all nodes have completed executing all operations that have been completed prior to
the point of failure. The advantage of using a checkpoint-based recovery is that it
can handle any type of failures. However, it needs a huge amount of persistent stor-
age to store states of each node in the system as checkpoints. Recovery time is also
high for such systems. Some of the recent GPSs like Pregel [6], PowerGraph [7] and
Distributed GraphLab [8] follow checkpoint-based recovery mechanism [9]. Among
them, Power Graph has been widely used because of its faster graph-processing rate
and higher scalability though it suffers from high communication complexity [10].
Moreover, the messages the node receives during recomputation might not always
arrive in the same order as they do during regular execution. This enforces an addi-
tional constraint for the system to be insensitive to message ordering [11].

A replica-based recovery system, on the other hand, works by creating a replica
of each node. This is achieved by local memory access which, in turn, decreases
computational latency since atleast k + 1 replicas are required to make the system
recover from k failures [2]. Maintaining replicas, also has a high storage overhead.
The master vertex and its replicas, here, are synchronized through message passing.

In general, GPSs partition graphs into several sub-graphs which are then placed
in individual computing nodes. Graph partitioning approaches like edge-cut and ver-
tex-cut are often used for this purpose. After a failure, the sub-graphs that reside in
a failed node are redistributed over multiple healthy nodes. This leads to reduction
in computation cost but increase in communication cost [12]. Nevertheless, a good
partitioning algorithm that balances this trade-off, is lacking. The storage and com-
putational complexity of the two failure recovery mechanisms discussed above, also
motivates the need for development of a robust and optimal fault-recovery GPS that
would allow recovery from both single and multi-node failures.

9385

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

In this work, we have proposed a scalable failure-recovery mechanism for dis-
tributed GPSs. GPS plays an important role in community applications. Community
applications need global data pool where people can share their data. Data sharing
is the sole purpose of such applications. Many variants of such applications demand
that the data be encrypted during communication. Centrally controlled social appli-
cation service providers also use a global data pool model. However, such applica-
tions require central authorization and thus suffers from issues like single point of
failure and scalability. Hence, decentralization has been adapted as an alternative
by most of the open source communities. One such decentralized application Dat
[13], now known as, Hypercore [14] is used to share large amount of scientific data-
sets between research groups [15]. Secure-Scuttlebutt (SSB) [16] is a similar social
application that is mainly used for blogging and code development, while Ledger-
Mail [17, 18] is another decentralised email transfer system. These type of social
applications are only interested in a subset of the global data pool. Thus, it is fea-
sible to locally store the data. Such applications use replicated, authenticated, sin-
gle-writer, append-only log files which consist of event chains for each participant.
Such log files are replicated through gossip algorithms to produce an eventually-
consistent social application. These types of applications are best suited for small
and trusted groups [19].

The proposed model has been driven by the single node-single user principle,
where each user/participant has been considered as a single node with its own stor-
age space. Coordination between participants has been maintained using append-
only data structures. A clustering algorithm has been then used to partition the
graph of users/participants into several virtual clusters. Each virtual cluster has
a cluster head, also known as imitator. Every node maintains a log file, which is
divided into some chunks. The number of chunks has been decided based on the
number of clusters obtained in the earlier step. The encrypted chunks of the log files
are sent to the imitator node of each cluster in a round-robin fashion (in ascending
order of cluster ID), which are accessed only by the owner node during the recov-
ery period. The imitator nodes keep track of the actual location of the chunks. Each
node periodically sends a heartbeat to its neighbours present in its own cluster. An
absence of heartbeat from a node for a long period of time, indicates that the node is
dead. In order to recover a failed node, a broadcast message is sent to all the virtual
clusters. On receipt of this message, each imitator retrieves the backup files from the
nodes in its own cluster and sends them to the failed node. The node recovers itself
upon receipt of backup files from all clusters. The proposed failure-recovery model,
when evaluated on four benchmark datasets, has shown enhanced performance, ena-
bling simultaneous recovery from both single and multi-node failures within shorter
amounts of time with low memory overload as compared to traditional GPSs.

2 � Related work

In order to handle the dynamic increase in size of data, a majority of GPSs increase
the number of computing nodes, which in turn, increases the probability of node
failures. In checkpoint-based recovery models, each node saves its state periodically

9386	 A. Mukherjee et al.

1 3

in storage, which is reloaded by the failed node during its recovery period [20]. Peri-
odic storing and reloading from storage during failures degrade performance and
incur additional overhead since it not only involves reloading the checkpoint, but
also implies recomputation and message passing among all compute nodes. Based
on the recent checkpoint, it re-executes missing computation of all nodes residing
in both healthy and failed nodes. A subsequent failure during recovery of the node,
implies rolling back each compute node and restarting the recovery method from
scratch [5].

The failure recovery model proposed in [11] is an improvement over conventional
checkpoint-based recovery where the authors have removed the overhead due to
high recomputation cost for the sub graphs located in the healthy nodes, since fail-
ures only affect a small fraction of compute nodes. It should be noted that a healthy
node’s subgraph can contain both its original subgraph (whose computation is never
lost) and a set of recently received partitions (whose computation is partially recov-
ered) as a result of prior failures. The authors have also split up the recomputation
duties for the subgraphs in the failing nodes over several compute nodes to increase
parallelism.

An alternate approach for node recovery [9] combines global check pointing with
local logging. Once a failure is detected, all remaining vertices are requested to send
messages to the failed vertices. In this scheme, each node maintains a local log for
outgoing messages. Hence, no recomputation is needed. A column-wise message
compression method is used to reduce the logging overhead. The sub-graphs present
in the failed nodes are re-partitioned and distributed over healthy compute nodes for
the sake of recomputation towards parallel recovery. After recomputation, partitions
are again redistributed among all the compute nodes thereby increasing performance
overhead. The problem associated with this recovery scheme is synchronization
between local storage and global storage, which, if not done properly, may lead to
data inconsistency. The storage overhead associated with this kind of recovery is
also quite high as compared to checkpoint-based recovery methods since both local
and global storage’s have to be maintained.

Phoenix [21] is a distributed-memory application that has been developed for
graph analytics. It serves as a substitute for check-pointing which resets the entire
calculation to its state just prior to the fault. Phoenix reloads graph partitions from
stable storage on the revived hosts that take the place of the failed hosts whenever a
fail-stop error has been identified. If any of the nodes on these hosts have proxies on
surviving or healthy hosts, it may be possible to recover the states of those proxies.
It is significantly superior to checkpoints and can handle any kind of failures. How-
ever, memory overhead remains a problem since the proxy nodes live within revived
hosts since it needs to keep stable storage on those hosts. Additionally, because
synchronisation is required both during regular execution and during the recovery
mechanism, this method entails synchronisation overhead.

In another recent investigation [2], the authors have employed vertex replica-
tion to handle node failures. Following this scheme, atleast k + 1 replicas need to be
maintained in order to handle k machine failures. This incurs huge storage overhead
for storing k + 1 replicas. There is a imitator node which handles replica manage-
ment. The imitator node creates auxiliary replicas for vertices without replication

9387

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

and synchronizes the full states of a master vertex to its replicas through message
passing. The locations of the replicas are chosen randomly by the imitator to create
a fault recovery system. The authors have proposed two approaches for node recov-
ery - Rebirth-based recovery and Migration-based recovery. In Rebirth-based recov-
ery, if a node that has crashed, contains any replica vertex, that vertex would be
recovered by the master vertex while, in Migration-based recovery, if a node that has
crashed, contains master vertex then the mirror vertex would be promoted as a mas-
ter vertex. This recovery scheme suffers from huge space overhead since it involves
storage of mirrors and replicas. Besides, synchronization between master replica and
mirror replica is expensive as they reside at different sites. Maintaining data consist-
ency between them is also difficult.

Some recent fault recovery protocols do not perform partitioning of graphs for
failure recovery, rather, they believe in single node-single user architecture. In SSB
[16, 22], every single user is considered as a single node. Thus, there is no need for
graph partitioning. This decentralized, peer to peer protocol does not need run-time
configuration checking, which makes it more efficient. Here, each user in a graph
stores its data in a log file. This increases integrity of the received data. However,
usage of gossip-based replication protocols makes them suffer from eclipse attacks
[23].

In [24], a single node failure recovery method is proposed where each vertex or
user has been considered as a single node with its own storage space. Here, data
within a log file of a node has been divided into chunks and distributed to n − 1
neighbouring nodes. When a node crashes, it receives its chunks from its (n − 1)
neighbours. However, the recovery model in [24] is constrained by the fact that it
only focuses on single-node failures. It does not provide any solution when multi-
ple node failures occur simultaneously. In situations where recovery of a node takes
long, a further node failure may occur within that duration. This may create an end-
less recovery loop and the model proposed in [24] has been inadequate in handling
such simultaneous failures.

3 � Problem statement

On analyzing the existing state-of-the-art methods for failure recovery in GPSs, we
have arrived at the conclusion that a recovery mechanism for single and multi-node
failures that is scalable and less expensive in terms of recovery latency, is lacking at
present. Most of the recovery approaches consider a server as a compute node (N)
that contains more than one partition (P), which implies that a node crash would
result in the crash of all vertices within a partition Pi = (Vi,Ei), where Vi ⊆ V and
Ei = (vi, vj) ∈ E|vi ∈ Vi , either because the recovery method suffers from a high
computational cost as well as high communication costs, or involves high com-
munication overhead. In general, the computational cost ( Tp[i] ) is measured as
Tp[i] = maxn∈N

∑
T(v,i){v ∈ A(i)��pi(� (v)) = N} , where T(v, i) denotes the computa-

tion time of v in the normal execution of superstep i. Let A(i) be the set of vertices
that perform computation and � be the vertex-partition mapping, and � be the map-
ping between a failed partition to a healthy compute node. Then, the communication

9388	 A. Mukherjee et al.

1 3

cost is measured as Tm[i] =
∑

�(m)∕B {m ∈ M(i)|�pi(� (m.u))) ≠ �(� (m.v))} , where
M(i) is the set of messages forwarded when re-executing superstep i, m.u, m.v and
�(m) are the source vertex, destination vertex and size of message m respectively,
and B is the network bandwidth [11].

However, the present state-of-the-art methods for failure recovery involve reas-
signment and recomputation during recovery, which heavily influences the total
recovery cost that includes both computational and communication cost. Hence, the
need to develop a scalable fault recovery mechanism that would enable recovery
from both single and multi-node failures, while optimizing both communication and
computational cost [ min

∑
(Tp[i] + Tm[i]) ], has thus become indispensable.

4 � Prerequisites

4.1 � Partial replication

Data replication [25, 26] plays an important role in distributed system as it ensures
data availability. Full replication increases availability by replicating the entire
database at every site. However, it makes update operations slower and may lead
to inconsistencies. In partial replication, each site holds subsets of data in order to
increase scalability. During execution of a transaction, all data items are not avail-
able at a single site. Thus, to ensure consistent data delivery, inter-site synchroniza-
tion is required. Message passing is used for communication among sites.

4.2 � Distributed graph processing

Graphs represent relationships between data items. A graph consists of (v, e),
where v represents actor, user or node and e represents edge or relation between
the nodes. As the number of nodes grows, graphs tend to become larger and sparse.
A social network with billions of users, web access history, or an online game net-
work demands a graph like structure to represent their interconnections. Such bulk
amount of information cannot be stored within a single computing node. To enable
parallel processing, graphs are sometimes partitioned into clusters, each of which
may then be distributed over several computing nodes. Several data mining algo-
rithms uses distributed graph processing techniques for analysing information. How-
ever, such algorithms demand high parallel computation, efficient data partitioning,
and communication management mechanisms. Recent models implementing afore-
said high-level programming abstractions include vertex-centric models and neigh-
bourhood-centric models [27].

4.3 � Agglomerative hierarchical clustering

Hierarchical clustering [28, 29] is an unsupervised clustering algorithm which
organizes similar objects into groups. At the end of this hierarchy we get a
set of distinct clusters. It can be of two types: agglomerative or divisive. An

9389

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

agglomerative hierarchical clustering uses a bottom up approach to group a set
of objects into one cluster based on similarity. It is a greedy algorithm, where
initially each object is treated as an individual cluster. Subsequently, two distinct
clusters are merged together based on some selection criteria like single-linkage,
complete-linkage, average-linkage or centroid-linkage. This process is continued
until we arrive at one single cluster containing all objects. The clustering hierar-
chy is often represented by a dendrogram.

5 � Proposed methodology

In this work, we have proposed a failure recovery model for both single and
multi-node failures in a distributed graph processing system. Here, every single
user has been considered as a single node. Initially, we have partitioned the graph
into multiple clusters. Each user maintains a log file to locally store their outgo-
ing messages. Log-file of each user has been divided into some partitions based
on the number of clusters and sent to their neighbouring clusters for backup.
When a node failure occurs, the failure is detected by the neighbouring nodes of
the failed node and they refrain from sending further messages to the failed node.
When the failed node wishes to recover, it broadcasts a message to all neighbour-
ing clusters. Subsequently, the neighbouring clusters send the compressed data to
the failed nodes and it recovers.

The proposed work has been divided into three phases:

1.	 Phase I or Partitioning: Partitioning the nodes in the graph into several clusters.
2.	 Phase II or Chunk distribution: Splitting the log files of each node and distributing

them to other virtual clusters
3.	 Phase III or Failure recovery: Recovery of failed nodes.

A schematic diagram of the proposed failure recovery management scheme has
been depicted in Fig. 1. The assumptions used in this work have been defined
below:

Definition 1  (File management) Each node within a virtual cluster maintains its own
log file for communication. Some nodes may have an extra file known as a backup
file which stores chunks sent by neighbouring cluster. Backup files have been used
during the recovery process. The number of backup files ( �i ) within a node, is
decided by the imitator (cluster-head) and depends on the number of neighbouring
clusters.

Definition 2  (Communication system) Inter- and Intra-communication among the
virtual clusters obey peer-to-peer distributed network protocol using a push-pull pat-
tern through the TCP channel. Here, a sender node ‘push’ es message into the chan-
nel and the receiver receives the message from the channel through ‘pull’.

9390	 A. Mukherjee et al.

1 3

Definition 3  (Network channel) During recovery, a failed node sends a broadcast
message to other clusters through connection-less protocol (UDP) which decreases
the latency period. The other data transfer operations of nodes have been done using
transmission control protocol (TCP), which increases stability and reliability of the
overall networking process.

Definition 4  (Message types) Several types of messages have been used in this work.
When a node initiates, it sends a ‘READY’ message to all its neighbouring nodes
in order to indicate that it is ready for communication. The ‘READY’ message con-
tains an ‘Alive’ signal, cluster_id (cluster identifier) and self_id (unique IP address).
If a node fails, it tries to initiate recovery on being live again. During recovery, a
failed node broadcasts a ‘LOST’ message to all neighbouring virtual clusters. The
nodes in the virtual clusters with backup can help the lost node to recover itself. The
‘LOST’ message contains a ‘Lost’ signal, cluster_id (cluster identifier) and self_id
(unique IP address).

Definition 5  (Node state detection) To check whether a node is dead or alive, a
heartbeat signal is generally used. Here ‘Alive’ Signal has been used as the heartbeat
of a node. A node that is not able to generate an ‘Alive’ signal for a long time, is
considered a dead node.

Fig. 1   Proposed framework for failure recovery management

9391

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

Definition 6  (Inter-cluster_neighbourhood_list) This neighbourhood list is a tuple
containing self_id (unique IP address), neighbour_list (containing IP addresses of
nodes in neighbouring clusters). This list is present with every node, including the
imitator node.

Definition 7  (Intra-cluster_neighbourhood_list) This neighbourhood list is a tuple
containing self_id (unique IP address), neighbour_list (containing IP addresses of
nodes in its own cluster) and uid (universal port address). An universal port has been
used to broadcast message(s) and listen to broadcast-ed message(s). This list is pre-
sent with every node, including the imitator node.

Definition 8  (Imitator_backup_node_list) This list contains three tuples sender_id
(unique IP address of sender node from another cluster), cluster_id (cluster identifier
of the sender node) and a backup_node_list (containing IP addresses of two nodes
within its own cluster who would hold chunks coming from outside).

5.1 � Phase I: partitioning

In this phase, we have partitioned the set of nodes into several clusters. A graph parti-
tioning problem can be defined as dividing the graph into two sets A and B such that
weight of edges connecting vertices in A to vertices in B is minimum, and size of A
and B are similar. This is an NP-hard problem. A graph edge cut or vertex cut has been
the de facto method to partition a graph. If a fraction of nodes and edges are closely
connected to one another, they are recognized as one community (or one partition),
otherwise, they are considered as multiple communities. Hence, the network is par-
titioned such that nodes within a single partition have maximum number of edges
between them while nodes in different partitions are loosely separated with minimum
number of edges between them. This is similar to the objective function of a cluster-
ing algorithm where we aim to maximize intra-cluster similarity and minimize inter-
class similarity. This is why we have employed an agglomerative hierarchical clustering
algorithm to create the initial partitioning. Typically, a clustering algorithm is unsuper-
vised since it does not use ground truth labels. The input to the clustering algorithm is
the adjacency matrix W(i, j) representing the distances between the nodes i and j where
i ∈ n and j ∈ n (where n is total number of nodes in a graph) calculated using Breadth
First Search (BFS). The optimal number of clusters has been decided using Silhouette
score [30] and Calinski-Harabasz score [31]. Each virtual cluster thus produced, con-
tains a set of users/nodes. The vertex-to-virtual cluster mapping f ∶ ui ⟶ Vi , ui ∈ U ,
Vi ∈ V , where U is the set of users and V is the set of virtual clusters, stores information
about which user belongs to which virtual cluster. Algorithm 1 explains the working of
the partitioning phase.

9392	 A. Mukherjee et al.

1 3

Algorithm 1: Creating virtual clusters
Input : Input: Graph G(v, e)
Output: Set of virtual clusters V
D ← Calculate distances using BFS(G(v, e))
k ← Find optimal number of clusters using Silhouette score() and
Calinski harabasz score()

linkage ← ‘average’
V ← Agglomerative Hierarchical Clustering(D, k, linkage)

5.2 � Phase II: chunk distribution

Once the virtual clusters are created, each node passes through several states: Initial,
Ready, Active and Failed. At the Initial state, each node creates its own directory, log
files and backup files. Every node in the network maintains an Inter-cluster_neighbour-
hood_list and an Intra-cluster_neighbourhood_list, while an imitator node contains the
above two lists along with the Imitator_backup_node_list. When a node is in Ready
state, it tries to communicate with other nodes. It then broadcasts a ‘READY’ message.
On receipt of the ‘READY’ message, the connection is established. Subsequently, all
sub-processes like communication, file management and node state detection are initi-
ated and the sender node moves into an Active state. Throughout the period of message
communication, a node remains in Active state. It sends periodical heartbeats following
a Publisher-Subscriber (pub-sub) manner, to its neighbours. The node state detection
process runs in the background and checks if a node is running or dead. Once a node is
detected as dead, we conclude that the node has failed. We call it the Failed state. The
connection is hence terminated and closed. Apart from these, there are two other sub-
processes like chunk distribution and chunk collection. Chunk distribution is executed
when a node is in Active state. On detection of failure of a node, the chunk collection
method is run.

During chunk distribution process, for each cluster, the node with maximum in-
degree, is selected as an imitator. Within every virtual cluster, the imitator node also
has a mirror copy which is promoted as the imitator if the former fails. After the imi-
tator is selected, the log file of each node within a virtual cluster is divided into k − 1
chunks (where k is the number of virtual clusters), and sent to k − 1 neighbouring clus-
ters, in a round-robin fashion. This process is repeated at each interval of time. The
complexity for the same is O(n) (See Theorem 1). The above steps have been drafted in
Algorithm 2.

9393

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

Algorithm 2: Chunk distribution
Input : Input: Set of virtual clusters V , Number of clusters k
Output: Distribution of chunks

/*retsulchcaerofedonrotatimitceleS*/
max ← 0
for each cluster Vi ∈ V do

for each node ui ∈ Vi do
if indegree(ui) > max then

max ← indegree(ui)
im ← i

end
end
Imitator(Vi) ← uim

max ← 0
end
/* indegree(x) finds the degree of node x */
/* Imitator(Vi) holds imitator of a particular cluster */
for each cluster Vi ∈ V do

for each node ui ∈ Vi do
Parts(ui) ← Divide logfiles of ui into (k − 1) partitions
for each data chunk Chunkj ∈ Parts(ui) do

Vk ← Chunkj where k! = i
end

end
end

On receiving a chunk from a node in a neighbouring cluster, the imitator node
distributes the chunk to two nodes within its own cluster. These two nodes are
chosen randomly by the imitator. The reason for choosing two nodes is to restore
backup if anyone of them fails. To keep track of chunk locations, the imitator node
maintains an Imitator_backup_node_list. The above discussed functions of an Imi-
tator have been depicted in Algorithm 3. This mechanism of storing and retrieving
backups ensures recovery from multiple-node failures.

Algorithm 3: Chunk backup by Imitator
Input : Data chunk C from each node
p1, p2 ← Randomly select two nodes from its own cluster.
p1, p2 ← C // Distribute chunks to two backup nodes p1 and p2
Update Imitator backup node list

5.3 � Phase III: failure recovery

Once a faulty node is detected by its neighbours, no further message communica-
tion takes place with the faulty node. On being live again, when the failed node
tries to recover itself, it broadcasts a ‘LOST’ message to its neighbouring virtual
clusters available in the Inter-cluster_neighbourhood_list. On receipt of the ‘LOST’
message, the imitator nodes of the neighbouring clusters searches the sender_id

9394	 A. Mukherjee et al.

1 3

within its Imitator_backup_node_list. If the sender_id is present, it retrieves the cor-
responding backup files from the backup_node_list . If both the backup nodes are
alive, it fetches data from any one of them. The data is then compressed and uni-cast
to the failed node. On receipt of data from all the neighbouring clusters, a failed
node recovers into a safe state.

On receiving the backup files from the neighbouring clusters, it identifies its own
cluster and rejoins its cluster. In order to recover further into the current state, it
then requests other nodes within its own cluster to send information regarding lat-
est communication. The recovered node then moves into Active state once more. It
has been observed that multiple nodes within the network, if failed simultaneously,
would recover concurrently since chunks of backup files are distributed on different
clusters and the same chunk, within a cluster, is replicated twice. The entire recov-
ery mechanism has been explained in Algorithm 4.

Algorithm 4: Algorithm for node recovery
Failed node creates a directory and an empty log file using its self id.
Failed node broadcasts a ‘LOST’ message through uid to k − 1 clusters.
Each cluster imitator receives a ‘LOST’ message and checks
if self id ∈ sender id then

p1, p1 ← Search backup node list for nodes with backup
if status[p1] =‘Alive’ and status[p2]! =‘Alive’ then

Transmit data chunk present in p1 to failed node
else if status[p1]]! =‘Alive’ and status[p2] =‘Alive’ then

Transmit data chunk present in p2 to failed node
else

Transmit data chunk present in p1 or p2 to failed node
end

end
Failed node recovers by receiving backup from all clusters.
Recovered node now resumes communication.

6 � Experimental setup

6.1 � Datasets used

The proposed failure recovery method has been evaluated on four benchmark data-
sets. Datasets 1 and 2 have been derived from two email datasets from two depart-
ments of an European research institution [32]. These datasets consist of nodes and
edges where a directed edge between two users A and B exists if A has sent an email
to B. We have assumed all links between nodes to be stable. Dataset 3 has been
derived from a Facebook ‘circles’ (or ‘friends lists’) data collected through user sur-
vey [33]. Dataset 4 has been derived from LiveJournal which is a social networking
and journal service that allows users to create and share blogs, journals, and diaries.
It has over 4 million vertices (users) and approximately 70 million directed edges
(associations between users). [34]. The number of nodes and edges for all four data-
sets have been shown in Table 1.

9395

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

6.2 � Hardware and software setup

We have used the institutional server to carry out the experiments in this study. This
server is equipped with one PowerEdge R740/R740XD Motherboard, two Intel
Xeon Silver 4216 2.1G processors, two 22M Cache, four 32GB RDIMM, 2933MT/s,
Dual Rank, four 10TB 7.2K RPM NLSAS 12Gbps 512e 3.5 in Hot-plug Hard Drive
and two 480GB SSD. This work has been implemented using Python 3.7.7 on the
CentOS 7 Operating System.

6.3 � Environmental setup

In this scope of work, we have considered each node as an individual user. At the
onset, the dataset has been partitioned into a set of k virtual clusters. Within each
cluster, the node having the maximum in-degree has been considered as the imi-
tator. Every node within a cluster creates two log files: the self_log file and the
backup_log file. The self_log file stores logs (conversation messages) for the node
itself, while the backup_log file is created in order to store the backup received by
the imitator from neighbouring clusters.

Periodically, the content of self_log file is divided into k − 1 partitions, encrypted
and sent to k − 1 neighbouring clusters in a round robin manner. Chunks contain
node_id and data in ordered fashion. After being received by the imitator of a neigh-
boring cluster, these chunks are stored within the backup_log file of a node selected
by the imitator of that cluster. backup_log files are append-only log files and they
have been named after the node whose backup it contains.

The communication among virtual clusters obey peer-to-peer network topology
which has been simulated using virtual local area network (VLAN). UDP has been
used to broadcast signals in order to provide high-speed connection-less communi-
cation. For data transfer, a stable connection is required, which has been established
through TCP. A producer-consumer mode of communication has been followed
here. The producer node pushes data into the communication channel and receiver
pulls data from the communication channel. Message generation follows pub-sub
pattern.

Nodes send ‘READY’ messages containing ‘Alive’ signal to initiate communica-
tion. When no heartbeat is received from a node for a long period, it is assumed that
the node has failed. The recovery of the failed node follows the steps described in
Sect. 5.3.

Table 1   Dataset description Dataset# #Nodes #Edges

Dataset 1 162 1772
Dataset 2 309 3031
Dataset 3 4039 88234
Dataset 4 3, 997, 962 34, 681, 189

9396	 A. Mukherjee et al.

1 3

7 � Proof of correctness

Theorem 1  The complexity of chunk distribution is O(n), where n is the total num-
ber of nodes in the network.

Proof  If there are k virtual clusters, the log file of each node is divided into k − 1
chunks and distributed to all neighbouring clusters. If chunk division and distribu-
tion take constant amount of time c1 and c2 respectively, then, the total time taken
is equal to (k − 1) × c1 + (k − 1) × c2 . For n nodes in the network, total complex-
ity is thus [(k − 1) × c1 + (k − 1) × c2] × n = n × (k − 1) × (c1 + c2) ≈ O(n) since
k << n . 	� ◻

Theorem 2  The complexity of failure recovery of a node is O(k + m) , where k is the
number of clusters and m is the number of nodes within a virtual cluster and k,
m << n where n is the total number of nodes in the network.

Proof  Recovery of a node is a two-step process. Initially, a failed node receives
backup from imitators of its neighbouring clusters and reaches a safe state. There-
after, it receives backup of latest state information from the nodes within its own
cluster and reaches the current state. Complexity for the former step is O(k − 1) ,
where k << n , since there are at most k − 1 neighbour clusters of a node. Consider-
ing m − 1 neighbours of a node within its own cluster, the latter step would have a
complexity of O(m), where m << n . Thus, total complexity becomes O(k + m) . 	� ◻

Theorem 3  Multiple node failure recovery can be made concurrently.

Proof  In this work, the log file of each node is distributed to k − 1 clusters. Within
each virtual cluster, the imitator randomly selects two nodes who would store the
backup chunks received from a neighbouring cluster. The imitator then keeps track
of the same using its Imitator_backup_node_list. The reason for selecting two
backup nodes is to ensure recovery of the failed node even if one of the backup
nodes fail. In a non-clustered environment, the recovery of a node would depend on
all its neighbour nodes, many of which may also fail simultaneously. This would pre-
vent recovery of multiple nodes at the same time. In the proposed method, we have
initially partitioned the nodes in the network into several virtual clusters. A clustered
environment ensures that the recovery of a failed node depend on its neighbours not
from its own cluster but from a neighbouring cluster. Thus, distributing backup files
into multiple clusters ensures better availability. Hence, two failed nodes from differ-
ent clusters can be recovered simultaneously. However, Theorem 3 does not hold if
both backup nodes fail simultaneously. 	� ◻

Theorem 4  The Chunk distribution algorithm has a space complexity of O(s × m × k)

9397

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

Proof  The space complexity is determined by the log file size (s), the number of
clusters (k), and the number of nodes within each cluster (m). In the proposed
method, each node is considered as an individual user and contains its own log file.
We assume that the size of the log file for each node is s. Each node divides its
log file into (k − 1) chunks. As a result, the space consumption of each chunk is
s∕(k − 1) . Each of these s∕(k − 1) chunks are distributed to each of the (k − 1) virtual
clusters. Again, each cluster contains m nodes. Therefore, each imitator node in a
cluster receives chunks from all m nodes in (k − 1) neighboring clusters. The mem-
ory consumption by each Imitator node is thus s∕(k − 1) × m × (k − 1) = s × m . The
overall memory consumption for k imitator nodes is thus s × m × k = O(s × m × k) . 	
� ◻

Theorem 5  The node recovery algorithm has a space complexity of O(s).

Proof  When the failed node tries to recover itself, it broadcasts a ‘LOST’ message.
On receipt of the ‘LOST’ message, the imitator nodes of the (k − 1) clusters search
the sender_id within its Imitator_backup_node_list. If the sender_id is present, it
retrieves the corresponding backup files from the backup node list. The chunk (hav-
ing size s∕(k − 1)) is then compressed and unicast to the failed node with size. On
receipt of data from all the (k − 1) clusters, a failed node recovers into a safe state.
The memory consumption by the failed node is thus s∕(k − 1) × (k − 1) = O(s) .
In order to progress it then requests that other nodes within its own cluster send
information about the most recent communication. The space consumption for intra-
cluster communication can be considered insignificant in comparison to inter-cluster
communication. 	� ◻

Assertion 1  The proposed failure recovery method shows good synchronization
capability which preserves the content of the failed node making it consistent.

Proof  The proposed failure recovery method shows good synchronization capabil-
ity which preserves the content of the failed node making it consistent. In the pro-
posed mechanism, the content of the log file is divided into (k − 1) parts, which are
encrypted at the time of sending with the original line number and node_id. This
encrypted message is then sent in round-robin fashion to a (k − 1)clusters following
a push-pull pattern. At the receiving end, the messages are decrypted and stored in
the receiving cluster based on line numbers.

Once a node fails, it sends a “LOST” message to the (k − 1) clusters, which
receive and decrypt it to determine if the node_id is present in the neighbour_list. If
the node_id is present in the neighbour_list, then the node unicasts the data present
in the log file (with line numbers embedded in it) of the failed node received earlier,
to the failed node. The failed node then restores to its current configuration. After
receiving backup files from every other cluster, it will reestablish all the connections
and successfully recover to its previous full-fledged working condition.

9398	 A. Mukherjee et al.

1 3

The presence of line numbers in the log files received as backup ensures synchro-
nization. Further, usage of the push-pull method ensures message synchronization
and reduces communication overhead [35]. 	� ◻

Assertion 2  The communication overhead of the proposed method is O(k).

Proof  We have used the gossip protocol in the proposed communication method.
The expected number of gossip messages is O(mlogd) where m is the number of
clusters and d is the number of nodes that the initiator sends a message to [36]. In
the proposed method, a failed node sends chunks to (k − 1) clusters and the Imita-
tor node in each cluster stores the received message in any two nodes at random, by
linearity of expectation, the total expected number of messages isO((k − 1) ∗ log2)
= O(k). 	� ◻

8 � Performance evaluation

The proposed failure recovery model has been evaluated on four benchmark data-
sets. The initial part of the proposed method involves a base clustering step where,
for each dataset, the nodes have been partitioned into several clusters using an
agglomerative hierarchical clustering algorithm. We have used two internal validity
indices Silhouette coefficient [30] and Calinski-Harabasz index [31] to compute the
number of optimal clusters. The Silhouette score or Silhouette coefficient measures
the intra-cluster similarity of an observation (cohesion) compared to the inter-cluster
dissimilarity (separation). It ranges from −1 to +1 . The higher the value, the better is
the clustering solution. The Calinski-Harabasz index (also known as Variance Ratio
Criterion) is another measure to evaluate a clustering solution where the within-
cluster variance is compared to the between-cluster variance. The higher the score,
the better is the clustering performance. To find the optimal value of k (number of
clusters), we have varied its value from 2 − 10 and selected the k value on which
both Silhoette score and Calinski-Harabasz score agreed upon. The optimal number
of clusters for datasets 1, 2 and 3 have been 7, 9 and 8 respectively. For the fourth
dataset, the optimal number of clusters has been considered as 160, as mentioned in
its source [11].

Performance evaluation of the proposed failure recovery mechanism has been
done in two phases. Initially, in order to test the effectiveness of the proposed model,
we have evaluated it for its failure detection and recovery time in situations concern-
ing both single and multi-node failures for the first three datasets, viz., Dataset 1, 2
and 3. We have compared the results on these three datasets to those obtained in a
non-clustered environment, i.e., when no base clustering is used. Subsequently, for
all the four datasets, the proposed method has been compared with a state-of-the-art
checkpoint-based failure recovery mechanism proposed in [11].

While comparing performance against a non-clustered environment, we have
observed that for all the datasets, if the nodes are not partitioned into clusters,
then only single node failures can be detected and recovered from. Further, to test

9399

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

for single and multi-node failures, we have randomly selected one or more line(s)
in the log file of a node at which the failure would occur and recorded the time
required for failure detection and recovery. For evaluation of single node failure
detection, we have allowed a node to fail at the 20th and 40th lines of the log
file and recorded the total time required for failure detection. As shown in Fig. 2,
the proposed method has been proved to be efficient enough since for simultane-
ous failures at both the 20th and 40th line of the log file, the total detection time
required for the node, using the proposed method, has been much lower than the
total detection time required when no base clustering is used. This is true for
all three datasets. We have repeated the experiments multiple times in order to
ensure robustness of the proposed method. On a similar note, when evaluated for
single node failure recovery, we have once again observed that for all the three
datasets, total recovery time required using the proposed method, has been much
lower than that required when no base clustering is used, as shown in Fig. 3.

As established in exiting works like [24], multi-node failure recovery is not
possible if no base clustering is used. Hence, subsequently, we have evaluated the
proposed failure recovery method for multi-node failure detection and recovery.
We have observed that for all the three datasets, if two nodes fail simultaneously
at the 20th line and then at the 40th line, the total time required for detection and
recovery when failure occurs at the 40th line, has been much higher than that
required when failure occurs at the 20th line. These results have been illustrated
in Fig. 4.

Likewise, in the next step of evaluation, while comparing the performance of
the proposed failure recovery mechanism against the state-of-the-art checkpoint-
based failure recovery mechanism, we have allowed a node to fail at the 20th
and 40th lines of the log file in order to evaluate the performance with respect to
single node failure recovery. We have then recorded the total time required for
node recovery. As illustrated in Fig. 5, the proposed method has been proved to
be efficient enough as compared to the checkpoint-based method since for single
node failures at both the 20th and 40th lines of the log file, the total recovery time
required for the node using the proposed method has been significantly less than
that required using the checkpoint-based method. This is true for all four datasets.
The reason behind this is that the proposed method considers each user as a sepa-
rate node and remains unaffected by reassignment or recomputation. The robust-
ness of the proposed method has been ensured by repeating the experiments mul-
tiple times. Similarly, when evaluated for multi-node failure recovery, for all four
datasets, the total recovery time required using the proposed method has been
significantly lower than that required using the checkpoint-based algorithm, as
shown in Fig. 6.

Additionally, we have also compared the storage requirement for the proposed
methodology against other existing methods, viz., the failure recovery method that
does not use the base clustering step [24] and the check-point based failure recovery
method [11]. Table 2 shows that the storage requirement for the proposed mecha-
nism is linear, only comparable to the non-clustered approach which however, is not
capable of handling multi-node failures. The checkpoint-based recovery method, on
the other hand, has higher storage requirement than the proposed method.

9400	 A. Mukherjee et al.

1 3

(a)

(b)

Fig. 2   a Shows detection time required for single node failure (at the 20th line) for all three datasets with
and without clustering; b Shows detection time required for single node failure (at the 40th line) for all
three datasets with and without clustering

9401

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

(a)

(b)

Fig. 3   a Shows recovery time required for single node failure (at the 20th line) for all three datasets with
and without clustering; b shows recovery time required for single node failure (at the 40th line) for all
three datasets with and without clustering

9402	 A. Mukherjee et al.

1 3

(a)

(b)

Fig. 4   a Shows detection time required for multi-node failure when the node fails at the 20th line as com-
pared to when the node fails at the 40th line; b shows recovery time required for multi-node failure when
the node fails at the 20th line as compared to when the node fails at the 40th line

9403

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

(a)

(b)

Fig. 5   a Shows recovery time required for single-node failure for the four datasets in comparison when
the node fails at the 20th line; b shows recovery time required for single-node failure for the four data-
sets in comparison when the node fails at the 40th line, comparison performed against checkpoint-based
recovery algorithm proposed in [11]

9404	 A. Mukherjee et al.

1 3

(a)

(b)

Fig. 6   a Shows recovery time required for multi-node failure for the four datasets in comparison when
the node fails at the 20th line; b shows recovery time required for multi-node failure for the four data-
sets in comparison when the node fails at the 40th line, comparison performed against checkpoint-based
recovery algorithm proposed in [11]

9405

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

9 � Discussion and conclusion

In this work, we have developed a scalable, failure-recovery model for distributed
graph processing systems which is capable of addressing the problem of both single
and multi-node failure detection and recovery. The proposed failure recovery mech-
anism, when evaluated on four benchmark datasets, has consistently shown better
performance as compared against existing methods that use a non-clustered environ-
ment as well as against the checkpoint-based failure recovery method.

The advantages of the proposed fault-recovery method are many-fold. Firstly, it
is an improvement over existing GPSs where graphs are partitioned into several sub-
graphs using edge-cut or vertex-cut, and sub-graphs residing within failed nodes are
redistributed over multiple healthy nodes, which indirectly leads to increase in com-
munication cost.

Secondly, the method proposed in the current scope of work also improves com-
putational latency by avoiding creation and maintenance of replicas.

Thirdly, the recomputation overhead is avoided by not assigning a failed sub
graph to a healthy node.

Fourthly, the log file is split up and dispersed among some virtual clusters unlike
SSB where the log file is disseminated to all neighbour nodes in the network. This
reduces the storage cost significantly.

Moreover, on failure, a node receives back up not from all neighbouring nodes,
but only one from each neighbouring cluster. This drastically reduces the time
needed for recovery of a node (see Theorem 2).

Further, the proposed model has been able to detect and recover from multi-node
failures since it does not depend on neighbours from its own cluster. Thus, distribut-
ing backup files into multiple clusters ensures better availability and promises recov-
ery of multiple nodes simultaneously (see Theorem 3).

Another important advantage of the proposed method is that it considers each
user/participant as an individual node and employs an agglomerative hierarchi-
cal clustering algorithm to partition the nodes. Each virtual cluster, thus created,
consists of a set of nodes or users. Communication between these nodes have been
maintained using log replication which increases flexibility since it does not require

Table 2   Space complexity of the proposed methodology as compared to other existing methods for fail-
ure recovery

Methods Complexity Terminology

Proposed methodology O(s × m × k) m ->Number of nodes within each cluster,
k -> Number of clusters,
s-> Size of log file

Non-clustered approach O(N × p × s) N ->Total number of nodes,
p-> Number of neighbors
(Here, p >> k and N >> m)

Checkpoint-based algorithm O(|P| + |P| × |N| + |P|2) P-> Partition (set of vertices),
N -> Total number of compute nodes

9406	 A. Mukherjee et al.

1 3

a persistent storage [16, 19]. Records of individual users are stored in single-write,
append-only data structures which also reduces memory overhead.

Thus, the proposed strategy is a decentralized one that demands little participant
collaboration avoiding run-time inspections or configuration management. Addition-
ally, log replication creates a distributed system with high resilience by ensuring that
every interacting component carries a durable copy of the data which is an add-on
service achieved over conventional distributed systems.

The current scope of work, however has a few limitations. In the proposed
method, on receiving a chunk from a node in a neighbouring cluster, the imitator
node distributes the chunk to two nodes (chosen randomly) within its own cluster, in
order to restore backup if one fails. However, if both these nodes fail simultaneously,
then only partial recovery is possible by the proposed recovery mechanism. This is
also the case when an ordinary node fails during chunk distribution.

Nevertheless, in decentralised applications, where addition of users or partici-
pants in real time is critical, the proposed model would make sure that a new node
be added quickly and its empty log file be bootstrapped from other nodes without
delay. It would also be beneficial to applications that use local networks between
small groups of users where clients within a group communicate only over the net-
work local to that group, for example, a team chatting application. Thus, the pro-
posed failure-recovery model provides enhanced performance and is an improve-
ment over conventional centralized systems that have high storage overhead and
suffer from single point of failure.

Acknowledgements  AM is a Senior Research Fellow supported by the Visvesvaraya Ph.D. Scheme for
Electronics and IT, under Ministry of Electronics and Information Technology, Government of India. NC
acknowledges the DST, ICPS project grant T-884 on “Connected Smart Health Services for Rural India”.

Author Contributions  Conceptualization of Methodology: AM, RC, NC. Data Curation, Data Analysis,
Formal analysis, Visualization, Investigation, Implementation, Validation, Original draft preparation:
AM. Methodology Validation, Reviewing and Editing: RC, NC. Overall Supervision: RC, NC.F

Funding  This work has not received any funding.

Data availability  Datasets 1 and 2 can be freely downloaded from https://​snap.​stanf​ord.​edu/​data/​email-​
Eu-​core-​tempo​ral.​html. Dataset 3 is available at https://​snap.​stanf​ord.​edu/​data/​ego-​Faceb​ook.​html. Data-
set 4 can be downloaded from https://​snap.​stanf​ord.​edu/​data/​com-​LiveJ​ournal.​html.

Code availability  The proposed failure recovery mechanism has been implemented in Python3 and is
freely available at https://​github.​com/​aradh​ita19​88/​Failu​re-​recov​ery.

Declarations 

Conflict of interest  The authors declare no competing interest.

References

	 1.	 Huang J, Qin W, Wang X, Chen W (2020) Survey of external memory large-scale graph processing
on a multi-core system. J Supercomput 76(1):549–579

https://snap.stanford.edu/data/email-Eu-core-temporal.html
https://snap.stanford.edu/data/email-Eu-core-temporal.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/com-LiveJournal.html
https://github.com/aradhita1988/Failure-recovery.

9407

1 3

An unsupervised learning‑guided multi‑node failure‑recovery…

	 2.	 Chen R, Yao Y, Wang P, Zhang K, Wang Z, Guan H, Zang B, Chen H (2017) Replication-based
fault-tolerance for large-scale graph processing. IEEE Trans Parallel Distrib Syst 29(7):1621–1635

	 3.	 Le QV (2013) Building high-level features using large scale unsupervised learning. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, IEEE, pp. 8595–8598

	 4.	 Dobre C, Xhafa F (2014) Parallel programming paradigms and frameworks in big data era. Int J
Parallel Prog 42(5):710–738

	 5.	 Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, Hellerstein J (2014) Graphlab: a new
framework for parallel machine learning. arXiv preprint arXiv:​1408.​2041

	 6.	 Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a
system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, pp. 135–146

	 7.	 Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C (2012) Powergraph: distributed graph-parallel
computation on natural graphs. In: 10th {USENIX} Symposium on Operating Systems Design and
Implementation ( {OSDI} 12), pp. 17–30

	 8.	 Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2012) Distributed graphlab: a
framework for machine learning in the cloud. arXiv preprint arXiv:​1204.​6078

	 9.	 Lu W, Shen Y, Wang T, Zhang M, Jagadish HV, Du X (2018) Fast failure recovery in vertex-centric
distributed graph processing systems. IEEE Trans Knowl Data Eng 31(4):733–746

	10.	 Zhao Y, Yoshigoe K, Xie M, Bian J, Xiong K (2020) L-powergraph: a lightweight distributed
graph-parallel communication mechanism. J Supercomput 76(3):1850–1879

	11.	 Shen Y, Chen G, Jagadish H, Lu W, Ooi BC, Tudor BM (2014) Fast failure recovery in distributed
graph processing systems. Proc VLDB Endow 8(4):437–448

	12.	 Margo D, Seltzer M (2015) A scalable distributed graph partitioner. Proc VLDB Endow
8(12):1478–1489

	13.	 Robinson DC, Hand JA, Madsen MB, McKelvey KR (2018) The Dat Project, an open and decen-
tralized research data tool. Scientific data 5(1):1–4

	14.	 Blähser J, Göller T, Böhmer M (2021) Thine-approach for a fault tolerant distributed packet man-
ager based on hypercore protocol. In: 2021 IEEE 45th Annual Computers, Software, and Applica-
tions Conference (COMPSAC), IEEE, pp. 1778–1782

	15.	 Robinson DC, Hand JA, Madsen MB, McKelvey KR (2018) The dat project, an open and decentral-
ized research data tool. Sci Data 5:180221. https://​doi.​org/​10.​1038/​sdata.​2018.​221

	16.	 Tarr D, Lavoie E, Meyer A, Tschudin C (2019) Secure scuttlebutt: an identity-centric protocol for
subjective and decentralized applications. In: Proceedings of the 6th ACM Conference on Informa-
tion-Centric Networking, pp. 1–11

	17.	 Tsipenyuk GY (2018) Evaluation of decentralized email architecture and social network analysis
based on email attachment sharing. Tech. rep., University of Cambridge, Computer Laboratory,
https://​doi.​org/​10.​17863/​CAM.​21035

	18.	 Sandoval IV, Atashpendar A, Lenzini G, Ryan PY (2021) Pakemail: authentication and key manage-
ment in decentralized secure email and messaging via pake. arXiv preprint arXiv:​2107.​06090

	19.	 Kermarrec AM, Lavoie E, Tschudin C (2020) Gossiping with append-only logs in secure-scuttle-
butt. In: Proceedings of the 1st International Workshop on Distributed Infrastructure for Common
Good, pp. 19–24

	20.	 Paul HS, Gupta A, Sharma A (2006) Finding a suitable checkpoint and recovery protocol for a dis-
tributed application. J Parallel Distrib Comput 66(5):732–749

	21.	 Dathathri R, Gill G, Hoang L, Pingali K (2019) Phoenix: a substrate for resilient distributed graph
analytics. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 615–630

	22.	 Tschudin C (2019) A broadcast-only communication model based on replicated append-only logs.
ACM SIGCOMM Comput Commun Rev 49(2):37–43

	23.	 Singh A, Ngan TW, Druschel P, Wallach DS (2006) Eclipse attacks on overlay networks: threats and
defenses. In: Proceedings IEEE INFOCOM 2006 25TH IEEE International Conference on Com-
puter Communications, pp. 1–12

	24.	 Roy C, Chakraborty D, Debnath S, Mukherjee A, Chaki N (2021) Single failure recovery in dis-
tributed social network. In: Hong T, Wojtkiewicz K, Chawuthai R, Sitek P (eds) Recent Challenges
in Intelligent Information and Database Systems - 13th Asian Conference, ACIIDS 2021, Phuket,
Thailand, April 7-10, 2021, Proceedings, Springer, Communications in Computer and Information
Science, vol. 1371, pp. 203–215, https://​doi.​org/​10.​1007/​978-​981-​16-​1685-3_​17

http://arxiv.org/abs/1408.2041
http://arxiv.org/abs/1204.6078
https://doi.org/10.1038/sdata.2018.221
https://doi.org/10.17863/CAM.21035
http://arxiv.org/abs/2107.06090
https://doi.org/10.1007/978-981-16-1685-3_17

9408	 A. Mukherjee et al.

1 3

	25.	 Peluso S, Romano P, Quaglia F (2012) Score: a scalable one-copy serializable partial replication
protocol. In: ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and
Open Distributed Processing, Springer, pp. 456–475

	26.	 Schiper N, Sutra P, Pedone F (2010) P-store: genuine partial replication in wide area networks. In:
2010 29th IEEE Symposium on Reliable Distributed Systems, IEEE, pp. 214–224

	27.	 Kalavri V, Vlassov V, Haridi S (2017) High-level programming abstractions for distributed graph
processing. IEEE Trans Knowl Data Eng 30(2):305–324

	28.	 Murtagh F, Contreras P (2017) Algorithms for hierarchical clustering: an overview, ii. Wiley Inter-
discipl Rev Data Mining Knowl Discov 7(6):e1219

	29.	 Day WH, Edelsbrunner H (1984) Efficient algorithms for agglomerative hierarchical clustering
methods. J Classif 1(1):7–24

	30.	 Shahapure KR, Nicholas C (2020) Cluster quality analysis using silhouette score. In: 2020 IEEE 7th
International Conference on Data Science and Advanced Analytics (DSAA), IEEE, pp. 747–748

	31.	 Wang X, Xu Y (2019) An improved index for clustering validation based on silhouette index and
calinski-harabasz index. In: IOP Conference Series: Materials Science and Engineering, IOP Pub-
lishing, vol. 569, p. 052024

	32.	 Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal networks. In: Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610

	33.	 Leskovec J, Mcauley J (2012) Learning to discover social circles in ego networks. In: Pereira F,
Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing systems, vol 25.
Curran Associates Inc., Red Hook

	34.	 Yang J, Leskovec J (2012) Defining and evaluating network communities based on ground-truth. In:
Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pp. 1–8

	35.	 Besta M, Podstawski M, Groner L, Solomonik E, Hoefler T (2017) To push or to pull: On reducing
communication and synchronization in graph computations. In: Proceedings of the 26th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, pp. 93–104

	36.	 Chatterjee M, Mitra A, Setua SK, Roy S (2020) Gossip-based fault-tolerant load balancing algo-
rithm with low communication overhead. Comput Electr Eng 81:106517

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	An unsupervised learning-guided multi-node failure-recovery model for distributed graph processing systems
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	4 Prerequisites
	4.1 Partial replication
	4.2 Distributed graph processing
	4.3 Agglomerative hierarchical clustering

	5 Proposed methodology
	5.1 Phase I: partitioning
	5.2 Phase II: chunk distribution
	5.3 Phase III: failure recovery

	6 Experimental setup
	6.1 Datasets used
	6.2 Hardware and software setup
	6.3 Environmental setup

	7 Proof of correctness
	8 Performance evaluation
	9 Discussion and conclusion
	Acknowledgements
	References

