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Abstract
Nowadays, the massive use of multimedia data gives to data compression a funda-
mental role in reducing the storage requirements and communication bandwidth. 
Variable-length encoding (VLE) is a relevant data compression method that reduces 
input data size by assigning shorter codewords to mostly used symbols, and longer 
codewords to rarely utilized symbols. As it is a common strategy in many compres-
sion algorithms, such as the popular Huffman coding, speeding VLE up is essen-
tial to accelerate them. For this reason, during the last decade and a half, efficient 
VLE implementations have been presented in the area of General Purpose Graph-
ics Processing Units (GPGPU). The main performance issues of the state-of-the-art 
GPU-based implementations of VLE are the following. First, the way in which the 
codeword look-up table is stored in shared memory is not optimized to reduce the 
bank conflicts. Second, input/output data are read/written through inefficient strided 
global memory accesses. Third, the way in which the thread-codes are built is not 
optimized to reduce the number of executed instructions. Our goal in this work is to 
significantly speed up the state-of-the-art implementations of VLE by solving their 
performance issues. To this end, we propose GVLE, a highly optimized implemen-
tation of VLE on GPU, which uses the following optimization strategies. First, the 
caching of the codeword look-up table is done in a way that minimizes the bank 
conflicts. Second, input data are read by using vectorized loads to exploit fully the 
available global memory bandwidth. Third, each thread encoding is performed effi-
ciently in the register space with high instruction-level parallelism and lower num-
ber of executed instructions. Fourth, a novel inter-block scan method, which out-
performs those of state-of-the-art solutions, is used to calculate the bit-positions of 
the thread-blocks encodings in the output bit-stream. Our proposed mechanism is 
based on a regular segmented scan performed efficiently on sequences of bit-lengths 
of 32 consecutive thread-blocks encodings by using global atomic additions. Fifth, 
output data are written efficiently by executing coalesced global memory stores. An 
exhaustive experimental evaluation shows that our solution is on average 2.6× faster 
than the best state-of-the-art implementation. Additionally, it shows that the scan 
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algorithm is on average 1.62× faster if it utilizes our inter-block scan method instead 
of that of the best state-of-the-art VLE solution. Hence, our inter-block scan method 
offers promising possibilities to accelerate algorithms that require it, such as the 
scan itself or the stream compaction.

Keywords Data compression · Variable-length encoding · Huffman coding · GPU · 
CUDA

1 Introduction

In the current digital era, huge amounts of multimedia data, such as images and vid-
eos, are generated continuously [1]. For example, at the time of writing this paper, 
720,000 hours of video are uploaded to YouTube by day [2]. Since the rate of 
growth of data is much higher than the rate of growth of technologies (e.g., DVDs, 
Blu-ray, ADSL, optical fibers, etc.), data compression has nowadays an essential 
role in reducing the cost of data storage and transmission [1].

Variable-length encoding (VLE) is a popular data compression method in which 
most frequently occurring symbols are replaced by codewords of shorter length, 
whereas rarely used symbols are substituted by codewords of longer length [3]. 
Since VLE is a common strategy in many compression algorithms [3, 4], such as the 
widely used Huffman coding [5, 6], acceleration of VLE is key to speed them up. 
In order to achieve this goal, during the last decade and a half, efficient implemen-
tations of VLE have been proposed in the area of General Purpose Graphics Pro-
cessing Units (GPGPU) [7–14], which is, nowadays, mainstream high-performance 
computing [15–17].

The first GPGPU VLE solution is the algorithm PAVLE, proposed by Balevic 
[7]. This method uses an encoding alphabet of up to 256 symbols, with each sym-
bol representing one byte. Without loss of generality, it assumes that the values and 
bit-lengths of the codewords are stored in a look-up table, which is cached in the on-
chip shared memory. This table will be referred to as VLET in the rest of the paper. 
As GPU architectures provide more efficient support for 32-bit data types, the source 
and compressed data are provided and written, respectively, in two vectors of 32-bit 
unsigned integers. Consecutive threads load consecutive segments of elements from 
the source vector. Each thread uses the VLET for encoding the loaded segment in its 
private memory and calculating the corresponding bit-length. An intra-block scan 
primitive [18] is performed to calculate the bit-positions of the thread encodings 
in the corresponding thread-block encoding on the basis of their bit-lengths. The 
threads of a thread-block write concurrently their encodings in a buffer in shared 
memory using atomic operations to deal with the race conditions that occur when 
parts of adjacent encodings are written to the same memory location. Once the writ-
ing is finished, the content of the buffer is copied to the output vector at the same 
position of the corresponding source segment in the input vector. After the encod-
ing is finished, a second kernel is launched to compact the output vector. Experi-
mental evaluation showed speedups with respect to the serial implementation on a 
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2.66 GHz Intel QuadCore CPU of up to 35x. Fuentes-Alventosa et al. [8] presented 
CUVLE, a new implementation of VLE on CUDA. As in the case of PAVLE, the 
VLET is cached in shared memory, and consecutive threads process consecutive 
source segments. However, their approach uses the following optimization strate-
gies. First, persistent blocks [19], which equals the grid size to the maximum num-
ber of resident thread-blocks, thereby minimizing the number of VLET loads in 
shared memory. Second, contiguous writing of thread-block encodings in global 
memory, which avoids the necessity of running any compaction extra kernel. The 
bit-positions of the thread encodings in the output vector are calculated by combin-
ing the efficient intra-block scan algorithm of Sengupta et al. [20] with the adjacent 
thread-block synchronization mechanism proposed by Yan et al. [21]. Third, direct 
writing of thread-block encodings in global memory. Since CUVLE does not use an 
intermediate buffer in shared memory, it saves the time to make additional opera-
tions, avoids the appearance of bank conflicts and saves the reserved space for the 
buffer. Experimental evaluation showed that CUVLE is on average more than 20 
and 2 times faster than the corresponding CPU serial implementation and PAVLE, 
respectively. The test machine had a 2.67Ghz Intel Core i7 920 CPU and 12 GB of 
RAM, and the GPUs utilized were a GeForce GT 640 2GB GDDR5 and a GeForce 
GTX 550 Ti. Rahmani et al. [9] proposed a CUDA-based Huffman coder that does 
not have any constraint on the maximum code bit-length by generating an interme-
diate byte stream where each byte represents a single bit of the compressed output 
stream. After the Huffman tree generation is done serially on the CPU, the encod-
ing is performed in parallel on the GPU following the next three steps (each one 
implemented with a different kernel). First, the code offsets for each input symbol 
in the intermediate stream are calculated using the scan method presented in [18]. 
Second, the intermediate stream is generated by the i-th thread of the second kernel 
writing the code of the i-th input symbol to its corresponding memory slots in the 
intermediate stream. Third, the output stream is obtained by each thread of the third 
kernel reading 8 consecutive bytes from the intermediate stream, and generating a 
single byte of the output stream. As the encoding is implemented with three kernels, 
this solution has two main overheads: the extra long latency global memory accesses 
required to transmit intermediate results between kernels, and the costly launches 
and terminations of the kernels. Experimental evaluation on the NVIDIA GTX 480 
GPU showed speedups with respect to the CPU serial implementation of up to 22x 
on an Intel Core 2 Quad CPU running at 2.40 GHz. The work of Yamamoto et al. 
[10] focused on GPU acceleration of Huffman encoding and decoding and was 
developed in CUDA. As in the case of CUVLE, the VLE stage is implemented with 
only one kernel. The authors exposed that their kernel is similar to CUVLE, but it is 
much more faster because, instead of using Yan et al.’s mechanism [21], it utilizes 
a novel adjacent thread-block synchronization method, which is much more effi-
cient. The reason is that, in the Yan et al.’s algorithm [21], each thread-block looks 
back the result written in global memory by only one thread-block, while, in the 
Yamamoto et al.’s approach [10], each thread-block looks back 32 previous results 
simultaneously. Experimental evaluation for ten files on NVIDIA Tesla V100 GPU 
showed that Yamamoto et al.’s VLE implementation is between 2.87 and 7.70 times 
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faster than CUVLE. For this reason, the best state-of-the-art implementation of VLE 
on GPU is the solution of Yamamoto et al.

The main performance issues of the state-of-the-art GPU-based implementations 
of VLE [8, 10] are the following. First, the way in which the VLET is cached is not 
optimized to reduce the shared memory bank conflicts. Second, each thread reads/
writes the elements of its input/output segment one by one, which results in inef-
ficient strided global memory accesses. Third, the way in which the thread-codes 
are built is not optimized to reduce the number of executed instructions. In order to 
solve these issues, we propose GVLE, a highly optimized implementation of VLE 
on GPU, which significantly speeds up the solution of Yamamoto et al. As in previ-
ous approaches [7, 8, 10], the VLET is cached in shared memory, and consecutive 
threads process consecutive segments of the input vector. However, GVLE uses the 
following optimization strategies. First, the VLET storage in shared memory is done 
in a way that minimizes the bank conflicts. Second, the input segments are read by 
using vectorized loads to exploit fully the available global memory bandwidth [22]. 
Third, each thread, after reading its assigned segment, encodes it efficiently in the 
register space with high instruction-level parallelism and lower number of executed 
instructions. Fourth, a novel inter-block scan method, which outperforms those of 
Yan et al. [21] and Yamamoto et al. [10], is used to calculate the bit-positions of the 
thread-blocks encodings in the output vector. Our proposed mechanism is based on 
a regular segmented scan performed efficiently on sequences of bit-lengths of 32 
consecutive thread-blocks encodings by using global atomic additions [23]. Fifth, 
the thread-block encodings are written efficiently to the output vector by executing 
coalesced global memory stores [24].

Our main contributions in this work are the following:

• A highly optimized GPU-based approach to VLE, called GVLE,1 that signifi-
cantly improves the state-of-the-art implementations [8, 10].

• A novel inter-block scan method for calculating the bit-positions of thread-
blocks encodings that outperforms those used in [8] and [10].

• A comparison of our solution with the best state-of-the-art implementation [10]. 
An exhaustive experimental evaluation shows that our proposal is on average 
2.6× faster than the method presented in [10].

• A comparison of our inter-block scan method with that of [10]. The experimental 
results show that the speedup of the scan operation using our inter-block scan 
algorithm is on average 1.62× with respect to using the method of [10].

The rest of the paper is organized as follows. Section 2 gives background for CUDA, 
VLE and the Yamamoto et  al.’s implementation of VLE [10]. Section  3 presents 
GVLE and compares our method with the one proposed in [10], so that the achieved 
performance improvement can be clearly established. Section 4 shows the experi-
mental evaluation of our algorithm and a comparison to the method of Yamamoto 

1 The source code is available at https:// github. com/ z12fu ala/ GVLE.

https://github.com/z12fuala/GVLE.
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et  al. [10], CUVLE [8] and the serial implementation of VLE. Section  5 reviews 
related work. Finally, the main conclusions are stated in Section 6.

2  Background

This section is structured in the following way. Section 2.1 gives a brief overview of 
CUDA, and cites several relevant documents that can provide further background to 
readers. Section 2.2 defines VLE, and highlights its important role in data compres-
sion. Section 2.3 gives a detailed description and a critical analysis of the best state-
of-the-art implementation of VLE on GPU ( [10]).

2.1  CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing framework 
developed by NVIDIA for GPGPU computing [16]. Since its release in 2007, thou-
sands of applications have been developed on CUDA [15, 16], so it is one of the 
main responsible technologies for the GPGPU computing revolution.

CUDA greatly facilitates to developers the implementation of parallel algorithms 
by providing a small set of extensions to popular languages such as C, C++, For-
tran, Python and MATLAB [16]. In this work, we have utilized CUDA C++.

As shown in Fig. 1 [23], in a CUDA program, the sequential parts runs on the 
CPU (usually referred to as the host), while the compute intensive parts are executed 
by thousands of threads on the GPU (commonly named as the device). The func-
tions executed on the GPU are called kernels, which are defined by the program-
mer using the __global__ declaration specifier. The number of threads that execute 
a kernel is specified using the <<<...>>> execution configuration syntax. They are 
organized into one-, two- or three-dimensional blocks of threads, which are called 
thread-blocks. A kernel is executed by a set of identical thread-blocks, called grid, 
which can also have up to three dimensions.

The architecture of a CUDA GPU is composed of a set of streaming multipro-
cessors (SMs) [23]. When a kernel is launched, the thread-blocks of the grid are 

Fig. 1  Execution of a CUDA 
program
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distributed to the available multiprocessors with execution capacity. The threads of 
each thread-block run concurrently on a single multiprocessor, and each multipro-
cessor can concurrently execute many thread-blocks. As the execution of the thread-
blocks finishes, new ones are launched in the available multiprocessors. The SMs 
execute the threads in groups of 32 called warps. The threads of a warp start at the 
same program address, but each one has its own instruction address counter and reg-
ister state, and, hence, they are free to branch and execute independently. Although 
CUDA developers can ignore this behavior for the correctness of their applications, 
they can greatly improve their performance by minimizing the warp divergence.

CUDA threads can access three types of memory spaces during their execution 
[23]:

• Each thread has private memory consisting of registers and local memory. Its 
lifetime is that of the thread.

• Each thread-block has shared memory visible to all threads in it. Its lifetime is 
that of the thread-block. The __shared__ qualifier is used for the declaration of 
variables in shared memory.

• All threads of a grid have access to a read/write global memory, and two other 
read memories: the constant memory, used to store non-modifiable values, and 
the texture memory, optimized for accesses with 2D spatial locality. The contents 
of these memories are persistent between the different kernel calls of the same 
application.

Global memory is the most abundant of these memory spaces [24]. On the other 
hand, global, local, and texture memory have the highest access latency, followed 
by constant memory, shared memory, and registers [24]. A very important opti-
mization technique is the coalescing of global memory accesses [23, 24]. When a 
warp performs an operation on global memory, the memory accesses of its threads 
are coalesced into one or more memory transactions according to the size of the 
accessed words and the distribution of the memory addresses. The more scattered 
the accesses are, the more transactions are necessary, and, hence, the more reduced 
the throughput is.

2.2  Variable‑length encoding (VLE)

Input data to a compression algorithm can be modeled as a sequence of elements, 
called symbols, belonging to an alphabet [4]. A symbol can be an ASCII character, 
a byte, an audio sample, etc. Given an alphabet S = {s0, s1, ..., sn−1} , its digital rep-
resentation is called the code C = {c0, c1, ..., cn−1} , and the representation ci of each 
symbol is called the codeword for symbol si . Codes are classified into fixed length 
codes (FLC) and variable-length codes (VLC), depending on the length of their 
codewords is fixed or variable, respectively. The process of assigning codewords to 
symbols of input data is called encoding, and the reverse process is called decoding.

Variable-length encoding (VLE) [3] is a compression method in which input 
data size is reduced by using a VLC that assigns shorter codewords to mostly used 
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symbols, and longer codewords to rarely utilized symbols. Figure 2 illustrates VLE. 
For example, consider the alphabet S = {A,B,C,D,E} and the 9-symbols input data 
string BAAA AAA AC [4]. On the one hand, if the encoding is performed using a 3-bit 
FLC, the bit-length of the result is 9 × 3 = 27 . On the other hand, if the encoding is 
performed using the VLC C = {0, 100, 101, 110, 111} , the bit-length of the result is 
1 × 3 + 7 × 1 + 1 × 3 = 13 , which is less than half that obtained with the FLC.

VLE is one of the main building blocks in many compression algorithms [3, 4], 
such as the popular Huffman coding [5, 6], which is the most relevant entropy cod-
ing method at present [25]. Huffman coding is a component of the Deflate algo-
rithm, which is used in the file compression programs ZIP, 7ZIP, GZIP, and PKZIP, 
and in the image compression format PNG, for example [26]. Additionally, Huffman 
coding is the most used entropy coding algorithm in multimedia encoding standards 
such as JPEG, MPEG, H.264 and VC-1 [27], and is a critical step in an increasing 
number of high-performance computing applications [12, 28, 29]. Since VLE is an 
essential step in so many important present and future compression algorithms, its 
acceleration is fundamental to speed them up.

2.3  Solution of Yamamoto et al

The best state-of-the-art implementation of VLE on GPU is the solution presented 
by Yamamoto et al. [10], which was developed in CUDA. It is composed of only 
one kernel, which will be referred to as YAVLE in the rest of the paper. In this sec-
tion, we give a detailed description of YAVLE based on the paper of Yamamoto 
et al. [10], and the source code of their solution published on GitHub at github.com/
daisuke-takafuji/Huffman_coding_Gap_arrays.

YAVLE operates on 8-bit symbols and, therefore, it utilizes an alphabet of up to 
256 symbols. The VLET is provided in a vector (d_VLET) of 256 elements, whose 
base type is a structure (Codeword) with two 32-bit unsigned int members that rep-
resent the value and the bit-length of a codeword. Yamamoto et al. assume that the 
maximum bit-length of codewords is 16 because Huffman coding with this limited 
maximum codeword can be generated efficiently [10, 30, 31]. In fact, actually, the 
maximum codeword length is limited in the most implementations of Huffman cod-
ing [10].

Fig. 2  Variable-Length Encod-
ing (VLE). Input data size is 
reduced by assigning shorter 
codewords to mostly used 
symbols, and longer codewords 
to rarely utilized symbols
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The source data are supplied in a vector of 32-bit unsigned integers (d_input). 
Hence, each element contains 4 symbols. The compressed data are written in an out-
put vector (d_output) of 32-bit unsigned integers too. Let B be the thread-block size. 
The vector d_input is partitioned into segments of size B × 8 , which will be named 
as block-inputs. Each block-input is processed by a thread-block and the encoding 
result, which will be referred to as block-code, is written in d_output. Figure 3 illus-
trates this inter-block mechanism. Consecutive threads of each thread-block pro-
cess consecutive segments of eight elements (i.e., 32 symbols) of the corresponding 
block-input, which will be named as thread-inputs. The encoding of a thread-input 
will be referred to as thread-code. Figure 4 clarifies this intra-block mechanism.

Algorithm 1 provides a high-level description of YAVLE. Each thread-block 
caches the VLET in shared memory (Step 1) and encodes a different subset of 
block-inputs (Steps 2 to 7). The number of thread-blocks of the grid is set to 

Fig. 3  Inter-block mechanism for an input vector of 4 block-inputs and a grid of 2 thread-blocks. The 
thread-block 0 processes the block-inputs 0 and 2, and writes the corresponding block-codes 0 and 2 in 
the output vector. The thread-block 1 performs the same actions with the block-inputs 1 and 3

Fig. 4  Intra-block mechanism. The thread-block i (of size B) processes the block-input j and writes the 
corresponding block-code j in the output vector. Each thread k of the thread-block i encodes the thread-
input k and writes the thread-code k in the output vector
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the maximum number of resident thread-blocks. Hence, the number of VLET 
loads in shared memory is minimized. The indexes of the block-inputs are 
obtained from a zero-initialized global counter (Steps 2 and 7). The function 
get_global_counter_value uses the CUDA function atomicAdd [23] to return the 
successive values of the global counter, that is, 0, 1, 2,  and so on. This mecha-
nism ensures that, when a thread-block starts the processing of a block-input i, 
the management of block-inputs 0, 1, ...., i − 1 have already begun. The process-
ing of each block-input consists of Steps 3 to 6.

In Sects. 2.3.1 to 2.3.4, we describe Steps 4 to 6 of Algorithm 1, respectively.
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2.3.1  Calculation of bit‑lengths of thread‑codes

In Step 4 of Algorithm 1, each thread iterates over the 32 symbols of its thread-
input to calculate the bit-length thcode_len (line 12) of the corresponding thread-
code. For each symbol, if the element to which it belongs has not been loaded 
from d_input yet, that element is read. Then, the symbol is extracted from its 
element, and its codeword is obtained from the VLET. The bit-length of the 
thread-code is computed by accumulating the bit-lengths of its codewords.

2.3.2  Calculation of bit‑positions of thread‑codes in output vector

In Step 5 of Algorithm 1, the bit-position thcode_pos (line 15) of each thread-code 
in the output vector is computed by adding the bit-position of the thread-code in its 
block-code ( pos_of_thcode_in_bcode ) to the bit-position of the block-code in the 
output vector ( blockcode_pos).

On the one hand, the intra-block scan method of Sengupta et al. [20] is performed 
on the parameters thcode_len of the current block-code to compute the correspond-
ing bit-positions pos_of_thcode_in_bcode and the bit-length of the block-code 
( blockcode_len).

On the other hand, a novel inter-block scan algorithm [10], which is described in 
the next section, is executed on the parameters blockcode_len of the block-codes to 
compute their bit-positions blockcode_pos.

2.3.2.1 Yamamoto et al.’s inter‑block scan method The inter-block scan method of 
Yamamoto et al. uses an auxiliary global vector d_scan (line 5) of 64-bit unsigned 
integers, whose initial values are zero. The number of elements of d_scan equals to 
the number of block-codes, and each element i is assigned to the block-code i. Each 
value written in d_scan has two mutually exclusive flags, named as A and P, which 
are located in bits 56 and 63, respectively. Given an element d_scan[i] , if the flag A is 
set, then it stores the bit-length of block-code i; otherwise, if the flag P is set, it holds 
the sum of bit-lengths of block-codes 0 to i, which is the bit-position of the block-
code i + 1 in the output vector.

Given a block-code i, the first warp of its assigned thread-block computes the 
parameter blockcode_pos by following the steps presented in Algorithm  2. If the 
block-code is the first, blockcode_pos is clearly zero (line 3). Otherwise, the warp 
iterates on the necessary 32-elements segments of d_scan before to d_scan[i] to 
compute blockcode_pos (lines 8 to 20). This parameter is obtained by the sum of the 
elements d_scan[k] , d_scan[k + 1] , ... d_scan[i − 1] , where k is the index of the last 
element previous to d_scan[i] with the flag P activated.
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The main difference between CUVLE [8] and YAVLE is in the method used 
to calculate the parameters blockcode_pos . Yamamoto et  al.’s inter-block scan is 
much more efficient than Yan et al.’s technique [21] employed by CUVLE because, 
to obtain the bit-position of a block-code i, the first processes rapidly 32-element 
segments previous to d_scan[i] , whose values are read simultaneously by the first 
warp of the thread-block, while the second iterates only over one previous element 
( d_scan[i − 1] ). This optimization is the unique reason of the significant speedup of 
YAVLE with respect to CUVLE [10].

2.3.3  Writing of thread‑codes to output vector

In Step 6 of Algorithm  1, each thread iterates over the 32 symbols of its thread-
input in the same way as it does to calculate the bit-length of the thread-code (Step 
4). Let d_thcode be a pointer to the first element of d_output that will be occupied 
by the thread-code. As the codewords assigned to the symbols are obtained from 
the VLET, their bits are concatenated in a 32-bit variable ( word_val ) and their bit-
lengths added in a second 32-bit variable ( word_len ) while the bit-length of the 
resulting encoding is less than or equal to 32. When the last condition is not satis-
fied, the first 32 bits of the resulting encoding are written in the corresponding ele-
ment of d_thcode , and the value and bit-length of the remaining encoding are stored 
in word_val and word_len , respectively. The process continues until all the code-
words are written. To avoid race conditions with the previous and next thread-codes, 
the first and last writes are performed by using atomic OR operations [23].

3  Highly optimized GPU‑based implementation of VLE (GVLE)

In this section, we present GVLE, our GPU-based implementation of VLE, which 
has been developed using the popular NVIDIA CUDA framework [16]. It is also 
compared with Yamamoto et  al.’s proposal so that the achieved performance 
improvement can be clearly established.

As previous solutions [8, 10], GVLE is composed of only one kernel, whose 
execution configuration sets the number of thread-blocks to the maximum number 
of resident thread-blocks. The inputs and outputs of GVLE are the same as those 
of YAVLE, except that, in the case of GVLE, the VLET is provided in two sepa-
rate vectors, one of 256 16-bit unsigned integers (d_VLET_val) and the other of 256 
8-bit unsigned integers (d_VLET_len), which store the values and the bit-lengths of 
the codewords, respectively. As in the case of YAVLE, it is assumed that the maxi-
mum bit-length of codewords is 16.

Algorithm 3 presents the pseudo code of GVLE. As in previous approaches [8, 
10], each thread-block caches the VLET in shared memory (Step 1) and encodes a 
different subset of block-inputs (Steps 2 to 9). The technique used to get the indexes 
of the block-inputs (Steps 2 and 9) is the same as that of YAVLE (Sect. 2.3). Let us 
define a warp-code as the encoding of the 32 thread-inputs processed by a warp, that 
is to say, the concatenation of the thread-codes computed by a warp. The processing 
of each block-input consists of Steps 3 to 8.
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In Sect.  3.1, we describe Step 1 of Algorithm  3, and, in Sects. 3.2 to 3.6, 
Steps 4 to 8, respectively.
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3.1  VLET caching

In Step 1 of Algorithm 3, since the VLET is used intensively for searching the code-
words, each thread-block caches it in the fast on-chip shared memory. The global 
memory vectors d_VLET_val (line 8) and d_VLET_len (line 9) are copied to the 
identical shared memory vectors s_VLET_val and s_VLET_len, respectively, in a 
fully coalesced way.

The warp accesses to the VLET are random because they depend on the source 
data. For this reason, in order to minimize the bank conflicts caused by irregular 
warp accesses [23, 24], the VLET is implemented with two separate vectors (lines 
8 and 9) whose base types have the minimum size necessary to store codewords 
of up to 16 bits (16-bits for s_VLET_val and 8-bits for s_VLET_len). In contrast, 
as YAVLE caches the VLET in a single vector whose base type (Codeword) has a 
size of 64-bits, the number of bank conflicts is much higher. The reason is that, in 
the case of YAVLE, each codeword is stored in two consecutive 32-bits elements of 
shared memory, while, in the case of GVLE, two codewords’ values are cached in 
one 32-bit element, and four codewords’ bit-lengths are kept in one 32-bit element.

On the other hand, although GVLE has to access two vectors (instead of one, as 
YAVLE) to get the value and the bit-length of one codeword, these readings are fast 
because they are executed in parallel at the instruction level.

3.2  Reading of thread‑inputs

In Step 4 of Algorithm  3, each thread reads the 32 symbols of its thread-input 
through one vectorized access using the custom vector type uchar32, which is com-
posed of 32 8-bit unsigned integers, and stores the thread-input in the variable thin-
put (line 14). Vectorized loads are an important CUDA optimization because they 
increase bandwidth and reduce both instruction count and latency [22].

In contrast, YAVLE reads the elements of its thread-input one by one, which 
results in inefficient strided global memory accesses [23, 24]. In addition, YAVLE, 
instead of loading its thread-input from global memory once, reads it twice: the first 
time to calculate the bit-length of the thread-code, and the second time to compute 
the bit-stream of the thread-code on the fly during its writing in the output vector.

3.3  Calculation of thread‑codes

In Step 5 of Algorithm 3, each thread searches in s_VLET_val and s_VLET_len the 
codewords assigned to the 32 symbols stored in thinput to compute the correspond-
ing thread-code (lines 16 to 18). Since a thread-code is the concatenation of 32 con-
secutive codewords and the bit-length of each codeword is no more than 16-bits, 
a thread-code is made up of 16 binary segments (each segment i corresponding to 
the concatenation of the codewords 2 × i and 2 × i + 1 ), whose bit-lengths are not 
greater than 32-bits. Taking this into account, the values and the bit-lengths of the 
segments are calculated and cached in the private arrays seg_val and seg_len (line 
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15), of 16 32-bit unsigned integers each, respectively. Additionally, the bit-length 
thcode_len of each thread-code (line 15) is obtained by adding the bit-lengths of its 
segments.

The calculation of thread-codes is efficient for the following reasons. First, there 
are no dependencies between the different computations of segments, hence the 
degree of instruction-level parallelism is high. Second, each segment calculation is 
performed with few operations of high throughput (one binary shift and two sums). 
Third, there is no warp divergence in the computation of segments. Fourth, the 
arrays seg_val and seg_len are placed in the register space [24] because (1) they are 
small, (2) they are indexed with constant quantities, and (3) the kernel does not use 
more registers than available.

Since YAVLE computes the bit-stream of each thread-code by concatenating its 
32 codewords on the fly during its writing to the output vector, the number of exe-
cuted instructions is higher than that of GVLE.

3.4  Calculation of parameters of warp‑codes

In Step 6 of Algorithm  3, each thread-block calculates the following parameters, 
which are necessary for the posterior processing of the warp-codes of the current 
block-code (line 19):

• Bit-position of each thread-code in its warp-code ( pos_of_thcode_in_wcode).
• Bit-length of each warp-code ( wcode_len).
• Bit-position of each warp-code in the output vector ( wcode_pos).

On the one hand, the intra-block scan method of Sengupta et al. [20] is executed on 
the bit-lengths of the thread-codes of the current block-code to calculate the param-
eters pos_of_thcode_in_wcode , wcode_len , the bit-position of each warp-code 
in the block-code ( pos_of_wcode_in_bcode ), and the bit-length of the block-code 
( blockcode_len).

On the other hand, the bit-position of each block-code in the output vector 
( blockcode_pos ) is obtained by carrying out a scan operation on the bit-lengths of 
the block-codes using a novel inter-block scan algorithm, which is proposed in the 
next section.

Once a warp gets the parameters blockcode_pos and pos_of_wcode_in_bcode , it 
computes wcode_pos by adding them.

3.4.1  Our inter‑block scan method

In our algorithm, the global vector d_scan (line 6), whose elements are initially 
zero, is used to perform a regular segmented inclusive scan on segments of bit-
lengths of 32 consecutive block-codes. Each segment i is composed of the bit-
lengths of block-codes 32 × i to 32 × i + 31 , and its prefix sum is written in the 
corresponding 32-elements sub-vector i of d_scan . The scan of each segment is 
performed by a set of 32 thread-blocks, which will be referred to as sub-grid. 
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Each segment i is processed by a sub-grid i, which is composed of the thread-
blocks that manage the block-codes 32 × i to 32 × i + 31 . The scan of each seg-
ment i is calculated directly in the d_scan sub-vector i by the first warp of each 
thread-block j of the sub-grid i performing an atomic addition [23] of the bit-
length of its block-code to the elements j to 31 of the sub-vector i. Note that the 
number of atomic additions carried out by each sub-grid on each element j of the 
corresponding sub-vector is j + 1 . Figure 5 illustrates this mechanism for the first 
segment.

In order to detect that the segmented prefix sum has already been calculated 
for a particular d_scan sub-vector element, bits 57 to 62 of each element are used 
to store the number of atomic additions performed on it. This sums counter is 
implemented by performing the atomic additions with the bit 57 of the bit-lengths 
of the block-codes set to 1. The bits 0 to 56 of each element j of each d_scan sub-
vector i are used to store the corresponding segmented scan value, i.e., the sum 
of bit-lengths of block-codes 32 × i to 32 × i + j . In the case of the thirty-second 
element of each sub-vector i except the first, a second value is assigned to its bits 
0 to 56 in a posterior stage of our algorithm, which is the not-segmented scan 
value, i.e., the sum of bit-lengths of block-codes 0 to 32 × i + 31 . To distinguish 
between these two mutually exclusive values, in the second case, a flag will be 
activated in the bit 63, which will be referred to as flag P. Table 1 shows an exam-
ple of GVLE inter-block scan, which presents an extract of the first 64 values 
written in d_scan (i.e., the corresponding to the first two segments). Note that 
d_scan[63] is the only element that has the flag P activated (the bit 63 is 1). The 
reason is that it stores the sum (1, 206, 728) of all the bit-lengths of segments 0 
and 1. The remaining elements hold the segmented scan value (bits 0 to 56), and 
the number of atomic additions performed on them (bits 57 to 62).

Let us define a sub-code as the bit-stream composed of the block-codes man-
aged by a sub-grid. Given a thread-block j of a sub-grid i, the first warp of the 
thread-block follows the next steps to calculate the parameter blockcode_pos of 
the corresponding block-code:

1. It performs an atomic addition of the bit-length of the block-code (with the bit 57 
set to 1) to the elements j to 31 of the sub-vector i.

Fig. 5  GVLE inter-block scan on the first segment
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2. It gets the bit-position of the block-code in its sub-code, which will be referred 
to as pos_of_bc_in_sc , in the following way. If j = 0 , clearly pos_of_bc_in_sc 
is 0. Otherwise, it reads repeatedly the element j − 1 of the sub-vector i until its 
sums counter is j. The parameter pos_of_bc_in_sc is obtained by resetting the 
bits 57 to 62.

3. It gets the bit-position of the sub-code in the output vector, which will be referred 
to as pos_of_sc_in_out , in the following way. If i = 0 , clearly pos_of_sc_in_out 
is 0. Otherwise, it reads repeatedly the element 31 of the sub-vector i − 1 until its 
sums counter is 32 or the flag P is activated (i.e., the value stored in bits 57 to 63 
is 32 or 64). If the flag P of the read value is not activated, it repeats the same pro-
cedure on sub-vectors i − 2 , i − 3 , ... until the read value has the flag P activated 
or there are no more sub-vectors to process. The parameter pos_of_sc_in_out is 
obtained by accumulating the read values, with the bits 57 to 63 set to 0, as they 
are read.

4. The parameter blockcode_pos is obtained by adding pos_of_bc_in_sc to 
pos_of_sc_in_out.

5. If j = 31 (i.e., the thread-block is the last of the sub-grid): 

(a) It computes the bit-length of the sub-code i ( sc_len ) by adding 
pos_of_bc_in_sc to blockcode_len.

(b) It computes the sum of pos_of_sc_in_out to sc_len , and stores it in the ele-
ment 31 of the sub-vector i with the flag P activated. Note that the written 
value is the bit-position of the sub-code i + 1 in the output vector.

As will be shown in Sect.  4, our inter-block scan method outperforms that of 
Yamamoto et al. The reasons are the following: 

Table 1  Example of GVLE 
inter-block scan on the two first 
segments

i Bit-length of 
block-code i

Value stored in bits 57 
to 63 of d_scan[i]

Value stored in bits 
0 to 56 of d_scan[i]

0 19,036 1 19,036
1 18,641 2 37,677
2 18,210 3 55,887
. . . .
29 18,976 30 565,395
30 19,209 31 584,604
31 19,026 32 603,630
32 18,775 1 18,775
33 19,223 2 37,998
34 19,331 3 57,329
. . . .
61 18,632 30 565,170
62 18,865 31 584,035
63 19,063 64 1,206,728
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1. Since the scan on different segments are executed independently by the corre-
sponding sub-grids, the degree of parallelism is higher in our algorithm.

2. In YAVLE, each thread-block assigns the bit-length of its block-code to a single 
element of d_scan , while, in GVLE, each thread-block uses the bit-length of its 
block-code to update 32 − j elements of d_scan , where j is the index of the thread-
block within its sub-grid. As the number of elements updated by thread-blocks 
0, 1, ..., 31 of a sub-grid are 32, 31, .... 1, respectively, the average number of 
elements updated per thread-block is 16.

3. In GVLE, the scan of each segment is performed directly on its sub-vector by 
using atomic operations. In contrast, in YAVLE, after writing the bit-lengths on 
d_scan , it is necessary to read them in groups of 32 elements to perform the scan 
operation.

3.5  Building of warp‑codes in shared memory

In Step 7 of Algorithm 3, each warp i of each thread-block builds its warp-code in 
the shared memory buffer s_warp_code[i] (line 23) of 513 32-bit unsigned integers. 
The warp-code is written right-shifted the same number of bits that it will be in 
the target sub-vector of d_output . The size of each buffer is 513 for the following 
reasons. On the one hand, since the bit-length of each codeword is no more than 
16-bits, the number of codewords of each thread-code is 32, and the warp size is 32, 
the maximum number of bits of a warp-code is 16 × 32 × 32 = 16, 384 bits, which 
can be stored in 16, 384∕32 = 512 unsigned integers. On the other hand, as each 
warp-code is written right-shifted, an extra unsigned integer is necessary, so the size 
of each warp buffer is 512 + 1 = 513.

The warp-code is built in the buffer by each thread of the warp writing its thread-
code, which was cached previously in the private arrays seg_val and seg_len ((lines 
15 to 18)), in the bit-position of the tread-code within its warp-code. Given a thread-
code, let s_thcode be the buffer sub-vector in which it is written, p the bit-position 
of the thread-code in s_thcode , and thcode_len the bit-length of the thread-code. We 
call q and r the quotient and the remainder of the division of (thcode_len − 32 + p) 
by 32, respectively. As shown in Fig.  6, the first 32 − p bits of the thread-code 
(which will be referred to as first chunk) are written right-aligned in s_thcode[0] , the 
following q 32-bits sequences in s_thcode[1] , ... s_thcode[q] , and, if r > 0 , the last 
r bits (which will be denoted by last chunk) in s_thcode[q + 1] . The writing of the 
warp-code is carried out by following the next steps: 

Fig. 6  Writing of a thread-code 
in the shared memory buffer 
s_warp_code[i]
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1. Each thread writes all the bits of its thread-code, except the last chunk, in the 
elements s_thcode[0] , ... s_thcode[q].

2. All threads of the warp synchronize by executing the CUDA function __syncwarp 
[23].

3. Each thread, if its thread-code has a last chunk, writes it in the first r bits of 
s_thcode[q + 1].

Note that the warp synchronization ensures that no race conditions exist in the writ-
ing of those elements of the buffer in which the last chunk of a thread-code and the 
first chunk of the next thread-code are stored.

3.6  Writing of warp‑codes to output vector

In Step 8 of Algorithm 3, each warp, after writing its warp-code in the shared mem-
ory buffer, iterates over 32-elements segments of the buffer to copy them to the tar-
get d_output sub-vector in a coalesced way [24] (lines 28 to 31). The first and last 
elements of the target d_output sub-vector are written using atomic OR operations ( 
[23]) to preserve the last chunk of the previous warp-code and the first chunk of the 
next warp-code, respectively, if they have already been written.

In YAVLE, each thread writes the elements of its thread-code directly to global 
memory one by one, which results in inefficient strided global memory accesses.

4  Experimental evaluation

To evaluate GVLE and compare it to YAVLE, we have used the Standard Canter-
bury Corpus, consisting of 11 files (alice29.txt, asyoulik.txt, cp.html, fields.c, gram-
mar.lsp, kennedy.xls, lcet10.txt, plrabn12.txt, ptt5, sum, xargs.1) and the Large 
Canterbury Corpus, consiting of 3 files (bible.txt, e.coli, world192.txt), which are 
available at http:// www. data- compr ession. info/ Corpo ra/ Cante rbury Corpus/. Fur-
thermore, to fully utilize the resources of the target GPU, we have increased each of 
the 14 files by replicating its original content the minimum number of times neces-
sary to make the final size greater than or equal to 100 megabytes.

The method used to compute the VLETs is the Huffman coding, and we 
have obtained the implementation of YAVLE from the source code of Yama-
moto et  al.’s solution, published on GitHub at github.com/daisuke-takafuji/
Huffman_coding_Gap_arrays.

In order to measure precisely the execution times of the kernels, we run one 
warm-up iteration and then fifty iterations to report their statistical values.

Our test machine has a 3.50Ghz Intel Core i7-7800X CPU, 32 GB of RAM, and 
a GeForce RTX 2080 GPU (Turing architecture with compute capability 7.5).The 
CUDA toolkit and the GPU driver versions are 11.1 and 512.15, respectively. We 
have used the default optimization flag (− O3) [32].

http://www.data-compression.info/Corpora/CanterburyCorpus/
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4.1  Sensitivity analysis of the thread‑block size

To analyze the effect of the thread-block size on the performance of YAVLE and 
GVLE, we have measured their average runtimes for all possible values of the 
thread-block size that are multiples of 32. Figure  7 shows the obtained results. 
Note that, in the case of GVLE, the maximum thread-block size is 736, due to the 
shared memory buffer used to build the warp-codes.

As it can be seen, the effect of the thread-block size on the performance of 
YAVLE and GVLE is low. Since 128 is an optimal thread-block size for both 
GVLE and YAVLE, we have used this value in the remaining experiments.

4.2  Comparison of GVLE with YAVLE

In order to determine the contribution of each of our optimizations in the perfor-
mance improvement in GVLE with respect to YAVLE, we have developed a set 
of kernels that starting from YAVLE, gradually implement the different optimi-
zation techniques of GVLE. In the following sections, we present the obtained 
results.

4.2.1  VLET implementation

We have built the kernel EXP_VLET from YAVLE by substituting YAVLE’s imple-
mentation of VLET (i.e., one vector of 256 elements of type Codeword) for that of 
GVLE (i.e., a vector of 256 16-bit unsigned integers to store the values of the code-
words, and a second vector of 256 8-bit unsigned integers to hold the bit-lengths of 
the codewords).

Fig. 7  YAVLE and GVLE runtimes for thread-block sizes between 32 and 1024 (in steps of 32 threads)

Table 2  Number of shared memory load bank conflicts and runtimes of kernels YAVLE and EXP_
VLET, and corresponding improvements in EXP_VLET over YAVLE

Parameter YAVLE EXP_VLET Improvement

Shared load bank conflicts 13,839,817 3,262,067 4.24×
Runtime (ms) 1.30 1.07 1.21×
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As shown in Table  2, EXP_VLET is 1.21× faster than YAVLE due to the 
improvement in the shared memory load bank conflicts (4.24×).

4.2.2  Global memory reading and writing

We have obtained the kernel EXP_GM from EXP_VLET by replacing its global 
memory reading and writing methods for those of GVLE. On the one hand, instead 
of reading the thread-inputs element by element through strided global memory 
accesses, they are read through vectorized accesses using the custom vector type 
uchar32. On the other hand, instead of writing the thread-codes directly to global 
memory element by element through strided global memory accesses, each warp, 
after writing its warp-code in its shared memory buffer, iterates over 32-elements 
segments of the buffer to copy them to global memory in a coalesced way.

As shown in Table  3, EXP_GM is 1.53× faster than EXP_VLET due to the 
improvement in the global load transactions (8.38× ), the global reduction transac-
tions (20.96× ), the global store transactions (3.21× ) and the executed instructions 
(1.31×).

4.2.3  Thread‑codes building

We have developed the kernel EXP_REG from EXP_GM by performing the follow-
ing two changes. First, the calculation of the bit-length of the thread-code (Step 4 of 
Algorithm 1) is replaced by the complete calculation of the thread-code (Step 5 of 
Algorithm 3). Second, each warp-code is built in shared memory by concatenating 
the 16-binary segments of each thread-code (Step 7 of Algorithm 3), instead of by 
linking the 32 codewords of each thread-code (Step 6 of Algorithm 1).

Table 3  Number of global load/reduction/store transactions, number of executed instructions and runt-
imes of kernels EXP_VLET and EXP_GM, and corresponding improvements in EXP_GM over EXP_
VLET

Parameter EXP_VLET EXP_GM Improvement

Global load transactions 60,039,145 7,164,487 8.38×
Global reduction transactions 4,307,360 205,459 20.96×
Global store transactions 7,156,553 2,231,864 3.21×
Executed instructions 1,153,782.69 882,368.02 1.31×
Runtime (ms) 1.07 0.70 1.53×

Table 4  Number of executed instructions and runtimes of kernels EXP_GM and EXP_REG, and corre-
sponding improvements in EXP_REG over EXP_GM

Parameter EXP_GM EXP_REG Improvement

Executed instructions 882,368.02 542,291.61 1.63×
Runtime (ms) 0.70 0.57 1.23×
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As shown in Table  4, EXP_REG is 1.23× faster than EXP_GM due to the 
improvement in the executed instructions (1.63×).

4.2.4  Inter‑block scan method

The unique difference between the kernels EXP_REG and GVLE is that the former 
uses the Yamamoto et  al.’s inter-block scan method (Sect.  2.3.3), while the latter 
uses our inter-block scan algorithm (Sect. 3.4.1).

As shown in Table  5, although the number of global atomic transactions of 
EXP_REG is 0.18× that of GVLE, GVLE is 1.14× faster than EXP_REG due to the 
improvement in the global load transactions (1.08× ), the global store transactions 
(1.02× ) and the executed instructions (1.05×).

4.2.5  Global contribution of our optimization strategies

Table 6 compares YAVLE and GVLE by presenting the values of the performance 
parameters referenced in previous sections. As it can be seen, GVLE is 2.57× 
faster than YAVLE due to the improvement in the shared memory load bank con-
flicts (4.36× ), the global load transactions (8.97× ), the global reduction transac-
tions (20.96× ), the global store transactions (3.28× ), and the executed instructions 
(2.55× ). Finally, Fig. 8 presents the runtimes of YAVLE and GVLE, and Table 7 the 
corresponding statistics. As it can be seen, the acceleration of GVLE is significant, 
since its value is between 1.97× and 3.11×.

Table 5  Number of global 
atomic/load/store transactions, 
number of executed instructions 
and runtimes of kernels 
EXP_REG and GVLE, and 
corresponding improvements in 
GVLE over EXP_REG

Parameter EXP_REG GVLE Improvement

Global atomic transactions 26,051 141,610 0.18×
Global load transactions 7,259,723 6,721,148 1.08×
Global store transactions 2,231,864 2,181,301 1.02×
Executed instructions 542,291.61 517,852.75 1.05×
Runtime (ms) 0.57 0.50 1.14×

Table 6  Number of shared memory load bank conflicts, number of global load/reduction/store transac-
tions, number of executed instructions and runtimes of kernels YAVLE and GVLE, and corresponding 
improvements in GVLE over YAVLE

Parameter YAVLE GVLE Improvement

Shared load bank conflicts 13,839,817 3,170,669 4.36×
Global load transactions 60,261,119 6,721,148 8.97×
Global reduction transactions 4,307,361 205,459 20.96×
Global store transactions 7,156,553 2,181,301 3.28×
Executed instructions 1,319,851.51 517,852.75 2.55×
Runtime (ms) 1.30 0.50 2.57×



8469

1 3

GVLE: a highly optimized GPU‑based implementation of…

4.3  Comparison between GVLE, CUVLE and the serial implementation of VLE

Table 7 compares the statistics of GVLE, CUVLE and the implementation of VLE 
on CPU (CPU_VLE). As it can be seen, GVLE is on average 13.63× faster than 
CUVLE, our previous implementation of VLE, which represents a significant 
advance in our research on GPU-based acceleration of VLE. On the other hand, the 
speedup of VLE with respect to the serial implementation of VLE is considerable, 
since it is on average 377.15×.

4.4  Comparison between inter‑block scan methods

In order to compare the performance of our inter-block scan method with those 
of Yamamoto et al. [10] and Yan et al. [21], we have developed three kernels that 
perform the scan operation using the method of Sengupta et al. [20] for the intra-
block scan, and one of the methods under study for the inter-block scan. We call 
the kernels that use our inter-block scan method, that of Yamamoto et al, and that 
of Yan et al., GVLE_scan, YAVLE_scan and CUVLE_scan, respectively. The input 
and output vectors are the same as those used in our previous experiments, with the 

Table 7  Statistics of GVLE, 
YAVLE, CUVLE and CPU_
VLE Runtimes, and of GVLE 
Speedups

Average Minimum Maximum

GVLE runtime (ms) 0.50 0.42 0.53
YAVLE runtime (ms) 1.30 0.82 1.50
Speedup of GVLE 2.57× 1.97× 3.11×
CUVLE runtime (ms) 6.85 6.59 7.36
Speedup of GVLE 13.63× 12.93× 16.67×
CPU_VLE runtime (ms) 191.75 112.07 225.93
Speedup of GVLE 377.15× 273.15× 425.90×

Fig. 8  YAVLE and GVLE runtimes for each test file
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particularity that each thread, instead of reading eight consecutive elements of the 
input vector, reads only one.

Table  8 compares the statistics of the kernels. As it can be seen, GVLE_scan 
clearly outperforms YAVLE_scan, since the speedup is between 1.56× and 1.65× . 
Moreover, the speedup of GVLE_scan_with respect to CUVLE_scan is very high, 
as it is between 36.87× and 39.49× . It can be seen that although our inter-block scan 
algorithm is the least influential optimization in the acceleration of YAVLE, it pro-
vides a significant speedup in the case of the scan operation. Therefore, it can be 
used to accelerate significantly algorithms that require performing an inter-block 
scan, such as the scan operation itself or the stream compaction [33].

5  Related work

In this section, we review some GPU-based solutions in which VLE is partially 
implemented, since it only operates on small data chunks, and does not concatenate 
the resulting encodings. Each data chunk is mapped to a thread-block [11, 12], a 
warp [13] or even a thread [13, 14]. In the corresponding compression algorithms, 
the concatenation is not necessary [11, 12] or is implemented with a separate com-
ponent [13].

Tian et al. [11] proposed cuSZ, a CUDA-based implementation of SZ [34], which 
is one of the best error-bounded lossy compressors for scientific data. cuSZ splits 
the whole dataset into multiple chunks, and compresses them independently, which 
favors coarse grained decompression. A dual-quantization scheme is applied to com-
pletely remove the strong data dependency in SZ’s prediction-quantization step. The 
quantization codes generated by the dual-quantization procedure are compressed 
by a customized Huffman coding, which follows the next four steps. First, calculate 
the statistical frequency for each quantization bin (as a symbol) using the method 
proposed by Gómez-Luna et al. [35]. Second, build the Huffman tree based on the 
frequencies and construct a base codebook. Third, transform the base codebook 
to the canonical Huffman codebook [36]. Fourth, encode in parallel according to 
the codebook, and concatenate Huffman codes into a bitstream (called deflating). 
Experimental evaluation on a NVIDIA V100 GPU showed that cuSZ improves SZ’s 
compression throughput by up to 13.1x over the production version running on two 
20-core Intel Xeon Gold 6148 CPUs.

Table 8  Statistics of kernels 
GVLE_scan, YAVLE_scan and 
CUVLE_scan Runtimes, and of 
GVLE_scan Speedups

Average Minimum Maximum

GVLE_scan runtime (ms) 1.22 1.20 1.27
YAVLE_scan runtime (ms) 1.97 1.95 2.05
Speedup of GVLE_scan 1.62× 1.56× 1.65×
CUVLE_scan runtime (ms) 47.13 46.68 48.02
Speedup of GVLE_scan 38.32× 36.87× 39.49×
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In a later work, Tian et  al. [12] presented an efficient CUDA-based Huffman 
encoder that outperforms the scheme presented in [11]. The main novelties of this 
work are the following. First, the development of an efficient parallel codebook con-
struction on GPUs that scales effectively with the number of input symbols. Second, 
a novel reduction-based encoding scheme that can efficiently merge the codes on 
GPU. Experimental evaluation showed that their solution can improve the encod-
ing throughput by up to 5.0x and 6.8x on NVIDIA RTX 5000 and V100 GPUs, 
respectively, over their previous proposal [11], and by up to 3.3 over the multithread 
encoder on two 28-core Xeon Platinum 8280 CPUs.

Zhu et  al. [13] presented an efficient parallel entropy coding method (EPEnt), 
which was implemented in CUDA, to accelerate the entropy coding stage of JPEG 
image compression algorithm. EPEnt has three phases: coding, shifting and stuff-
ing. In the coding phase, the 8 × 8 blocks of quantized transformed coefficients are 
encoded in parallel, via run-length encoding and Huffman coding, to form their cor-
responding bitstreams. In the shifting phase, the bitstreams are shifted to ensure that 
the bitstreams of adjacent coefficient blocks can be correctly concatenated. Finally, 
in the stuffing phase, the output stream is produced by concatenating the shifted 
bitstreams. Experimental evaluation on a NVIDIA GTX 1050Ti GPU showed that 
compared with sequential implementation on a 2.4 GHz i7-4700HQ CPU, the maxi-
mum speedup ratio of entropy coding can reach 39 times without affecting com-
pressed images quality.

Fuentes-Alventosa et al. [14] proposed CAVLCU, an efficient implementation of 
CAVLC on CUDA, which was based on four key ideas. First, CAVLCU is com-
posed of only one kernel to avoid the long latency global memory accesses required 
to transmit intermediate results between different kernels, and the costly launches 
and terminations of additional kernels. Second, the efficient Yan et al.’s synchroni-
zation mechanism [21] is used for thread-blocks that process adjacent frame regions 
(in horizontal and vertical dimensions) to share results in global memory space. 
Third, the available global memory bandwidth is exploited fully by using vectorized 
loads to move directly the quantized transform coefficients to registers. Fourth, reg-
ister tiling is used to implement the zigzag sorting, thus obtaining high instruction-
level parallelism. Experimental evaluation on NVIDIA GPUs GeForce GTX 970 
and GeForce RTX 2080 showed that CAVLCU is between 2.5x and 5.4x faster than 
the best previous GPU-based implementation of CAVLC [37, 38].

6  Conclusions

This work has presented GVLE, a highly optimized GPU-Based implementa-
tion of variable-length encoding. Our solution overcomes the main performance 
issues of the state-of-the-art GPU-based implementations of VLE by using the 
next optimization strategies. First, the caching of the codeword look-up table is 
done in a way that minimizes the bank conflicts. Second, input data is read by 
using vectorized loads to exploit fully the available global memory bandwidth. 
Third, each thread encoding is performed efficiently in the register space with 
high instruction-level parallelism and lower number of executed instructions. 
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Fourth, a novel inter-block scan method, which outperforms those of state-of-the-
art solutions, is used to calculate the bit-positions of the thread-blocks encod-
ings in the output bit-stream. Our proposed mechanism is based on a regular seg-
mented scan performed efficiently on sequences of bit-lengths of 32 consecutive 
thread-blocks encodings by using global atomic additions. Fifth, output data are 
written efficiently by executing coalesced global memory stores.

An exhaustive experimental evaluation shows that our solution is between 
1.97× and 3.11× faster than the best state-of-the-art implementation due to the 
improvement in the shared memory load bank conflicts (4.36× ), the global load 
transactions (8.97× ), the global reduction transactions (20.96× ), the global store 
transactions (3.28× ) and the executed instructions (2.55× ). Moreover, experimen-
tal results show that the speedup of the scan operation using our inter-block scan 
algorithm is on average 1.62× and 38.32× with respect to using the methods of 
Yamamoto et al. and Yan et al., respectively. Therefore, our method can be used 
to accelerate significantly algorithms that require performing an inter-block scan, 
such as the scan operation itself or the stream compaction.
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