
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:8236–8264
https://doi.org/10.1007/s11227-022-04991-6

1 3

An adaptive non‑migrating load‑balanced distributed
stream window join system

Qihang Wang1 · Decheng Zuo1 · Zhan Zhang1 · Siyuan Chen1 · Tianming Liu1

Accepted: 29 November 2022 / Published online: 15 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Stream processing systems are widely used to process large amounts of data gener-
ated by applications in real time due to their advantages in latency and through-
put. In most streaming applications, the system requires a comprehensive analysis of
data from multiple data sources, so stream joins are the basis of stream processing
systems. Similar to other big data problems, stream joins suffer from load imbal-
ance, where a few nodes responsible for handling most of the load can become bot-
tlenecks, thereby increasing latency and reducing throughput. Therefore, how to
obtain a good load-balancing effect with low overhead is a critical issue in designing
stream join systems. To solve this problem, we propose an adaptive non-migrating
load-balancing method, which is mainly oriented to the stream window join prob-
lem. Considering that the completeness of the stream join results during the splitting
of state to multiple downstream instances can be guaranteed by replicating the input
tuples into multiple replicas and sending them to those downstream instances, our
method can control the replication and forwarding of input tuples by setting up rout-
ing tables, and then when the system becomes unbalanced, our method can change
the load distribution of the system by directly changing the partitioning of the tuples
arriving later instead of state migration, and thus achieving load balancing with very
low overhead. Based on our method, we develop a distributed stream window join
system, NM-Join, which is built on Flink. We theoretically analyze the completeness
and effectiveness of our method and provide extensive experimental evaluations of
NM-Join in terms of load-balancing effect, latency, and throughput. Experimental
results show that our method is able to perform load balancing with very low addi-
tional overhead, and thus outperforms existing load-balancing methods in terms of
latency and throughput.

Keywords  Big data · Distributed stream join system · Data skew · Dynamic load
balancing · Non-migrating

 *	 Zhan Zhang
	 zz@ftcl.hit.edu.cn

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04991-6&domain=pdf

8237

1 3

An adaptive non‑migrating load‑balanced distributed stream…

1  Introduction

In recent years, the distributed stream processing system has gained rapid devel-
opment and industrial acceptance due to its advantages in processing latency and
throughput [1, 2]. It has been used in areas such as search engines [3], social
networks [4], financial transactions, and the Internet of Things [5–7]. In these
applications, it is necessary to join the stream from multiple data sources together
to process a complex query. Since the join operation will consume a lot of system
resources, efficiently performing the stream join becomes the key to improving
system performance.

Considering that memory is limited and stream data is infinite, window join
is commonly used today to solve the join problem between streams. Similar to
the traditional big data processing problem, the performance of distributed stream
join system is greatly affected by data skew. The existence of data skew will cause
a few processing units to take up most of the load, and these processing units will
become the bottleneck and degrade system performance. This requires a load-
balanced stream window join system.

In order to design an efficient load-balanced stream window join system, the
following two requirements must be considered: (i) ability to perform load bal-
ancing when the input is skewed to obtain optimal system performance; and (ii)
performing load balancing with low overhead so that system performance is not
degraded too much. Traditional stream window join systems mainly adopt the fol-
lowing two categories of load-balancing methods to achieve load balancing, one
is the static load-balancing method [8–11], and the other is the migration-based
dynamic load-balancing method [12]. The static load-balancing methods perform
load balancing by designing a static partitioning scheme for input tuples, mainly
including the random partitioning method [8, 9] and ContRand [10]. The ran-
dom partitioning method broadcasts all input tuples to all processing units for
processing, but it will result in each input tuple being processed multiple times
in all processing units, consuming a lot of additional network and computational
resources. The ContRand divides all processing units into groups, using hash par-
titioning among all groups and random partitioning within each group. ContRand
reduces the overhead of the random partitioning method due to tuple replication,
but has two drawbacks: (1) it is not adaptive to the input, so load imbalance may
occur among groups; (2) each input tuple is still processed multiple times in all
processing units within a group. The migration-based dynamic load-balancing
methods will monitor the load distribution of the system, and perform load bal-
ancing by data migration when the load distribution is unbalanced. The migra-
tion-based dynamic load-balancing method can be adaptive to the input and does
not need to replicate the input tuples. However, this method needs to perform
data migration during load balancing, and the tuples cannot be processed during
the data migration, thus greatly increasing the transient latency of the system. In
summary, the load-balancing methods proposed so far for stream join systems
are either not adaptive to the input, or have too much load-balancing overhead.
Therefore, the purpose of our work is to design a novel load-balancing method for

8238	 Q. Wang et al.

1 3

distributed stream join systems, which can adapt well to the input and does not
introduce excessive load-balancing overhead, thus achieving lower latency and
higher throughput.

In order to overcome the weaknesses of traditional methods, in this paper, we
propose a non-migrating adaptive load-balancing method for distributed stream
window join system, which enables dynamic load balancing with very low over-
head and, therefore, has advantages in terms of throughput and latency. The core
idea of our method is to monitor system information during system runtime and
perform load balancing by controlling the replication and forwarding of tuples
instead of data migration when the system is unbalanced. We divide all tuples
into two types, i.e., store tuples and join tuples, depending on how the tuple is
processed inside the processing unit. The former will be stored in the correspond-
ing processing unit, while the latter will be matched with the stored tuples in the
corresponding processing unit without updating the state of the unit. When per-
forming load balancing, the load distribution is controlled by changing the parti-
tions of the store tuples, and the completeness is ensured by replicating the join
tuples into multiple copies and sending them to all the partitions that may gener-
ate join results.

Our method has the following three important features: (i) the system adopts
the routing table for partitioning, and when the system is load-balanced, each
input tuple is sent to only one processing unit for processing (take the equal-join
as an example), thus reducing the consumption of computational resources due
to redundant processing; (ii) the system collects relevant statistics during system
runtime and performs load balancing when there is a load imbalance in the sys-
tem, so it can be adaptive to the input and maintain the system in a load-balanced
state at all times; (iii) the system performs load balancing in a non-migrating way,
so there is no need to pause the processing of input tuples during load balancing,
thus reducing the processing latency of the system during load balancing.

We next propose a load-balanced stream window join system, NM-Join, based
on our method. NM-Join uses the coordinator to periodically collect relevant sta-
tistics and calculate load-balancing schemes, and uses routing tables to control
the forwarding of store tuples and join tuples, thus performing load balancing in
a non-migrating way when the load is unbalanced. In addition, NM-Join divides
the window into several sub-windows and calculates the load-balancing scheme
based on the sub-windows, which obtains a better load-balancing effect.

In summary, we make the following contributions:

1.	 We propose a non-migrating load-balancing method for distributed stream win-
dow join systems, and design and implement an adaptive load-balanced distrib-
uted stream window join system, NM-Join, based on the proposed method, which
can perform load balancing with low overhead.

2.	 We theoretically analyze the completeness and effectiveness of the proposed
techniques and also conduct extensive experimental evaluations. The evalua-
tion results confirm that NM-Join is effective in terms of load-balancing effect,
latency, and throughput.

8239

1 3

An adaptive non‑migrating load‑balanced distributed stream…

The paper is organized as follows. Section 2 introduces our load-balancing method
and the detailed design of NM-Join. Section 3 gives the theoretical analysis of NM-
Join. Section 4 evaluates the performance of NM-Join. Section 5 discusses the
related work about stream join systems. Section 6 concludes the paper.

2 � System design

In this section, we first introduce our non-migrating load-balancing method, next
introduce the design of NM-Join and focus on the design of the store routing table
and the join routing table.

2.1 � Non‑migrating load‑balancing procedure

The non-migrating load-balancing procedure is shown in Fig. 1. In a distributed
stream window join system, all tuples arriving at a processing node are logically
divided into two categories, i.e., store tuples and join tuples. When a store tuple
(represented by the circle in Fig. 1) is received, the processing node stores it in the
local index structure; when a join tuple (represented by the triangle in Fig. 1) is
received, the joiner compares it with all locally stored tuples that satisfy the time
window condition belong to the relative stream and outputs all matched results that
satisfy the join predicate, after which the join tuple is discarded.

In our method, to reduce the redundant network resource overhead and compu-
tational resource overhead due to tuple replication, we forward all tuples based on
their keys. In this paper, processing nodes are also called partitions. We refer to the
partition to which the store tuples with key k will be sent as the store partition of k.
Meanwhile, we refer to the partition to which the join tuples with key k will be sent
as the join partition of k. In Fig. 1, all the store tuples have the same key, and all the
join tuples matched with that key.

Based on the description of the store tuple and join tuple, it can be observed that
when the partitioning scheme of all store tuples is determined, in order to produce
all join results, all join tuples must be sent to their respective corresponding parti-
tions, and thus the partitioning scheme of all join tuples is also determined. There-
fore, the partitioning scheme of the store tuples determines the load distribution of

(a) (b) (c)

Fig. 1   Non-migrating load-balancing procedure

8240	 Q. Wang et al.

1 3

the system, and we can adjust the load distribution of the system by adjusting the
partitioning scheme of store tuples.

As shown in Fig. 1a, initially all store tuples with a certain key are sent to the
upper partition, at which point the corresponding join tuples are also sent to that
partition. After a period of time, as shown in Fig. 1b, when the system is load-unbal-
anced, we recalculate the partitioning scheme of store tuples, change the store parti-
tion of some keys from a high-load partition to a low-load partition, and send the
store tuples with these keys to the new partition. In this case, the store tuples with
these keys are stored in both the old and new partitions, and in the traditional meth-
ods, all the store tuples stored in the old partition need to be migrated to the new
partition in order to ensure that all join results are correctly generated. In contrast,
instead of migration, we send the join tuples corresponding to these keys to both the
old and new partitions, which also can generate all the join results correctly.

Since our method targets the window join problem, after a period of time, as
shown in Fig. 1c, the store tuples stored in the old partition are removed from the
old partition because they do not satisfy the window condition. At this point, all
store tuples with these keys are stored only in the new partition, so all join tuples
need only be sent to the new partition, and the system accomplishes load balancing
in a non-migrating way.

2.2 � NM‑Join system architecture

Next, we present a distributed stream window join system, NM-Join, based on our
non-migrating method. Figure 2 illustrates the overall architecture of NM-Join,
which consists of three main components: router, joiner, and coordinator. NM-Join
is similar to SplitJoin in that each joiner instance is responsible for storing and join-
ing partial tuples of the two input streams, and each tuple is stored in only one joiner
instance. However, unlike SplitJoin, NM-Join uses routing tables to specify the par-
titions of different tuples, instead of using broadcast to distribute tuples.

Router The router is responsible for ingesting tuples arriving at the system and
partitioning them. When a tuple arrives at the router, the router constructs a store
tuple for it and sends it to the corresponding store partition for storing, and con-
structs several join tuples for it and sends them to the corresponding join parti-
tions for joining. There are two routing tables in each router instance for each input
stream, i.e., the store routing table and the join routing table. The two routing tables
control the partitioning scheme of the store tuples and the join tuples, respectively.
We will describe the two routing tables in detail in Sects. 2.3 and 2.4. In addition,
when the system performs load balancing, the router receives the latest store rout-
ing table from the coordinator and updates its local join routing table based on the
store routing table. When both the store routing table and the join routing table are
updated, the router starts forwarding tuples according to the new routing tables to
perform load balancing.

Joiner The joiner is responsible for performing the actual join operation. When a
tuple arrives at a joiner instance, the joiner instance performs the store or join opera-
tion depending on the type of the tuple. Since NM-Join is oriented toward window

8241

1 3

An adaptive non‑migrating load‑balanced distributed stream…

join and according to the description of window join in [13], each tuple in joiner
needs to perform three steps to complete a window join, i.e., probe, insert, invali-
date, we use the structure of the chained in-memory index [10] to reduce the over-
head of window tuples invalidate. The chained in-memory index organizes all the
stored tuples into several sub-indexes based on their timestamp, and the tuples are
deleted with the granularity of the sub-indexes. In addition, to calculate the load-
balancing scheme, each joiner instance periodically uploads its local load informa-
tion and related statistics to the coordinator.

Coordinator The coordinator periodically collects load information and statistics
uploaded by each joiner instance and then determines whether the system needs to
perform load balancing. If the coordinator determines that the system needs to per-
form load balancing, the coordinator will recalculate a store routing table based on
the statistics and then notify each router instance to get the latest store routing table.

2.3 � Store routing table design

The store routing table is responsible for determining the store partition of each
key and its structure is shown in Fig. 3. Each entry in the store routing table con-
sists of <���, ���������> , which represents the store partition of the key. Note
that since each tuple is stored only once in all joiner instances, there is only one
store partition for each key. In order to perform load balancing, the metric of load

Fig. 2   The architecture of NM-Join

8242	 Q. Wang et al.

1 3

imbalance needs to be defined first. In this paper, we use the number of stored
tuples as a measure of load, and the system load imbalance factor is defined as
follows.

Definition 1  (Load imbalance factor) The system load imbalance factor is expressed
as the ratio of the difference between maximum load and average load to the average
load overall joiner instances. The load imbalance factor u can be represented as:

 where P is the number of joiner instances, Li denotes the load of the i-th joiner
instance, and Lavg denotes the average load overall joiner instances. Meanwhile, the
load imbalance threshold � is defined, and the system is considered to suffer from
load imbalance when u ≥ �.

In NM-Join, in order to get a better load-balancing effect, we divide the win-
dow into several sub-windows and use the sub-windows as granularity to deter-
mine the degree of system load imbalance and generate a new store routing table.
In Sect. 3.2, we will prove that we can obtain a good load-balancing result by
using the sub-windows. For this purpose, we define the partial load imbalance
factor as follows.

Definition 2  (Partial load imbalance factor) Assuming that the time window of the
stream window join system is w, we divide w into n sub-windows, and the partial
load imbalance factor of the j-th sub-window can be expressed as follows:

(1)u = max
0≤i<P

Li − Lavg

Lavg

Fig. 3   Store routing table gen-
eration process

8243

1 3

An adaptive non‑migrating load‑balanced distributed stream…

 where L′
i⋅j

 denotes the increment load of the i-th joiner instance during the j-th sub-
window, and L′

avg⋅j
 denotes the average increment load of all joiner instances during

the j-th sub-window. For example, in Fig. 3, the whole time window (t1, t3) is divided
into two sub-windows, i.e., (t1, t2) and (t2, t3) , and we can calculate the partial load
imbalance factor for each of the two sub-windows.

In NM-Join, the coordinator periodically calculates the partial load imbalance
factor u′

0
 of the latest sub-window and decides to perform load balancing when

u′
0
≥ � . Unlike the global load imbalance factor, the partial load imbalance factor

can react faster to changes in load distribution.
When the coordinator decides to perform load balancing, it recalculates a new

store routing table based on the relevant statistics collected in the latest sub-win-
dow. We use a heuristic algorithm to generate the new store routing table. The core
idea of the algorithm is to assign each key to a partition in sequence until the load
assigned to that partition reaches the average load, after which the algorithm repeats
above procedure to assign the remaining keys to the remaining partitions. It should
be noted that the store routing table generation algorithm is not the focus of our
study, and other algorithms can be used instead of this algorithm.

We use the example in Fig. 3 to demonstrate the generation process of a new
store routing table. Assume that there are only four unique keys in the input stream,
i.e., k1, k2, k3, k4 , and that there are only two joiner instances in the system. Each rec-
tangle in each joiner instance represents the tuples stored in that instance during the
corresponding time range, and the contents of each rectangle represent its key and
the number of the corresponding stored tuples.

At the beginning, the store partition of k1 , k2 is 0, and the store partition of k3 , k4 is
1. Assuming that the load imbalance threshold � is 0.2, and at t3 , we can observe that
the increased loads of joiner instance-0 and joiner instance-1 during the latest sub-
window (t2, t3) are 8 and 4, respectively, and the partial load imbalance factor can be
calculated as 0.33 according to (2), which exceeds the threshold, so the store routing
table is recalculated. According to the heuristic algorithm, the system first assigns k1
to instance-0. At this point, the assigned load of instance-0 is 6, which reaches the
average load, so the system then assigns the remaining keys to the remaining parti-
tions and generates a new store routing table which is shown as the New Store Rout-
ing Table in Fig. 3. After t3 , the store tuples of k2 will be sent to joiner instance-1.

2.4 � Join routing table design

The purpose of the join routing table is to ensure that all join results
can be generated correctly when adjusting the partitions of store tuples.
The structure of the join routing table is shown in Fig. 4. Each joinEn-
try in the join routing table consists of <���, �����������������������>

(2)u�
j
= max

0≤i<P

L�
i⋅j
− L�

avg⋅j

L�
avg⋅j

, 0 ≤ j < n

8244	 Q. Wang et al.

1 3

and each storePartitionEntry in the storePartitionEntryList consists of
<��������������, ������������, ������������> , which indicates all parti-
tions in which the key may have been stored and the maximum and minimum times-
tamp among all stored tuples with that key in the corresponding partition. Note that
since the store partition of each key in the store routing table may change, the store
tuples with a certain key may be stored in multiple partitions, so there may be more
than one storePartition for each key in the join routing table.

When calculating the join partitions of a key k, we first calculate all the keys
matched with k based on the join predicate, and then look up all the storePartitions
of these keys in the join routing table of the relative stream, which are the join parti-
tions of k. After this, we send to each of these partitions a join tuple attached with
the maximum and minimum timestamp of the corresponding storePartitionEntry.
The purpose of this is that since tuples are stored as a chained in-memory index
in each joiner instance, the maximum timestamp and the minimum timestamp can
specify the time range of the stored tuples in the corresponding joiner instance so
that the sub-indexes that do not satisfy this time range can be ignored to speed up
the query.

In summary, it can be found that there are two types of operations related to
changing the join routing table, i.e., update and expire, which we explain in detail
next.

Update Based on the characteristics of the join routing table, it can be observed
that the join routing table needs to record the new store partition and old store par-
tition of each key before and after its store partition is changed, so it should be
updated based on both the new and old store routing tables. The join routing table
update algorithm is shown in Algorithm 1.

Fig. 4   Join routing table update process

8245

1 3

An adaptive non‑migrating load‑balanced distributed stream…

We use the example in Fig. 4 to show the update process of join routing table.
Take k2 as an example. To simplify the analysis, we assume that the system is a self-
join system and the join predicate is equal-join, so at the beginning, the join parti-
tion of k2 is equal to its store partition, i.e., 0. As mentioned in Sect. 2.3, the store
partition of k2 is changed at t3 , so the join routing table is also updated at this point.
Firstly, we find the old storePartitionEntry of k2 and set its maxTimestamp to the
current time t3 ; secondly, insert a new storePartitionEntry corresponding to the new
store partition 1, and set its minTimestamp to t3 and maxTimestamp to infinity. The
updated join routing table is shown in Fig. 4. After t3 , since the store tuples of k2 are
stored in both instances, the join tuples of k2 are sent to both instances to ensure that
all join results can be generated.

Expire The purpose of the expire is to stop sending join tuples to the partitions
where there are no longer stored tuples that matched with the key. For that purpose,
the system periodically traverses all the storePartitionEntrys in the join routing table
and then removes the entries whose maxTimestamp does not satisfy the window
condition. As shown in Fig. 5, at t5 , the tuples arriving before t3 are expired, and the
entries in the join routing table associated with partition 0 are deleted because its
maxTimestamp is t3 . The join routing table after expiration is shown in Fig. 5. After
t5 , the store tuples of k2 are only stored in instance-1, so the join tuples of k2 are also
only sent to instance-1.

3 � Analysis

In this section, we analyze the completeness and effectiveness of NM-Join.

8246	 Q. Wang et al.

1 3

3.1 � Completeness

Our method is mainly oriented to interval time window join between two streams (R
and S). Assuming that all tuples arrive in order, taking the tuple s ∈ S as an exam-
ple, the interval time window join means finding the set MR(s) that satisfies the fol-
lowing conditions:

where r ⋅ key and s ⋅ key represent the keys corresponding to the tuples, p

= represents
that the two tuples satisfy the join predicate p. w− and w+ represent the interval time
window range, which are two fixed positive constants, and r.t and s.t represent the
timestamps of r and s, respectively. Here we define the completeness of the stream
window join system.

Definition 3  (Stream window join completeness) We determine that a stream win-
dow join system has completeness if and only if for ∀s ∈ S (resp. ∀r ∈ R ), the sys-
tem can find MR(s) (resp. MS(r) ), and for ∀r ∈ MR(s) (resp. ∀s ∈ MS(r) ), the system
outputs only one (r, s) tuple pair.

In the following analysis, we assume that all tuples can reach each joiner instance
in the sequence of time. We analyze the case of equal-join, and this analysis can be
simply extended to other join predicates. We use Tr(to, tl) and Ts(to, tl) to denote all
the tuples of R-stream and S-stream with key k that arrive at the system during the
time interval (to, tl) . To simplify the analysis, we assume that the partition scheme
of both streams is the same, the store partition of k is changed from partition Po
to Pd at time tc , and ignoring the expire operation. Therefore, in our method, both
the store partition and join partition of Tr(−∞, tc) and Ts(−∞, tc) are Po . The store

(3)MR(s) = {r ∣ r ⋅ key
p

= s ⋅ key, r ∈ R, s.t − w−
≤ r.t ≤ s.t + w+}

Fig. 5   Join routing table expiration process

8247

1 3

An adaptive non‑migrating load‑balanced distributed stream…

partition of Tr(tc,+∞) and Ts(tc,+∞) is Pd , while the join partitions of Tr(tc,+∞)
and Ts(tc,+∞) are Po and Pd . Since the system can find MR(s) and generate only one
join result for each tuple if s can be compared only once with Tr(s.t − w−, s.t + w+) ,
we first present the following lemma.

Lemma 1  In our method, s (resp. r) can be compared only once with Tr(−∞, s.t)
(resp. Ts(−∞, r.t)).

Proof  If s.t < tc (resp. r.t < tc ), the store tuples of Tr(−∞, s.t) (resp. Ts(−∞, r.t) ) are
stored in Po , and the join tuple of s (resp. r) will be sent to Po and be compared
only once with Tr(−∞, s.t) (resp. Ts(−∞, r.t) ). And if tc ≤ s.t (resp. tc ≤ r.t ), the
store tuples of Tr(−∞, tc) (resp. Ts(−∞, tc) ) are stored in Po and the store tuples of
Tr(tc, s.t) (resp. Ts(tc, s.t) ) are stored in Pd . At this point, the join tuples of s (resp. r)
will be sent to Po and Pd , and the join tuple in Po will be compared only once with
Tr(−∞, tc) (resp. Ts(−∞, tc) ), the join tuple in Pd will be compared only once with
Tr(tc, s.t) (resp. Ts(tc, r.t) ), so the join tuples of s (resp. r) will be compared only once
with Tr(−∞, s.t) (resp. Ts(−∞, r.t) ). 	� ◻

Next we prove the completeness of NM-Join.

Theorem 1  The NM-Join system has completeness.

Proof  Take s as an example, based on Lemma 1, we can know that s can be com-
pared only once with Tr(s.t − w−, s.t) , and ∀r ∈ Tr(s.t, s.t + w+) can be compared
only once with Ts(−∞, r.t) , so ∀r ∈ Tr(s.t, s.t + w+) can be compared only once with
s (because s.t < r.t ). In summary, for ∀s ∈ S , s are able to be compared only once
with Tr(s.t − w−, s.t + w+) , so the completeness of NM-Join is proved. 	� ◻

3.2 � Effectiveness

Next, we show the load-balancing effect of NM-Join under ideal conditions. Here,
we assume that the store routing table generation algorithm is efficient, i.e., each
newly generated store routing table is able to reduce the partial load imbalance fac-
tor of the next sub-window when the system load is unbalanced and the input distri-
bution does not change. We first present the following lemma.

Lemma 2  In NM-Join, the partial load imbalance factor u′ of each sub-window does
not exceed �.

Proof  Since the distribution of the input stream rarely changes radically in practice,
we can divide more sub-windows to make the time range of each sub-window small
enough (since the overhead of our method is small, this divide will not bring too
much overhead to the system), so that the change of data distribution within each
sub-window is not too large, and thus it can be considered that the system can detect

8248	 Q. Wang et al.

1 3

and trigger the load balancing when the partial load imbalance factor u′ of a sub-
window has just reached �.

When a sub-window ws triggers load balancing due to the partial load imbalance
factor reaching � , the distribution of input stream within two adjacent sub-windows
can be approximated as equal due to the small range of each sub-window and the
slow change of data distribution, so the store routing table calculated based on the
statistics of ws can reduce the partial load imbalance factor of the next sub-window,
i.e., the partial load imbalance factor of the next sub-window will be less than � .
After this, if the distribution of the input stream continues to change, the system
can repeat the above process so that the partial load imbalance factor of each sub-
window does not exceed � . 	� ◻

We next show the load-balancing effect of NM-Join.

Theorem 2  The load imbalance factor u of NM-Join is upper bounded by �.

Proof  Assume that a window contains d sub-windows, based on Lemma 2, for each
sub-window the following inequality holds:

Therefore the global load imbalance factor of the system is:

	� ◻

In summary, it can be seen that NM-Join has an upper bound of � for the global
load imbalance factor and is more responsive to load distribution changes due to
the use of sub-windows.

(4)u�
j
≤ �, j = 1, 2,… d

(5)

u = max
0≤i<P

Li − Lavg

Lavg

= max
0≤i≤P

Li −
∑d

j=1
L�
avg⋅j

∑d

j=1
L�
avg⋅j

≤

∑d

j=1
(max
0≤i<P

L�
i⋅j
) −

∑d

j=1
L�
avg⋅j

∑d

j=1
L�
avg⋅j

=

∑d

j=1
(L�

avg⋅j
⋅ u�

j
)

∑d

j=1
L�
avg⋅j

≤

(
∑d

j=1
L�
avg⋅j

) ⋅ max
1≤j≤d

u�
j

∑d

j=1
L�
avg⋅j

≤ 𝜃

8249

1 3

An adaptive non‑migrating load‑balanced distributed stream…

4 � Evaluation

NM-Join1 is built on Flink and uses Kafka as the input stream adapter. Meanwhile,
the components communicate with each other through Zookeeper. In this section, we
compare NM-Join with the traditional static load-balancing methods and the migra-
tion-based dynamic load-balancing methods. The static methods include Hash, Ran-
dom [8], and ContRand [10]. In ContRand, we divide all the joiner instances into
16 groups. The migration-based method (MK-Join) follows the general migration
procedure [12], i.e., monitoring the system state, calculating the migration scheme,
and later performing the migration scheme by data migration. To sharpen the focus
of the comparison, the migration-based method takes a load-balancing algorithm
similar to NM-Join, which differs only in that it replaces the sub-window with the
whole window. We set the load imbalance threshold to 0.2 in our experiments, and
we describe our reasons for this setting at the end of this section.

4.1 � Experimental setup

Next, we introduce the experimental setup.
Environment We conduct all experiments on a Flink cluster consisting of 16 serv-

ers. Each server in the cluster runs CentOS 7.3.1611 and has 8 G RAM. Meanwhile,
each server is set to have 4 slots, so there are at most 64 parallelisms available for
our experiments.

Datasets We conduct experiments with synthetic datasets as well as TPC-H data-
sets. There are 100k unique keys in each synthetic dataset and the distribution of
these keys follows the Zipf distribution. The Zipf coefficient which determines the
degree of skewness is set to 0.0, 0.2, and 0.6, denoted by Zipf−0.0, Zipf−0.2, and
Zipf−0.6, respectively, and each tuple in the synthetic datasets is appended with the
current system time as the timestamp when it is generated. In each experiment, the
distribution and input rates of the two input streams are the same. In addition, we
generated 40GB TPC-H data for testing, which have been preprocessed to follow the
Zipf distribution and have a Zipf coefficient of 0.2.

Queries We consider testing with two band-join queries because the band-join is
more representative (it can be transformed into other join predicates such as equi-
join by resizing the range). For the synthetic datasets, the band-join is as follows:

SELECT * FROM INPUT1 I1, INPUT2 I2
WHERE ABS (I1.key − I2.key) <= 1
For the TPC-H datasets, the band-join (BCI) which is presented in [14] is as

follows:
SELECT * FROM LINEITEM L1, LINEITEM L2
WHERE ABS (L1.shipdate − L2.shipdate) <= 1
AND (L1.shipmode = ’TRUCK’ AND L2.shipmode ! = ’TRUCK’)
AND L1.Quantity > 45

1  https://​github.​com/​wufen​gliao​yu/​NMJoin.

https://github.com/wufengliaoyu/NMJoin

8250	 Q. Wang et al.

1 3

We use event-time semantics for synthetic datasets and ingest-time semantics for
TPC-H datasets when performing queries. Meanwhile, we set the time window size
to 10 min in all experiments.

4.2 � Static input experiment

We first test the performance of the different methods when the distribution of the
two input streams does not change. We mainly compare the methods in terms of
load-balancing effect, maximum throughput, and latency.

Load-balancing effect We first compare the load-balancing effects of different
methods and use the load imbalance factor as a measure of the load-balancing effect.
We conduct the experiments with the synthetic datasets and the TPC-H dataset,
respectively. We periodically collect load distribution information and calculate the
load imbalance factor. Figure 6 provides a comparison of the median load imbalance
factor for the different methods at an input rate of 2k tuples per second.

As can be seen from the figure, for the datasets with skewed data (Zipf−0.2,
Zipf−0.6, and Tpc-H), Hash has the highest load imbalance factor since it does not
adopt any load-balancing strategy. For ContRand, since it randomly assigns tuples
to all nodes within each group, all nodes within each group have the approximately
equal load. Therefore, ContRand is able to reduce the overall load imbalance of the
system compared to Hash, which can also be seen in the figure. However, ContRand
cannot handle the load imbalance between each group, so its overall load imbal-
ance factor is still high. For MK-Join and NM-Join, they have better load-balancing
effects compared to Hash and ContRand because they can adapt to the input of the
system and distribute the load equally among all nodes. This can also be seen in the
figure, where MK-Join and NM-Join have similar load imbalance factors in the pres-
ence of skewed data, and both are lower than Hash and ContRand, which confirms
that NM-Join can achieve a load-balancing effect similar to MK-Join and better than
ContRand.

It can also be seen from the figure that the load imbalance factors of MK-Join and
NM-Join are slightly higher than those of Hash and ContRand when the input data
is not skewed. This is because the input data has a certain degree of randomness,

Fig. 6   Median load imbalance factor with various static datasets

8251

1 3

An adaptive non‑migrating load‑balanced distributed stream…

which may trigger the load-balancing adjustment of the system during the runtime,
and the heuristic load-balancing algorithm we adopted cannot achieve perfect load
balancing, thus causing the load imbalance factor of the system to be slightly higher
than the ideal load imbalance factor. However, the difference between the two is not
significant and thus the impact on the system performance is minimal.

In order to further reduce the load imbalance factor of the system, we combine
NM-Join and ContRand to propose a new load-balancing method named NM-CR-
Join. NM-CR-Join divides all joiner instances into groups, adopts a random method
within each group, and adopts our non-migrating load-balancing method between
groups. In NM-CR-Join, as in ContRand, we divide all joiner instances into 16
groups. The corresponding experimental results are shown in Fig. 6. It can be seen
that compared to NM-Join, NM-CR-Join further reduces the load imbalance fac-
tor due to its ability to both balance the load between groups and balance the load
within groups.

The experimental results also show that Random has a very small load imbalance
factor for any input, due to its ability to distribute the load evenly among all nodes.
However, in the next experiments, we will show that the cost of Random to achieve
this even load distribution is huge and can seriously degrade the performance of the
system.

Maximum throughput Next, we study the maximum throughput of different meth-
ods with various datasets. In each experiment, we gradually increase the input rate
of the system, and when the system is backpressured, we record the current input
rate as the maximum throughput. Figure 7 provides the maximum throughput of the
different methods with various datasets.

As can be seen from the figure, the maximum throughputs of NM-Join and MK-
Join are approximately equal for all datasets, which confirms that for static data-
sets, NM-Join is able to achieve similar adaptiveness to the input as MK-Join. Com-
pared to Hash, NM-Join is able to achieve higher maximum throughput in the case
of skewed input. This is due to the fact that load imbalance occurs in Hash when
there is skew in the input, so a few nodes take on more load at the same input rate
and reach the upper limit of throughput faster. Meanwhile, the maximum throughput
of Hash is slightly larger than that of NM-Join when the input is not skewed (Zipf−

Fig. 7   Maximum throughput with various static datasets

8252	 Q. Wang et al.

1 3

0.0), this is due to the aforementioned fact that the load imbalance factor of NM-Join
is slightly higher than that of Hash when the input is not skewed. However, as can be
seen from the graph, the difference between the two is very small at this point.

Compared with ContRand and Random, NM-Join achieves higher maximum
throughput when the input is not very skewed (Zipf−0.0, Zipf−0.2, and Tpc-H). This
is partly because NM-Join achieves a better load-balancing effect compared to Con-
tRand when the input is skewed, and partly because there is no redundant compu-
tation in NM-Join. In ContRand and Random, since all tuples with a certain key
need to be sent randomly to a node within a group (in ContRand) or to one of all
downstream nodes (in Random), all tuples arriving subsequently to be joined with
that key need to be replicated as multiple replicas and to be sent to all nodes within
the same group (in ContRand) or all downstream nodes (in Random) in order to
guarantee the completeness of the join results, thus resulting in a large amount of
redundant computation. In our experimental configuration, each tuple needs to be
replicated as 4 replicas in ContRand, while each tuple needs to be replicated as 64
replicas in Random. As a result, ContRand and Random will reach the upper limit
of processing power faster due to the presence of redundant computations, and thus
have lower maximum throughput.

From the figure, we can also find that the maximum throughput of NM-Join is
smaller than that of Random and ContRand when the skew of the input is very large.
This is because the selectivity (i.e., the number of results produced) differs greatly
among tuples when the skew is large, and thus the processing time differs greatly
among tuples. As a result, the accuracy of using the number of stored tuples as a
load measure decreases, and the actual load-balancing effect of NM-Join becomes
worse. In this case, it can be seen from the figure that NM-CR-Join can achieve
higher maximum throughput compared to NM-Join and ContRand. This is due to
the fact that NM-CR-Join combines the advantages of NM-Join and ContRand to
achieve better load balancing, which in turn effectively increases the maximum
throughput of the system.

The experimental results confirm that for static datasets, NM-Join can achieve
similar maximum throughput as MK-Join and outperform static load-balancing
methods (ContRand and Random) when the skew of the input is not very large;
while when the skew of the input is very large, our proposed NM-CR-Join can effec-
tively improve the maximum throughput of the system and outperform ContRand.

Latency We next study the latency of different methods with various datasets.
Figure 8 shows the average latency of different methods under various input rates
before reaching the maximum throughput in the case of various synthetic datasets,
where the average latency is calculated in the same way as in [10]. The dotted line in
the figure indicates that the corresponding method is close to reaching its maximum
throughput, and the average latency of the method rises sharply toward infinity.

As shown in Fig. 8, NM-Join and MK-Join both have similar latencies for differ-
ent synthetic datasets, which again confirms that NM-Join and MK-Join have the
same adaptability to the input when the input distribution does not change.

As can be seen in Fig. 8a, b, NM-Join has a lower latency compared to the static
load-balancing methods (ContRand and Random) when the input skew is not very
large. This is partly due to the better load-balancing effect of NM-Join compared to

8253

1 3

An adaptive non‑migrating load‑balanced distributed stream…

ContRand, and partly due to the previously mentioned reason that there is redundant
computation in ContRand and Random, which is equivalent to increasing the input
rate of each Joiner node. In the synthetic datasets, the selectivity of all input tuples
is low when the input skew is not vary large. When the selectivity of input tuples is
low, the time to query the index occupies the majority of the total processing time
of each tuple in the Joiner nodes [15], and thus the processing time of each tuple is
approximately equal. According to queuing theory, when the processing time is the
same, the total latency increases with the input rate, and thus NM-Join has lower
latency than ContRand and Random when the input skew is not vary large.

From Fig. 8c, it can be found that NM-Join has higher latency compared to Con-
tRand and Random when the skew of the input is very large. This is partly due to
the previously mentioned reason that the accuracy of using the number of stored
tuples as a load measure decreases when the skew of the input is very large, and
partly due to the fact that when the skew of the input is very large, the selectivity of
the partial high-frequency keys is high. When the selectivity of tuples is high, the

(a) Average latency with Zipf-0.0. (b) Average latency with Zipf-0.2.

(c) Average latency with Zipf-0.6.

Fig. 8   Average latency at different input rates with various datasets

8254	 Q. Wang et al.

1 3

processing time of each tuple is approximately proportional to the number of results
generated [15], so sending tuples to multiple Joiner nodes for processing can reduce
the processing time of tuples in each Joiner node, which in turn helps to reduce the
average processing latency of all tuples. In this case, our proposed NM-CR-Join is
able to obtain lower latency compared to NM-Join and ContRand due to its better
load-balancing effect compared to NM-Join and ContRand, as well as the ability to
distribute the tuples to multiple Joiner nodes for processing.

In summary, when the distribution of inputs does not change and the skew of
inputs is not very large, NM-Join achieves similar performance to MK-Join and
outperforms the static load-balancing methods ContRand and Random in terms
of latency and throughput. In the latter section, we will focus on comparing the
performance between NM-Join and MK-Join in the presence of changing input
distributions.

4.3 � Dynamic input experiment

We next demonstrate the dynamic performance of the different methods when the
distribution of the input streams changes. We conduct experiments with synthetic
datasets as well as TPC-H datasets. For synthetic datasets, we keep the input rate
and Zipf coefficient of the input streams constant, and we periodically change the
distribution of keys of the input streams and test the performance of each method
under different distribution change periods. We change the distribution of keys in
the synthetic datasets by changing the way that the tuples are generated, specifically,
we select the key k of a newly generated tuple in the following way:

where Knum represents the number of unique keys, zipf (Knum) represents the random
selection of a key from the Knum keys according to the Zipf distribution function,
offset represents the offset of each change, and period represents the current number
of distribution change periods. In our experiments, we set the Zipf coefficient of the
synthetic datasets to 0.2. For the TPC-H datasets, we similarly change the distribu-
tion of the input streams periodically. In both experiments, we test the performance
of the different methods for distribution change periods of 5, 10, and 15 min, respec-
tively. Meanwhile, we set the input rate to 8k tuples per second and each experiment
lasted 60 min.

Dynamic load-balancing effect Figure 9 shows the comparison of the median
load imbalance factor of different methods for various periods. From the figure,
we can see that NM-Join and MK-Join have lower load imbalance factors than
Hash and ContRand for both synthetic and TPC-H datasets, which further con-
firms the effectiveness of NM-Join and MK-Join in adapting to the input. Mean-
while, it can also be observed from the figure that the load imbalance factor of
NM-Join is lower than that of MK-Join for various distribution change periods.
This is due to the fact that NM-Join adopts the sub-window technique, which
enables NM-Join to react to the input distribution changes earlier and thus bal-
ance the load distribution of the system faster and obtain a lower load imbalance

(6)k =
(

zipf (Knum) + offset × period
)

mod Knum

8255

1 3

An adaptive non‑migrating load‑balanced distributed stream…

factor. To verify this, we plot the real-time load imbalance factors of NM-Join
and MK-Join at runtime with a 10-min distribution change period, respectively,
as shown in Fig. 10. As can be seen from the figure, both for the synthetic data-
set and the TPC-H dataset, there are multiple peaks in the curve of MK-Join,
which means that MK-Join only performs load balancing to reduce the system
load imbalance factor when the load-balancing factor within the whole window
reaches the threshold, thus MK-Join usually has a higher load imbalance factor.
In comparison, NM-Join is able to react more quickly to load changes and per-
form load balancing earlier due to the use of sub-windows, so it has a flatter curve
and it usually has a lower load imbalance factor. The experimental results confirm
that NM-Join has a better load-balancing effect compared to MK-Join when there
are fluctuations in the distribution of input streams.

Load-balancing overhead Next, we compare the overhead required for load
balancing between NM-Join and MK-Join. Figure 11 shows the average latency
of the different methods under various distribution change periods. From the
figure, it can be seen that both for the synthetic datasets and the TPC-H data-
sets, MK-Join has a high average delay compared to the other methods, which is
due to the fact that MK-Join requires data migration to perform load balancing,

(a) Median load imbalance factor with syn-
thetic datasets.

(b) Median load imbalance factor with TPC-H
datasets.

Fig. 9   Median load imbalance factor under various distribution change periods

(a) Real-time load imbalance factor with syn-
thetic datasets.

(b) Real-time load imbalance factor with TPC-
H datasets.

Fig. 10   Real-time load imbalance factor when the distribution change period is 10 min

8256	 Q. Wang et al.

1 3

and frequent migration introduces a lot of overhead to the system. In contrast,
NM-Join has a lower average latency than MK-Join under various distribution
change periods, and the latency of NM-Join is close to that of the static load-
balancing method ContRand, which confirms that NM-Join has a low overhead
in load balancing, which is close to that of the static load-balancing method. To
further compare the overhead of NM-Join and MK-Join in load balancing, taking
the 10-min distribution change period as an example, we plot the real-time pro-
cessing latency of NM-Join and MK-Join with the synthetic and TPC-H datasets,
as shown in Fig. 12. We can see that there are many peaks in the real-time latency
curve of MK-Join, which corresponds to the peaks in Fig. 10, implying that the
system is performing a migration. The migration causes a significant drop in tran-
sient performance and a spike in processing latency. In contrast, we can see that
the real-time latency curve of NM-Join is relatively flat, which implies that our
non-migrating load-balancing method has a very low overhead. The experimental
results confirm that NM-Join has a lower load-balancing overhead compared to
MK-Join.

In summary, the above experimental results confirm that NM-Join achieves lower
latency and higher throughput than the static load-balancing methods ContRand and
Random when the input skew is not very large, and does not introduce significant
additional overhead when the input distribution changes. The experimental results
also confirm that NM-Join achieves similar or even better adaptation to the input

(a) Average latency with synthetic datasets. (b) Average latency with TPC-H datasets.

Fig. 11   Average latency under various distribution change periods

(a) Real-time latency with synthetic dataset. (b) Real-time latency with TPC-H dataset.

Fig. 12   Real-time latency when the distribution change period is 10 min

8257

1 3

An adaptive non‑migrating load‑balanced distributed stream…

than MK-Join, while greatly reducing the overhead introduced for performing load
balancing and thus achieving lower processing latency when adapting to input
fluctuations.

The above experimental results show that our proposed non-migrating load-bal-
anced distributed stream join system is well suited to perform join operations for
streams that are not extremely skewed and whose distribution may change. Consid-
ering the adaptability and low load-balancing overhead of our proposed system, a
possible application scenario well suited for this system is the real-time join pro-
cessing of various data generated by IoT devices (e.g., sensors) in an edge com-
puting environment, such as real-time join of data generated by two or more IoT
devices monitoring the same object to obtain complete information about the moni-
tored object [6]. In the above edge scenario, the computing resources of the edge
computation nodes are limited, and the static load-balancing methods are not suit-
able for the edge computing scenario because of the redundant computational over-
heads mentioned above. The migration-based dynamic load-balancing methods are
also not suitable for this scenario, which is partly because the limited computing
and network resources of edge computation nodes can hardly afford the frequent
state migration overhead, and partly because the system will suspend the processing
of input data during state migration, and the unprocessed data will accumulate in
the system. It can be handled in the cloud environment by using backpressure tech-
nology, but in the edge environment, this will lead to data loss with serious conse-
quences because the data source of IoT devices cannot store a large amount of data.
On the contrary, our proposed non-migrating load-balanced distributed stream join
system does not incur redundant computational overhead when the input distribution
does not change, and is able to perform load balancing with very low overhead when
the input distribution changes. The system does not suspend the processing of input
data for a long time, so that our proposed system is well suited to join operations on
data streams in edge environments when the skew is not very large.

4.4 � Load imbalance threshold determination

Finally, we study how to determine the load imbalance threshold of the system.
Determining the threshold is a more subjective process, a too-large threshold can
lead to poor load-balancing effects, while a too-small threshold may lead to too fre-
quent load-balancing operations, which in turn affects the system performance. The
users can determine the threshold by themselves according to their needs, and in our
experiments, we determine the threshold by measuring the load-balancing effect of
the system under different thresholds.

We conduct experiments with dynamic synthetic datasets to measure the load
imbalance factor of NM-Join under different distribution change periods and each
experiment lasted 30 min. The median load imbalance factors of NM-Join for differ-
ent load imbalance thresholds and different distribution change periods are shown in
Fig. 13. As can be seen from the figure, the median load imbalance factor increases
roughly with the increase in the threshold, which is because the larger the thresh-
old, the slower the system reacts to the change of the input distribution and thus the

8258	 Q. Wang et al.

1 3

less effective load balancing. Therefore, it seems that a very small load imbalance
threshold (e.g., 0) should be chosen for a better load-balancing effect, however, we
found in our experiments that a too-small threshold may lead to oscillations in the
system load distribution, resulting in a large number of unnecessary load-balancing
operations. Figure 14 shows the load distribution oscillation of NM-Join during a
certain duration when the distribution change period is 5 min. From the figure, we
can find that when the load imbalance threshold is 0.0, the load distribution of the
system fluctuates drastically and frequently within a short period of time, which
means that the system is performing load-balancing operations frequently and dras-
tically. The reason for this phenomenon is that there is a certain randomness in the
input distribution, which will lead to a slight load imbalance in the system. At this
point, if the load imbalance threshold of the system is set too low, it may trigger
unnecessary load-balancing operations frequently and cause oscillation of the sys-
tem load distribution. During load distribution oscillation, the system will incur a

Fig. 13   Median load imbalance factor with different thresholds

Fig. 14   Real-time load imbalance factor with different thresholds

8259

1 3

An adaptive non‑migrating load‑balanced distributed stream…

large amount of unnecessary load-balancing overhead on the one hand (although the
load-balancing overhead of our method is small, too frequent load-balancing opera-
tions will still result in a large number of tuples being replicated and forwarded,
affecting the performance of the system), and on the other hand, the load-balancing
effect of the system will be degraded during this period. Therefore, considering the
effect of load balancing and the overhead of load balancing, we choose 0.2 as the
load imbalance threshold in our experiments.

5 � Related work

Stream join operators have recently attracted much research interest because of their
great impact on distributed stream processing system performance. Earlier studies of
stream join operators focus on stand-alone environments, and the main goal of these
studies is to process stream join as fast as possible with limited memory [13, 16, 17].
But nowadays, with the development of business, the amount of data to be processed
has increased drastically, so the traditional stand-alone join systems can no longer
handle the huge amount of data.

To meet the performance requirements for processing large amounts of data, the
stream join operators today are generally based on parallel/distributed stream pro-
cessing systems [18]. Some of these parallel stream join algorithms are designed
based on specific multicore environments, such as [19, 20], and these methods are
not generalized and have limited processing power for large amounts of data.

For the more general environments, Teubner et al. [21] propose a non-centralized
parallel join system called handshake join, which organizes all processing units into
a linear structure, and the tuples in two streams flow through all processing units
sequentially in opposite directions. Furthermore, Roy et al. [22] propose a method to
reduce the delay of the handshake join system by fast-forwarding tuples. Handshake
join can achieve load balancing of the system by flowing tuples between processing
units, but since a tuple needs to flow through all processing units sequentially, hand-
shake join has high processing latency as well as high network transmission volume.

Elseidy et al. [14] apply the join-matrix model used in batch processing sys-
tems [23] to the distributed stream processing system and design an adaptive online
stream join operator. It organizes the processing units as a matrix, each side of which
corresponds to an input stream. Each matrix cell represents a potential join output
result. In addition, the method collects the statistics of the input streams during the
system runtime and performs state migration to achieve optimal resource utilization.
Similarly, Fang et al [24–26] design distributed stream join systems based on the
join-matrix model and optimize the resource utilization. These methods can achieve
load balancing by random partitioning, but the join-matrix model essentially repli-
cates and forwards multiple copies of input tuples to multiple processing units for
storing, thus consuming a large amount of additional network, computational and
storage resources of the system, which significantly degrades the performance of the
system and is memory inefficient.

Najafi et al. [8] propose a parallel stream join model called SplitJoin. Split-
Join introduces a top-down system structure where all tuples are broadcasted by

8260	 Q. Wang et al.

1 3

the tuples distribution network to all processing units and each processing unit is
responsible for storing only a portion of the tuples. The method is load-balanced
by storing tuples in each processing unit in a polled manner, but it sends multiple
copies of a tuple to all processing units to ensure completeness, resulting in sig-
nificant additional system overhead.

Lin et al. [10] propose a join-biclique model, which organizes all processing
units as a complete bipartite graph, where each side corresponds to a relation.
This method proposes a strategy called ContRand to solve the load imbalance
problem, which divides all processing units into groups, and each group consists
of several processing units. Hash partitioning is used among groups, and random
partitioning is used within each group. This method combines the features of ran-
dom partitioning and content-sensitive partitioning to achieve system load bal-
ancing, but the method cannot handle the load imbalance between groups, and
there are still a large number of tuple replications. Furthermore, Zhang et al. [27]
solve the problem of load imbalance in the join-biclique model by using shuf-
fle partitioning strategy for some keys, but the shuffle partitioning scheme also
introduces additional network transmission overhead and computational resource
overhead. In addition, Zhou et al. [12] use data migration to solve the load imbal-
ance problem in the join-biclique model. They balance the load distribution of
the system by migrating some of the tuples from the high-load processing units to
the low-load processing units. This method is more flexible, but it is complex to
implement and introduces migration overhead to the system, which has a signifi-
cant impact on the transient performance of the system. In addition, Yuan et al.
[28] solve the correctness problem in the join-biclique model by organizing all
processing units into the tree structure. However, they do not focus on the prob-
lem of data skewing.

For the resource allocation in the general environment, Nikjoo et al. [29] propose
a novel approach to joint optimal power allocation and user association techniques,
which develops the solution to a mixed-integer programming framework and solves
the goal function based on a Lagrangian convex optimization method. Mohajer et al.
[30] propose a dynamic optimization model which optimizes carrier allocation and
power utilization to meet the quality of service constraints and the highest energy
efficiency levels. Mohajer et al. [31] also propose a dynamic max–min fairness-
guaranteed optimization model which provides the essential coverage and capacity
and minimizes the overall energy consumption of ultra-dense cellular heterogeneous
networks. These methods can achieve good resource allocation, but they focus more
on the energy consumption of the system than on the load balancing of the system.
In addition, there has been a lot of research on the runtime adaptation of data stream
processing systems [32]. For example, Lombardi et al. [33] use artificial neural net-
works to predict the state of the stream processing system and perform the scaling of
the operator based on the predicted state. Cardellini et al. [34] perform the scaling of
the operator in the stream processing system based on reinforcement learning tech-
niques. However, these studies have not been designed for the stream join problem.
Considering the special semantics of the stream join problem involving multiple
data streams and the special definition of result completeness, these approaches can-
not be directly applied to stream join systems.

8261

1 3

An adaptive non‑migrating load‑balanced distributed stream…

6 � Conclusion

In this paper, we proposed a novel load-balancing method for distributed stream
window join. Our method is able to adapt to the inputs by monitoring the load dis-
tribution of the system during runtime and performing load-balancing operations
when there is a load imbalance in the system. In addition, our method controls
the replication and forwarding of tuples by setting the routing tables, and changes
the load distribution of the system by directly changing the partition of the arrival
store tuples when the system performs load balancing; at the same time, based
on the characteristic of the completeness of the stream join problem, the com-
pleteness of the stream join results is guaranteed by replicating the arrival join
tuples into multiple replicas and sending them to multiple partitions, thus real-
izing the load balancing of the system with very low overhead while guaranteeing
the correct result. Theoretical analysis proves that our method can obtain a good
load-balancing effect and guarantee the completeness of the results. Experimental
results show that our method can achieve lower latency and higher throughput
than the static load-balancing methods when the input skew is not very large,
and does not introduce significant additional overhead when the input distribution
changes. The experimental results also show that our method can achieve simi-
lar or even better adaptation to the input than the migration-based method, while
greatly reducing the overhead introduced for performing load balancing and thus
achieving lower processing latency when adapting to input fluctuations. In future
work, we will further study the system load metrics so that we can better balance
the system load distribution when the input skew is very large, and thus obtain
lower latency and higher throughput.

Acknowledgements  This work is supported by National Natural Science Foundation of China under
Grant No. 62171155.

Author contributions  All authors contributed to the study conception and design. Material prepara-
tion, data collection, and analysis were performed by QW, SC, and TL. The first draft of the manuscript
was written by QW. The review and editing are mainly performed by DZ and ZZ. All authors read and
approved the final manuscript.

Funding  This study was funded by National Natural Science Foundation of China under Grant No.
62171155.

Data availability statement  All of the material is owned by the authors and/or no permissions are
required.

Declarations 

Conflict of interest  We declare that the authors have no competing interests as defined by Springer, or
other interests that might be perceived to influence the results and/or discussion reported in this paper.

Consent for publication  All authors of this paper have read and approved the final version submitted and
contents of this manuscript have not been copyrighted or published previously and are not under considera-
tion for publication elsewhere.

8262	 Q. Wang et al.

1 3

References

	 1.	 Schranz C, Jeremias PM (2020) Deterministic time-series joins for asynchronous high-throughput
data streams. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, vol 1, pp 1031–1034. https://​doi.​org/​10.​1109/​ETFA4​6521.​2020.​92119​
58

	 2.	 Cheng Y, Hao Z, Cai R, Wen W (2018) Hpc2-ars: an architecture for real-time analytic of big data
streams. In: 2018 IEEE International Conference on Web Services (ICWS), pp 319–322. https://​doi.​
org/​10.​1109/​ICWS.​2018.​00051

	 3.	 Ananthanarayanan R, Basker V, Das S, Gupta A, Jiang H, Qiu T, Reznichenko A, Ryabkov D, Singh
M, Venkataraman S (2013) Photon: fault-tolerant and scalable joining of continuous data streams.
In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp
577–588. https://​doi.​org/​10.​1145/​24636​76.​24652​72

	 4.	 Gong Y, Zhang Q, Han X, Huang X (2017) Phrase-based hashtag recommendation for microblog
posts. Sci China Inf Sci 60(1):1–13. https://​doi.​org/​10.​1007/​s11432-​015-​0900-x

	 5.	 Shukla A, Chaturvedi S, Simmhan Y (2017) Riotbench: an iot benchmark for distributed stream
processing systems. Concurr Comput Pract Exp 29(21):4257. https://​doi.​org/​10.​1002/​cpe.​4257

	 6.	 Mrozek D, Tokarz K, Pankowski D, Małysiak-Mrozek B (2019) A hopping umbrella for fuzzy join-
ing data streams from IoT devices in the cloud and on the edge. IEEE Trans Fuzzy Syst 28(5):916–
928. https://​doi.​org/​10.​1109/​TFUZZ.​2019.​29550​56

	 7.	 Zhang S, Liu C, Han Y, Li X (2018) Seamless integration of cloud and edge with a service-based
approach. In: 2018 IEEE International Conference on Web Services (ICWS), pp 155–162. https://​
doi.​org/​10.​1109/​ICWS.​2018.​00027

	 8.	 Najafi M, Sadoghi M, Jacobsen H-A (2016) {SplitJoin} : a scalable, low-latency stream join architec-
ture with adjustable ordering precision. In: 2016 USENIX Annual Technical Conference (USENIX
ATC 16), pp 493–505. https://​doi.​org/​10.​5555/​30269​59.​30270​05

	 9.	 Gulisano V, Nikolakopoulos Y, Papatriantafilou M, Tsigas P (2016) Scalejoin: a deterministic, dis-
joint-parallel and skew-resilient stream join. IEEE Trans Big Data 7(2):299–312. https://​doi.​org/​10.​
1109/​BigDa​ta.​2015.​73637​51

	10.	 Lin Q, Ooi BC, Wang Z, Yu C (2015) Scalable distributed stream join processing. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pp 811–825. https://​
doi.​org/​10.​1145/​27233​72.​27464​85

	11.	 Fang J-H, Zhao P-P, Liu A, Li Z-X, Zhao L (2019) Scalable and adaptive joins for trajectory
data in distributed stream system. J Comput Sci Technol 34(4):747–761. https://​doi.​org/​10.​1007/​
s11390-​019-​1940-x

	12.	 Zhou S, Zhang F, Chen H, Jin H, Zhou BB (2019) Fastjoin: a skewness-aware distributed stream
join system. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
IEEE. pp 1042–1052. https://​doi.​org/​10.​1109/​IPDPS.​2019.​00111

	13.	 Kang J, Naughton JF, Viglas SD (2003) Evaluating window joins over unbounded streams. In: Pro-
ceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405). IEEE, pp 341–
352. https://​doi.​org/​10.​1109/​ICDE.​2003.​12608​04

	14.	 Elseidy M, Elguindy A, Vitorovic A, Koch C (2014) Scalable and adaptive online joins. VLDB.
https://​doi.​org/​10.​14778/​27322​79.​27322​81

	15.	 Shahvarani A, Jacobsen H-A (2020) Parallel index-based stream join on a multicore cpu. In: Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp 2523–
2537. https://​doi.​org/​10.​1145/​33184​64.​33805​76

	16.	 Wilschut AN, Flokstra J, Apers PM (1995) Parallel evaluation of multi-join queries. In: Proceedings
of the 1995 ACM SIGMOD International Conference on Management of Data, pp 115–126. https://​
doi.​org/​10.​1145/​223784.​223803

	17.	 Viglas SD, Naughton JF, Burger J (2003) Maximizing the output rate of multi-way join queries
over streaming information sources. In: Proceedings 2003 VLDB Conference. Elsevier, pp 285–296.
https://​doi.​org/​10.​1016/​B978-​01272​2442-8/​50033-1

	18.	 Zhang F, Chen H, Jin H (2019) Simois: a scalable distributed stream join system with skewed work-
loads. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
IEEE, pp 176–185. https://​doi.​org/​10.​1109/​ICDCS.​2019.​00026

	19.	 Gedik B, Bordawekar RR, Yu PS (2009) Celljoin: a parallel stream join operator for the cell proces-
sor. VLDB J 18(2):501–519. https://​doi.​org/​10.​1007/​s00778-​008-​0116-z

https://doi.org/10.1109/ETFA46521.2020.9211958
https://doi.org/10.1109/ETFA46521.2020.9211958
https://doi.org/10.1109/ICWS.2018.00051
https://doi.org/10.1109/ICWS.2018.00051
https://doi.org/10.1145/2463676.2465272
https://doi.org/10.1007/s11432-015-0900-x
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1109/TFUZZ.2019.2955056
https://doi.org/10.1109/ICWS.2018.00027
https://doi.org/10.1109/ICWS.2018.00027
https://doi.org/10.5555/3026959.3027005
https://doi.org/10.1109/BigData.2015.7363751
https://doi.org/10.1109/BigData.2015.7363751
https://doi.org/10.1145/2723372.2746485
https://doi.org/10.1145/2723372.2746485
https://doi.org/10.1007/s11390-019-1940-x
https://doi.org/10.1007/s11390-019-1940-x
https://doi.org/10.1109/IPDPS.2019.00111
https://doi.org/10.1109/ICDE.2003.1260804
https://doi.org/10.14778/2732279.2732281
https://doi.org/10.1145/3318464.3380576
https://doi.org/10.1145/223784.223803
https://doi.org/10.1145/223784.223803
https://doi.org/10.1016/B978-012722442-8/50033-1
https://doi.org/10.1109/ICDCS.2019.00026
https://doi.org/10.1007/s00778-008-0116-z

8263

1 3

An adaptive non‑migrating load‑balanced distributed stream…

	20.	 Buono D, De Matteis T, Mencagli G (2014) A high-throughput and low-latency parallelization of
window-based stream joins on multicores. In: 2014 IEEE International Symposium on Parallel and
Distributed Processing with Applications. IEEE, pp 117–126. https://​doi.​org/​10.​1109/​ISPA.​2014.​24

	21.	 Teubner J, Mueller R (2011) How soccer players would do stream joins. In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, pp 625–636. https://​doi.​org/​10.​
1145/​19893​23.​19893​89

	22.	 Roy P, Teubner J, Gemulla R (2014) Low-latency handshake join. Proc VLDB Endowm 7(9):709–
720. https://​doi.​org/​10.​14778/​27329​39.​27329​44

	23.	 Okcan A, Riedewald M (2011) Processing theta-joins using mapreduce. In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, pp 949–960. https://​doi.​org/​10.​
1145/​19893​23.​19894​23

	24.	 Fang J, Zhang R, Zhao Y, Zheng K, Zhou X, Zhou A (2019) A-dsp: an adaptive join algorithm for
dynamic data stream on cloud system. IEEE Trans Knowl Data Eng 33(5):1861–1876. https://​doi.​
org/​10.​1109/​TKDE.​2019.​29470​55

	25.	 Fang J, Wang X, Zhang R, Zhou A (2016) Flexible and adaptive stream join algorithm. In: Asia-
Pacific Web Conference. Springer, pp 3–16. https://​doi.​org/​10.​1007/​978-3-​319-​45817-5_1

	26.	 Fang J, Zhang R, Wang X, Zhou A (2017) Distributed stream join under workload variance. World
Wide Web 20(5):1089–1110. https://​doi.​org/​10.​1007/​s11280-​017-​0431-7

	27.	 Zhang F, Chen H, Jin H (2019) Simois: a scalable distributed stream join system with skewed work-
loads. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
IEEE, pp 176–185. https://​doi.​org/​10.​1109/​ICDCS.​2019.​00026

	28.	 Yuan J, Wang Y, Chen H, Jin H, Liu H (2021) Eunomia: efficiently eliminating abnormal results in
distributed stream join systems. In: 2021 IEEE/ACM 29th International Symposium on Quality of
Service (IWQOS). IEEE, pp 1–11. https://​doi.​org/​10.​1109/​IWQOS​52092.​2021.​95212​86

	29.	 Nikjoo F, Mirzaei A, Mohajer A (2018) A novel approach to efficient resource allocation in NOMA
heterogeneous networks: multi-criteria green resource management. Appl Artif Intell 32(7–8):583–
612. https://​doi.​org/​10.​1080/​08839​514.​2018.​14861​32

	30.	 Mohajer A, Sorouri F, Mirzaei A, Ziaeddini A, Rad KJ, Bavaghar M (2022) Energy-aware hierar-
chical resource management and backhaul traffic optimization in heterogeneous cellular networks.
IEEE Syst J. https://​doi.​org/​10.​1109/​JSYST.​2022.​31541​62

	31.	 Mohajer A, Daliri MS, Mirzaei A, Ziaeddini A, Nabipour M, Bavaghar M (2022) Heterogeneous
computational resource allocation for NOMA: toward green mobile edge-computing systems. IEEE
Trans Serv Comput. https://​doi.​org/​10.​1109/​TSC.​2022.​31860​99

	32.	 Cardellini V, Lo Presti F, Nardelli M, Russo GR (2022) Runtime adaptation of data stream process-
ing systems: the state of the art. ACM Comput Surv. https://​doi.​org/​10.​1145/​35144​96

	33.	 Lombardi F, Aniello L, Bonomi S, Querzoni L (2017) Elastic symbiotic scaling of operators and
resources in stream processing systems. IEEE Trans Parallel Distrib Syst 29(3):572–585. https://​doi.​
org/​10.​1109/​TPDS.​2017.​27626​83

	34.	 Cardellini V, Presti FL, Nardelli M, Russo GR (2018) Decentralized self-adaptation for elastic data
stream processing. Fut Gen Comput Syst 87:171–185. https://​doi.​org/​10.​1016/j.​future.​2018.​05.​025

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1109/ISPA.2014.24
https://doi.org/10.1145/1989323.1989389
https://doi.org/10.1145/1989323.1989389
https://doi.org/10.14778/2732939.2732944
https://doi.org/10.1145/1989323.1989423
https://doi.org/10.1145/1989323.1989423
https://doi.org/10.1109/TKDE.2019.2947055
https://doi.org/10.1109/TKDE.2019.2947055
https://doi.org/10.1007/978-3-319-45817-5_1
https://doi.org/10.1007/s11280-017-0431-7
https://doi.org/10.1109/ICDCS.2019.00026
https://doi.org/10.1109/IWQOS52092.2021.9521286
https://doi.org/10.1080/08839514.2018.1486132
https://doi.org/10.1109/JSYST.2022.3154162
https://doi.org/10.1109/TSC.2022.3186099
https://doi.org/10.1145/3514496
https://doi.org/10.1109/TPDS.2017.2762683
https://doi.org/10.1109/TPDS.2017.2762683
https://doi.org/10.1016/j.future.2018.05.025

8264	 Q. Wang et al.

1 3

Authors and Affiliations

Qihang Wang1 · Decheng Zuo1 · Zhan Zhang1 · Siyuan Chen1 · Tianming Liu1

	 Qihang Wang
	 wangqihang@ftcl.hit.edu.cn

	 Decheng Zuo
	 zuodc@ftcl.hit.edu.cn

	 Siyuan Chen
	 chensiyuan@ftcl.hit.edu.cn

	 Tianming Liu
	 hit_ltm@yeah.net

1	 Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China

	An adaptive non-migrating load-balanced distributed stream window join system
	Abstract
	1 Introduction
	2 System design
	2.1 Non-migrating load-balancing procedure
	2.2 NM-Join system architecture
	2.3 Store routing table design
	2.4 Join routing table design

	3 Analysis
	3.1 Completeness
	3.2 Effectiveness

	4 Evaluation
	4.1 Experimental setup
	4.2 Static input experiment
	4.3 Dynamic input experiment
	4.4 Load imbalance threshold determination

	5 Related work
	6 Conclusion
	Acknowledgements
	References

