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Abstract
Graph Neural Networks have been widely used in social recommendation systems. 
However, with the increase of graph nodes and diffusion depth, they tend to suf-
fer from graph sparsity and over-smoothing, which inhibit their performance. In 
this work, we propose the multi-relational attention network, named as MRAN, for 
social recommendation. Our model has three distinctive characteristics: (i) it allevi-
ates the data sparsity problem in social recommendation scenarios by incorporating 
both user social relations and item homogeneous relations as supplementary infor-
mation; (ii) it mimics the structure of influence diffusion in user and item domain 
via an iteratively aggregating structure; (iii) it has a two-level attention mechanism 
at the diffusion and aggregating level, enabling it to differentiate importance of 
embeddings to overcome the over-smoothing problem. Experiments conducted on 
two large-scale representative datasets demonstrate that the proposed model out-
performs previous methods substantially. The ablation study shows that the perfor-
mance of MRAN can be further improved avoid over-smoothing by increasing the 
diffusion depth.
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1 Introduction

With the rapid development of computer technology and the maturity of the 
Internet economy, recommendation system has become a hot topic for research-
ers. Traditional recommendation systems mainly face the problem of data spar-
sity: only a few interactions can be observed in the data. In practical applica-
tions, the number of users and items is huge, but the historical behavior records 
between users and items are few. Therefore, when the number of users and items 
in the recommendation system increases, the user preferences cannot be accu-
rately learned from the extremely sparse historical behavior matrix. The accuracy 
of the recommendations will be greatly reduced. This problem also leads to the 
cold start problem, which means that it is difficult to provide accurate personal-
ized recommendations for newly added users or projects.

The problem of data sparsity can be alleviated by merging the information of 
users’ social neighbors. With the rise of online social applications, users on social 
platforms can establish their social circles. The social neighbors in these circles 
will influence the user’s purchase decision to a certain extent, thus leading to the 
social recommendation scenario. For example, users may consult friends when 
considering whether to buy products. In addition, in social networks, users tend 
to establish social relationships with other users with similar behavioral prefer-
ences. Therefore, in social networks, the behavior similarity between user pairs 
with links is higher than that between user groups without links. Therefore, the 
goal of social recommendation is to integrate social network information into the 
recommendation system, solve the sparse data problem and improve the recom-
mendation performance.

In order to explore the interests of users, methods are proposed to learn the 
hidden state of user interests such as the traditional matrix factorization. With 
the development of deep learning, deep models have been used to extract more 
accurate features of users and items to improve the recommendation accuracy. 
Researchers have designed some more advanced neural network recommen-
dation models based on the traditional matrix factorization methods in recent 
years. Some works use neural networks to model the deeper complex relationship 
between the user embedding and the item embedding, which has improved the 
recommendation accuracy [1]. Graph-based neural networks are used to model 
the user preference generation process, and predict the current latent interests and 
preferences of users [2, 3]. Compared with the traditional models, these models 
can extract the implicit characteristics of users and items to improve the recom-
mendation accuracy.

The recommendation system in the social network is one of the core support-
ing technologies of many social network applications by capturing users’ interests 
and hobbies in the social network to enable them to obtain personalized informa-
tion services. However, these researches only consider and analyze some of the 
elements. Especially, the social attributes are not emphasized enough. The short-
comings of social recommendation multi-relational attention network research 
can be elaborated and analyzed from two aspects: objective factors and subjective 
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factors. Most of the existing recommendation algorithms assume that there is 
only one user relationship in the social network, but in fact, there are many types 
of user relationships in the social network and its extended applications, such as 
interpersonal relationships, including friends, colleagues, etc., and interactive 
relationships, including common purchase of the same goods, online communi-
cation, etc. Different relationships play different roles in specific recommenda-
tion tasks. It is very important to make full use of multiple user relationships to 
achieve high-quality social network recommendation systems. Beside, the data 
sparsity problem and the over-smoothing problem didn’t not been solved well.

In this paper, we focus on the social recommendation methods. In order to allevi-
ate the data sparsity problem of the traditional recommendation methods and the 
over-smoothing problem of the existing social recommendation methods, we pro-
pose a new method MRAN based on graph neural network-based method MRAN, 
which jointly models the three graphs, namely the user-user graph, the item-item 
graph, and the user-item graph, as shown in Fig. 1. The main contributions of this 
paper are as follows:

First, we propose a new social recommendation framework called Multi-Rela-
tional Attention Network (MRAN) for social recommendation, which jointly cap-
tures the influence and interest diffusion in multi-relational context neighbors;

Secondly, we introduce homogeneous information between items to solve the 
problem of data sparsity and simulate the high-order influence diffusion process in 
the context of multiple relationships;

Thirdly, we propose a two-level attention mechanism to select the most distinc-
tive feature and the most important neighbor. So that it can distinguish the impor-
tance of embedding, so as to overcome the problem of over-smoothing.

The experimental results show that our proposed framework outperforms the 
existing methods on two real-world datasets. The ablation study verified that the 
proposed method is effective for over-smoothing.

Fig. 1  The graph data in social recommendation. The graph data contain three graphs including the user-
user graph (left part), the user-item graph (middle part) and the item-item graph (right part). Note that 
the edges of user-item graph denote the historical behavioral records
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The rest of this paper is organized as follows. In Sect. 2, we reviewed some work 
related to the social recommendation. We defined the social recommendation prob-
lem to be solved and formally described the proposed framework in Sect.  3. The 
experimental results and discussion are presented in Sect. 4. And then we conclude 
this paper in Sect. 5 and pointed out the future research directions. Finally, we dis-
cuss the advantages and disadvantages of our proposed method in Sect. 6.

2  Related work

In this subsection, we briefly review the related works about the social recommenda-
tion in three categories, i.e., classical collaborative filtering recommendation mod-
els, matrix factorization-based social recommendation models, and the recent graph 
neural network-based recommendation models.

2.1  Classical CF recommendation models

There are two main types of collaborative filtering methods [4], i.e., (i) memory-
based collaborative filtering, which calculates the similarity between users and items 
through users’ rating history, and then new items are recommended for users accord-
ing to the similarity. Typical examples of this approach are neighborhood-based 
CF and item-based/user-based top-N recommendations [5, 6]; and (ii) model-based 
collaborative filtering models, which are developed using different machine learn-
ing algorithms to predict users’ rating of unrated items [7]. Once the model training 
phase is finished, the model-based CF can predict the ratings of users very quickly.

There are many model-based collaborative filtering methods, among which the 
most common method is the matrix factorization-based model. Known as the latent 
factor model, it compresses the user-item matrix into a low-dimensional representa-
tion in terms of latent factors (LFM) [8]. It can alleviate data sparsity using dimen-
sionality reduction techniques and usually produce more accurate recommenda-
tions than the memory-based CF approaches [9]. Assuming that the user-item rating 
matrix is R ∈ ℝ

n∗m (where each row represents a user and each column represents 
an item), the matrix factorization algorithm usually learns two low-rank matrices 
U ∈ ℝ

n∗k and V ∈ ℝ
m∗k , so that

where R̂ represents the approximation matrix of R, U represents the user’s latent 
feature matrix (each row represents a user’s feature vector), and V represents the 
item’s latent feature matrix (each row represents an item’s feature vector). Generally 
speaking, the rank k of two characteristic matrices U and V is far less than n and m, 
so the above matrix factorization is also called low rank matrix factorization. After 
learning U and V, the user a rating for the item i can be predicted according to the 
following formula [10–12]:

(1)R ≈ R̂ = UVT

(2)r̂ai = uav
T
i
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where ua is the a − th row of the user embedding matrix U, which is the embedding 
of user a. Similarly, vi denotes the latent embedding of item i in i − th row of item 
embedding matrix V. In order to learn the optimal matrix representation U ∈ ℝ

n∗k 
and V ∈ ℝ

m∗k ,, additional L2-norm regularization terms are incorporated in the 
overall optimization function as [8]:

where the first term is the approximation error of matrix factorization, the second 
and third terms are regularization terms, used to prevent overfitting of the model, 
and � is the regularization coefficient.

Since model-based recommendation models significantly reduce the memory 
requirement and computation complexity, SVD [13], matrix factorization (MF) [14, 
15]and non-negative matrix factorization (NFM) [16] are widely used, which all 
take advantage of LFM.

2.2  Matrix factorization‑based social recommendation models

As more and more social behaviors happen on the Internet, people have realized 
that social information is of great use for recommendation systems and therefore 
social recommendations have emerged as one of the hottest research topics these 
days [17–19]. Traditional recommendation systems assume that users are independ-
ent and identically distributed (i.i.d), which subconsciously ignores the social inter-
action between users. Therefore, in the context of social networks, recommender 
systems not only need to focus on the relationship between users and items, but also 
on the relationship between users.

Considering the interaction between users, social information is introduced to 
improve the traditional recommendation models, and a series of social recommenda-
tion models are proposed. We classify matrix factorization-based social recommen-
dation methods into two major categories according to the representation methods 
of the user characteristic matrix.

The first category is based on the shared representation of the user characteris-
tic matrix, which means that a user characteristic matrix is used to model with the 
user-item rating matrix and user-user social matrix separately. By assuming the user 
characteristic matrix is hidden in both rating information and social information, the 
objective function of SoRec [19] can be written as:

where g(x) = 1

1+exp(−x)
 is a logistic function, zb ∈ ℝ

d is the social attribute represen-
tation of user b, which is the b-th row of the social attribute matrix Z ∈ ℝ

n∗d and 
uaz

T
b
 denotes the predicted social relationship between user a and user b, which is 

fitted by the user feature vector ua and social feature vector zb . Different from SoRec, 
TrustMF [20] is a social recommendation model that divides the trust information 

(3)L =

n�

a=1

m�

i=1

(rai − uav
T
i
)2 + �‖U‖2

F
+ �‖V‖2

F

(4)

FSoRec =
�

rai≠0

(rai − g(uav
T
i
))2 + �u

�

Sab≠0

(Sab − g(uaz
T
b
))2 + �r(‖U‖2

F
+ ‖V‖2

F
+ ‖Z‖2

F
)
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into trust and trusted relationship, which maps each user to two different d-dimen-
sional feature vectors according to the directivity of trust relationship. Father more, 
Fang et al. [21] modeled the trust information from four dimensions, i.e., benevo-
lence, integrity, competence and predictability. In addition, Tang et al. [22] proposed 
a social recommendation model LOCABAL, which integrated local and global 
social information. Social relations from different perspectives are applied to recom-
mendation systems to improve recommendation performance.

The second category enhances the representation of the user characteristic matrix 
by taking social relationship into account [23]. Guo et al. introduced social informa-
tion into the SVD++ model, and proposed TrustSVD model [24]. In this model, 
both user-user social relationship and user-item rating information are regarded as 
the implicit feedback information, and social feedback information is added to the 
original SVD++ model to reconstruct the objective function.

2.3  Graph neural network‑based recommendation models

Graph Neural Networks (GNNs) [25], as a generalization of deep neural networks 
on graph data, are able to extract and represent data characteristics in graph field. 
GNN has derived many powerful variants, such as GCN [26], GAT [27], Graph-
SAGE [28] and so on. Compared with the traditional deep learning methods, GNN 
can characterize entities and their relationships through the graph structure. By 
assigning attributes to the nodes of the generated graph and constantly updating 
the state of the nodes continuously, the graph neural network obtains the state con-
taining the information of adjacent nodes and the topological characteristics of the 
graph. These nodes are finally output through specific methods to obtain the final 
node embedding.

The development of graph neural networks provides a better way for people to 
further analyze the entities of recommendation systems and the relationship between 
them. In recent years, the related research based on graph neural networks in rec-
ommender systems has attracted more and more attention from scholars and has 
achieved good results. GC-MC [29] proposed a graph auto-encoder framework, 
which extracts the latent representation of users and items from a bipartite graph 
between the user and item nodes and solves the problem of rating prediction in 
recommendation systems from the perspective of link prediction. STAR-GCN [3] 
adopted a stack of GCN encoder-decoders introduced the reconstruction mechanism 
to extract latent factors of users and items and proposed a new training strategy to 
tackle the problems of label leakage and cold start in GC-MC. The main point of RS 
in this phase is to model the equal influence of first-order neighbors from a user-item 
bipartite graph and the last layer of node representation is used for rating prediction.

Seeing that the classical CF-based methods only use the embedding of user 
and item for collaborative recall, the latent relationship (cooperative signal) is not 
encoded in the user-item interaction data. This may cause the embedding to be not 
powerful enough to capture the effect of collaborative filtering. NGCF [2] general-
ized GC-MC by integrating user-item interaction (i.e., user-item bipartite graph) into 
the embedding process and taking the higher-order collaborative signals between 
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users and items into account during the users/items embedding process. Simi-
larly, PinSage [30] is a random-walk-based GCN that explicitly models the high-
order connectivity in the web-scale bipartite graph, so that the cooperative signal is 
injected into the embedded process in an explicit way.

GNN-based methods can be divided into GCN (graph evolutionary network) 
based and GAT (graph attention network) based methods. They often use the neigh-
bor knowledge of entities to encode the structure of the knowledge map. Most of the 
neighbors and the input features as embedded modules. Because there is an assump-
tion that aligned entities will have similar neighbors. Most GNN-based methods 
only use entities as alignment seeds in training, rather than relationships as align-
ment seeds. The disadvantage of GCN lies in its poor flexibility, transitivity, and 
scalability. In addition, we can use verification sets to help improve performance, 
which is a little contrary to its original intention of semi-supervised learning. The 
training is full batch, which is difficult to expand to large-scale networks and con-
verges slowly. GraphSAGE aims to improve the scalability of GCN and improve 
the defects of training methods. It aims to learn an aggregator rather than a repre-
sentation for each node, which can improve the flexibility and generalization of the 
model. In addition, thanks to flexibility, it can train in batches to improve the conver-
gence speed. The main advantages of GAT are: (i) By assigning different weights to 
nodes in the same neighborhood, the model scale can be expanded. (ii) The model 
weight value is shared, which can well handle the unseen nodes in the sub-graph 
and can also execute the transitive and inductive tasks. (iii) Compared with Graph-
SAGE, it does not need to fix the sampling size, and the algorithm handles the entire 
neighborhood. (iv) Sampling node characteristics calculate the similarity, not the 
structural characteristics of nodes, so as to pre-calculate without knowing the graph 
structure. (v) Multi head self-attention mechanism is used, which is convenient for 
parallel and efficient. The main disadvantages of GAT are: (i) It is too smooth to 
handle high-order features. (ii) The maximum size of the receptive field is affected 
by the depth of the model. (iii) Due to the high overlap of domain nodes, redundant 
computing occurs. The above methods apply GNNs over the user-item interaction 
data without considering social connection information. For comparison, GraphRec 
[31] proposed a unified framework for jointly modeling user/item embeddings in 
user-user social network and user-item bipartite graph separately. The key points of 
the paper include integrating the user-user graph and user-item graph, better cap-
turing the connection between user, items and the user’s rating of items, and using 
Attention network to distinguish the importance of social relations. They utilized 
attention mechanism [27]and concatenation operation to distinguish essential ele-
ments and each user’s local neighbors’ preferences effectively to alleviate the data 
sparsity for optimizing the recommendation task. However, the social influence and 
interest preference might not be fully extracted since GraphRec only harvests one-
order information among neighborhood nodes in graph structure. Moreover, Dif-
fNet [32] assumed that users’ preferences are recursively influenced by their trusted 
social neighbors and modeled the high-order social influence diffusion process with 
a recursive influence propagation structure.

Learn the representation of the user’s social graph and the user-item bipartite 
graph, such as DiffNet, GraphRec, and MHCN. First, learn the user representation 
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from the social graph and user-item graph respectively, and then combine the 
representation with the sum pool. MLP or attention mechanism. DiffNet++ [33] 
further recursively modeled interest diffusion process for the item nodes, and 
employed the attention mechanism in two deep diffusion processes respectively to 
aggregate the different order neighbors’ feature vectors for each node. DiffNet++ 
uses a typical method to learn a unified user representation diagram, including 
social graph and user-item bipartite graph. It first uses the GAT mechanism to 
aggregate the information in the user-item sub graph and the social sub graph, 
and then combines the representation with the designed multi-level attention net-
work at each layer. MHCN uses GCN to propagate on the constructed hypergraph 
to obtain high-order social relations. Methods with attention mechanisms, such 
as GraphRec and DiffNet++, assume that the social impact of different neighbors 
on the social graph is different, and give different weights to the social impact of 
different friends. In social recommendation, user representation is learned from 
two different perspectives, namely social impact and user interaction. In combi-
nation with user representation, there are two strategies: (i) learn the represen-
tation of user social graph and user item bipartite graph; (ii) Learn the unified 
user representation diagram, including social graph and user item bipartite graph. 
Using the first strategy, such as DiffNet, GraphRec, and MHCN, first learn the 
user representation from the social graph and user item graph respectively, and 
then combine the representation with the sum pool. MLP or attention mechanism. 
DiffNet++is a typical method using the second strategy. It first aggregates the 
information in the user-item sub graph and social sub graph by using the GAT 
mechanism, and then combines the representation with the designed multi-level 
attention network at each layer.

Traditional social recommendation systems usually directly use this relationship 
as a regularizer to constrain users’ final representation or as input to enhance users’ 
original embedding. This approach only considers the influence of users’ first-order 
neighbors and ignores the recursive diffusion of higher-order influences in social 
networks. Our work summarized the existing relationships recommended by the 
society into four aspects, and multi-level GNN captured the multi-level impact infor-
mation in these four aspects. In real life, users may be influenced by their friends. 
Graph neural network can simulate how users are affected by recursive social diffu-
sion process. The construction methods of graphs are divided into two categories: 
stacked graphs and Hypergraphs to capture high-order relationships in social graph. 
In addition, attention mechanism and connection operation are introduced for per-
sonalized recommendation.

3  The proposed model

In this section, we will first elaborate the notation convention used in this paper in 
Table 1. Then, we formulate the problem to be solved. What’s more, we will give an 
overview about the architecture of our proposed model MRAN, and then detail each 
component of the model. Finally, the training process of MRAN are discussed.
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3.1  Problem definition

Let U = {u1, u2,… , un} and V = {v1, v2,… , vm} be the sets of users and items, 
where N and M are numbers of users and items respectively. We consider a user-
item interaction matrix R ∈ ℝ

n∗m denoting users’ implicit preference and interests 
to items. We denote rai = 1 if ua is interested in vi , otherwise rai = 0 . In addition, 
we use RU(i) and RI(u) to respectively denote the set of users who have interacted 
with vi and the set of items which ua has interacted with. Moreover, we assume the 
existence of a user-user directed graph G = [U,ℝn∗n] , where U is the set of users 
and S represents the connections between users of a social network. We denote 
sab = 1 if ua follows or trusts ub and zero otherwise. Also, we use Sa to denote the 
set of users with whom ua directly connects, i.e., Sa = [b|sab = 1] . Similarly, we 
define an item-item directed graph G = [U,F ∈ ℝ

m∗m] , where F denotes the simi-
larity relationship among items, and we use Fi to denote the set of items that item 
i similar with. Following[33], we use an embedding vector xa ∈ ℝ

d to denote the 
real-valued attributes(e.g., user profile) for ua and an embedding vector yi ∈ ℝ

d 
to denote the real-valued attributes(e.g., item text representation) for vi , where d 
is the length of embedding vector, i.e., there are two matrixes of entities: a user 
attribute matrix X ∈ ℝ

n∗d , and an item attribute matrix Y ∈ ℝ
m∗d . The mathemati-

cal notations we use are summarized in Table 1. We now formally formulate the 
social recommendation problem as follows:

Table 1  Notations used in this 
paper

Symbols Definitions and descriptions

Pa The free latent embedding of user a
qi The free latent embedding of item i
xa The real-valued attributes for user a
yi The real-valued attributes for item i
d The length of the embedding vector
S The user-user social network
Sa The set of social friends whom user a follows
F The item-item homogeneous network
Fi The set of items that item i similar with
R The user-item interaction matrix
Ru(i) The set of users who have interacted with item i
RI(a) The set of items with which user a has interacted
� A fixed threshold limiting the number of users 

who liked both items in F
rai The observed preference of item i by user a

(̂rai) The predicted preference of item i by user a

⊕ The concatenation operator of two vectors
Gs The user-user social graph
GI The user-item interest graph
GF The item-item influence graph
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Input: a user set U, an item set V, the user-item interaction matrix R, the user-
user social network S, the item-item homogeneous network F and the real-valued 
attribute matrices X and Y of users and items.

Output: a preference predicting function that maps a user-item pair to a real 
value, i.e., R̂ = f (U,V ,R, S,F,X,Y) , where R̂ ∈ ℝ

n∗m denotes the unobserved inter-
actions of users to items.

3.2  An overview of the proposed model

The overall architecture of the proposed model is shown in Fig. 2. Generally speak-
ing, the proposed MRAN model consists of three components, i.e., user modeling, 
item modeling, and rating prediction. At the beginning of user modeling and item 
modeling, we first integrate free embedding and feature embedding to get the initial 
low-dimension user/item representation. Compared with the traditional social rec-
ommendation methods, our model not only leverages user-item interaction graph GI 
and social network GS , but also introduces item-item relation graph GF to enhance 
the item presentations. So far, we simultaneously consider both influence diffusion 
and interest diffusion in the process of user modeling and item modeling. Besides, 
four aggregations are introduced to handle these two different diffusion processes 
in user/item modeling respectively. Moreover, multi-layer GNNs with two different 
attention mechanism capture the multi-order influence information among these four 
aspects. Specifically, at each layer k, by taking embedding uk−1

a
 of user a and embed-

ding vk−1
i

 of item i as input, these layers recursively output the updated embeddings 
of vk

i
 and uk

a
 through the diffusion operations. This iteration step starts at k=0 and 

stops when the recursive process reaches a pre-defined depth K. Finally, in the 
process of rating prediction, each user’s preference for items will be predicted by 

Fig. 2  The overall architecture of the proposed MRAN model



8305

1 3

MRAN: a attention-based approach for social recommendation  

integrating user and item modeling components and calculating their dot product. 
Next, we describe the details of each component in order.

3.3  User modeling

We define P ∈ ℝ
n∗d as the free embedding matrices of users, where d is the embed-

ding size and pa denotes the free latent embedding for user a, i.e., the a − th row of 
matrix P. By feeding pa and the associated feature vector xa into the fusion layer, the 
initial latent preference of user a can be captured as:

where �(⋅) is the activation function, �1 is a trainable transformation matrix and we 
omit the bias term for symbolic simplification.

General GNN-based social recommendation methods leverage two different 
graphs, i.e., a user-user social graph GS and a user-item interest graph GI as input. 
Inevitably, two aggregations are introduced to process these two different graphs 
in user modeling. We define p̃k

a
 as the aggregated embedding of influence diffusion 

from the trusted social neighbors in GS and q̃k
a
 as the embedding of interest diffusion 

from the interested item neighbors in GI at the k − th layer. Therefore, it is conveni-
ent for us to be able to model user a′s updated embedding uk

a
 from different perspec-

tives as:

where uk−1
a

 denotes the latent embedding of user a at the (k − 1) − th , p̃k
a
denotes the 

user-based social influence diffusion process and q̃k
a
 denotes the item-based interest 

influence diffusion process from two graphs respectively. Specifically, �k
ab

denotes 
the social influence of user b to a at the k − th layer in GS , �kai denotes the interest 
influence of item i to user a at the k − th layer in GI , and �k

al
 denotes the graph level 

weight that learns to fuse and aggregate information from different aspects. A naive 
aggregation function is the mean operator, which sets all weights to equal values, 
i.e., �k

a1
= �k

a2
= �k

a3
 , �k

ab
=

1

|Sa|
 , and �k

ai
=

1

|Ra|
 . It assumes that all interactions contrib-

ute equally in the aggregation process. However, this may not be optimal as the 
influence of interactions on users can be very different.

Here we employ two different attention mechanisms to select the most discrimina-
tive features and the most important neighbors. Specifically, the node-level weights, 
i.e., the social influence strengths �k

ab
 and the interest influence strengths �k

ai
 , concretely 

point out the strength of each connection with user a in two graphs while graph-level 

(5)�0

a
= �(�1 ∗ [�a, �a])

(6)�k
a
= (𝛾k

a1
�k−1
a

+ 𝛾k
a2
�̃k
a
+ 𝛾k

a3
�̃k
a
)

(7)�̃k
a
=

∑

b∈Sa

𝛼k
ab
�k−1
b

(8)�̃k
a
=

∑

i∈RI (a)

𝛽k
ai
�k−1
i



8306 Y. Fu et al.

1 3

weights focus on how user a balances the social influence and interest influence for 
user embedding iterative updating. The situation of different users is different, because 
some users are more easily influenced by people they trust, while the interests of other 
users may be quite stable. Therefore, it is necessary for each user to build personalized 
weight. In the user-space, we argue that similar users have similar feature representa-
tion, so we take the related two users’ embeddings at the (k − 1) − th layer as input, and 
cosine similarity denotes the social influence strength �k

ab
 as:

We use a softmax function that transforms each value into range (0,1). Similarly, we 
calculate the interest influence score �k

ai
 by taking related user embedding and item 

embedding as input. We feed it through a dot product layer to calculate the probabil-
ity that user a is interested in the given item i as:

where � denotes the sigmoid function, and the weight �k
ai

 is normalized by a softmax 
function. This product operation can help to focus on the candidate item and model 
dynamic interest influence under a specific context which is related to the final rat-
ing prediction operation. In contrast to the node attention layer, we can model the 
graph attention weights of �k

al
(l = 1, 2, 3) as:

where three MultiLayer Perceptrons (MLPs) are used to learn the graph attention 
weights with the related user embedding at the (k − 1) − th layer (uk−1

a
) and node 

attention representations at the k − th layer [ p̃k
a
 and q̃k

a
 ]. Without confusion, we omit 

the normalization operation of all attention modeling in the following expressions, 
as all of them share the similar form as shown in Eq. (10). In addition, considering 
�k
a1
+ �k

a2
+ �k

a3
= 1 , if the value of �k

a2
 is larger than that of �k

a3
 , the effect of influ-

ence diffusion is greater than that of interest diffusion, and larger �k
a2
+ �k

a3
 denotes 

(9)�k
ab

=
�k−1
a

⋅ �k−1
b

|�k−1
a

| ∗ |�k−1
b

|

(10)�k
ab

= softmax(�k
ab
) =

exp(�k
ab
)

∑
b∈Sa

exp(�k
ab
)

(11)𝛽k
ai
= 𝜎(𝜇k−1

a
⊙ vk−1

i
)

(12)�k
ai
= softmax(�k

ai
) =

exp(�k
ai
)

∑
i∈RI (a)exp(�

k
ai
)

(13)�k
a1

= MLPk
1
(�k−1

a
)

(14)𝛾k
a2

= MLPk
2
([𝜇k−1

a
, p̃k

a
])

(15)𝛾k
a3

= MLPk
3
([𝜇k−1

a
, q̃k

a
])
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that user embedding at layer k will be more affected by the two influence diffusion 
effects. As a result, the user embedding at the (k − 1) layer is less retained during the 
user’s embedding updating process.

3.4  Item modeling

We define Q ∈ ℝ
m∗d as the free embedding matrices of items, where d is the embed-

ding size and qi denotes the free latent embedding for item i, i.e., the i − th row of 
matrix � . By feeding qi and the associated feature vector yi into the fusion layer, the 
initial item embedding is defined as:

Since there is no prior information that explicitly captures the relationship between 
items, most existing methods simply leverage user’ rating history to process item 
embedding or do not process it. In this paper, we attempt to build an item-item 
homogeneous network F which is similar to the user-user social network S. We cal-
culate the similarity between the two items by the number of common users who 
liked them [34, 35]. For any item i and item j, we define their similarity coefficients 
sij as the number of users who liked both items, and item i is related to item j if 
sij > 𝜏 with � a fixed threshold. We define the item implicit network as the graph 
GF = [V ,F ∈ ℝ

m∗m] , where V is the set of items and F represents the connections 
between the two related items of an item-item homogeneous network.

Likewise, we use a similar method as shown in user modeling. For each item i, 
we need to aggregate user-space information from the set of users who have inter-
acted with item i, denoted as RU(i) , and aggregate item-space information from the 
set of item friends that have related with item i, denoted as Fi . For each item i, given 
its (k − 1) − th layer embedding uk−1

a
 and vk−1

i
 , we model the updated item embed-

ding vk
i
 at the k − th layer from GF and GI as:

where RU(i) = [a|ria = 1] is the user set that rates item i, Fi = [j|fij = 1] is the item 
set that is related to item i, m̃k

i
 is the item i′s aggregated embedding from its neigh-

bor items in the item-item influence graph GF , ñk
i
 is the item i′s aggregated embed-

ding from its neighbor users in the user-item interest graph GI , and �k
il
(l = 1, 2, 3) 

denotes the aggregation weight. The design of item modeling is very similar to user 
modeling, which aims to acquire a global view of both user aggregation and item 
aggregation.

(16)v0
i
= �(�� ∗ [qi, yi])

(17)vk
i
= (𝜂k

i1
vk−1
i

+ 𝜂k
i2
m̃k

i
+ 𝜂k

i3
ñk
i
)

(18)m̃k
i
=
∑

j∈Fj

𝜇k
ij
vk−1
j

(19)ñk
i
=

∑

a∈RU (i)

vk
ia
uk−1
a
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By taking the item node i as the central node, we calculate the interest attention 
weights ñk

i
 between node i and its user node neighbors, and the influence attention 

weights m̃k
i
 between node i and its related item node neighbors. Officially, the influ-

ence scores between the target item’s node representation vk−1
i

 and all of its selected 
neighbors are defined as:

The graph attention weights �k
al
(l = 1, 2, 3) in user-space could be found in Eq. 

(6), here we use an attention network to learn the item graph attention weight 
�k
il
(l = 1, 2, 3) of Eq. (17) by:

where three other MLPs are used to learn the graph attention weights with the 
related item embedding at the (k − 1) − th layer (vk−1

i
) and node attention representa-

tions at the k − th layer( m̃k
i
 and ñk

i
 ).

3.5  Rating prediction

We have obtained a series of user and item latent factors through K times of itera-
tive diffusion process. With the latent embedding of user a and item i at layer k 
(i.e., uk

a
 and vk

i
 ) for k = [0, 1, 2,… ,K] , we can first concatenate them at each layer 

to get the final user embedding u∗
a
= [u0

a
‖u1

a
‖… ‖uK

a
] and the final item embedding 

v∗
i
= [v0

i
‖v1

i
‖… ‖vK

i
] . Then, the rating of user a towards item i could be predicted as 

the inner product between the final user and item embeddings:

3.6  Model training

To estimate model parameters of MRAN, we adopt Bayesian Personalized Ranking 
loss (BPR) loss [12] for training, which is widely used for ranking task [33, 36, 37]. 
The loss function is formulated as:

(20)�k
ij
=

vk−1
i

⋅ vk−1
j

|vk−1
i

| ∗ |vk−1
j

|

(21)vk
ia
= 𝜎(vk−1

i
⊙ uk−1

a
)

(22)�k
i1
= MLPk

4
(vk−1

i
)

(23)𝜂k
i2
= MLPk

5
(vk−1

i
, m̃k

i
)

(24)𝜂k
i3
= MLPk

6
(vk−1

i
, ñk

i
)

(25)r̃ai = [�0
a
‖�1

a
‖… ‖�K

a
]T [�0

i
‖�1

i
‖… ‖�K

i
]



8309

1 3

MRAN: a attention-based approach for social recommendation  

where R = {(a, i+, i−)|(a, i+) ∈ R+, (a, i−) ∈ R−} is the training set, R+denotes the 
set of positive samples (observed user-item interactions) and R− denotes the set of 
negative samples (unobserved user-item interactions that follow a random sam-
pling strategy). �(x) is sigmoid function and Θ is regularization parameters set, i.e., 
Θ = [P,Q,W1,W2, [MLPk

i
]i=1,2,3,4,5,6] . Since all the parameters are differentiable, we 

use back propagation algorithm to optimize our model, and more detailed descrip-
tions about the parameter setting will be given at experiment part.

4  Experiments

To comprehensively evaluate the effectiveness of our proposed model MRAN, we 
conduct experiments on two real-world datasets aiming to answer the following 
research questions:

RQ1: How does the performance of our model compared with baselines?
RQ2: How do the attention mechanisms affect model performance?
RQ3: How does the model performance benefit from the diffusion depth?

4.1  Experiment setup

4.1.1  Datasets

To avoid experimental bias, we selected two independent datasets, for algorithm val-
idation, Yelp and Flickr.

Yelp. Users in Yelp (http:// www. yelp. com) can rate local services and follow oth-
ers that they want to follow. The original dataset contains two parts of information, 
i.e., the directed interactive relationships among users, as well as the users’ ratings 
to locations. There are five levels of ratings from 1 to 5 (higher is better). Similar to 
many works [32], we regard the ratings larger than 3 as “My Likes” of this user.

Flickr. Flickr is an online photo-sharing website (http:// www. flickr. com). Users 
follow other users and share interesting images based on their preference to their 
friends, family and social media followers. The original dataset provides a large 
amount of preference information and social information.

We evaluate our proposed model on two representative datasets Yelp and Flickr. 
Same as what they have done in their study, we only keep users who have at least 
2 rating records and 2 social links and filter items which have been interacted less 
than 2 times. In addition, we conduct additional preprocessing step by extracting 
similar pairs of items that are preferred by at least 2 users and accept this as side 
information of our model. Note that item-pairs (Item Connections) are very sparse, 
we further take available links into consideration. Statistics of the final datasets are 
summarized in Table  2. We randomly select 85% of the data for training, 5% for 
validation, and the remaining 10% for testing.

(26)L = minΘ

�

(a,i+,i−)∈R

− ln 𝜎(r̂ai+ − r̂ai−) + 𝜆‖Θ‖2
2

http://www.yelp.com
http://www.flickr.com
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4.1.2  Evaluation metrics

In order to evaluate the top-K recommendation performance of the models, we adopt 
a recall-based metric HR@K (Hit Ratio) and a ranking-based metric NDCG@K 
(Normalized Discounted Cumulative Gain), which are widely used in top-K recom-
mendation tasks [33, 38]. Specifically, HR@K measures the percentage of the test-
ing items being successfully recommended in the top-K recommendation lists and 
NDCG@K further takes the ranking position of testing items within the top-K rec-
ommendation list into account. For both metrics, bigger values indicate better rec-
ommendation results. As many recommendation tasks [32, 39], in our experiments, 
for each user we randomly sample 1000 unrated items as negative items. We repeat 
each experiment 10 times and report the average score of the best performance for 
both metrics.

4.1.3  Baselines

To evaluate the performance, we compare our MRAN against ten state-of-the-art 
baselines including traditional CF methods, social based recommender approaches 
and graph neural network based models. For each group, we select representative 
baselines detailed as below.

BPR  [12]: A typical pair-wise algorithm that is derived from the maximum pos-
terior estimator, only using the interaction data between users and items.

FM  [10]: A powerful matrix factorization method which considers pairwise fea-
ture interactions.

SocialMF [40]: A matrix factorization technique with trust propagation for rec-
ommendation in social networks.

TrustSVD [24]: A social recommendation method that incorporates first order 
social relations into modeling process.

ContextMF [41]: A fast and context-aware embedding learning method for social 
recommendation.

GraphRec [31]: A network embedding approach that employs attention mecha-
nism to encode social network.GraphRec’s model mainly includes three components: 

Table 2  The statistics of the two 
datasets

Dataset 1 Yelp Flickr

# of Users 17,237 8,358
# of Items 38,342 82,120
# of Ratings 204,448 327,815
# of Density(Ratings) 0.03% 0.05%
# of Social Connections 143,765 187,273
# of Density (Social Relations) 0.05% 0.27%
# of Item Connections 79,876 498,664
# of Density (Item Relations) 0.011% 0.015%
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user modeling, item modeling, and rating prediction. Next, we will look at these 
core contents in detail. The proposed GraphRec method is always superior to all 
baseline methods. Compared with DeepSoR and GCMC+SN, GraphRec provides 
advanced model components to integrate ratings and social network information.

PinSage [30]: A random-walk Graph Convolutional Network that is highly-scal-
able and capable of learning embeddings for nodes in web-scale graphs containing 
billions of objects.Compared with the deep learning baseline method, PinSage can 
generate higher quality recommendations. For recommended tasks, the click through 
rate of PinSage is 150% higher than that of the best baseline method, and the MRR 
is 60% higher.

NGCF [2]: A deep neural network based framework leveraging high-order sig-
nals in user-item bipartite graph.NGCF is proposed to solve the problem that the 
cooperative signal in user-item interactions cannot be expressed in the embedded 
layer.

DiffNet [32]: A graph neural network based model that simulates social influence 
propagation.DiffNet can use GNN to capture the deeper social diffusion process. 
However, the model also has limitations: (i) The assumption of the same impact is 
not suitable for real scenarios; (ii) The model can also be enhanced by interactive 
users if the item representation is ignored.

DiffNet++ [33]: A Neural Influence and Interest Diffusion Network for social 
recommendation.

Table 3 presents the main characteristics of all baselines and our model, show-
ing what information each model utilizes. Specifically, we use “F” represents fea-
ture input and “S” denotes the social network input. For the modeling process, we 
use “UU” and “UI” denote the social information and interest information for user 

Table 3  Comparison of the 
baselines

Model Model Input Model Embedding Ability

F S UU UI IU II

BPR [12] × × ×
√

× ×

FM [10]
√

× ×
√

× ×

SocialMF [40] ×
√ √ √

× ×

TrustSVD [24] ×
√ √ √

× ×

ContextMF [41]
√ √ √ √

× ×

GraphRec [31] ×
√ √ √

× ×

PinSage [30]
√

× ×
√ √

×

NGCF [2] × × ×
√ √

×

DiffNet [32]
√ √ √ √

× ×

DiffNet++ [33]
√ √ √ √ √

×

MRAN
√ √ √ √ √ √

MRAN-nf ×
√ √ √ √ √

MRAN-ns
√

× ×
√ √ √

MRAN-nii
√ √ √ √ √

×
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embedding learning, and use “IU” and “II” to denote the interest information and 
item homophily information for item embedding learning. Note that our proposed 
MRAN is the only one that considers item homophily information among all these 
models. Since our proposed model MRAN is flexible and can be reduced to a sim-
pler version, we also construct several variants of MRAN as ablation study. We use 
MRAN-nf, MRAN-ns and MRAN-nii to represent the reduced versions of MRAN 
when removing user and item features, removing social network input and removing 
item homophily information.

4.1.4  Parameter setting

We implement our proposed model by using Tensorflow framework which opti-
mizes all models with the Adam optimizer, where the batch size is 512. The embed-
ding size d and learning rate is searched in [16, 32, 64] and [0.0005, 0.001, 0.005, 
0.01, 0.05, 0.1 ]. We randomly initialize user/item free embedding and weight 
parameters with a Gaussian distribution, where the mean and standard deviation 
is set as 0 and 0.1 for all models. In our proposed MRAN model, we search the 
regularization parameter � in [0.0001, 0.0003, 0.001, 0.003, 0.01], and find that 
� = 0.001, � = 0.003 reaches the best performance for Yelp dataset and Filckr 
dataset respectively. Moreover, we empirically set the size of the hidden layer the 
same as the embedding size and the activation function as Leaky ReLU. We care-
fully tune the parameter for all baselines to ensure the optimal performance for fair 
comparison.

4.2  Experiment details

4.2.1  Performance of our model and baselines (RQ1)

We first compare the Top-10 recommendation performance of MRAN and other 
baselines. Table 4 shows the overall rating prediction precision w.r.t. HR and NDCG 
with different embedding size D among the recommendation methods on Yelp and 
Flickr datasets, we had the following observations. First, graph neural network-
based models usually obtains better performance than traditional models, includ-
ing classical CF models (e.g., BPR [12], FM [10]) and social-based recommender 
approaches (e.g., SocialMF [40], TrustSVD [24], ContextMF [41]). This observa-
tion makes sense because traditional models failed to capture the important nonlin-
ear relationship between users and items. However, the graph neural network-based 
models take higher-order social network or higher-order user-item interaction infor-
mation into account. The second observation is that models with attention mecha-
nism (e.g., GraphRec [31], DiffNet++ [33]) achieve better performance compared 
with other methods (e.g., PinSage [30], NGCF [2]). It is not surprising since that 
attention mechanism helps to better understand the implicit relationship between dif-
ferent nodes and aspects and improves recommendation performance. Third, since 
both social information and interest information play important roles in improving 
recommendation results. Table 4 shows the overall rating prediction accuracy w.r.t. 
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HR and NDCG of the recommended methods with different embedded sizes D on 
Yelp and Flickr datasets. It can be found from the table that the larger the D is, the 
larger the MRAN value is. Traditional models cannot capture the important nonlin-
ear relationship between users and items. The graph neural network model consid-
ers the interaction information of high-order social networks or high-order user-item 
interaction information. The larger D the model with attention mechanism, the better 
the performance. DiffNet++ significantly outperforms other baselines and becomes 
the strongest baseline model and our MRAN gives the best performance across all 
data sets.

In this experiment, we are interested in measuring the effectiveness of our model 
with different top-N values in Table 5 and the overall trend is similar to the analy-
sis before. Since the data sparsity problem is commonly encountered in real-world 
scenarios. We also want to know how MRAN performs in the absence of user 
social information or item homogeneous information, and add the comparative 
experiment of two MRAN variants. Specifically, MRAN-ns achieves 0.2608HR@5 
and 0.1928NDCG@5 in Yelp, whereas MRAN-nii achieves 0.2609HR@5 and 
0.1940NDCG@5. Both of the MRAN variants outperform all the baselines in Yelp, 
and MRAN-nii is even more competitive than MRAN-ns.

The same experimental results are also reflected in Flickr dataset, which con-
firms that both user-user social network and item-item homogeneous network have 
positively contributed to our MRAN. In terms of retrieval efficiency, memory effi-
ciency and time efficiency, it is also greatly superior to a wide range of existing 
retrieval models. Therefore, we can conclude that MRAN can capture high-order 
heterogeneous information between user-user, item-item and user-item in aggrega-
tion operations through two attention mechanisms, which improves the recommen-
dation performance.

In the recommendation system, the algorithm should be considered from two 
aspects: the accuracy of the algorithm itself and the efficiency of the algorithm. The 
complexity, uncertainty and emergence of big data itself have also brought many 
new challenges to the recommendation system. The time efficiency, space efficiency 
and recommendation accuracy of traditional recommendation systems have encoun-
tered serious bottlenecks. Compared with algorithm accuracy, recommendation sys-
tem engineering pays more attention to algorithm efficiency. In essence, recommen-
dation systems improve the efficiency of information distribution and information 
acquisition.

4.2.2  Effectiveness of our attention mechanisms (RQ2)

We propose two attention mechanisms, namely (i) influence the node attention block 
in the influence diffusion process; And (ii) a graph attention block in the information 
aggregation process. To study the effect of these two different attention mechanisms, 
we compared MRAN with some model variants. The proposed algorithm can adapt 
to the changes in network topology and form the shortest path after stabilization. 
The consistency and accuracy of the optimal path calculated independently by each 
node are better guaranteed, rather than based on the calculation results of other nodes. 
We use AVG to represent the attention mechanism that degenerates to usage equal 
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attention weight without any learning process. Self-attention model can establish long-
distance dependence within a sequence, which can also be achieved through the fully 
connected neural network, but the problem is that the number of connected edges of 
a fully connected network is fixed, so it can not deal with sequences with variable 
length. While the self-attention model can dynamically generate weights of different 
connections, the number of weights generated and the size of weights are variable. 
When a longer sequence is input, only more connected edges need to be generated. We 
have conducted ablation studies, and the results of different attention modeling combi-
nations are shown in Table 6. In particular, we run each sub-module of MRAN with/
without the corresponding attention mechanism (i.e., ATT or AVG), and find that it 
achieves the best performance when combining the node level attention and the graph 
level attention. The experimental results show confirms that both nodes and graph 
attention blocks can improve the performance of our model by distinguishing impor-
tance weights. Compared with some model variants, MRAN has fast convergence 
speed and is suitable for large networks. Other algorithms are complex and require 
large storage space. Since the calculation is conducted after diffusion, the calculation 
results and process do not affect the diffusion and do not depend on the calculation 
results of other nodes.

In terms of time efficiency, it is much better than a wide range of existing retrieval 
models. MRAN can capture advanced heterogeneous information among user-user, 
item-item and user-item in aggregation operations through two focus mechanisms, 
thus improving the recommendation performance. In the recommendation system, 
the algorithm should be considered from two aspects: the accuracy of the algorithm 
itself and the efficiency of the algorithm. The complexity, uncertainty and emer-
gence of big data itself have also brought many new challenges to time efficiency. 
Therefore, the improvement in time efficiency confirms that both user-user social 
networks and item-item homogeneous networks have made positive contributions to 
our MRAN performance. Compared with algorithm accuracy, MRAN recommenda-
tion system engineering pays more attention to algorithm efficiency. In essence, rec-
ommendation system improves the efficiency of information distribution and infor-
mation acquisition.

4.2.3  Effectiveness of diffusion depth K (RQ3)

Now, we analyze how sensitive our model is to the diffusion depth K, and which 
depth value produces the best recommendation result. We report the experiment 
results of MRAN with different K values for both datasets in Table  7. Note that, 
many related studies have achieved the best performance when K=2, and the perfor-
mance drops when the depth of graph continues to increase. The “improve” column 
shows the performance change compared to the setting of MRAN, i.e., K=2. We 
find that the performance improves rapidly when K increases from 0 to 1, the per-
formance will improve rapidly, and when the diffusion depth continues to increase, 
the performance will still improved slightly. We conclude that the application of our 
new two attention mechanisms alleviates the problem of over-smoothing in the train-
ing of graph neural network training and preserves the difference of hidden layer 
representation of each node.
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5  Conclusions

In this paper, we propose a new framework MRAN, which can effectively recom-
mend relevant items to users in the social recommendation scenarios. To allevi-
ate the problem of data sparsity problem, we introduce homogeneous information 
between items as supplementary information. Especially relatively complex neural 
networks, such as R-CNN. Our idea is to understand the network by deleting some 
networks and studying its performance. In order to overcome over-smoothing, we 
build a high-order influence diffusion attention model on the three kinds of graphs 
to capture important embeddings. The study of ablation is very important for the 
study of deep learning. Understanding the causality in the system is the most direct 
way to generate reliable knowledge (the goal of any research). Ablation is a very 
labor-saving way to study causality. We compared the performance of the model 
with ten state-of-the-art baselines. The experimental results show that our model 
achieves up to 5.7% and 6.8% improvement at HR@10 and NDCG@10 compare 
with the best baseline in both datasets. In addition, our MRAN alleviates the probem 
of over-smoothing. Increasing the depth K to more than 2 can further improve the 
performance of the model.

Social recommendation is a challenging research problem.Based on this paper, 
much work can be done in the future. From the perspective of multi-source social 
networks, users are not only active in one social network, but also active in multiple 
social networks. How to combine multiple social networks to learn users is very 
interesting and promising. From the perspective of multi-type behavior, additional 
information can be added to the model, such as comment information, comment 
time, location information, etc.

6  Discussion

Our proposed model alleviates the data sparsity problem by introducing the homo-
geneous information between items, and constructs a high-order impact diffusion 
graph attention model using the social information between users, the homogeneous 
information between items, and the interactive information between users and items. 
It has designed two kinds of attention mechanisms, which are applied to the diffu-
sion and aggregation levels respectively, so that it can distinguish the importance 

Table 7  HR@10 and NDCG@10 performance with different diffusion depth K (D= 64)

Depth K Yelp Flickr

HR Improve (%) NDCG Improve (%) HR Improve (%) NDCG Improve (%)

K=0 0.2362 −31.40 0.1554 −34.76 0.0795 −59.64 0.0628 −40.81
K=1 0.3748 −2.32 0.2331 −2.14 0.1808 −8.22 0.1418 −7.86
K=2 0.3837 – 0.2382 – 0.1970 – 0.1539 –
K=3 0.3883 +1.20 0.2409 +1.13 0.2031 +3.10 0.1570 +2.01%
K=4 0.3918 +2.11 0.2441 +2.48 0.2073 +5.23 0.1622 +5.39%
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weight when building users and embedding items. The inadequacies of the research 
on social recommended multi relational attention network can be elaborated and 
analyzed from two aspects: objective factors and subjective factors. Our MRAN 
research methods have limitations even if they are not affected by external factors. In 
this study, we designed and evaluated the multi relational social network recommen-
dation algorithms based on collaborative filtering, machine learning and data mining 
technologies respectively. Finally, the model algorithm is validated with real online 
social network data to analyze the accuracy and robustness of multi social relation-
ship recommendation mechanism.

In the process of using MRAN, because of various objective factors, these 
research methods are more likely to lead to biased results. As far as the subjective 
factors are concerned, the deficiencies of the multi relational attention network rec-
ommended by the society due to the subjective reasons of the researchers themselves 
(whether directly or indirectly) should be mentioned in this part, and specific solu-
tions should be proposed to solve or reduce the research limitations in this area. In 
addition, the multi relationship attention network recommended by the society is not 
scientific and typical enough to select samples in the survey stage, and the sampling 
method is not scientific; The sample size is insufficient to represent the overall situa-
tion of the research object.

But in the weaknesses, MRAN cannot find enough samples, which will lead to 
the accuracy of the final results. MRAN based recommendation systems mainly 
include collaborative filtering recommendation systems, content-based recommen-
dation systems, etc. Some typical recommendation methods have been effectively 
applied in practical applications. However, there are some problems with MRAN 
based recommendation methods, which fail to extract more useful information from 
social networks, and then conduct entity recommendation from multiple dimen-
sions, which will inevitably result in low accuracy of recommendation results. In 
view of the shortcomings of the research on MRAN based recommendation sys-
tems, we should focus on the research and analysis of user relationship strength in 
social networks, and propose a multi-dimensional comprehensive recommendation 
method based on user relationship strength in social networks.
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