
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:7244–7271
https://doi.org/10.1007/s11227-022-04955-w

1 3

Efficient tasks scheduling in multicore systems integrated
with hardware accelerators

Jinyi Xu1,2,3 · Hao Shi1,3 · Yixiang Chen1,3

Accepted: 12 November 2022 / Published online: 27 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Multicore systems integrated with hardware accelerators provide better performance
for executing real-time applications in time-critical fields, such as robots, avionics,
and aerospace. The integration of hardware accelerators brings new challenges for
system scheduling; the software scheduling problem is extended to a hardware–soft-
ware co-scheduling problem. Efficient co-scheduling strategy maximizes the ben-
efits of hardware acceleration, which is important for time-critical systems. To solve
this problem, we propose a co-scheduling strategy to minimize the system execution
time. It combines hardware–software resource allocation and a real-time schedule
method. Our scheduling can fit the different parallel in software and hardware (e.g.,
CPUs and FPGAs). The key component of our strategy is its novel hardware–soft-
ware resource allocation and a high-performance heuristic scheduling algorithm.
In the experiments, we evaluate our approach using both simulated and real paral-
lel applications. The results illustrate that our algorithm obtains efficient solutions
within reasonable runtimes compared to the state of the art.

Keywords Multicore systems · Task scheduling · Hardware accelerators · Real-time
applications

 * Yixiang Chen
 yxchen@sei.ecnu.edu.cn

 Jinyi Xu
 52184501010@stu.ecnu.edu.cn

 Hao Shi
 51194501091@stu.ecnu.edu.cn

1 Software Engineering Institute, East China Normal University, No. 3663, North Zhongshan
Road, Shanghai 20062, China

2 Taran, IRISA INRIA, 35000 Rennes, France
3 MOE Engineering Research Center for Software/Hardware Co-Design Technology

and Application, East China Normal University, No. 3663, North Zhongshan Road,
Shanghai 20062, China

http://orcid.org/0000-0003-1235-5530
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04955-w&domain=pdf

7245

1 3

Efficient tasks scheduling in multicore systems integrated…

1 Introduction

Multicore systems integrated with hardware accelerators, such as field-programma-
ble gate arrays (FPGAs), provide faster data processing and lower power consump-
tion [1–3]. Efficient schedules that take into account both hardware and software
components are critical to the performance of such hardware-accelerated multicore
systems. Typical scheduling approaches consider optimizations within the software
stack such as EDF (earliest deadline first), RMS (rate monotonic), and LLF (least
laxity first) [4–6]. However, many of these are not suitable or applicable to the hard-
ware components as well. In this paper, we propose a new hardware–software sched-
uling algorithm for scheduling applications in the hardware-accelerated multicore
systems. Throughout this paper, when we use the term software, we denote to the
execution units in traditional systems without any hardware accelerator (e.g., CPUs
on multi-core systems). To this same end, when we use the term hardware, we refer
to the execution units in the hardware accelerator itself (e.g., FPGAs).

The hardware–software co-scheduling problem is challenging because the
hardware and software components have different computational logic when exe-
cuting tasks. Consider the following example to illustrate the difference between
software execution and hardware execution. As shown in Fig. 1a, after the tasks
T1 and T2 have completed, the three tasks T3, T4 and T5 are ready for execution.
In a multicore system as Fig. 1b, T5 can only be scheduled after T3 or T4 com-
pletes, because each software core can only execute one task at a time. Contrast
this with the way that the same tasks can be executed on the hardware accelerator,
as shown in Fig. 1c. Here, there are different resources (i.e., execution units) for
each task shown in boxes. Consequently, task T5 can be scheduled at the same
time as tasks T3 and T4 because they do not use the same resources. From this,

Fig. 1 When task T3, T4, and T5 are released: b in two-core system, T3 and T4 can execute at the same
time and T5 waits in the queue. c Using hardware acceleration, all the tasks T3, T4, and T5 can execute at
the same time, but they consume non-reusable FPGA resource

7246 J. Xu et al.

1 3

we can see that the number of software cores is a limiting factor on the number of
tasks that can be executed in parallel on the software. In hardware acceleration,
there is no upper limit to the number of parallel tasks, but the number of tasks is
bounded by the size of hardware resources. Unlike typical scheduling problems
that only consider the scheduling of tasks on software cores, in hardware-acceler-
ated multicore (i.e., both hardware and software) systems, we need to incorporate
hardware execution into the scheduling problem.

In the general multicore scheduling problem, real-time applications are always
represented by a directed acyclic graph (DAG) consisting of a series of tasks,
where nodes represent tasks and edges represent data dependencies. And each
real-time task has its own time requirements, such as execution time, release
time, and deadline. The multicore platform consists of multiple software cores.
The scheduling problem is to find the order and assignment of task on the multi-
core platform that will achieve the goal. The goals of scheduling problem include,
for example, time optimization [7], energy usage reduction [8–13], minimizing
the number of computing units [14, 15], and so on. Various strategies have been
exploited to minimize the overall completion time (i.e., the makespan). Most
renowned strategies can be divided into three categories: list scheduling, task
duplication, and other heuristics strategies.

List scheduling is that it maps tasks on a set of pre-defined processors by cal-
culating a priority list of tasks [16–19]. Task duplication method is another popu-
lar scheduling strategy that focuses on large-scale multicore systems. It reduces
the makespan by executing tasks copies on different processors to reduce the
inter-processor communication cost. These algorithms show better performance
in scenarios with higher communication costs (i.e., higher computation-to-com-
munication ratio) [20–25]. There are also some other heuristics strategies, for
example, weight-based mechanism [26] and genetic algorithms [27, 28].

In this paper, we focus on finding the task scheduling solution in a hardware-
accelerated multicore system. Our goal is to obtain the shortest makespan under
the hardware resource constraints. We propose an efficient software–hardware co-
scheduling strategy (ESHCS).

Our strategy consists of two phases: allocation and scheduling. In the alloca-
tion phase, our goal is to efficiently maximize the advantages of hardware par-
allelism by improving the utilization of limited hardware resources. We clus-
ter tasks into different groups and use linear programming to obtain allocation
results under hardware resource constraints. In the scheduling phase, we propose
a list-based heuristic strategy to assign pre-allocated tasks to the suitable soft-
ware cores or hardware acceleration by considering the computation capabilities
of cores as well as the real-time requirements of the tasks.

Finally, we evaluate our algorithm by experiments. Our results confirm that
ESHCS can obtain the efficient solutions within a reasonable runtime. Compared
to prior work [29], ESHCS is more efficient. It greatly improves the running time
at the expense of very little speedup performance.

7247

1 3

Efficient tasks scheduling in multicore systems integrated…

In summary, the contributions of this work are as follows:

• We construct a model for multicore platforms integrated with hardware accelera-
tors based on hardware and software features and give a description of the task
features required for hardware–software co-scheduling.

• We propose an effective allocation strategy derived from the idea of linear pro-
gramming. Compared to linear programming, our method achieves a good allo-
cation results in less time.

• We propose an allocation-based scheduling algorithm. Compared to list schedul-
ing and genetic scheduling, our method obtains a reasonable makespan in the
shortest time.

• We present the results of our experiments using both simulation applications and
real-world applications. Our algorithm performs the best in both applications.

The rest of this paper is organized as follows. In Sect. 3, we define the hard-
ware–software co-scheduling problem and the related terminology. In Sect. 2, we
discuss the related work. And in Sect. 4, the proposed scheduling approach is pre-
sented. Section 5 shows the experiments and analysis of our algorithm. Finally,
Sect. 6 discusses the conclusions of this research and our future work.

2 Related work

Although multicore scheduling algorithms cannot be directly applied to hardware-
accelerated multicore architectures, we can incorporate aspects of these approaches.
For instance, heterogeneous earliest finish time (HEFT) is a well-known list sched-
uling, which calculates the upward rank of the task to set the priorities of the tasks
[16]. Critical-path-on-a-processor (CPOP) uses the sum of upward and download
rank values for prioritizing. The objective of these two algorithms is to minimize the
makespan at lower cost [16]. Heterogeneous edge and task scheduling (HETS) min-
imize the communication overhead edges to obtain reduced schedule length [18].
Massinissa et al. [28] proposed a genetic approach to scheduling the applications
under energy constraints. Du et al. [19] designed a feature-aware list scheduling to
assign the tasks to the appropriate processors. The feature they considered includes
frequency, data size, and resources utilization.

In addition to the above works, allocation and scheduling for FPGA-based sys-
tems could help inform our work. Several approaches have been presented in pre-
vious works including optimizing frameworks [30, 31], heuristic algorithms [32],
priority-driven algorithms [19], genetic algorithms [33–35], feature extraction [36],
etc. Lam et al. proposed two hardware/software partitioning algorithms: a custom-
ized Tabu search algorithm and a dynamic programming algorithm. The first algo-
rithm is able to produce good approximate solutions quickly, while the second one
yields more accurate solutions in smaller-scale instances [37]. These two algorithms
are designed for tree-like task graphs. Chen et al. [38] proposed a multi-model
multi-task learning approach for heterogeneous hardware–software co-design. It
reduces overall power consumption and critical path latency. Reza presented a

7248 J. Xu et al.

1 3

heuristic-based dynamic scheduling technique to schedule task graphs on multi-
FPGA systems [39]. Matteo focuses on the efficient scheduling onto cloud FPGAs
to minimize the makespan [40]. These two works focus only on scheduling in multi-
ple hardware, without considering the collaboration of hardware and software. Fur-
thermore, Rodriguez et al. [31] designed a HAP scheduler to minimize the energy
consumption in the CPU + FPGA systems. Du et al. [19] proposed a speedup esti-
mation model based on the speedup of tasks on FPGA. They used this speedup esti-
mation as well as the runtime resource load balancing strategy to assign the tasks to
the appropriate computing cores. Dai et al. [36] proposed a benefit-based scheduling
metric to evaluate the task assignment. Based on the metric, they accelerate task
execution. This work targets on independent tasks without communication. For the
applications with high communication load, Hao proposed an efficient scheduling
algorithm using task duplication [41]. However, all these works are designed and
proven to get great performance in nonreal-time applications and assume no limi-
tation in hardware resources. For real-time applications, Zhu et al. [30] focus on
improving the scheduling efficiency of CPU + FPGA architecture and proposed a
scheduling framework for independent tasks. In our previous work [29], we pro-
posed a scheduling approach, called ReTPA, for FPGA-based multicore systems.
This work was our first exploration of the real-time hardware–software co-sched-
uling problem. We further propose this efficient hardware–software co-scheduling
algorithm in this paper, which better balances performance and time overhead.

We specifically introduce three representative works: a classic priority-driven
approaches HEFT [16], two advanced genetic approaches, GAA and MGAA [33]
and our algorithm, ReTPA, in 2022 [29]. The comparison of our algorithms and
these algorithms is presented in Sect. 5.

2.1 Heterogeneous earliest‑finish‑time (HEFT)

The HEFT algorithm proposed by Topcuoglu et al. [16] is a classic multicore sched-
uling algorithm. Their objective is to simultaneously minimize the makespan and
meet low scheduling costs. The multicore structure used in this paper consists of dif-
ferent software cores and involve communication cost. HEFT assigns the task with
the highest upward rank value according to an insertion-based policy. The experi-
ments demonstrate the HEFT algorithm shows an impressive performance in terms
of both quality and cost of schedule. To compare with our algorithms, we firstly use
linear programming or greedy to allocate tasks into software and hardware and then
use HEFT for task scheduling. We use LHEFT or GHEFT to denote the HEFT with
linear programming or greedy strategy, respectively.

2.2 Genetic algorithm approach (GAA) and modified genetic algorithm approach
MGAA

The GAA and MGAA algorithm are two CPU + FPGA scheduling algorithms, pro-
posed by Abdallah et al. [33]. They are two novel GA-based approaches considering
the communication cost. GAA assigns the execution sequence of tasks by proposed

7249

1 3

Efficient tasks scheduling in multicore systems integrated…

strategy A or B and then uses the genetic algorithm to find the best cores for each
task. MGAA exploits further the search space to find better solutions by creating
different successful sequences in a pre-treatment. They are proven to be capable of
finding good solutions while improving the running time compared to other existing
works.

2.3 Real‑time priority‑driven algorithm (RePTA)

The ReTPA algorithm for real-time applications in FPGA-based multicore systems
is proposed in [29]. This work proposed a two-step scheduling strategy: allocation
and scheduling. In that algorithm, first we use a linear programming approach to
obtain the hardware–software allocation results. And then, we proposed a priority-
driven scheduling to assign the task based on the allocation results. The performance
comparisons illustrate that ReTPA shows the good performance for computation-
intensive applications. But there are some shortcomings, for example, linear pro-
gramming can lead to the optimal solution in NP-hard problem but at a significant
time cost. In the scheduling phase, priority calculation can be upgraded.

3 A novel model

The notation � ∣ � ∣ � is used to describe scheduling problems, where �
denotes the environment, � denotes properties of the tasks, and � denotes
the goal. Our hardware–software co-scheduling problem is described as
P ∣ prec, cij, timereal ∣ Cmax,RSCcon . P is the set of computing resources (i.e., CPU,
FPGA). prec, cij, timereal means the tasks are non-independent and real time. The
communication costs between tasks are considered. Cmax,RSCcon means the goal is
to minimize the makespan under the resource constraints.

In this work, the application is aperiodic and is represented by a directed acyclic
graph, G = (V ,E) , where V is the set of v tasks and E is the set of e edges. Each
edge e(i, j) represents the precedence constraint such that task �i should complete its
execution before task �j starts. A v × v matrix DATA is used to present communica-
tion data, where datai,j is the amount of data that needs to be transferred from task
�i to task �j . Task execution of a given application is assumed to be non-preemptive
and unsuspendable.

The target computing environment consists of a series of software cores and
hardware resources, where software cores are represented by p1, p2,… , pq and hard-
ware accelerator FPGA is considered as a special computing core represented by
p0 . Computing cores are connected in a fully connected topology. In our model, all
inter-core communications are assumed to perform without contention. Communi-
cation only occurs at the end of tasks.

7250 J. Xu et al.

1 3

In addition, there are three very important features that we should characterize in
detail:

• Time features of tasks
 The real-time application consists of a series of tasks with their time fea-

tures: release time, computation cost, and deadline. W is a v × 2 computation
cost matrix in which each wi,1 gives the estimated execution time to com-
plete task �i on software and wi,2 gives the estimated execution time to com-
plete task �i on hardware. Two v-dimensional vectors RLS and DDL repre-
sent release time and deadline, respectively. The release time of a task is the
instant of time when the task becomes available for execution. The task can
be scheduled and executed at any time at or after its release time, whenever
its data dependency conditions are met. If task �i can be executed when the
system begins execution, it has no release time, hence RLSi = 0 . The deadline
of a task is the instant of time when its execution is required to be completed.
If task �i has no deadline, it can be completed at any time during the system
execution.

• Computing resources
 The hardware-accelerated multicore platform includes software and hard-

ware resources. The software resource is the number of software cores, rep-
resented by q. The hardware resources are FPGA, which composes of look-up
table (LUT), registers and flip-flops (FFs). A LUT cannot be deployed to two
tasks. Therefore, the number of LUTs limits the total number of tasks in hard-
ware. We consider it as a resource constraint when scheduling the hardware-
accelerated multicore system, represented by LUTcon . We use a v-dimensional
vector LUT to present the number of LUTs for tasks, where LUTi is the num-
ber of hardware resources required to execute task �i in hardware.

• Communication cost
 The data transfer rates depends on the architecture of the communi-

cation links, such as shared bus, hierarchical bus, and network on chip.
The data transfer rates between cores are stored in matrix BAND of size
(q + 1) × (q + 1) , where BANDk,l = BANDl,k for computing cores pk and pl . We
define the communication cost ci,j when task �i executed on computing unit pk
and task �j executed on computing unit pl as

We assume that the cost of intra-core communication is negligible compared to
the cost of inter-core communication. When k = l , ci, j is zero.

Our goal is to find a solution for the real-time application to (I) minimize the
makespan Cmax ; (II) ensure each task �i meets its release time RLSi and deadline

(1)ci, j =
datai, j

BANDk, l

7251

1 3

Efficient tasks scheduling in multicore systems integrated…

DDLi ; (III) ensure the actual hardware resources consumption LUTsum is less than
or equal to the hardware resource constraints LUTcon.

Makespan Cmax is defined as

where AFTi is the actual finish time of task �i . The makespan will be the last actual
finish time of an exit task.

The overall hardware resources consumption LUTsum is defined as

where S is the sets of tasks allocated into software cores and H as the sets of tasks
allocated into hardware.

4 Co‑scheduling strategy

Before introducing the detail of our co-scheduling strategy, we first introduce the
linear programming method in [29] and some notions used in our strategy.

4.1 Related knowledge

Linear Programming The goal of task allocation is to minimize makespan within
the constraints of hardware resources. It can easily be described as a mathematical
model for linear programming.

We define a v-dimensional vector X as the allocation solution, where Xi = 0 indi-
cates that task �i is allocated to the software cores and Xi = 1 means task �i is allo-
cated to FPGA. The target function is then defined as:

As a solution, we obtain a hardware/software allocation scheme X.
Notions We introduce some notions derived from [29].

Definition 1 Given a real-time task �i , the Successor Parallel Rank of task �i ,
denoted by SPR(�i) , is defined as

(2)L = max{AFTi}

(3)LUTsum =

n∑
�i∈H

LUTi

(4)

⎧⎪⎪⎨⎪⎪⎩

min TimeCostsum =

v�
i=1

(1 − Xi) × wi,1 + Xi × wi,2

s.t.

n�
i=1

Xi × LUTi ≤ LUTcon

7252 J. Xu et al.

1 3

where Suc(�i) is the set of the direct successor of task �i , |Suc(�i)| represents the
number of the elements in the set Suc(�i).

Definition 2 Given a real-time task �i , the Execution Time of task �i , denoted by �i ,
is defined as

Definition 3 Given a real-time task �i , the Earliest Start Time of task �i , denoted by
EST(�i) , is defined as

where Pre(�i) is the set of the direct predecessors of task �i.

Definition 4 Given a real-time task �i , the Last Finish Time of task �i , denoted by
LFT(�i) , is defined as

Definition 5 During scheduling, given a real-time task �i , the Scheduling Urgency of
task �i at the current time CT, denoted by SU(�i,CT) , is defined as

SU(�i,CT) = 1 means that if �i must be executed at the current time. Otherwise,
at least one successor will miss its deadline.

4.2 ESHCS

In this section, we introduce our efficient software–hardware co-scheduling strategy
(ESHCS), which includes two phases: allocation phase and scheduling phase.

In the allocation phase, we obtain the software and hardware allocating solu-
tion efficiently. The goal is to minimize the makespan within the hardware resource
constraints. There are two factors that affect the makespan: the task parallel-
ism rate and the software–hardware speedup. Software–hardware speedup is the

(5)SPR(�i) =
|Suc(�i)|

max�j∈V |Suc(�j)|

(6)ET(�i) =

{
wi, 1, �i ∈ S,

wi, 2, �i ∈ H.

(7)EST(�i) =

{
RLSi Pre(�i) = �

max{RLSi, max�j∈Pre(�i){EST(�i) + ET(�j) + ci,j}} Pre(�i) ≠ �

(8)LFT(�i) =

{
DDLi Suc(�i) = �

min{DDLi, min�j∈Suc(�i){LFT(�j) − ET(�j) − ci,j}} Suc(�i) ≠ �

(9)SU(�i,CT) =
ET(�i)

LFT(�i) −max{EST(�i),CT}

7253

1 3

Efficient tasks scheduling in multicore systems integrated…

acceleration ratio of software computing cost and hardware computing cost. It is
a great indicator for maximizing the time benefits of hardware acceleration. Mean-
while, to improve the efficiency of the algorithm, we design a heuristic strategy that
combines linear programming and greedy strategy. This algorithm achieves time
minimization by increasing the parallelism rate of tasks and the software-hardware
speedup.

In the scheduling phase, we obtain the scheduling sequence based on the soft-
ware–hardware allocation result. The goal is to minimize the makespan and to meet
the deadline of tasks. In this phase, the strategies for software and hardware tasks
are different. We dynamically measure the priorities of software tasks. The soft-
ware task with the highest real-time priority will be assigned to the suitable software
cores. Hardware tasks are executed in parallel in the FPGA.

4.2.1 Task allocation phase

The linear programming model guarantees the generation of the optimal solution
in NP-hard problem. But it yields the shortest makespan at the cost of exponen-
tial computation cost. In contrast, heuristic methods usually generate sub-optimal
solutions in a polynomial-time. We make a tradeoff between computation cost
and quality of results. We propose a heuristic allocation method combining the
linear programming and greedy strategy.

In our methods, we analyze the topology of the task graph and cluster the tasks
into groups P based on their dependencies. In each group, the tasks are independ-
ent of each other, and they can be executed simultaneously in FPGA. We calcu-
late the sum of software–hardware speedup of each group. Software–hardware
speedup of task �i is defined as follows.

We use Pmax to represent the task group with the largest total speedup. We assume
the tasks in Pmax are all hardware tasks. There will be two cases: the total hardware
consumption of this group is less than the hardware constraints or is over the hard-
ware constraints. In the first case, we assign the tasks of Pmax to the FPGA and find
the next group with the largest total speedup. Repeat the same step until there are no
groups left or case two occurs. In the second case, we use the linear programming
strategy to choose the hardware tasks from Pmax . Finally, if there are some remain-
ing hardware resources, a greedy strategy is applied to the remaining tasks: assign-
ing the tasks with the maximum speedup to the FPGA until the hardware resource
constraints are satisfied.

The main allocation procedure is described as pseudo-code in Algorithm 1.
The hardware task choosing strategy is described as Algorithm 2.

(10)speedupi =
wi,1

wi,2

7254 J. Xu et al.

1 3

7255

1 3

Efficient tasks scheduling in multicore systems integrated…

Fig. 2 An example of task grouping

Fig. 3 An example of allocation when LUT
con

= 15

7256 J. Xu et al.

1 3

We give an example of the allocation procedure in Figs. 2, 3. Figure 2 shows the
division of the task groups. In step 1, the entry tasks �1 and �2 are initialized as the
first group. And then we find all the direct successors of the first group. Of these,
the task �5 is the direct successor of �3 so we delete the task �5 and get the second
group. Similarly, we obtain the third group. The procedure stops when all the tasks
in the group are exit tasks. Figure 3 shows the allocation when LUTcon = 15 . In step
1, �8 is assigned to the FPGA. Because P4 has the largest Speedupsum . The group P3
has the second-largest Speedupsum . But the LUTsum of it is larger than the remaining
hardware resource. We using linear programming: choosing �5 and �6 to hardware.
At this point, one hardware resource remains. We use a greedy strategy to assign �4
to the FPGA.

4.2.2 Task scheduling phase

In the scheduling phase, if all predecessors of task �i and all the communications
task �i have been completed, task �i is a ready task. We schedule when a new ready
task arrives or a software core is idle. We apply the different strategies to the soft-
ware and hardware task.

For the software tasks, we design a priority-driven approach based on the Suc-
cessor Parallel Rank and Scheduling Urgency. The ready software task with the
highest priority is assigned to the idle CPU first. When SU(�i,CT) = 1 , we assign
the task �i to the software cores first without priority comparing to maximize the
guarantee that the successor can meet the deadline.

The priority of software task �i is calculated by:

In the priority calculation, tasks with higher SU at the current time are given higher
priority to maximize the chance that the tasks will all finish before the deadline;
tasks with more successors are given higher priority so that more successors can
be released early to improve parallelism; and tasks with higher successors are given
higher priority.

For the ready hardware task �i , we directly assign it to the FPGA for execution.
The main scheduling procedure is described as pseudo-code in Algorithm 3.

(11)PRI(�i) =

{
SU(�i,CT) Suc(�i) = �

SU(�i,CT) + SPR(�i) ×max�j∈Suc(�i) PRI(�j) Suc(�i) ≠ �

7257

1 3

Efficient tasks scheduling in multicore systems integrated…

Fig. 4 Data information for scheduling

Fig. 6 Map of tasks execution at 11, scheduling �
3
 or �

7
 to CPU2

Fig. 5 Final scheduling solution using ESHCS

7258 J. Xu et al.

1 3

We give the scheduling solution obtained by ESHCS in Fig. 5, which is equal

to 24. The EST and LFT of tasks in Fig. 4 is calculated using Eqs. 7 and 8. And
we give an example of priority calculation and comparison during the system
running time in Fig. 6. When CT = 11 , the task �3 and �3 are released. Since
PRI(𝜏3, 11) > PRI(𝜏7, 11) , the task �3 is assigned to CPU2 for execution first, and
the task �7 will be executed when CPU1 is idle.

(a) (b) (c)

Fig. 7 Examples of different simulation structures

7259

1 3

Efficient tasks scheduling in multicore systems integrated…

5 Experiments

In the comparative evaluation, we consider two types of applications as the work-
load for performance experiments: simulation applications generated by the sam-
ple generator [29] and the graphs represented the numerical real-world problems
[16]. All the experiments were run on a computer with 8 Intel i9-9900k@4.8Ghz
processors with 16GB DDR4 memory. The operating system is a 64-bits Win-
dows 10 pro. We used MATLAB 2019b to implement and test the algorithms.

The metrics used for performance evaluation include Speedup and Running
Time. Speedup evaluate the solution from a makespan optimization perspective,
which presents the effectiveness of the scheduling solution. For a given applica-
tion, the value of Speedup is the ratio of sequential execution time to the makes-
pan. The sequential execution time is computed by assigning all tasks to a single
processor. For the same application, if the makespan is minimized, it results in a
larger Speedup.

In addition to evaluating the performance of the solutions, we also pay atten-
tion to the efficiency of the algorithm itself. Running Time is the computation
cost of obtaining the scheduling solution. Among the algorithms that give equal
Speedup values, the one with the smallest Running Time is the most practical
implementation.

In the remainder of this section, we first introduce the samples generator used
in the experiments in Sect. 5.1. And then, the comparison results among our
scheduling algorithm ESHCS and the related work are analyzed in Sects. 5.2 and
5.3.

5.1 Sample generator

We use the sample generator proposed in [29] to simulate real-time applica-
tion. This generator generates the samples from two aspects, the DAG and task
attributes.

Table 1 Information of five
datasets

n ∑n

i=1
LUT

i

Dataset1 8 61.1333
Dataset2 16 128.8667
Dataset3 24 189.2000
Dataset4 32 254.6667
Dataset5 40 316.6667

7260 J. Xu et al.

1 3

Ta
bl

e
2

 C
om

pa
ris

on
 o

f s
ch

ed
ul

in
g

pe
rfo

rm
an

ce
 b

et
w

ee
n

ES
H

C
S

an
d

Re
TP

A

D
at

as
et

1
D

at
as

et
2

D
at

as
et

3
D

at
as

et
4

D
at

as
et

5

S
u
p

R
ti
m
e

S
u
p

R
ti
m
e

S
u
p

R
ti
m
e

S
u
p

R
ti
m
e

S
u
p

R
ti
m
e

Re
TP

A
2.

19
51

0.
00

92
2.

61
35

0.
01

87
3.

74
41

0.
02

44
3.

81
64

0.
03

76
3.

94
36

0.
04

91
ES

H
C

S
2.

24
1

0.
00

51
2.

57
58

0.
01

21
3.

48
46

0.
01

93
3.

82
78

0.
03

37
3.

83
32

0.
04

44
Im

pr
ov

em
en

t (
%

)
2.

09
79

.2
9

−
 1

.4
4

54
.6

6
−

 6
.9

3
26

.7
0.

3
11

.5
4

−
 2

.8
10

.7
3

7261

1 3

Efficient tasks scheduling in multicore systems integrated…

DAG generator

The DAG generator has two input parameters: the number of tasks n and the
type of DAG. We generate DAG with three different structures for experiments
including tree, fork-join, and random. Examples of these three DAG structures
are shown in Fig. 7.

Task attribute generator
We generate five attributes for each task including release time, deadline, soft-
ware execution time, hardware execution time, and hardware resource. Referring
to [16], the values of attributes are generated according to the following rules:

• The task must be theoretically schedulable. The difference between the
release time and deadline is not less than the hardware execution time, i.e.,
DDLi − RLSi ≥ wi,2.

Table 3 Five considered
algorithms

Approach Allocation Schedule

ESHCS Heuristic Priority-driven
LHEFT ILP Priority-driven
GHETS Greedy Priority-driven
GAA-A Sequential Genetic
MGAA Genetic Genetic

Fig. 8 Speedup of algorithms with respect to application scale

7262 J. Xu et al.

1 3

• The hardware execution time wi,2 is randomly generated from a uniform dis-
tribution, and the software execution time wi,1 is � times longer than that of
the hardware execution time wi,2 , which follows the random uniform distribu-
tion from 2 to 8.

• Hardware resource LUTi is generated by a random parameter � and the ratio
of software execution time wi,1 to hardware execution time wi,2 as
LUTi = � ×

wi,1

wi,2

 , where � follows the Gaussian distribution N(�, �2) with
� = 3 and � = 1.

For the experiments, we generate five datasets. The value of DAG parameters
are assigned from the corresponding sets given: SETn = {8, 16, 24, 32, 40} and
SETDAGtype = {tree, fork-join, and random} . Each dataset includes three different
types of samples, and 50 random samples are selected for each type. We list the
statistical information of five datasets in Table 1. v is the number of tasks and ∑n

i=1
LUTi represents the average value of total hardware resource. It is noted that

we are not using the parameter, communication to computation ratio (CCR), in
this work. The value of CCR is set to 0.1.

5.2 Comparative experiment on simulation application

In this subsection, we design three different experiments using the simulated appli-
cations. First, we compare ESHCS with our previous algorithm ReTPA. Then,
we test our algorithm against other algorithms. Finally, we explored the impact of
resource size on the performance of scheduling algorithms.

Fig. 9 Running Time of algorithms with respect to application scale

7263

1 3

Efficient tasks scheduling in multicore systems integrated…

5.2.1 Comparative experiment with ReTPA

We compare ESHCS with our proposed algorithm RePTA [29]. ESHCS is a further
performance-balanced scheduling algorithm based on RePTA. The results are in
Table 2. We can see that Speedup of ReTPA and ESHCS differ minimally in all five
datasets, but ESHCS shows a significant improvement in Running Time. The mean
improvements are the reduction of 1.76% and the improvement of 36.59%, respec-
tively. ESHCS achieves our goal of significantly reducing the computation cost of
the algorithm by sacrificing a very small amount of the makespan speedup.

5.2.2 Comparative experiment with other algorithms

In this subsection, we analyze the performance of ESHCS and other five algorithms.
The structures of the five algorithms are compared in Table 3, where ’Allocation’
presents the allocation strategy used in the algorithms and ’Schedule’ presents the
scheduling strategy. The allocation strategy of the GAA is sequential, i.e., task Ti is
assigned to the processor p = (i − 1)[ns] + 1 , where p ≤ ns + 1 and p = ns + 1 rep-
resents FPGA. Moreover, the parameters of GAA-A and MAGG in our experiments
are: Popsize = 10 , number of generations NG = 10 , number of threads Nb = 6.

This experiment compares the performance of the algorithms with respect
to various application scales. The performance ranking of Speedup is {LHEFT,
ESHCS, GHEFT, GAA-A, MGAA} in Fig. 8. It should be noted that each ranking
in this paper starts with the best algorithm and ends with the worst one. ESHCS and
LHEFT provide the highest speed-up solutions, far better than HEFT with greedy

Fig. 10 Speedup of algorithms with respect to hardware resources

7264 J. Xu et al.

1 3

strategy and the other two genetic algorithms. The average speedup of LHEFT of
all datasets is the best, better than the ESHCS algorithm by 8.21%, the GHEFT
algorithm by 20.01%, the GAA-A algorithm by 41.37%, and the MGAA algorithm
by 51.44%. The reason why the genetic algorithms do not find the best solution as
expected is that they consider the hardware as a special software core, so the number
of tasks allocated to the hardware is about n∕(ns + 1) . The iterations are more about
trying a better scheduling strategy or allocating better groups of tasks to the hard-
ware. There is not a tendency to divide more tasks into hardware to improve paral-
lel efficiency, which causes the algorithm to easily fall into a local optimal. This
shortcoming can also be seen in the parameter experiments in Sect. 5.2.3. Speedup
of the genetic algorithms improve significantly with increasing software scale, but
the size of hardware resources has almost no effect on the performance of genetic
algorithms.

The performance ranking of Running Time is {GHEFT, ESHCS, LHEFT, GAA-
A, MGAA} in Fig. 9. In general, the computation cost of all algorithms increases
with the application scale. Running Time of LHEFT increases fastest, due to the
computational complexity of linear programming. The computational complexity of
the greedy strategy is O(n) so that GHEFT provides the best performance in terms of
computation cost. The time performance of ESHCS is second only to GHEFT and
remains at the millisecond level. The average Running Time of ESHCS and GHEFT
is 0.0229 s and 0.0213 s.

In these experiments, LHEFT and ESHCS outperform the other algorithms for
any application scale in terms of Speedup. But the average Running Time of LHEFT
is 14.67 times larger than ESHCS. The Running Time of GHEFT outperforms the
other algorithms but its Speedup is much worse than LHEFT and ESHCS. For the

Fig. 11 Speedup of algorithms with respect to software cores

7265

1 3

Efficient tasks scheduling in multicore systems integrated…

two genetic algorithms, GAA-A and MGAA have neither the best nor the worst
average Speedup performance, and they spend too much time searching for the solu-
tion. In conclusion, ESHCS obtains the best scheduling solution in a reasonable
computation cost.

5.2.3 Parameter experiment

This experiment investigates the impact of resource size on scheduling per-
formance. The resources of hardware-accelerated multicore system includes
software cores and hardware resource. The value of parameters are given:
SETsof tcore number = {2, 4, 6, 8, 10} and SEThardware percentage = {0, 0.2, 0.4, 0.6, 0.8, 1} ,
where the number of software cores represents the scale of the software resources on
the platform and hardware percentage is the ratio of the hardware resource constraint

(a) (b)

Fig. 12 Example of real parallel structures

Table 4 Scheduling performance in fast Fourier transform

Bold data represents the best performance among five algorithms

� v ESHCS LHEFT GHEFT GAA-A MGAA

Sup Rtime Sup Rtime Sup Rtime Sup Rtime Sup Rtime

2 5 1.3345 0.0092 1.7123 0.0130 1.3721 0.0019 1.6593 0.0341 1.3021 0.1442
4 15 3.1378 0.0196 3.1479 0.0237 2.2454 0.0115 2.8295 0.2722 1.8402 1.1535
8 39 4.9916 0.0410 4.9708 0.0445 2.7368 0.0402 3.3725 1.3073 2.2462 7.0349
16 95 6.2070 0.1932 6.1744 0.2163 2.8771 0.2061 3.8293 7.2177 2.8071 39.860
32 223 6.5439 2.6021 6.5345 3.6223 2.9213 1.1357 4.0269 37.527 3.2933 218.23

7266 J. Xu et al.

1 3

to the hardware resource overhead required by all tasks. As described in Table 1, ∑n

i=1
LUTi is the average hardware resource overhead for each dataset which use as

a baseline.
∑n

i=1
LUTi × SEThardware percentage are the hardware constraints we set in

the experiment. For the experiments, we select the fifth datasets with n = 40 , where ∑n

i=1
LUTi = 316.6667 . Figures 10 and 11 show the results of these two parameter

experiments.
The first experiment, in Fig 10, compares Speedup of the algorithms in different

hardware scales. The increase in hardware resources leads to a dramatic increase in
LHEFT, ESHCS and GHEFT. In contrast, the trends of MGAA and GAA-A appear
to be flat. This indicates that LHEFT, ESHCS and GHEFT are better adapted to
hardware-accelerated multicore systems. The best performance is achieved by
LHEFT and ESHCS with a slight difference, whose Speedup is up to 8.8712 and
8.3227 when the hardware percentage reaches 1.

The second experiment, in Fig 11, demonstrates the impact of the software scale
on scheduling performance. Overall, the increase in software scale also contributes
to the increase in Speedup. But the trend is smaller than the one brought by hardware
percentage. The trends of algorithms {LHEFT, ESHCS, GHEFT, GAA-A, MGAA}
increase as the number of software cores increases, and the Speedup stabilizes after
the number of software cores reaches 6. This indicates that software cores have a
limited effect on application acceleration. This is a reflection of the fact that hard-
ware acceleration is the future of high performance computing. In addition, how to
minimize the active software cores and achieve efficient scheduling is another inter-
esting future research topic [14, 15].

5.3 Comparative experiment on real world application

Except for simulation task graph generation, we select two real parallel applications
for our experiments: Fast Fourier transform (FFT) and Gaussian elimination (GE).
The number of tasks in FFT with � is v = (2 × � − 1) + � × lg � , where � = 2n . The
number of tasks in GE with � is v = �2+�−2

2
 . Figure 12 shows the examples of FFT and

Table 5 Scheduling performance in Gaussian elimination

Bold data represents the best performance among five algorithms

� v ESHCS LHEFT GHEFT GAA-A MGAA

Sup Rtime Sup Rtime Sup Rtime Sup Rtime Sup Rtime

5 14 2.3329 0.0288 2.4771 0.0748 1.6413 0.0232 2.3730 0.5001 1.7602 2.0213
7 27 3.1309 0.0529 3.2563 0.0890 1.9759 0.0434 2.6703 1.5207 2.2158 7.2676
9 44 3.6846 0.1070 3.7682 0.1671 2.0569 0.0977 2.9162 4.2832 2.6663 21.9262
11 65 4.4073 0.2118 4.3969 0.2698 2.2091 0.2061 3.1069 13.1982 2.9026 44.5618
13 90 5.1886 0.3594 5.0715 0.4200 2.3541 0.3660 3.3590 35.2279 2.9425 81.9448

7267

1 3

Efficient tasks scheduling in multicore systems integrated…

GE applications. In Fig. 12, FFT is generated with the parameter � = 4 , and GE is
generated with the parameter � = 5.

Fast Fourier Transform

In this experiment, we compare the performance of algorithms using
FFT. The application scale varies � from 2 to 32 with the number of tasks
v = {5, 13, 39, 95, 223} . Table 4 shows the scheduling performance in terms of
Speedup Sup and Running Time Rtime . Bold data represents the best performance
among five algorithms.

It is seen that ESHCS has an advantage in Speedup for three datasets as well
as LHEFT provides a similar performance. ESHCS performs better than LHEFT
in Running Time. It slightly performs less than GHEFT in the small scales. The
allocation algorithm integrating linear programming and greedy algorithms effec-
tively reduces the computational cost of ESHCS. The scheduling performances
of genetic-based algorithms, GAA-A and MGAA, in FFT are better than theirs
in GE, but there is still a gap with the other three methods. In summary, ESHCS
has the best performance in Speedup in most cases, while GHEFT outperforms in
Running Time in most cases. ESHCS shows the best performance in large-scale
applications.

Gaussian Elimination

In this experiment, we compare the performance of algorithms using
GE. The application scale varies � from 5 to 13 with the number of tasks
v = {14, 27, 44, 65, 90} . Table 5 shows the scheduling performance in Speedup Sup
and Running Time Rtime.

Running Time of LHEFT, ESHCS and GHEFT have increased with the expansion
of GE scale. They have remained at the millimeter level. In contrast, the running
time of GAA-A and MGAA is nearly multiple times larger than the other three algo-
rithms. The expansion of search space in the genetic algorithm brings a large sched-
uling cost, especially in large-scale applications. Although GHEFT shows a slight
disadvantage in Running Time, the scheduling efficiency of ESHCS far outperforms
it with an average improvement of 43.22%.

Among all five algorithms, ESHCS and GHEFT achieve the best performance
in the Running Time and the gap is very small. In contrast, the Speedup of ESHCS
is better than GHEFT by 44.82%. The above results suggest that for GE, ESHCS
obtains the best scheduling solution in a reasonable computation time.

6 Conclusion

In this paper, we propose ESHCS for scheduling real-time applications in the multi-
core system integrated with hardware acceleration. The goal of this algorithm is to
minimize the makespan subject to hardware resource constraints while meeting the

7268 J. Xu et al.

1 3

real-time requirements of tasks. Our strategy consists of two phases: heuristic allo-
cation and list-based scheduling. In the experiments, we test our algorithm in both
simulation applications and real applications. The experiments confirm that ESHCS
greatly improves the running time by sacrificing slight speedup performance com-
pared to ReTPA. ESHCS also shows a significant enhancement compared to other
advanced algorithms LHEFT, GHEFT, GAA-A and MGAA. Furthermore, we plan
to extend this work to periodic real-time tasks. Moreover, how to reduce the number
of active processors while achieving the best solutions is another interesting future
research topic.

Acknowledgements The authors would like to thank the editors and anonymous reviewers for their
constructive comments. The authors would like to thank Professor Patrice Quinton from Inria, Rennes,
France, for his valuable suggestions. Thanks for the supports from him and the Inria team TARAN.
This work was also supported in part by the National Key Research and Development Project of China
(2018YFB2101300), the Dean’s Fund of Engineering Research Center of Software/Hardware Co-design
Technology and Application, Ministry of Education (East China Normal University), Shanghai Collabo-
rative Innovation Center for Trusted Industrial Internet Software, and Shanghai Trusted Industry Internet
Software Collaborative Innovation Center.

Data availability The datasets generated during the current study are available from the corresponding
author on reasonable request.

Declarations

Conflict of interest We declare that we do not have any commercial or associative interest that represents
a conflict of interest in connection with the work submitted.

References

 1. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing fpga-based accelerator design
for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, February 22-24, 2015, pp.
161–170. https:// doi. org/ 10. 1145/ 26847 46. 26890 60

 2. Chen H, Madaminov S, Ferdman M, Milder P.A (2020) Fpga-accelerated samplesort for large data
sets. In: FPGA ’20: The 2020 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Seaside, CA, USA, February 23–25, 2020, pp. 222–232. https:// doi. org/ 10. 1145/ 33730 87.
33753 04

 3. Li J, Chi Y, Cong J (2020) Heterohalide: From image processing DSL to efficient FPGA accel-
eration. In: FPGA ’20: The 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Seaside, CA, USA, February 23-25, 2020, pp. 51–57. https:// doi. org/ 10. 1145/ 33730 87.
33753 20

 4. Gupta R.K, De Micheli G (1992) System-level synthesis using re-programmable components. In:
[1992] Proceedings The European Conference on Design Automation, pp. 2–7

 5. Lee E, Seshia S (2015) Introduction to embedded systems: a cyber-physical systems approach
 6. Kadri AA, Labadi K, Kacem I (2015) An integrated petri net and ga-based approach for perfor-

mance optimisation of bicycle sharing systems. Eur J Ind Eng 9(5):638
 7. Kao C (2020) Resource and performance tradeoff for task scheduling of parallel reconfigurable

architectures. J Circuits Syst Comput 29(2):2050029–1205002914. https:// doi. org/ 10. 1142/ S0218
12662 05002 92

 8. Bhuiyan A, Liu D, Khan A, Saifullah A, Guan N, Guo Z (2020) Energy-efficient parallel real-time
scheduling on clustered multi-core. IEEE Trans Parallel Distrib Syst 31(9):2097–2111. https:// doi.
org/ 10. 1109/ TPDS. 2020. 29857 01

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/3373087.3375304
https://doi.org/10.1145/3373087.3375304
https://doi.org/10.1145/3373087.3375320
https://doi.org/10.1145/3373087.3375320
https://doi.org/10.1142/S0218126620500292
https://doi.org/10.1142/S0218126620500292
https://doi.org/10.1109/TPDS.2020.2985701
https://doi.org/10.1109/TPDS.2020.2985701

7269

1 3

Efficient tasks scheduling in multicore systems integrated…

 9. Kumar N, Mayank J, Mondal A (2020) Reliability aware energy optimized scheduling of non-
preemptive periodic real-time tasks on heterogeneous multiprocessor system. IEEE Trans Parallel
Distrib Syst 31(4):871–885. https:// doi. org/ 10. 1109/ TPDS. 2019. 29502 51

 10. Deng Z, Yan Z, Huang H, Shen H (2020) Energy-aware task scheduling on heterogeneous comput-
ing systems with time constraint. IEEE Access 8:23936–23950. https:// doi. org/ 10. 1109/ ACCESS.
2020. 29701 66

 11. Moulik S, Chaudhary R, Das Z, Sarkar A (2020) EA-HRT: an energy-aware scheduler for heteroge-
neous real-time systems. In: 25th Asia and South Pacific Design Automation Conference, ASP-DAC
2020, Beijing, China, January 13–16, 2020, pp. 500–505. https:// doi. org/ 10. 1109/ ASP- DAC47 756.
2020. 90452 40

 12. Li T, Zhang T, Yu G, Song J, Fan J (2019) Minimizing temperature and energy of real-time applica-
tions with precedence constraints on heterogeneous mpsoc systems. J Syst Archit 98:79–91. https://
doi. org/ 10. 1016/j. sysarc. 2019. 07. 001

 13. Thammawichai M, Kerrigan EC (2018) Energy-efficient real-time scheduling for two-type heteroge-
neous multiprocessors. Real-Time Syst 54(1):132–165. https:// doi. org/ 10. 1007/ s11241- 017- 9291-6

 14. Cho H, Kim C, Sun J, Easwaran A, Park J, Choi B (2020) Scheduling parallel real-time tasks on the
minimum number of processors. IEEE Trans Parallel Distrib Syst 31(1):171–186. https:// doi. org/ 10.
1109/ TPDS. 2019. 29290 48

 15. Nelissen G, Berten V, Goossens J, Milojevic D (2012) Techniques optimizing the number of pro-
cessors to schedule multi-threaded tasks. In: 24th Euromicro Conference on Real-Time Systems,
ECRTS 2012, Pisa, Italy, July 11–13, 2012, pp. 321–330. https:// doi. org/ 10. 1109/ ECRTS. 2012. 37

 16. Topcuoglu H, Hariri S, Wu M (2002) Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans Parallel Distributed Syst 13(3):260–274. https:// doi. org/ 10.
1109/ 71. 993206

 17. Ilavarasan E, Thambidurai P, Mahilmannan R (2005) Performance effective task scheduling algo-
rithm for heterogeneous computing system. In: 4th International Symposium on Parallel and Dis-
tributed Computing (ISPDC 2005), 4-6 July 2005, Lille, France, pp. 28–38. https:// doi. org/ 10. 1109/
ISPDC. 2005. 39

 18. Masood A, Munir E.U, Rafique M.M, Khan S.U (2015) HETS: heterogeneous edge and task sched-
uling algorithm for heterogeneous computing systems. In: 17th IEEE International Conference on
High Performance Computing and Communications, HPCC 2015, 7th IEEE International Sympo-
sium on Cyberspace Safety and Security, CSS 2015, and 12th IEEE International Conference on
Embedded Software and Systems, ICESS 2015, New York, NY, USA, August 24–26, 2015, pp.
1865–1870. https:// doi. org/ 10. 1109/ HPCC- CSS- ICESS. 2015. 295

 19. Du P, Sun Z, Zhang H, Ma, H (2019) Feature-aware task scheduling on CPU-FPGA heterogeneous
platforms. In: 21st IEEE International Conference on High Performance Computing and Communi-
cations; 17th IEEE International Conference on Smart City; 5th IEEE International Conference on
Data Science and Systems, HPCC/SmartCity/DSS 2019, Zhangjiajie, China, August 10–12, 2019,
pp. 534–541. https:// doi. org/ 10. 1109/ HPCC/ Smart City/ DSS. 2019. 00084

 20. Ahmad I, Kwok, Y (1994) A new approach to scheduling parallel programs using task duplica-
tion. In: Proceedings of the 1994 International Conference on Parallel Processing, North Carolina
State University, NC, USA, August 15–19, 1994. Volume II: Software, pp. 47–51. https:// doi. org/ 10.
1109/ ICPP. 1994. 37

 21. Chung Y, Ranka S (1992) Applications and performance analysis of a compile-time optimization
approach for list scheduling algorithms on distributed memory multiprocessors. In: Proceedings
Supercomputing ’92, Minneapolis, MN, USA, November 16–20, 1992, pp. 512–521. https:// doi. org/
10. 1109/ SUPERC. 1992. 236653

 22. Tsuchiya T, Osada T, Kikuno T (1998) Genetics-based multiprocessor scheduling using task dupli-
cation. Microprocess Microsyst 22(3–4):197–207. https:// doi. org/ 10. 1016/ S0141- 9331(98) 00079-9

 23. Li G, Chen D, Daming W, Zhang D (2003) Task clustering and scheduling to multiprocessors with
duplication. In: 17th International Parallel and Distributed Processing Symposium (IPDPS 2003),
22–26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings, p. 6. https:// doi. org/ 10. 1109/
IPDPS. 2003. 12130 79

 24. Hu W, Gan Y, Wen Y, Lv X, Wang Y, Zeng X, Qiu M (2020) An improved heterogeneous dynamic
list schedule algorithm. In: Algorithms and Architectures for Parallel Processing - 20th International
Conference, ICA3PP 2020, New York City, NY, USA, October 2-4, 2020, Proceedings, Part I, pp.
159–173. https:// doi. org/ 10. 1007/ 978-3- 030- 60245-1_ 11

https://doi.org/10.1109/TPDS.2019.2950251
https://doi.org/10.1109/ACCESS.2020.2970166
https://doi.org/10.1109/ACCESS.2020.2970166
https://doi.org/10.1109/ASP-DAC47756.2020.9045240
https://doi.org/10.1109/ASP-DAC47756.2020.9045240
https://doi.org/10.1016/j.sysarc.2019.07.001
https://doi.org/10.1016/j.sysarc.2019.07.001
https://doi.org/10.1007/s11241-017-9291-6
https://doi.org/10.1109/TPDS.2019.2929048
https://doi.org/10.1109/TPDS.2019.2929048
https://doi.org/10.1109/ECRTS.2012.37
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/ISPDC.2005.39
https://doi.org/10.1109/ISPDC.2005.39
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.295
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00084
https://doi.org/10.1109/ICPP.1994.37
https://doi.org/10.1109/ICPP.1994.37
https://doi.org/10.1109/SUPERC.1992.236653
https://doi.org/10.1109/SUPERC.1992.236653
https://doi.org/10.1016/S0141-9331(98)00079-9
https://doi.org/10.1109/IPDPS.2003.1213079
https://doi.org/10.1109/IPDPS.2003.1213079
https://doi.org/10.1007/978-3-030-60245-1_11

7270 J. Xu et al.

1 3

 25. Orr M, Sinnen O (2020) Integrating task duplication in optimal task scheduling with communi-
cation delays. IEEE Trans Parallel Distrib Syst 31(10):2277–2288. https:// doi. org/ 10. 1109/ TPDS.
2020. 29897 67

 26. Quan Z, Wang Z, Ye T, Guo S (2020) Task scheduling for energy consumption constrained parallel
applications on heterogeneous computing systems. IEEE Trans Parallel Distrib Syst 31(5):1165–
1182. https:// doi. org/ 10. 1109/ TPDS. 2019. 29595 33

 27. Ahmad S.G, Munir E.U, Nisar M.W (2012) PEGA: A performance effective genetic algorithm for
task scheduling in heterogeneous systems. In: 14th IEEE International Conference on High Perfor-
mance Computing and Communication & 9th IEEE International Conference on Embedded Soft-
ware and Systems, HPCC-ICESS 2012, Liverpool, United Kingdom, June 25–27, 2012, pp. 1082–
1087. https:// doi. org/ 10. 1109/ HPCC. 2012. 158

 28. Aba MA, Zaourar L, Munier A (2020) Efficient algorithm for scheduling parallel applications on
hybrid multicore machines with communications delays and energy constraint. Concurr Comput
Pract Exp. https:// doi. org/ 10. 1002/ cpe. 5573

 29. Xu J, Li K, Chen Y (2022) Real-time task scheduling for fpga-based multicore systems with com-
munication delay. Microprocess Microsyst 90:104468. https:// doi. org/ 10. 1016/j. micpro. 2022.
104468

 30. Zhu Z, Zhang J, Zhao J, Cao J, Zhao D, Jia G, Meng Q (2019) A hardware and software task-
scheduling framework based on CPU+FPGA heterogeneous architecture in edge computing. IEEE
Access 7:148975–148988. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29431 79

 31. Rodríguez A, Navarro AG, Asenjo R, Corbera F, Tejero RG, Gracia DS, Núñez-Yáñez JL (2019)
Exploring heterogeneous scheduling for edge computing with CPU and FPGA mpsocs. J Syst Archit
98:27–40. https:// doi. org/ 10. 1016/j. sysarc. 2019. 06. 006

 32. Zhang T, Liu G, Yue Q, Zhao X, Hu M (2019) Using firework algorithm for multi-objective hard-
ware/software partitioning. IEEE Access 7:3712–3721. https:// doi. org/ 10. 1109/ ACCESS. 2018.
28864 30

 33. Abdallah F, Tanougast C, Kacem I, Diou C, Singer D (2019) Genetic algorithms for scheduling in
a CPU/FPGA architecture with heterogeneous communication delays. Comput Ind Eng. https:// doi.
org/ 10. 1016/j. cie. 2019. 106006

 34. Purnaprajna M, Reformat M, Pedrycz W (2007) Genetic algorithms for hardware-software partition-
ing and optimal resource allocation. J Syst Archit 53(7):339–354. https:// doi. org/ 10. 1016/j. sysarc.
2006. 10. 012

 35. Jiang Q, Xu J, Chen Y (2021) A genetic algorithm for scheduling in heterogeneous multicore system
integrated with FPGA. In: 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applica-
tions, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Comput-
ing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA, Septem-
ber 30-Oct. 3, 2021, pp. 594–602. https:// doi. org/ 10. 1109/ ISPA- BDClo ud- Socia lCom- Susta inCom
52081. 2021. 00087

 36. Dai G, Shan Y, Chen F, Wang Y, Wang K, Yang H (2014) Online scheduling for FPGA computa-
tion in the cloud. In: 2014 International Conference on Field-Programmable Technology, FPT 2014,
Shanghai, China, December 10–12, 2014, pp. 330–333. https:// doi. org/ 10. 1109/ FPT. 2014. 70828 11

 37. Shi W, Wu J, Jiang G, Lam S (2020) Multiple-choice hardware/software partitioning for tree task-
graph on mpsoc. Comput J 63(5):688–700. https:// doi. org/ 10. 1093/ comjnl/ bxy140

 38. Hao C, Chen D (2021) Software/hardware co-design for multi-modal multi-task learning in autono-
mous systems. In: 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 1–5. https:// doi. org/ 10. 1109/ AICAS 51828. 2021. 94585 77

 39. Hagras T, Atef A, Mahdy YB (2021) Greening duplication-based dependent-tasks scheduling on
heterogeneous large-scale computing platforms. J Grid Comput 19(1):13. https:// doi. org/ 10. 1007/
s10723- 021- 09554-2

 40. Bertolino M (2021) Efficient scheduling of applications onto cloud fpgas. (ordonnancement efficace
des applications sur cloud fpgas). PhD thesis, Polytechnic Institute of Paris, France. https:// tel. archi
ves- ouver tes. fr/ tel- 03276 708

 41. Shi H, Chen Y, Xu J (2021) An efficient scheduling algorithm for distributed heterogeneous systems
with task duplication allowed. In: 2021 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA,
September 30-Oct. 3, 2021, pp. 578–587. https:// doi. org/ 10. 1109/ ISPA- BDClo ud- Socia lCom- Susta
inCom 52081. 2021. 00085

https://doi.org/10.1109/TPDS.2020.2989767
https://doi.org/10.1109/TPDS.2020.2989767
https://doi.org/10.1109/TPDS.2019.2959533
https://doi.org/10.1109/HPCC.2012.158
https://doi.org/10.1002/cpe.5573
https://doi.org/10.1016/j.micpro.2022.104468
https://doi.org/10.1016/j.micpro.2022.104468
https://doi.org/10.1109/ACCESS.2019.2943179
https://doi.org/10.1016/j.sysarc.2019.06.006
https://doi.org/10.1109/ACCESS.2018.2886430
https://doi.org/10.1109/ACCESS.2018.2886430
https://doi.org/10.1016/j.cie.2019.106006
https://doi.org/10.1016/j.cie.2019.106006
https://doi.org/10.1016/j.sysarc.2006.10.012
https://doi.org/10.1016/j.sysarc.2006.10.012
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00087
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00087
https://doi.org/10.1109/FPT.2014.7082811
https://doi.org/10.1093/comjnl/bxy140
https://doi.org/10.1109/AICAS51828.2021.9458577
https://doi.org/10.1007/s10723-021-09554-2
https://doi.org/10.1007/s10723-021-09554-2
https://tel.archives-ouvertes.fr/tel-03276708
https://tel.archives-ouvertes.fr/tel-03276708
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00085
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00085

7271

1 3

Efficient tasks scheduling in multicore systems integrated…

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Efficient tasks scheduling in multicore systems integrated with hardware accelerators
	Abstract
	1 Introduction
	2 Related work
	2.1 Heterogeneous earliest-finish-time (HEFT)
	2.2 Genetic algorithm approach (GAA) and modified genetic algorithm approach MGAA
	2.3 Real-time priority-driven algorithm (RePTA)

	3 A novel model
	4 Co-scheduling strategy
	4.1 Related knowledge
	4.2 ESHCS
	4.2.1 Task allocation phase
	4.2.2 Task scheduling phase

	5 Experiments
	5.1 Sample generator
	5.2 Comparative experiment on simulation application
	5.2.1 Comparative experiment with ReTPA
	5.2.2 Comparative experiment with other algorithms
	5.2.3 Parameter experiment

	5.3 Comparative experiment on real world application

	6 Conclusion
	Acknowledgements
	References

