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Abstract
The complexity of searching algorithms in classical computing is a classic prob-
lem and a research area. Quantum computers and quantum algorithms can efficiently 
compute some classically hard problems. In addition, quantum machine learning 
algorithms could be an important avenue to boost existing and new quantum-based 
technology, reducing the supercomputing requirements for executing such problems. 
This paper reviews and explores topics such as variational quantum algorithms, ker-
nel methods, and Grover’s algorithm (GA). GA is a quantum search algorithm that 
achieves a quadratic speed improvement as a quantum classifier. We exploit GA or 
amplitude amplification to simulate rudimentary classical logical gates into quan-
tum circuits considering AND, XOR, and OR gates. Our experiments in our review 
suggest that the algorithms discussed can be implemented and verified with rela-
tive ease, suggesting that researchers can investigate problems in the areas discussed 
related to quantum machine learning and more.
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1  Introduction

Quantum mechanics is a framework for understanding micro-universe. At a low 
scale of distance, we find several counter-intuitive phenomena, and physicists devel-
oped a framework to understand this universe, which is, Quantum mechanics. This 
framework provides information on a particle’s state described by a wave function, 
labeled as �(x, t) . The Schrödinger equation describes the time evolution of this 
wave function, which contains all available information about the state [1]:

where i is the imaginary unit, ℏ = 1.054 × 10−34 J s, which is a Planck’s constant, 
��⟩ (t) is time-dependent state. Also, Ĥ(t) is the Hamiltonian operator which, for 
general purposes, represents the energy of the system. This formulation requires 
particular analysis due the notation, and mathematical concepts. In addition, we 
consider that physical magnitudes are in the real domain, ℝ, but the magnitudes in 
Eq. (1) are given by complex numbers, ℂ; therefore, we should talk about new ways 
to define some physical concepts.

Quantum computing (QC) has a good formalization through mathematics and 
physics frameworks. QC is relevant in different fields, such as classical fields theory 
[2–5]), computational security with quantum algorithms [6], physics [7], chemistry 
[8], biology [9], and learning from data as image recognition [10], and neural net-
works [11]. There are more contributions on medical and genetics.

Today, we find a quantum word in different contexts and systems. Some of 
these system require more analysis. Therefore, we share details and classification 
of different systems. Topological Quantum computer implements a finite-dimen-
sional internal state space with no natural tensor product structure and in which 
the evolution of the state is discrete, namely the local Hamiltonian (H) is zero, 
Ĥ = 0. This function has the same definition as in (1). It has good stability to cre-
ate trapped quantum particles [12]. One-way quantum computer (or cluster state) 
prepares a cluster (entangled, graph) state performs single qubit measurements 
on it [13]. Quantum Turing machine computer implements an abstract machine to 
model the effects of a quantum computer. This is also called a universal quantum 
computer model which captures all of the power of quantum computation [14]. A 
quantum universal gate (QUG) model is a sequence of reversible transformation 
which are represented by gates, a.k.a. quantum gates [15]. The graphical depiction 
of quantum circuit elements is described using a variant of the Penrose graphical 
notation [16]. A quantum circuit is a representation of a quantum operation that is 
performed sequentially. Logic qubits are transported on wires (shown by horizon-
tal lines), and quantum gates (represented by blocks) act on the qubits in a typi-
cal quantum circuit. The logical gate is a device that controls or processes data; 

(1)iℏ
� ��(t)⟩

�t
= Ĥ(t) ��(t)⟩ ,
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e.g., the Hadamard H and NOT X gates. Adiabatic quantum computation. This 
model relies on the adiabatic theorem and is closely related to quantum annealing 
[17]. Quantum machine learning (QML) is the integration of quantum algorithms 
within machine learning concepts. QML usually refers to ML algorithms for the 
analysis of classical data executed on a quantum computer, quantum-enhanced 
machine learning [17, 18]. We further recently found other classification based 
on speedup [9]. Exponential speedup. This model requires a quantum computer to 
make a better-quality approximation computationally tractable. In general, this is 
thought for high dimension, or degree of freedom systems. Polynomial speedup. 
This kind models do not usually need more qubits than are already needed to do 
calculations. Heuristic speedups. This model has great potential to be explored 
when quantum computers are working. We expect that our understanding of the 
performance of these heuristics will improve since the speedup level has some 
unknown issues. Interfacing with classical algorithms. This kind of paradigm 
has limitations rely on the ability to share the quantum and the classical com-
puter. Big data and quantum RAM. This model has limitations associated with 
the superposition concept, and with the large dataset.

All above models are one scheme to perceive the quantum computing area, but 
this is an area with more details, and we will probably have other similar sketch 
soon.

This area and its paradigms such as adiabatic quantum computer, and QML can 
improve areas such as cybersecurity and cryptography which impacts in our com-
munication systems. In addition, quantum algorithms can improve the performance 
of supercomputing. QC is one of the most popular concepts in the last decade, and 
we expect significant results and revolutionary ideas in this century.

As was discussed, QC has different models which can harness the laws of quan-
tum mechanics to process information. We conceive supercomputing as the process 
of doing complex and large calculations using supercomputers. These supercom-
puters can use parallel processing. We can perform computations based on some 
quantum mechanical concepts such as superposition, entanglement, teleportation, 
and Dirac notation, among others to show the possible power of QC over classical 
computation that can possibly reduce the load in supercomputers. Many theoretical 
works prove a quantum advantage. However, current quantum devices are not at the 
stage to reflect these improvements in practices. We aim to review such approaches 
in QC and discuss possible implementations briefly.

In this paper, we review the Grover’s algorithm and quantum machine learn-
ing. Our work is motivated by the amplitude amplification associated with Grovers’ 
Algorithms. We exploit amplitude amplification to propose a method to simulate 
classical logical circuits into quantum circuits. We use the CNOT and Toffoli gates 
to construct AND, OR, and XOR gates. In this review, we showed that we could con-
struct an oracle for Grover’s algorithm for provided classical circuit and calculate 
the initial input states such that the output of the classical circuit is one with high 
probability.

This paper contains the following sections: Context, Models, and Methods 
(Sect.  2) with a description of different quantum computing paradigms. We pre-
sent few algorithms in the machine learning context with their performance. In 
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particular, this section discusses Grover’s algorithm and its implementation. We 
share the implementation code with Qiskit [19], in python [20, 21]. We present 
related works in Grover’s algorithm with brief introduction on variational quantum 
algorithm and kernel methods in Sect. 3. The experimental setup, proposed methods 
and algorithm is described in Sect. 4. We present results and discussion in Sect. 5, 
and future works and conclusions are drawn in Sect. 6.

2 � Context and models

As mentioned in Sect. 1, there are different branches in QC. QC is an active research 
field, and we can expect regular changes. However, for the scope of this paper, we 
consider two paradigms: quantum machine learning and quantum search algorithms. 
Some relevant algorithms for QC, such as Deutsch, Bernstein–Vazirani, Simon, 
Grover, and Shor will be discussed in Sect. 2.2. The following subsection presents 
the quantum computing topics explored in this paper.

2.1 � Quantum computing

Quantum computing is an application of quantum theory calculus to calculate 
the probabilities of the output of measurements on physical system [22]. Quan-
tum algorithms implement transformations which are matrices, in terms of Linear 
Algebra, and those have their particular (Dirac) representation [23]. Each transfor-
mation requires an operator to create superposition, rotation (on state), or another 
change on the system. Operator act on states. Each of those states has the form 
��⟩ = � �0⟩ + � �1⟩ , which is the general state in the {�0⟩ , �1⟩} basis, where {�, �} 
are complex numbers, a.k.a. amplitudes [24]. In quantum circuit model, one opera-
tor, namely acting on states, has the form:

Where �1⟩ = (0 1)T , �0⟩ = (1 0)T , and ⟨1� = �1⟩† , ⟨0� = �0⟩† live in the dual space. 
The product �k⟩ ⟨l� is an operator, k, l ∈ {0, 1} , and the 1√

2
 is a normalization factor. 

Equation. (2) is the matrix representation of Hadamard gate and (3) is its Dirac 
(bracket) representation. H transforms single-qubit as ��⟩ . Nonetheless, we can pro-
pose a generalization, it means if we apply H on each qubit in a system with N 
qubits, the system is now on superposition.

(2)H =
1√
2

�
1 1

1 − 1

�
,

(3)H =
1√
2

�
�0⟩ ⟨0� + �0⟩ ⟨1� + �1⟩ ⟨0� − �1⟩ ⟨1�

�
.
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2.2 � Quantum algorithms

Quantum algorithms can be of two types: those to run on quantum computers, or to 
run on classical computer with quantum concepts executed as subroutine in quantum 
device. Regardless the type, these algorithms should improve speedup or processing 
of information.

Table 1 shows four basic quantum algorithms, their mappings, and their functions.
Where Deutsch function maps from one qubit to one qubit, Deutsch–Jozsa and 

Bernstein–Vazirano function means maps from n qubits to one qubits, and Simon 
maps n qubits to one n qubits. On the other hand, ⋅ and ⊕ are product modulo 2, and 
exclusive OR, respectively.

Table 2 presents ten classical algorithms that are proven to achieve speedup with 
quantum computing.

Quantum algorithms are those algorithms that run on a quantum computer. These 
algorithms achieve performance or efficiency improvements over any classical coun-
terparts. Quantum algorithms and their applications include cryptography, medicine, 
search and optimization, solving linear equations, and simulating quantum systems 
[26]. Shor’s algorithm was one of the first algorithms to deliver the application of 
quantum computers [27]. Given an integer N = a × b , where a and b are the prime 
numbers, Shor’s algorithm factorizes this problem in O(logN)3 complexity. Most cryp-
tography relies on the difficulty of integer factorization. Shor’s algorithm implies that 

Table 1   Some quantum algorithms, mapping and a brief function description

Problem Maps Function

Deutsch f ∶ {0, 1} → {0, 1} f(x) balanced and constant
Deutsch–Jozsa f ∶ {0, 1}n → {0, 1} Black box oracle function.
Bernstein–Vazirano f ∶ {0, 1}n → {0, 1} f (x) = a ⋅ x

Simon f ∶ {0, 1}n → {0, 1}n f (x) = a⊕ x

Table 2   This table was inspired 
by ref. [25]. The column 
headed “Algorithm” refers the 
classical learning method. The 
column headed “Speedup” lists 
how much faster (if any) the 
quantum variant is compared 
with the best known classical 
version. And the column headed 
“Generalization Performance” 
indicates whether this quality 
of the learning algorithm was 
studied in the relevant articles

Algorithm Speedup Generalization 
performance

K-medians Quadratic No
Hierarchical clustering Quadratic No
K-means Exponential No
Principal components Exponential No
Associative memory No
Neural Networks Yes/Numerical
SVM Quadratic/Exponential Yes/Analytical
Nearest neighbors Quadratic Yes/Numerical
Regresssion Quadratic No
Boosting Quadratic YesYes/Numerical
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these systems are not safe against large quantum computer attacks. Possible applica-
tions and mathematical explanations of Shor’s algorithm are beyond this paper’s scope. 
Please refer [27–29] for detailed explanations and discussion on possible applications. 
Harrowe et al. first proposed a quantum algorithm for linear system [30]. Deutsch and 
Jozsa algorithm make a single query to determine whether a function from ℤn

2
 to ℤ2 is 

balanced or constant [23]. For this problem, any classical algorithm requires at least 
two function queries. Numerous quantum machine learning algorithms and applica-
tions have been proposed in recent years. In [31–34] the authors describe some of those 
algorithms with data encoding techniques, measurements, and their applications.

Grover’s algorithm enables us to find an item x from an unstructured dataset of N 
item with O(

√
N) operations [35–37]. With the algorithm shown in Fig. 1, the goal is 

to find w,  given an oracle Uf  with f ∶ {0, 1}n → {0, 1},

and

where the phase oracle is

where

Then

and

f (x) =

{
1 if x = w

0 else if,

0(x) =

{
0 if x = 000...0

1 else,

Uf �x⟩ = (−1)f (x) �x⟩ ,

Uf ∶

�
�w⟩ → − �w⟩
�x⟩ → �x⟩ ∀x ≠ w.

Uf = 1 − 2 �w⟩ ⟨w� ,

Fig. 1   Quantum circuit for the general version of Grover algorithm
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With this algorithm we want to find the input x ∈ {0, 1}n such that f (x) = 1. 
With f ∶ {0, 1}n → {0, 1} as an unknown function, where we implemented Uf  as 
an oracle. y = w with highest probability. T = H⊗nUf0

H⊗n, from  (4), we obtain 

Uf0
= 2

�
�0⟩ ⟨0�

�⊗n
− I. This result is known as reflection operator and it will be 

used soon [38].
Two registers used in Grover’s algorithm, n qubits in the first register and one qubit 

in the second register, are the critical architectural structure to achieve this speedup 
complexity over the classical algorithm [39]. We start the circuit for Grover’s Algo-
rithm by creating a superposition of 2n computational basis states in the top register (we 
show the general version of Grover’s algorithm Fig. 1). We initialized all the qubits in 
the first register to state �0, ......, 0⟩ . After applying the n Hadamard gate, H⊗n , on the 
first, we have the state:

Where N = 2n . Note that ��⟩ is the superposition here. If we start the second register 
with a single qubit in state �0⟩ or �1⟩ , after the Hadamard we achieve the respective 
Hadamard basis [40]. Let f ∶ {0, 1}N → {0, 1} be a function defined as:

We define Uf  as an oracle often referred to as a black box, defined as,

When we apply Uf  on the state ��⟩ , the state of the second register does not 
change (4), but the state of the first register changes, and we call this state ��⟩1 . We 
assume that the Hadamard basis in the second qubit is �−⟩ . Here, ��⟩ and ��⟩1 lives 
in HN . Equation. (7) defines the effect of an oracle on the achieved superposition.

Due to Quantum parallelism,, we can observe all the database elements simultane-
ously at the quantum level. If the position of the searched element is known, then it 
will be labeled as the negative value of i in equation (7). It is impossible to get this 
result at the classical level. Before we perform the measurement and collapse our 
superposition in the classical bits, we apply another set of Hadamard gates, unitary 
operator, and n Hadamard gates for O(

√
N) times. From (4), let us define this uni-

tary operator, Uf0
 as

(4)Uf 0
∶

�
�0⟩ → �0⟩⊗n

�x⟩ → − �x⟩ ∀x ≠ 00...000.

(5)�𝜓⟩ = H⊗n �0⟩ = 1√
N

N−1�

x∈{0,1}n

�x⟩ .

f (x) =

{
1 if x is the searched element

0 Otherwise.

(6)Uf (�i⟩ �j⟩) = �i⟩ �j⟩⊗ f (i).

(7)��⟩1 �−⟩ = Uf ��⟩ �−⟩ = 1

N

N−1�

i=0

(−1)f (i) �i⟩ �−⟩ .
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When we apply this operator on state �1 we have,

Equation (9) is the state of the first register and the second register is still on state 
�−⟩ by assumption. Notice, ��⟩ is defined in terms of {w,w†} states, w represents the 
summation of all states that can be solution to search problem; and w† is the summa-
tion of all states which are no solutions. Coefficients are factor normalization con-
strained by the normalization condition, 

∑
i �ci�2 = 1.

Thus, we can measure this state on both the register to evaluate the function f and 
get the probability of finding the x record. Below, we present the implementation of 
this algorithm. Assuming we have an output of 1 for the function f with high prob-
ability, we calculate the probability of all possible input qubits on both the register. 
It is guaranteed to achieve the mentioned output. Many research are benefited from 
effective implementation of Grover’s algorithm. We present such works in the fol-
lowing section.

3 � Related works

This section discusses some works on Grover’s algorithm and Quantum Machine 
Learning. In 2018, Mandviwalla et al. tested the capabilities of then-available IBM 
quantum computers via four qubit implementation of Grover’s algorithm [41]. Their 
initial result showed then quantum computers could only solve small problems with 
a small amount of data accurately and that there is still some time before a quantum 
computer can surpass any classical computer. However, for the first time, in 2021, 
Zhang et al. presented benchmarking results for successful execution of five-qubits 
searching algorithm on IBM quantum processor [42]. The errors associated with the 
quantum devices and searching algorithms hinder the efficient implementation of 
these algorithms in NISQ devices. Zhang et al. proposed three strategies to improve 
the performance of quantum search algorithms: Hybrid classical-quantum search. 
Divide-and-conquer search. Quantum Search optimization via utilization of partial 
diffusion operator.

Currently, the efficient implementations of Grovers’ algorithm on NISQ devices 
are limited to a few qubits. But there are impressive theoretical contributions based 
on the Grovers’ search algorithm.

Schwabe and Westerbaan improved the complexity of solving multivariate quad-
ratic MQ over �2 from O(2n) to O(2

n

2 ) [43]. They evaluated the quadratic equa-
tions at a superposition implementing Grover’s “oracle” for all possible inputs. 
They claim even ninety-two logical qubits can break MQ instances. Chakraborty 
and Maitra achieved an exponential speedup in checking the resiliency property of 

(8)Uf0
= 2 ��⟩ ⟨�� − I.

(9)
��⟩ =

�
2 ��⟩ ⟨�� − I

�
��⟩1

=

�
2n − 1

2n
�w†⟩ +

�
1

2n
�w⟩ .
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a Boolean function [44]. They analyze the Grover algorithm for quadratic improve-
ment in query complexity. In the proposed strategy, quantum query complexity for 
resiliency analysis in terms of input variables requires polynomial measurements. 
Previously it was exponential in the worst case. The local search problem is often 
combined with Grover’s algorithm for global optimization of a problem (system). 
Grover’s algorithm promises a quadratic speedup for searching problems. Bulger 
combined the Grover algorithm with a local search technique to solve the problem 
that a local search technique can not solve alone [45]. The problem definition is 
mathematically dense, so we leave [45] as a reference for the interested reader. The 
amplitude amplification associated with Grovers’ algorithm has been applied in pat-
tern recognition and quantum machine learning.

Tezuka et al. applied Grover search for image pattern matching [46]. They com-
bined Amplitude Approximation Encoding (AAE), which uses a constant circuit-
depth variational quantum circuit for data encoding into the quantum state [47] with 
the inversion-test operation that determines the projected quantum state. The pro-
jected state tries to match the targeted query set for pattern matching. The author 
claims the proposed framework benefits NISQ and FTQC devices. However, the 
author barely pays attention to the computational overhead in the AAE circuit. 
Grover Search had been implemented for learning in Quantum Neural Network. 
Du et  al. reformulated the classification task as a searching problem [39]. They 
presented the application of Grover Search in Quantum Machine Learning (QML). 
We will briefly discuss QML in Sect. 3.1. The authors replaced the first oracle of 
Grovers’ algorithm with an authors-defined variational quantum circuit and multi-
ple controlled qubits gates along Z-axis. They claim that the constructed circuit will 
reformulate the chosen classically hard classification task as a searching problem 
that can be executed with possible quantum advantage in NISQ devices [39]. Some 
applications of quantum machine learning can provide an advantage over classical 
counterparts. Support-vector machine (SVM) can reformulate and solve the classical 
problem for N features and M data in O(log(�−1)poly(N,M)) with � accuracy [48]. 
However, Rebentrost et al. proved that training and classification can be done with 
O(logNM) run time complexity using quantum SVM [49].

Grovers’ search algorithm has been used in cryptography, optimization, searching 
and sorting, machine learning classification, and many others that we can not argue 
to be aware of. The above-presented applications are some applications of Grover’s 
application in different areas.

In the next section, we discuss the possible implementation of quantum comput-
ing from the Quantum machine learning perspective.

3.1 � Potential applications in quantum machine learning

In this section, we briefly describe variational quantum algorithms and kernel meth-
ods. These are the potential models to implement quantum computing as a quantum 
classifier with application in Machine Learning.
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3.1.1 � Variational quantum algorithms

Variational Quantum Algorithms (VQA) address the circuit depth limit, and a lim-
ited number of qubits constrain in current (near-term) quantum devices by training 
the parameterized quantum circuit as a classifier. In practice, VQAs run the param-
eterized quantum circuit in the Quantum devices and parameter optimization on the 
classical optimizer. VQAs mitigate the noise of the quantum circuit because it keeps 
the depth of the quantum circuit shallow. VQA is considered the prime proposal 
to achieve the quantum advantage with near-term quantum devices [50]. Given any 
problem (we believe classification for our simplicity), the first step is to define the 
loss (or cost) function C. C encodes the solution to our problem. We then perform 
the quantum operation using ansatz to optimize the parameter � . Define the optimi-
zation task as:

Equation (10) is trained in quantum-classical loop to obtain �∗ that is expected to 
approximate the real parameters. One thing to note here is that while we use the 
classical optimizer to train � , the VQAs use quantum devices to estimate C. This 
behavior is often considered the trade-off of VQAs. Once we define the cost func-
tion and ansatz, we are ready to train the parameter � and solve the problem defined 
by Eq. (10). Using the information in the C and optimization technique like gradient 
descent, it is proved that we can guarantee the speedup and convergence of opti-
mizer for many optimization problems such as Eq. (10).

The most prominent implementation of VQA, sometimes also called Quantum 
Neural Network (QNN) is to tackle the classification task [51]. Here we briefly dis-
cuss the implementation of VQAs in the Grover search algorithm for classifica-
tion. Du and Tao reformulated the classification task as the search algorithm using 
VQAs. The Grover-search-based quantum learning scheme (GBLS) dramatically 
reduces the number of measurements, and it outperformed the classical classifier in 
the measure of query complexity [39, 52]. Following the optimization problem in 
Eq. (10), we can define the update rule for � as:

where � is the learning rate, Bi is the i − th batch for batch gradient descent and B 
is the total number of batches. We can use varied B for optimization of different 
quantum classifiers. One can use only Grover-based searching for the training classi-
fier and the prediction is done using optimized Variational Quantum Circuit (VQC). 
Recall from Grover 1996 article [36], the algorithm finds the record, a, from the 
dataset of size N by iteratively applying a predefined oracle

(10)�∗ = argmin
�

C(�).

(11)�(t+1) = �(t) −
�

B

B∑

i=1

∇L(�(t),Bi),

(12)UOf
= I − 2 �a⟩ ⟨a� ,
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and a diffusion operator defined on Eq. (8), and Eq. (5) as the input state. See Fig. 1 
for the implementation of the circuit for the Grover algorithm. We can replace the 

predefined oracleUp in Grovers’ Algorithm with VQC UL1
=
∏L

l=1
U(�l) , where L 

is the depth Up , �l are the parameters to be optimized at layer l of Up . More gen-
erally, the VQC consists of a data-encoding circuit S(x) and parameterized circuit 
W(�) applied to the computational basis state. The operation can be defined as 
��⟩ = W(�)S(x) �0⟩N , where N is the number of qubits. A detailed implementation of 
VQC can be found on [53, 54]. the VQA with VQC is easy to implement in NISQ. 
However, the training and optimization of parameters can be troublesome. The next 
section briefly discusses the different strategy, kernel methods.

3.1.2 � Kernels

The kernels method is an eminent tool in patterns analysis to identify nonlinear 
relationships in any given dataset [55]. The fundamental of kernel methods lies in 
data embedding into higher dimensional Hilbert space where they are easy to ana-
lyze. The kernel method uses kernel functions that estimate the similarity between 
data in higher dimensional space by calculating their inner product. We can switch 
between different kernel methods simply by switching between the kernel functions. 
In Quantum computing, this approach corresponds to changing the data encoding 
strategy.

Here we define a data encoding strategy. Let � ∶ X → F  be a feature map for a 
input space X  and k ∶ X × X → ℂ be a real or complex values positive definite func-
tions for two data points.

Definition 1  (Modified from Def. 2 of [32]): Quantum Kernel is defined as the inner 
product between two data encoding feature vectors with x, x� ∈ X

We define ⟨. �.⟩ as the inner product of two pure quantum states.

Quantum models are often considered linear models in feature space. We can 
estimate Eq.  (13) using quantum computers that can calculate the inner product 
between two pure quantum states.

Let us define a Hermitian operatorM acting on a vectors in Hilbert space H . We 
can define M as

where �i are the eigenvalues of M [56]. � ⟩ ⟨ � is the outer product and ��i⟩ is an ortho-
normal basis in H . M is an observable or a Hamiltonian. �i s are the measurements 

(13)k(x, x�) =∣ ⟨�(x)� ∣ �(x)⟩ ∣2

(14)M =
�

i

�i ��i⟩ ⟨�i� ,
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associated with ��i⟩ ⟨�i� . Now we define quantum models as a function f of data 
input x:

Notice that Eq.  15 is in the form ⟨ � ⟩ and can be calculated as an inner product 
which we have defined as kernel methods. Thus, any quantum models can be con-
sidered kernel methods, and those models are a.k.a. quantum neural networks; how-
ever, based on the definition 1 those are closely related to kernel methods. Refer-
ence. [31, 32, 55, 57] investigates in-depth on quantum kernels. The scope of this 
paper is not to construct a quantum classifier but to relate quantum classifiers as 
kernel methods. The mathematical definition of VQA is closely related to the kernel 
methods. In both approaches, we analyzed the data in higher-dimensional Hilbert 
space. Previously we discussed how VQAs could reformulate classification tasks as 
searching problems. Constructing an oracle is an essence of implementing Grover’s 
algorithm for quantum machine learning.

Below, we present an elementary implementation for constructing an oracle using 
the universal gates, AND, XOR, and OR gates.

4 � Algorithm implementation

4.1 � Experimental setup

Below we present a method and experiment for the proposed work. We ran the 
experiment using the Qiskit library, IBM open-source software for working with 
quantum computers (refer [58] for details). Our experimental results are divided into 
two parts; a) Simulation Results. b) Quantum Computer Results. While simulator 
experiments are executed “qasm_simulator” and utilized up to eight qubits, due to 
the limited available qubits in real quantum computers, we restricted ourselves to 
two qubits experiment.

(15)f (x) = ⟨�(x)�M ��(x)⟩ .

Table 3   An example of input to 
an algorithm: input Number of 
qubits and clauses

Qubits Clauses

3

4 0 AND 1 1 XOR 2 2 OR 3

Fig. 2   Gates and their representation in a circuit
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4.2 � Methods

The proposed algorithm  1 requires users to initialize the number of qubits. With 
the number of the qubits fixed, users can define operations between these qubits as 
clauses in format qubit_number, Universal_gates, qubit_number. Based on individ-
ual clause, one of two or three qubits gates, (see Fig. 2b, a, c for gates visualization) 
is applied to circuit in sequence. The algorithm combines these gates to construct 
a circuit, U. U is applied as the first oracle to Grover’s algorithm. Exploiting the 
amplitude amplification, the final circuit will output probabilities of possible states 
in O(n + c) time complexity in term of number of qubits n and number of clauses c. 
The state with the highest probabilities guarantees to yield 1 on measurement for the 
provided clauses. One example for possible input sequence is provided in Table 3.

The table represents the circuit initialization with four qubits and three clauses. 
For these three clauses the algorithm first applies AND gate Fig.  2b to the state 
H⊗4 �0⟩ , followed by XOR gate Fig. 2a, and OR gate Fig. 2c in sequential order. We 
aim to predict the input sequence based on these clauses, so the final measurement is 
1. As mentioned before, we limit ourselves to universal gates. Below we present the 
construction of these gates.

We implemented the XOR gate Fig. 2a using two CNOT gates with two circuit 
depth. The input qubits are control qubits, and the ancilla qubit is a target qubit. In 
our example of 1 XOR 2, (1, 2), are the control qubits. Using two CNOT gates, we 
forced our circuit to result 1 on measurement if only either control qubit is 1.

The AND gate Fig. 2b is implemented using a Toffoli gate with one circuit depth. 
Similar to XOR gate, the input qubits are the control qubits and ancilla qubit is a 
target qubit. If both control qubits are in �1⟩ state, the output will be one, else zero.

The OR gate Fig. 2c is implemented using a Toffoli and 2 CNOT gates with three 
circuit depth. For the selected gates, output is one if and only if one of the input 
gates has value 1.

Apart from initialized qubits, n, for each clause we add one extra qubit. For our 
example with three clauses, we need three extra qubits, c, here c = 3 , resulting 
total of ( n + c ) qubits circuit. These additional requirements of ancilla qubits, and 
up to five qubits access from IBM, limit us to implement two/three qubits inputs 
with two clauses in a real quantum computer. The oracle, U, is constructed under 
these abstractions and mathematical definition described in the introduction sec-
tion. A Hadamard operation, H⊗(n) �0⟩ is applied resulting state �Ψ⟩ . We perform 
U �Ψ⟩ operation and apply a diffuser, US , before the measurement. US is universal. 
Thus, any two oracles with the same number of input qubits can use the same dif-
fuser. An example of a complete circuit with four qubits and three universal clauses, 
�q0⟩AND �q3⟩ , �q1⟩XOR �q2⟩ , and �q2⟩AND �q3⟩ , is shown in Fig. 3. For a circuit 
of 4 qubits and three clauses, we can see that we need three additional qubits. These 
qubits are essential part of an algorithm. The first layer, l1 , has Hadamard operations, 
followed by UUS and measurement.
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Based on our algorithm and methods defined we compare and argue on the results 
from simulation and quantum computers in the next sections.

5 � Results and discussion

As mentioned previously and shown in Fig. 3, we need c extra qubits to process c 
clauses, where c is the number of clauses. Thus for experimental purposes on real 
quantum computers, we are limited to implementing two qubits circuit with two 
clauses as an input under five qubits constraint from IBM. Under these settings, 
we executed our experiments. We experimented on “ibmq_bogota” and “ibmq_
santiago” backend for quantum computers and on “aer_simulator” for simulation. 
On both quantum computer backend, our submitted job had a queue of approxi-
mately four hundred. So, each experiment took about half an hour to execute. 

Fig. 3   Quantum circuit for Grover algorithm with user-defined oracle on clauses 
�q0⟩AND �q3⟩ , �q1⟩XOR �q2⟩ , and �q2⟩AND �q3⟩ . Note that we need seven qubits in total. For c clauses, 
three in this case, we require c additional qubits and one output qubit, resulting (n + c + 1) qubits quan-
tum circuit. The circuit depth for an oracle is (2

∑c

i=1
Gi) + 1 , where Gi is individual gate depth. Refer to 

figures in Fig. 2 for actual circuit depth for each gate
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We acknowledge that some institutions might provide better quantum computers 
and achieve better results. But for this research purpose, we limit ourselves to the 
IBM quantum laboratory.

Consider these set of clauses: 0 AND 1 1 XOR 2 in a 3 qubits circuit. Upon 
the input of 110 the circuit yields 1 analytically. Given such clauses, our oracle, 
U, is guaranteed to find these input sequence with a high probability, 0.776 in 
this case, (Fig. 4). To clarify, consider the first clause 0 AND 1. One can imme-
diately conclude that it yields 1 if and only if both the inputs are 1. Combining 
this result with the second clause, 1 XOR 2, it is only possible to obtain 1 as an 
output if and only if the third qubit is 0. So, without looking at any result, one can 
confirm that the possible input to obtain 1 as output for given clauses is 110. Our 
algorithm obtains the same result. We provide a histogram Fig. 5 for four qubits 
circuits inputs with three clauses;0 AND 3 1 XOR 2 2 AND 3. We get 1011 input 
sequence with a probability of 0.453. One can verify that these inputs hold fol-
lowing previously explained clarification.

In two of the provided examples, we observe that the probability of the right 
input sequences decreases as we increase the number of qubits. However, this 
hypothesis does not always hold. Furthermore, as we increase the number of 
qubits, we will have different options for right input sequence. Tables 4, 5 pro-
vide the result for five qubits with the clauses: 0 AND 1 1 XOR 4 2 OR 4 3 XOR 
0 and eight qubits circuit with clauses: 0 AND 1 1 OR 2 2 XOR 3 3 XOR 4 4 
OR 6 5 AND 7. One can look in the table and find various possible answers. We 
only highlight the one with the highest probability. The only constraint it respects 
is the sum of probabilities has to be 1. We do not have any limitations on the 
number of clauses. The only constrain on our algorithm is that the control qubit 
precedes universal gate followed by target qubit. The simulations results looks 
satisfying. However, the result is very different when we run such experiments in 
real quantum computers. Below we compare three results obtained on simulations 
and quantum computers.

Fig. 4   Histogram for clauses 0 AND 1,1 XOR 2 on 3 qubits circuit
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1.	 An experiment for a clause 0 AND 1 and 1 XOR 0. Figure 6 illustrates a histo-
gram with probabilities for a clause 1 on simulation and quantum computer. We 
can visualize that histograms (Fig. 6a, b) gives different results under the same 
operations. This is because the simulation has a higher degree of fault-tolerant 
and is prone to provide better results than the actual quantum computer. Error 
mitigation in quantum devices is an active area of research. Some of the work can 
be found on [59–61].

2.	 An experiment for a clause 0 XOR 1 and 1 AND 0. Figure 7 illustrates the 
histogram of state probabilities for the above clause. We see while simulation 
provides the resulting state as �11⟩ with the highest probability of 0.267 followed 
by state �01⟩ with a probability of 0.26, real quantum provides different results, 
state �10⟩ with a probability of 0.281 followed by a state �01⟩ with a probability of 
0.256. If we follow the descriptions from Sect. 4.2 and replace Universal gates 
in clauses 2 by the quantum gates provided in Fig. 2, we can analytically verify 

Fig. 5   Histogram for clauses 0 AND 3,1 XOR 2, 2 AND 3 on 4 qubits circuit. rest is the probabilities of 
the states that are not shown in histogram. states ∈ {0, 1}4

Fig. 6   Simulation and quantum computer results for 0 AND 1 and 1 XOR 0 clauses
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that state �11⟩ satisfy the clause. In practice, the results from quantum computers 
are probabilistic rather than deterministic. This means the same experiment is 
conducted multiple times, and the result is sampled from the generated probabil-

Fig. 7   Simulation and quantum computer results for 0 XOR 1 and 1 AND 0 clauses

Fig. 8   Simulation and quantum computer results 0 AND 1 clause

Table 4   Probabilities values for five qubits

Table 4 presents the probabilities values for five qubits circuit with four clauses: a. 0 AND 1 b. 1 XOR 4 
c. 2 OR 4 d. 3 XOR 0
Bold values indicate largest probability

String Probability String Probability String Probability String Probability

11111 0.02051 11010 0.01465 00000 0.02637 10000 0.02441
01100 0.02148 10011 0.02441 10110 0.02441 11001 0.01953
01011 0.02832 01110 0.02637 00010 0.03516 11100 0.25879
11011 0.01465 01000 0.03125 01111 0.02930 01010 0.03418
01001 0.03027 00101 0.01855 10111 0.01660 00100 0.02344
11000 0.02734 10101 0.02051 01101 0.02734 00011 0.02441
10001 0.02441 00111 0.01563 00110 0.01953 11110 0.02051
10100 0.03223 11101 0.02051 10010 0.02539
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Table 5   Probabilities values for eight qubits

String Probability String Probability String Probability String Probability

00110111 0.001953125 00100110 0.003906250 00100100 0.002929688 11011110 0.004882813
00001101 0.000976563 00011101 0.002929688 00110000 0.002929688 01010010 0.006835938
01010000 0.000976563 00111000 0.004882813 00011010 0.000976563 11011000 0.001953125
11101110 0.001953125 01111100 0.004882813 00010101 0.004882813 10011011 0.007812500
00100001 0.002929688 11011101 0.005859375 11100101 0.003906250 01000100 0.001953125
01010100 0.003906250 00011000 0.001953125 00000110 0.004882813 10011111 0.003906250
10110011 0.001953125 01000011 0.003906250 11001010 0.001953125 01101010 0.001953125
01000110 0.001953125 01000001 0.002929688 11110111 0.002929688 11011001 0.005859375
10111101 0.001953125 00000000 0.002929688 00101010 0.003906250 11110000 0.002929688
01001011 0.001953125 10010001 0.003906250 10110000 0.005859375 10001111 0.007812500
00000001 0.005859375 10000100 0.007812500 01111000 0.001953125 00001100 0.004882813
10011100 0.001953125 10011000 0.004882813 11011010 0.008789063 10111110 0.003906250
10001100 0.002929688 10001101 0.003906250 11100111 0.031250000 11000011 0.003906250
10010000 0.002929688 01111011 0.003906250 11111000 0.000976563 01110000 0.002929688
10001001 0.002929688 00010001 0.005859375 01100100 0.005859375 00011001 0.002929688
00110011 0.000976563 00101001 0.005859375 01011000 0.002929688 01010011 0.001953125
00011110 0.000976563 01001101 0.002929688 10101110 0.004882813 11110010 0.002929688
01100111 0.000976563 11101011 0.001953125 11110001 0.009765625 01000010 0.003906250
10100111 0.003906250 10001011 0.004882813 01110010 0.002929688 10001110 0.003906250
10111100 0.001953125 11100001 0.005859375 01011100 0.004882813 10110010 0.003906250
11000001 0.004882813 11101001 0.002929688 11010010 0.001953125 01100010 0.004882813
01110100 0.000976563 01101000 0.003906250 01010111 0.004882813 00000011 0.006835938
10100100 0.003906250 10101111 0.003906250 11000110 0.003906250 10100011 0.003906250
11010110 0.002929688 11101000 0.002929688 00010110 0.005859375 10011010 0.004882813
11111001 0.004882813 11001110 0.001953125 10110101 0.002929688 01011011 0.005859375
00101100 0.000976563 01010101 0.003906250 11011100 0.002929688 11101101 0.043945313
00101000 0.003906250 00000010 0.005859375 01000000 0.002929688 10000110 0.001953125
01001110 0.002929688 11011111 0.003906250 11010001 0.003906250 01010001 0.004882813
11000111 0.002929688 01011010 0.002929688 00010100 0.000976563 01011101 0.003906250
00001111 0.002929688 11111111 0.001953125 01001010 0.006835938 11111011 0.005859375
10100101 0.002929688 10010110 0.003906250 01111010 0.005859375 01100001 0.003906250
10010111 0.001953125 10010101 0.005859375 00001110 0.002929688 10000111 0.001953125
11100110 0.002929688 11101111 0.038085938 10100001 0.004882813 11010111 0.002929688
01001111 0.001953125 11010100 0.000976563 10111010 0.002929688 01101111 0.003906250
01110101 0.003906250 00011111 0.005859375 11100010 0.003906250 10100110 0.003906250
11110100 0.000976563 11001000 0.003906250 00110101 0.004882813 11010011 0.003906250
10111011 0.003906250 00101111 0.003906250 10001000 0.001953125 10101000 0.003906250
11101100 0.001953125 00010010 0.005859375 01010110 0.002929688 11000000 0.005859375
11011011 0.002929688 00111101 0.002929688 00101101 0.003906250 11100011 0.001953125
01100101 0.002929688 11111010 0.002929688 00001000 0.002929688 01101110 0.004882813
10110111 0.002929688 11110011 0.001953125 00111011 0.001953125 11110101 0.006835938
01100110 0.001953125 01100011 0.004882813 10000010 0.003906250 00000100 0.000976563
00111111 0.002929688 00100010 0.004882813 01111101 0.002929688 10110110 0.002929688
10101010 0.001953125 00011011 0.004882813 11100100 0.003906250 10101100 0.001953125
00111110 0.002929688 00100000 0.002929688 10011101 0.001953125 01011111 0.002929688
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ity distribution. Measurements in quantum devices are beyond the scope of this 
paper. Interested readers can refer to [56, 62].

3.	 An experiment for a clause 0 AND 1. Figure 8 illustrates the surprising result. 
Analytically, one can immediately verify that for a clause 0 AND 1, �11⟩ is the 
valid input state. While Fig. 8a yields the targeted state with 1 probability, sur-
prisingly, Fig. 8b shows that the probability of obtaining the targeted state �11⟩ 
is approximately to 36% when the experiment is executed on actual quantum 
computers. This probability is lower than flipping a coin. Due to probabilistic 
approach for quantum measurement, the circuit was executed for 5000 shots. 
Unfortunately, current quantum computers are noisy/error-prone [63, 64] and 
significantly affects the results. There are numerous works for error-corrections 
and building fault-tolerant quantum devices. Decoherence Noise, Control Noise, 
Pulse Shape noise, Cross talk noise, and Leakage noise are few noises classes 
that accompany errors in quantum devices. Although quantum computers’ results 
tries to mimic the simulation results, these results vary due to various errors and 
noises.

The difference in simulation and real quantum computers results brings the issue 
of noise and errors in current quantum devices. We briefly discussed that due to 
these various errors, listed in 3, the measurements/outcomes of quantum computers 
are probabilistic. The experiment provided in this paper are trivial and targeted at 

Table 5 presents the probabilities values for eight qubits circuit with six clauses: a. 0 AND 1 b. 1 OR 2 c. 
2 XOR 3 d. 3 XOR 4 e. 4 OR 6 f. 5 AND 7
Bold values indicate largest probability

Table 5   (continued)

String Probability String Probability String Probability String Probability

10011110 0.003906250 01110001 0.005859375 00000111 0.004882813 10000101 0.002929688
00111001 0.001953125 10101101 0.002929688 11000010 0.003906250 11101010 0.005859375
10101011 0.003906250 01111111 0.002929688 00100101 0.000976563 00111100 0.003906250
10000001 0.002929688 10000011 0.001953125 11001100 0.002929688 00010011 0.000976563
01100000 0.004882813 10110001 0.001953125 10100000 0.001953125 10111001 0.002929688
00100011 0.003906250 11001101 0.000976563 01000101 0.005859375 10101001 0.002929688
00001011 0.002929688 00100111 0.001953125 10010011 0.005859375 01110011 0.002929688
01111110 0.000976563 10010100 0.005859375 01110111 0.003906250 10011001 0.003906250
11000100 0.004882813 10000000 0.003906250 10111111 0.003906250 00010000 0.002929688
00001010 0.002929688 01011001 0.006835938 00110001 0.004882813 00101011 0.002929688
01101100 0.001953125 00111010 0.001953125 11100000 0.001953125 11111101 0.001953125
01101011 0.004882813 11111110 0.001953125 11110110 0.003906250 00110010 0.001953125
00101110 0.001953125 11010101 0.004882813 01101101 0.001953125 11001111 0.005859375
01101001 0.003906250 01001100 0.003906250 00001001 0.002929688 10010010 0.005859375
01001001 0.006835938 00000101 0.004882813 00110100 0.002929688 00011100 0.001953125
10110100 0.006835938 01110110 0.003906250 11000101 0.001953125 11010000 0.002929688
01001000 0.002929688 11001001 0.004882813 00110110 0.003906250
00100110 0.003906250 00011101 0.002929688 00010111 0.0048828125
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the audience with no/few prior quantum computing experience. Our algorithm can 
help the users to simulate any classical logical circuits built using universal gates 
into a quantum system. Provided with the parsed operations, (e.g., A AND B), our 
algorithms can provide the valid input results in O(

n+c

2
) complexity in number of 

qubits n and clauses c. The results showed that Grover’s algorithm with a universal 
gates-defined oracle could obtain the input states that satisfy the circuit. The Grov-
er’s Algorithm has shown promising results in secure secret-sharing in two qubits 
case [65], extracting key Advanced Encryption Standard (AES) plaintext-ciphertext 
pairs [66], constructing a gate for conditional phase-shift [67], cryptography [68] 
and many searching problems. There are quantum algorithms that solve many of the 
classical algorithms efficiently, but we lack the quantum computers to execute these 
algorithms. It is well known even a few qubits circuit is not fault-tolerant. We have 
shown it in the sections of our results too. We believe quantum computing exploits 
machine learning and cryptography, and there are different works to prove it. Refer 
[31–33, 68–72] for various works on quantum cryptography and quantum machine 
learning. Although the current limitations of quantum computers and qubits do not 
serve any real-world purpose, with the current advancement, we believe it will sur-
pass classical computers in solving many classically hard problems efficiently in the 
future.

6 � Conclusion

This paper discusses the basics of quantum computing, including Grover’s algo-
rithm, and quantum machine learning. We focused on Grover’s algorithm and gave a 
presented an experiment to simulate classical logical circulate exploiting amplitude 
amplification. We consider that quantum computing and quantum machine learning 
can provide an advantage over some classically challenging problems by leverag-
ing quantum computers’ efficiency, reducing the need for supercomputing power to 
execute such programs.

Furthermore, we describe two approaches for quantum machine learning, namely, 
variational quantum circuits and kernel-based quantum machine learning, as poten-
tial applications in supercomputing and other technologies. Quantum algorithms and 
their applicability in machine learning problems is an area that necessitates further 
research to identify equivalent solutions and improvements over classic machine 
learning computing. We encourage the reader to keep track of research in these areas 
as we believe there are significant opportunities for kernel-based approaches to suc-
ceed in the short-term future of quantum machine learning and supercomputing.

Our future work plans include testing our algorithm with actual data of the classi-
cal circuit. We will also parse the circuit and supply it to our algorithm, c.f. Sect. 5. 
We will work toward improving computational complexity with respect to the clas-
sical approach. We believe the classification problems in machine learning can be 
formulated as a searching problem that can be executed using Grover’s Algorithm. 
Finally, we will attempt to reformulate this problem as a kernel method that can be 
efficiently solved as a searching problem. We believe this future work can success-
fully exploit Grover’s algorithm advantages.



6938	 B. Khanal et al.

1 3

Acknowledgements  We would like to thank the Department of Computer Science and Baylor.AI labora-
tory at Baylor University for their support. We acknowledge the use of IBM Quantum services for this 
work. The views expressed are those of the authors and do not reflect the official policy or position of 
IBM or the IBM Quantum team. J. O. executed most of this work while at Baylor University.

Funding  This work was supported in part by the National Science Foundation under grants CNS-
2136961, and CNS-2210091.

Data availability  Data sharing is not applicable to this article as no datasets were generated or analyzed 
during the current study.

Declarations 

Conflict of interest  All authors certify that they have no affiliations with or involvement in any organiza-
tion or entity with any financial interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

References

	 1.	 David McMahon (2007) Quantum computing explained. Wiley, New Jersey
	 2.	 Hill DP, Harper A, Malcolm J, McAndrews MS, Mockus SM, Patterson SE, Reynolds T, Baker EJ, 

Bult CJ, Chesler EJ et al (2019) Cisplatin-resistant triple-negative breast cancer subtypes: multiple 
mechanisms of resistance. BMC Cancer 19(1):1–13

	 3.	 Bubier J, Hill D, Mukherjee G, Reynolds T, Baker EJ, Berger A, Emerson J, Blake JA, Chesler EJ 
(2019) Curating gene sets: challenges and opportunities for integrative analysis. Database 2019

	 4.	 Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA (2021) The influence of evolu-
tionary history on human health and disease. Nat Rev Genet 22(5):269–283

	 5.	 Islam SA, Sajed T, Kearney CM, Baker EJ (2015) Predstp: a highly accurate svm based model to 
predict sequential cystine stabilized peptides. BMC Bioinform 16(1):1–11

	 6.	 Gidney C, Ekerå M (2021) How to factor 2048 bit rsa integers in 8 hours using 20 million noisy 
qubits. Quantum 5:433. https://​doi.​org/​10.​22331/q-​2021-​04-​15-​433

	 7.	 Sadana S, Maccone L, Sinha U (2021) Quantum computers to test fundamental physics or viceversa
	 8.	 Arrazola JM, Jahangiri S, Delgado A, Ceroni J, Izaac J, Száva A, Azad U, Lang RA, Niu Z, Matteo 

OD, Moyard R, Soni J, Schuld M, Vargas-Hernandez RA, Tamayo-Mendoza T, Aspuru-Guzik A, 
Killoran N (2021) Differentiable quantum computational chemistry with PennyLane

	 9.	 Emani PS, Warrell J, Anticevic A, Bekiranov S, Gandal M, McConnell MJ, Sapiro G, Aspuru-
Guzik A, Baker JT, Bastiani M et al (2021) Quantum computing at the frontiers of biological sci-
ences. Nat Methods 4:1–9

	10.	 Khanal B, Rivas P, Orduz J (2021) Human activity classification using basic machine learning 
models. In: 2021 international conference on computational science and computational intelligence 
(CSCI) . Accepted, to be published soon

	11.	 Rivas P, Zhao L, Orduz J (2021) Hybrid quantum variational autoencoders for representation learn-
ing. In: 2021 international conference on computational science and computational intelligence 
(CSCI). Accepted, to be published soon

	12.	 Freedman MH, Kitaev A, Wang Z (2002) Simulation of topological field theories by quantum com-
puters. Commun Math Phys 227(3):587–603

	13.	 Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum computation on clus-
ter states. Phys Rev A 68:022312. https://​doi.​org/​10.​1103/​PhysR​evA.​68.​022312

	14.	 Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical hamilto-
nian model of computers as represented by turing machines. J Stat Phys 22(5):563–591

	15.	 Kitaev AY (1997) Quantum computations: algorithms and error correction. Uspekhi Matematich-
eskikh Nauk 52(6):53–112

	16.	 Penrose R (1971) Applications of negative dimensional tensors. Combinatorial mathematics and its 
applications 1, 221–244 . See PDF: https://​www.​mscs.​dal.​ca/​~selin​ger/​papers/​graph​ical-​bib/​public/​
Penro​se-​appli​catio​ns-​of-​negat​ive-​dimen​sional-​tenso​rs.​pdf

https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1103/PhysRevA.68.022312
https://www.mscs.dal.ca/%7eselinger/papers/graphical-bib/public/Penrose-applications-of-negative-dimensional-tensors.pdf
https://www.mscs.dal.ca/%7eselinger/papers/graphical-bib/public/Penrose-applications-of-negative-dimensional-tensors.pdf


6939

1 3

Supercomputing leverages quantum machine learning and Grover’s…

	17.	 Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. 
arXiv:​ Quant​um Physics

	18.	 Childs AM, Farhi E, Preskill J (2001) Robustness of adiabatic quantum computation. Phys Rev A 
65(1):012322

	19.	 IBM: Qiskit. https://​qiskit.​org/
	20.	 Anonymous: Grover implementation. Anonymous repository. https://​anony​mous.​4open.​scien​ce/r/​

NoRem​oving-​8DFF/​grove​rAlgo.​ipynb
	21.	 IBM: Grover’s algorithm. website. https://​qiskit.​org/​textb​ook/​ch-​algor​ithms/​grover.​html (2021)
	22.	 Leifer MS, Poulin D (2008) Quantum graphical models and belief propagation. Ann Phys 

323(8):1899–1946
	23.	 Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. 

Proc R Soc Lond A Math Phys Sci 400(1818):97–117
	24.	 Mermin ND (2003) From cbits to qbits: teaching computer scientists quantum mechanics. Am J Phys 

71(1):23–30. https://​doi.​org/​10.​1119/1.​15227​41
	25.	 Wittek P (2014) Quantum machine learning: what quantum computing means to data mining. Aca-

demic Press, Massachusetts
	26.	 Montanaro A (2016) Quantum algorithms: an overview. npj Quantum Inf 2(1):1–8
	27.	 Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-

tum computer. SIAM Rev 41(2):303–332
	28.	 Lavor C, Manssur L, Portugal R (2003) Grover’s algorithm: Quantum database search. arXiv preprint 

quant-ph/0301079
	29.	 Vartiainen JJ, Niskanen AO, Nakahara M, Salomaa MM (2004) Implementing shor’s algorithm on 

josephson charge qubits. Phys Rev A 70(1):012319
	30.	 Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev 

Lett 103(15):150502
	31.	 Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Phys Rev Lett 

122(4):040504
	32.	 Schuld M (2021) Supervised quantum machine learning models are kernel methods. arXiv preprint 

arXiv:​2101.​11020
	33.	 Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. 

Nature 549(7671):195–202
	34.	 Lloyd S, Mohseni M, Rebentrost P (2013) Quantum algorithms for supervised and unsupervised 

machine learning. arXiv preprint arXiv:​1307.​0411
	35.	 Chen G, Fulling SA, Lee H, Scully MO (2001) Grover’s algorithm for multiobject search in quantum 

computing. Directions in quantum optics. Springer, Berlin, pp 165–175
	36.	 Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 

79:325–328. https://​doi.​org/​10.​1103/​PhysR​evLett.​79.​325
	37.	 Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the 

twenty-eighth annual acm symposium on theory of computing, pp 212–219
	38.	 Rungta P (2009) The quadratic speedup in grover’s search algorithm from the entanglement perspec-

tive. Phys Lett A 373(31):2652–2659
	39.	 Du Y, Hsieh M-H, Liu T, Tao D (2021) A grover-search based quantum learning scheme for classifica-

tion. New J Phys 23(2):023020. https://​doi.​org/​10.​1088/​1367-​2630/​abdefa
	40.	 Nielsen MA, Chuang I (2002) Quantum computation and quantum information. American Association 

of Physics Teachers
	41.	 Mandviwalla A, Ohshiro K, Ji B (2018) Implementing grover’s algorithm on the ibm quantum comput-

ers. In: 2018 IEEE International Conference on Big Data (Big Data), pp 2531–2537 . IEEE
	42.	 Zhang K, Rao P, Yu K, Lim H, Korepin V (2021) Implementation of efficient quantum search algo-

rithms on nisq computers. Quantum Inf Process 20(7):1–27
	43.	 Schwabe P, Westerbaan B (2016) Solving binary MQ with grover’s algorithm. In: International confer-

ence on security, privacy, and applied cyptography engineering. Springer, pp 303–322
	44.	 Chakraborty K, Maitra S (2016) Application of grover’s algorithm to check non-resiliency of a boolean 

function. Cryptogr Commun 8(3):401–413
	45.	 Bulger DW (2007) Combining a local search and grover’s algorithm in black-box global optimization. J 

Optim Theory Appl 133(3):289–301
	46.	 Tezuka H, Nakaji K, Satoh T, Yamamoto N (2022) Grover search revisited: application to image pattern 

matching. Phys Rev A 105(3):032440

http://arxiv.org/abs/Quantum
https://qiskit.org/
https://anonymous.4open.science/r/NoRemoving-8DFF/groverAlgo.ipynb
https://anonymous.4open.science/r/NoRemoving-8DFF/groverAlgo.ipynb
https://qiskit.org/textbook/ch-algorithms/grover.html
https://doi.org/10.1119/1.1522741
http://arxiv.org/abs/2101.11020
http://arxiv.org/abs/1307.0411
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1088/1367-2630/abdefa


6940	 B. Khanal et al.

1 3

	47.	 Nakaji K, Uno S, Suzuki Y, Raymond R, Onodera T, Tanaka T, Tezuka H, Mitsuda N, Yamamoto N 
(2022) Approximate amplitude encoding in shallow parameterized quantum circuits and its application 
to financial market indicators. Phys Rev Res 4(2):023136

	48.	 Tsang IW, Kwok JT, Cheung P-M, Cristianini N (2005) Core vector machines: fast svm training on 
very large data sets. J Mach Learn Res 6(4)

	49.	 Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. 
Phys Rev Lett 113(13):130503

	50.	 Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, 
Cincio L et al (2021) Variational quantum algorithms. Nat Rev Phys 1–20

	51.	 Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Massachusetts
	52.	 Khanal B, Rivas P, Orduz J, Zhakubayev A (2021) Quantum machine learning: a case study of grover’s 

algorithm. In: The 19th International Conference on Scientific Computing (CSC 2021)
	53.	 Team TQ (2022) Simulating molecules using VQE. Data 100 at UC Berkeley . https://​qiskit.​org/​textb​

ook/​ch-​appli​catio​ns/​vqe-​molec​ules.​html
	54.	 Team TP Variational classifier. https://​penny​lane.​ai/​qml/​demos/​tutor​ial_​varia​tional_​class​ifier.​html
	55.	 Park DK, Blank C, Petruccione F (2020) The theory of the quantum kernel-based binary classifier. Phys 

Lett A 384(21):126422
	56.	 Schuld M, Petruccione F (2021) Machine learning with quantum computers. Springer, Berlin
	57.	 Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimi-

zation, and beyond. MIT Press, Cambridge, MA, USA
	58.	 IBM Q (2021) IBM Quantum. Website: https://​www.​ibm.​com/​quant​um-​compu​ting/
	59.	 Endo S, Benjamin SC, Li Y (2018) Practical quantum error mitigation for near-future applications. 

Phys Rev X 8(3)
	60.	 Endo S, Cai Z, Benjamin SC, Yuan X (2021) Hybrid quantum-classical algorithms and quantum error 

mitigation. J Phys Soc Japn 90(3):032001
	61.	 Strikis A, Qin D, Chen Y, Benjamin SC, Li Y (2021) Learning-based quantum error mitigation. PRX. 

Quantum 2(4):040330
	62.	 Elben A, Vermersch B, van Bijnen R, Kokail C, Brydges T, Maier C, Joshi MK, Blatt R, Roos CF, 

Zoller P (2020) Cross-platform verification of intermediate scale quantum devices. Phys Rev Lett 
124(1):010504

	63.	 Lidar DA (2008) Towards fault tolerant adiabatic quantum computation. Phys Rev Lett 100(16):160506
	64.	 Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 

52(4):2493
	65.	 Hsu L-Y (2003) Quantum secret-sharing protocol based on grover’s algorithm. Phys Rev A 

68(2):022306
	66.	 Grassl M, Langenberg B, Roetteler M, Steinwandt R (2016) Applying grover’s algorithm to aes: quan-

tum resource estimates. Post-quantum cryptography. Springer, Berlin, pp 29–43
	67.	 Fujiwara S, Hasegawa S (2005) General method for realizing the conditional phase-shift gate and a 

simulation of grover’s algorithm in an ion-trap system. Phys Rev A 71(1):012337
	68.	 Aumasson J-P (2017) The impact of quantum computing on cryptography. Comput Fraud Secur 

2017(6):8–11
	69.	 Mavroeidis V, Vishi K, Zych MD, Jøsang A (2018) The impact of quantum computing on present cryp-

tography. arXiv preprint arXiv:​1804.​00200
	70.	 Brassard G (1994) Quantum computing: the end of classical cryptography? ACM SIGACT News 

25(4):15–21
	71.	 Brassard G, Lütkenhaus N, Mor T, Sanders BC (2000) Limitations on practical quantum cryptography. 

Phys Rev Lett 85(6):1330
	72.	 Adcock J, Allen E, Day M, Frick S, Hinchliff J, Johnson M, Morley-Short S, Pallister S, Price A, Stani-

sic S (2015) Advances in quantum machine learning. arXiv preprint arXiv:​1512.​02900

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://qiskit.org/textbook/ch-applications/vqe-molecules.html
https://qiskit.org/textbook/ch-applications/vqe-molecules.html
https://pennylane.ai/qml/demos/tutorial_variational_classifier.html
https://www.ibm.com/quantum-computing/
http://arxiv.org/abs/1804.00200
http://arxiv.org/abs/1512.02900

	Supercomputing leverages quantum machine learning and Grover’s algorithm
	Abstract
	1 Introduction
	2 Context and models
	2.1 Quantum computing
	2.2 Quantum algorithms

	3 Related works
	3.1 Potential applications in quantum machine learning
	3.1.1 Variational quantum algorithms
	3.1.2 Kernels


	4 Algorithm implementation
	4.1 Experimental setup
	4.2 Methods

	5 Results and discussion
	6 Conclusion
	Acknowledgements 
	References




