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Abstract
Blendshape technique is an effective tool in the computer facial animation. Every 
character requires its own unique blendshapes to cover numerous facial expressions 
in the Visual Effects industry. Despite outstanding advances in this area, existing 
techniques still need a professional artist’s intuition and complex hardware. In this 
paper, we propose a framework for customizing blendshapes to capture facial details. 
The suggested method primarily consists of two stages: Blendshape generation and 
Blendshape augmentation. In the first stage, localized blendshapes are automati-
cally generated from real-time captured faces with two methods: linear regression 
and an autoencoder Han (in: IEEE International Conference on Big Data and Smart 
Computing (BigComp) 2021) (2021). In our experiment, face construction with the 
former outperforms that of the later method. However, generated blendshapes are 
slightly missing the source features, especially mouth movements. To overcome this, 
in the last stage, we extend Han (in: IEEE International Conference on Big Data and 
Smart Computing (BigComp) 2021), (2021) by adding a blendshape incrementally 
to minimize erroneous expression transfer.
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1  Introduction

Computer facial animation has been in the spotlight for a long time in the vari-
ous entertainment industries, such as movie production, video games and VR/AR 
[10]. Traditionally, facial animation is in the realm of artists’ manual skills [27]. 
Even though their creation has brought out great qualities of facial animation, 
intensive labor time and an overwhelming workload remain to be solved. To alle-
viate such discomfort, ceaseless efforts to produce facial animation with the state-
of-the-art technologies have led to significant accomplishments in the computer 
animation [11]. However, it is still challenging to model the human face because 
of its realism and computational complexity [29].

Blendshape facial animation is widely used to create the realistic human face 
[23, 29]. Blendshapes are defined as a set of key poses including a neutral pose, 
a mouth press right pose, or a jaw open pose in the facial animation [23]. When 
it comes to facial expressions, feature extraction technique plays a key role in 
face recognition [22]. But, in the computer animation, blendshape based approach 
enables animating a character’s face in real-time by capturing an actor’s face [39]. 
Fundamentally, this technique deforms a base shape to describe facial expressions 
with combined weighted parameters. It allows animators to craft various expres-
sions by combining parameters with significant efforts.

Adjusting parameters of blendshapes is a much-studied topic as it is involved 
in delivering realistic facial motions. Extracting the parameters from a blendshape 
model is designed to address the difficulties of controlling blendshapes [17]. Ten 
blendshapes are derived from the face capture, which is low compared to modern-
day production standards to generate realistic animation. They compute blending 
weights in the least squares sense based on their assumption that the facial motion 
can be expressed as a linear system. Furthermore, various neural networks such as 
ANN, RBFN [13] or autoencoders [2, 44] have been used to address blendshape and 
its weights as well as face reconstruction [40, 42]. In this work, detailed facial recon-
struction serves as a tool to measure the performance of customized blendshapes, so 
an autoencoder to define blendshapes as in [40] is adopted. Overall, this research 
evaluates the performance by comparing the template method that yields template 
blendshapes. This method gives a technically adept performance on face tracking 
and recreating faces by using its computed blendshapes. But its blendshapes are 
unable to cover individual unique facial features, so we propose a novel method to 
generate personalized blendshapes to capture facial details.

Earlier works use a casual device to process face capture quickly and easily [4, 
35]. While Kim et al. [20] adds blendshapes based on PCA to perform facial retar-
geting, a regression-based method is instead adopted to minimize alignment errors 
of face reconstruction [4]. By synthesizing the ideas from previous works, this work 
takes benefits of effectiveness and convenience in that blendshapes are initiated by 
capture process with an ordinary device and optimized by an application of neural 
networks and supplementation, leading to detail preserved facial expressions.

The main challenge in performing natural facial animation is to generate proper 
blendshapes which cover individual unique details. For example, blendshapes 
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of a person who is unable to move his or her mouth freely should not be same 
with those of the normal face. In spite of advanced technologies, sculpting ade-
quate blendshapes still depends on skillful artists, which is very expensive and 
time-consuming.

The goal of this paper is to generate customized blendshapes to capture facial fea-
tures without reliance on laborious handiwork by taking a simple device for capture. 
In this work, we propose a two-staged framework for personalized blendshapes. In 
the first stage, we create individually optimized blendshapes which can cover more 
facial features than the template model by using two methods: linear regression 
and an autoencoder. One of blendshape generation methods is determined depend-
ing on root mean squared errors. The next stage is blendshape augmentation that 
updates prior blendshapes by adding a blendshape incrementally to recover original 
expressions with accuracy. The most error-occurring frame is chosen based on mean 
squared errors between the original face and the creation. We have assumed that 
unsatisfactory results with created blendshapes come from the lack of blendshapes, 
so blendshapes are increased iteratively until mean squared errors are reduced by 
80%. Finally, weights are recalculated based on a transpose-based inverse solution.

2 � Related work

2.1 � Blendshape generation

There have been continuing efforts to employ blendshape models in the computer 
animation. Blendshape interpolation has been researched actively for decades [17, 
30–32]. Facial expressions are represented by controlling parameters in the param-
eterized models, which is uneasy to define proper parameter sets and combine those 
values for desirable results [32]. Optimal blendshape modeling for each character 
plays a significant role in high-fidelity facial animation [3, 8, 43].

Blendshapes can be generated from captured images, video, or RGBD data. 
Pighin et  al. [33] builds photorealistic 3D facial models from multiple images. 
Basic expressions are captured and then used to define appropriate blendshapes with 
manual marking on feature points on the face images. This process is repeated to 
produce personalized blendshapes for each subject. Expressions are automatically 
transferred by fitting a rendered model onto captured data of the same identity. This 
method generates convincing facial animation, but the burden of extreme workload 
is inevitable and requires both source blendshapes and corresponding target mod-
els. Our method aims to reduce a great deal of manual labor and time. Further, our 
model only requires target blendshapes for facial animation.

PCA of motion capture data is one strategy to choose individual target blend-
shapes [3, 23, 34]. PCA is desirable in that we can obtain the most adequate blend-
shape with a certain number of blendshapes automatically and the acquired blend-
shape has orthogonality which is adept for fitting. PCA-based models have been 
suggested for facial motion capture data [26] and retargeting [13, 38]. PCA and 
blendshapes are similar in that facial expressions can be represented from either a 
linear combination of PCA eigenvectors or a linear combination of blendshapes. 
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Rather than generating blendshapes directly, PCA is substituted for blendshapes 
[13]. While this approach helps to avoid computational complexity, it is unsuitable 
for human manipulation as other PCA models are [34, 36]. To be specific, it tends 
to ignore semantics, so it is difficult to recognize each key pose intuitively [37] and 
control facial parameters [23]. In addition, face variations tends to be uncovered due 
to the limited capacity of PCA dimensions.

To overcome PCA issues, 3D regression algorithm is devised to model a user-
specific blendshape from 2D video frames [4]. Pre-defined facial expressions are 
captured by an ordinary web camera instead of facial markers. The captured data 
is used to find the best fit regressor that adapts 2D images to 3D shape in the train-
ing stage. This process includes a two-part blendshape generation procedure. Facial 
expressions can be approximated in association with three components—identity 
weights, expression weights, and the transformation—that are involved to establish 
correspondences between the projected 3D landmark and labeled positions on the 
image. The next step is to adjust the identity weights to be built for the same indi-
vidual. Finally, customized blendshapes are modeled after iterations until the fitting 
converges. Their system is somewhat similar in that our method requires a simple 
device instead of specialized hardware which needs careful operation and does not 
use PCA. However, our work differs in that it employs 3D face geometry as input 
to train blendshapes. Also, the identity weights are unnecessary in the model as our 
blendshapes are optimally personalized to an individual face.

Recent research has studied the method of creating personalized blendshapes 
within a short amount of time and reducing the intervention of skillful artists. Casas 
et al. similarly takes an image-based approach where blendshapes are modeled rap-
idly from RGB-D data with a Kinect [5]. Their methods require both source and 
target scans for facial retargeting by aligning two blendshapes. Follow-up work pro-
poses an end-to-end system to generate individually optimized blendshapes automat-
ically using a self-supervised neural network [25]. Based on pre-defined template 
blendshapes, they construct target blendshapes by estimating blending weights and 
subsequently tuning trained blendshapes to preserve fine details. Both works have 
shown successful results in terms of generating user-specific blendshapes within 
a short amount of computation time. However, additional blendshapes besides the 
target blendshapes are demanded for this type of implementation. Any extra blend-
shapes are unnecessary as our method only requires a single set of blendshapes for a 
target individual for facial animation.

The suggested method of adopting user-specific blendshapes is to find the best 
match of original facial expressions [19]. These blendshapes are selected by their 
fitting method for the more precise target face’s representation, but because their 
approach has assumed that the facial shape is changeable regionally, some exagger-
ated expressions might not be handled properly.

2.2 � Blendshape augmentation

A face model can be improved by augmenting blendshapes, resulting in produc-
ing extraordinary expressions. Blendshapes combined with facial rigging is used to 
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drive convincing facial animation [28]. Rather than finetuning constructed blend-
shapes as in [25], a similar approach as [20] is taken by adding a blendshape incre-
mentally after finding problematic frames in the stage of blendshape reconstruction. 
While PCA is employed to find error-occurring frames in [20, 12] proves that MSE 
is effective in comparing mouth expressions between the original face and the rec-
reated face so this method is simply adopted in this work. Their work [20] supple-
ments blendshapes based on landmark correspondences between the source and the 
retargeted model. Rather, we determine an additional blendshape according to the 
extent of how the reconstructed target face accurately recovers the captured expres-
sions based on vertex-to-vertex differences.

To build facial animation where fine details are preserved, blendshapes are aug-
mented by an auxiliary texture image that is defined by vertex and normal data [41]. 
This approach has high benefits in terms of the resolution of the 3D face and head 
details such as hair, but unexpected blurry artifacts are observed. Texture is also 
utilized to sculpt facial expressions with blendshapes [9]. Our work differs in the 
method of updating blendshapes in that blendshapes are increased to rebuild origi-
nal expressions rather than modifying blended meshes.

Once the blendshape augmentation is completed, blending parameters need to 
be redesigned to correspond to increased blendshapes in our system. Professionals 
commonly manipulate blendshape weights for desirable face reconstruction. It is 
simply a controlled “pin and drag” system in the painting interface brought about 
by mathematical operations [24]. Further, direct editing method is supplemented 
by putting local constraints on facial geometry based on geodesic circles [6]. Most 
approaches were based on inverse problem solutions [7], particularly the pseudo-
inverse method [1, 2, 37]. With the rise of deep learning, weights were formed with 
an autoencoder [2]. The device automatically computes weights, so the model does 
not consider weight extraction in the phase of blendshape generation. However, there 
is need to find proper coefficients as additional blendshapes are built. An autoen-
coder is employed to create blendshapes but not in the case of blending weights. 
In this work, a transpose-based solution is first used to compute a set of temporal 
weights for modeling an additional blendshape, and then weights are regained by 
linear system-based methods.

3 � Blendshape customization

3.1 � Blendshape generation

It is well known that generating personalized blendshapes for realistic and natu-
ral facial expressions is challenging in computer animation [29]. In spite of the 
state-of-the-art technology, there are still difficulties with modeling human faces 
because the human face is composed of various fine muscles that are deeply con-
nected, especially the eyes and mouth. To generate a specific character’s face 
animation, sometimes more than 110 blendshapes are utilized specifically for 
eyes and mouth regions. Our network architecture for blendshape customiza-
tion has two main sections: (1) Blendshape generation which induces customized 
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blendshapes automatically from the captured face model and (2) Blendshape 
augmentation by adding supplementary blendshapes incrementally to minimize 
errors between the captured face and the new face driven from the previous sec-
tion. The overall system of blendshape generation is described in Fig. 1.

In our model, the captured face geometry Fid is defined as follows where id 
denotes the identity [19].

It is a linear combination where wi
id

 is a vector of id’s coefficients and Bi
id

 is a 
(1220⋅ 3) × 52 matrix whose column vectors are respective blendshapes. B0

id
 denotes 

the neutral face with no facial expression. The notations are expressed simply in 
Eq. 2 and Eq. 3. The main goal in this stage is to generate individual blendshapes. 
We expect that there is a linear relationship between the blendshape and the face 
geometry. It is impossible to derive the blendshape Bid for a specific character 
because there are too many unknown factors in Eq. 1. A neural network-based sys-
tem is adopted to solve the problem. Previous studies have shown that autoencoders 
have been applied to many studies regarding facial expressions [14, 18]. Also, the 
variational autoencoder is used to train the face and it is expected that this tool can 
be effective for extracting facial basis [21]. In our method, the decoder performs as 
blendshapes so that the face geometry can be gained from blendshape coefficients. 

(1)Fid = B0
id
+

52
∑

i=1

wi
id
(Bi

id
)

(2)
52
∑

i=1

wi
id
= Wid

(3)
52
∑

i=1

Bi
id
= Bid

Fig. 1   Blendshape generation
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The problem can be solved by implementing simple linear regression and an autoen-
coder technique.

3.1.1 � Linear regression

Blendshapes can be generated by using two methods: linear regression and an 
autoencoder. We design a simple linear regression as seen in Fig. 2. Bl and Fl repre-
sent the blendshapes and face respectively, driven from the linear regression method. 
We refer to this face as the Linear Regression (LR) face. In the training, the captured 
face ( Fj ) including coefficients ( Wj ) is used as input data. To obtain precise blend-
shapes ( Bl ) and the neutral face ( B0

l
 ), root mean square errors (RMSE) of vertices 

between the input ( Fj ) and the output face ( Fl ) are applied as the loss function:

The generated LR face is constructed by employing a large set of coefficients ( Wj ) 
combined with the trained pair.

3.1.2 � Autoencoder

Fundamentally, our concern is to identify the system which extracts high-dimen-
sional face data from low-dimensional coefficients. Accordingly, an autoencoder is 
implemented as seen in Fig. 3. Our method is slightly different from existing autoen-
coder models in that a decoder maps both the code and ( Wj ) to reconstruct the input. 
There are already 52 coefficients ( Wj ) so it is not essential to learn encoding a set of 

(4)losslr = MSE(Fj,Fl)

Fig. 2   The proposed workflow for linear regression. (Upper) The training phase. (Lower) The testing 
phase
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data ( Fj ) for dimensionality reduction. This is not a significant issue because a large 
dataset construction from a small number of datasets is a key point in our model, as 
mentioned earlier. In our autoencoder, the trained decoder performs as blendshapes 
( Ba ). The encoder compresses the input ( Fj ) and produces z code. Our loss func-
tion consists of two terms: weight loss that applies the mean square error (MSE) 
between Wj and z, and MSE between the reconstructed face Fz and Fw from z and Wj , 
respectively. Fz and Fw are respectively computed as Eq. 5 and Eq. 6. We employ the 
Adam optimizer for training with a batch size of 52 and an initial learning rate of 
0.01 with a conditional decay every epoch during 5000 epochs.

After training, we have the face formed by the autoencoder, Autoencoder (AE) face. 
A comparison of the two generated faces—the LR face ( Fl ) and the Autoencoder 
face ( Fa)—is performed with RMSE in each frame. In our experiment, RMSE(Fj , 
Fa ) is larger than RMSE(Fj , Fl ). Therefore, the LR blendshape is finally adopted for 
blendshape creation.

3.2 � Blendshape augmentation

In the previous process, the target’s personalized blendshapes are generated. Still, 
the created blendshapes fail to reproduce the original face perfectly. It is supposed 
that the earlier method is insufficient to cover more facial details and this failure 
might come from the lack of some particular blendshapes. As in Fig. 4, inaccurate 

(5)Fz = zBa + B0
j

(6)Fw = WjBa + B0
j

Fig. 3   Our autoencoder system for blendshape construction
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face construction is mainly observed in mouth movements. From left is the captured 
target face, middle is the template face, and right is the LR face. The middle and 
right faces show incorrect mouth expressions compared to the original face. Moreo-
ver, the template is a standard face that does not reflect the original facial shape. In 
other words, it only displays the same identity, neglecting personal unique charac-
teristics included a facial shape or eyes expressions. Our blendshapes from Sect. 3.1 
are updated to minimize errors in the mouth movements and preserve individual 
facial features.

3.2.1 � Problematic frames

There are some problematic frames where our method slightly misses facial expres-
sion details. The frame(Fmk ) where the largest MSE(Fj , Fl ) is measured as follows.

3.2.2 � Blendshape reconstruction

After finding the most problematic frame k, the kth frame is displayed on the screen 
as in Fig. 5. It turns out that errors have occurred largely in the case of mouth open-
ing. [17] minimizes the sum of differences between the recorded motion captures 
and corresponding blendshapes by supplementing the blendshape basis by using the 
radial basis function. Rather than using radial basis function, the blendshapes are 
complemented by using the differences of Fj and Fl . It can be solved by adding one 
blendshape and setting its weight as 1 because our assumption is that MSE(Fj , Fl ) 
comes from the lack of a blendshape which correlates to the mouth movement. So, 
let a temporal 53rd blendshape ( tmpB53 ) be the differences of Fj and Fl in the kth 
frame.

(7)Frame Fmk = argmax
k

MSE(Fj,Fl) for every frame

Fig. 4   Inaccurate face construction in terms of the mouth
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Another user is involved in testing the trained model. This new user serves as the 
source(Fb ) and the target face is controlled by source coefficients(Wb ) and the LR 
blendshapes(Bl ). The source face is derived by taking the first phase of the process 
mentioned above, where the model makes 52 instructed expressions. For desirable 
facial retargeting, we aim to have the target face with more structural similarities to 
the source face than the template model. All three face can be defined by using the 
same coefficients(Wb):

Accordingly, its weight(tmpw53 ) is 1 in the kth frame and additional weights are 
extracted in other frames by solving a simple linear equation. With updated data, lin-
ear regression is employed to discover augmented blendshapes. Its implementation 
is the same as the process in Sect. 3.1.1. It is described in Fig. 6 and Fig. 7. tmpW53 
is a set of the 53rd temporal coefficients. Through this system, there is a renewed 

(8)tmpB53 = Fj − Fl in the kth frame

(9)Fj = Fl + tmpB53tmpw53 for every frame

Fig. 5   Face display in the most problematic frame. (From left) The original face, the template face, and 
the LR face

Fig. 6   Linear regression training phase for blendshape reconstruction
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face ( Fl53 ) with revised blendshapes ( Bl53 ) and temporal weights. Figure 8 depicts a 
newly added 53rd blendshape.

3.2.3 � Weight manipulation

Weights need to be updated to reconstruct the face. Adding an extra weight to the 
prior sets is not sufficient to generate an individually optimized face as blendshapes 
are newly generated. Many studies have applied a pseudo-inverse to extract adequate 
weights [1, 2, 37]. A similar approach is taken for updated weights Wl53.

(10)Fj ≈ B0
l53

+

52
∑

i=1

Bi
l53
wi
l
+ B53

l53
w53
l53

Fig. 7   Linear regression testing phase for blendshape reconstruction

Fig. 8   A newly added 53rd blendshape
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Simply, B53
l53

 is considered as B′ and w53
l53

 as w′ . Then, w� = B�+F� by a pseudo-inverse 
solution. The above process is iteratively repeated until the errors between the cap-
tured face and the generated face are optimally minimized. The result of adding 53rd 
blendshape is shown in Fig.  9. The generated face ( Fl53 ) with augmented blend-
shapes keeps the captured facial details more precisely than the previous version.

4 � Experimental results

4.1 � Data acquisition

In this work, we use a real-time capture system, ARKit face tracking API, to acquire 
face geometry by using iOS 14.5 and Swift 5. With the advent of cutting-edge hard-
ware, Hui proposed the motion tracking algorithm based on Mean-Shift to capture 
the target motion accurately [16]. The camera is sufficient to track the face geom-
etry, so the aforementioned algorithm is not applied to our capture process. 1220 
vertices—each vertex is expressed as x,y,z—and 52 blendshape coefficients in each 
frame were obtained using an AR application running on iPad Pro 11. As seen in 
Fig. 10, the camera recognizes a user’s face, and the face mesh filter is overlaid on 
the user. The device then sends the face geometry information to the connected 
computer by capturing 60 frames per second. The face data of both the source and 
the target are collected with this capture system.

First, the target face for the blendshape optimization was captured where three 
phases were built to capture various expressive faces. Initially, a user performs 52 
template key poses under instructions such as eyeBlinkLeft, jawOpen, etc. The 52 

(11)F� = Fj − (B0
l53

+

52
∑

i=1

Bi
l53
wi
l
)

(12)F� = B53
l53
w53
l53

= B�w�

Fig. 9   Face reconstruction after blendshape augmentation. (From left) The captured face, template face, 
LR face, and Fl53
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blendshape coefficients consist of 7 expressions for each eye, 4 expressions for the 
jaw, 23 expression parameters for a mouth, 5 for eyebrows, 3 for the cheek, 2 for the 
nose, and 1 for the tongue as listed in Table 1. Then, emotional guide pictures are 
given to replicate expressive faces as similar as possible. Lastly, the camera tracks 
the user who reads play scripts in which emotion guidelines are clearly written. It 
enables the capturing of natural expressions represented while speaking. In this way, 
4500 frames were obtained from the aforementioned approach.

The real-time capture system offers 52 template blendshapes, but it does not 
reflect individual facial features and particular facial poses. Every human face is 
unique, so it is not sufficient for high-quality facial animation. With this work, a 
method to form a proximal approximation of new blendshapes for natural and real-
istic facial animation is created. Meanwhile, template models to prove our method’s 
superiority are still needed. With regard to the blendshape customization, the tem-
plate is compared to a new face created by our method to check if our model is more 
similar to the captured one. The template face is driven from the linear combination 
of template blendshapes and captured blendshape coefficients while simultaneously 

Fig. 10   Face capture running on the app

Table 1   Blendshape coefficients Expressions The number 
of blend-
shapes

Left eye 7
Right eye 7
Jaw 4
Mouth 23
Eyebrows 5
Cheek 3
Nose 2
Tongue 1
Total 52



6360	 J. H. Han et al.

1 3

the camera tracks the user’s face. We have gained the template face geometry includ-
ing 1220 vertices and 52 coefficients. The number of each template model’s frames 
is the same as that of corresponding captured frames. Facial vertices are slightly 
different between the captured model and the template model while they share the 
same coefficients. The template is set up for a uniform model that does not have any 
personal details such as a facial shape. Moreover, some facial mismatches happened 
in the template model as in Fig. 11.

4.2 � Blendshape customization

4.2.1 � Blendshape generation

Linear regression and autoencoder techniques are implemented to construct indi-
vidually optimized blendshapes automatically. The training is performed on Intel(R) 
Xeon(R) Silver 4210R CPU @ 2.40GHz CPU, NVIDIA Quadro RTX 5000 GPU, 

Fig. 11   Comparison of the captured face (left) and the template face (right)

Table 2   Comparison of 
blendshape generation methods

Method Total train time(sec) RMSE

Linear regression 575.2768 0.00061968
Autoencoder 888.3696 0.00089043
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and 24GByte of memory. Both methods generate respective faces by using the 
same inputs: the target’s coefficients ( Wj ). The two methods are compared in two 
aspects: total train time and RMSE during 5000 epochs, as shown in Table 2. Lin-
ear regression took 575.2768 seconds to train, shorter than the autoencoder, which 
took 888.3696 seconds. Moreover, RMSE(Fj , Fl ) were 0.00061968, smaller than the 
autoencoder RMSE(Fj , Fa ) of 0.00089043. Accordingly, blendshapes ( Bl ) obtained 
from linear regression are adopted. Numerically, MSE(Fj , Fl ) is smaller than 
MSE(Fj , Ft ) in whole frames as in Fig. 12. Figure 13 shows that the LR face ( Fl ) is 
animated like the captured one ( Fj ) more identically than the template face ( Ft).

4.2.2 � Blendshape augmentation

As appeared on the face animation above, the generated blendshapes from linear 
regression do not work well with respect to the captured face reconstruction. Thus, 
previous blendshapes can be improved by adding a blendshape incrementally. We 
begin with finding the most problematic frames using MSE between the captured 
face and the LR face. The (300 multiples ± 5) frames are ignored because a user’s 
face is captured per 300 frames, resulting in inaccurate captures near those frames. 
Table 3 shows the ten largest MSE ⋅ 108 and its corresponding frame in regard to the 
number of blendshapes. On the left of the comparison table, the 3931st frame has 
the largest error for the whole frame. The faces are also displayed on the screen to 

Fig. 12   MSE(Fj , Fl ) and MSE(Fj , Ft)
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check for facial inconsistency visually. As shown in Fig. 14, the LR face’s mouth is 
quite different from the captured face.

Considering that previous blendshapes Bl lack the ability to present mouth-
related expressions, an additional blendshape is needed to cover them. The MSE 
improvement is represented on the graph in Fig. 15 where two values—MSE(Fj , Fl 

Fig. 13   Face animation with the captured face (left), the template face (middle), and the LR face (right)
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) and MSE(Fj , Fl53)—are compared. Now, Fl53 is referred to the LR53. It is notable 
that every error between the captured face and LR53 gets smaller after blendshape 
addition. Approximately, errors have decreased by 99% in the third largest error-
occurring 4206th frame. The outstanding performance is indicated on the screen as 
in Fig. 16. Advancements stand out in specific frames where errors have occurred 
largely in the mouth movements.

As it is confirmed that the ten most problematic frames are solved after add-
ing a blendshape, the focus is now on the new error-occurring frames in the 

Fig. 14   3931st frame - the captured face (left), the LR face (right)

Table 3   MSE comparison table 
regarding to the number of 
blendshapes

52 blendshapes 53 blendshapes

MSE ⋅ 108 Frame MSE ⋅ 108 Frame
494.5087 3931 3.5968 4206
489.0645 1590 3.4971 1812
360.464 4206 3.3162 4207
315.3687 3609 3.2990 2409
314.4987 3608 3.2919 1808
297.6247 3618 3.2887 1810
295.293 3613 3.2855 1809
293.234 4207 3.2845 2425
291.064 3606 3.2822 2410
288.7733 3612 3.2800 2426
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updated face. The original plan was to add blendshapes one by one for precise 
target face construction. However, as errors are too tiny to supplement existing 
blendshapes, it is decided not to perform an iterative process. It is hard to find 
remarkable discrepancies between two faces in the 4206th frame where errors 
are largest after blendshape augmentation as shown in Fig. 16 and Table 3. We 
have concluded that 53 blendshapes are enough to cover facial details with mini-
mal error as the performance has improved when blendshapes are increased.

For 4500 frames, the MSE(Fj , Fl ) and MSE(Fj , Ft ) are visualized on the graph 
in Fig. 12. Both MSE were multiplied by 108 to clarify the results. The blue line 
represents the difference between the captured face(Fj ) and the LR face(Fl ). The 
red line shows the gap between the captured face(Fj ) and the template face(Ft ). 
It is apparent that the LR face has more similar structure than the other.

In Fig. 13, it is proved that our method has more similar structure to the cap-
tured face by comparing three faces—the captured face ( Fj ), the LR face(Fl ) and 
the template face(Ft ). Noteworthy facial distinction is shown in the eyes, mouth, 
and facial shape. In the template face, the eyes moved slight differently from 
those in the other two faces. It has occurred in the mouth, as well. Although the 
eyes of the LR face are not exactly the same as those of the captured one, the LR 
face will be improved by updating blendshapes. In general, the facial shape of 

Fig. 15   MSE improvement after blendshape addition



6365

1 3

Customizing blendshapes to capture facial details﻿	

the template face looks dissimilar to the other faces, which might induce poor 
correspondences in some facial segments.

5 � Conclusions

This paper proposed two stages of customizing blendshapes to capture facial details 
without depending manual work of skillful artists: blendshape generation and blend-
shape augmentation. For data collection, a user’s face is captured and geometric 
data are acquired from the target and the template model with a simple and portable 
device. It is highly practical because the capturing process does not require a spe-
cialized high-cost device and professional execution. Also, this mobile device is not 
affected by spatial limitations, allowing captures in any place.

Fig. 16   Face animation after blendshape addition. (From left) The captured face, template face, LR face, 
and LR53
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In the first stage, given target data, the blendshapes which cover individual’s 
unique facial details were built with two methods: LR and AE. LR is proved to be 
more suitable in that numerical errors between the original face and the face cre-
ated by the former are smaller than AE. Furthermore, it is more advantageous in the 
perspective of computation time. The higher performance with LR is perhaps due 
to our AE where compressed z code does not reflect weights technically. In other 
words, there is only a low relativity between z code and expression parameters.

Blendshape model is extended to add more blendshapes to minimize error 
between the source expressions and recreated results based on the assumption that 
incorrect facial animation comes from the lack of existing blendshapes. Additional 
blendshape involved with opening the mouth is supplemented because the most 
problematic frame where errors have occurred largely is related to such motion. 
Accuracy of facial animation driven from augmented blendshapes increases sig-
nificantly, reducing errors by 99%. If necessary, additional blendshapes could be 
augmented to reduce errors further. Weights are updated to correspond to increased 
blendshapes by taking a pseudo-inverse based approach. PCA is not applied to the 
aforementioned process to avoid missing facial features and unmeaningful visual 
representations. The contribution of blendshape customization includes that manual 
editing is not necessary and blendshapes are added incrementally to generate per-
sonalized blendshapes.

As we added a blendshape for the mouth and decided not to use PCA for visual 
significations and intuitive control [23], it was meaningful to identify each blend-
shape visually. However, some bizarre key poses were observed in augmented 
blendshapes as seen in Fig.  17. Augmented blendshape showed unnatural facial 
poses. Among many possible reasons, unmeaningful facial expressions are rep-
resented because uncorrelated small regions are associated to define a key pose. 

Fig. 17   Augmented blendshapes missing visual significations. (From left) Template blendshape, LR 
blendshape, augmented blendshape
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Data quantity can be one reason for inadequate results. A larger amount of data 
can improve the quality of blendshapes. Also, dividing facial parts semantically or 
locally can be another solution for natural and realistic blendshapes.

Fig. 18   (From left) The first source face, the target face of our method in Sect. 3.1, the retargeted tem-
plate face. All face shares the same coefficients
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The success of blendshape customization depends on how much facial details 
are preserved in the animation process. The mouth is considered as one of the most 
challenging parts to model blendshapes due to active interaction of deeply con-
nected muscles. Even though the eyes are also one of the hardest regions, they are 
not handled carefully as our focus is on the mouth-related expressions. Based on 
MSE, blendshapes related to the mouth were enhanced, resulting in more accurate 
retargeting in mouth movements. Since the MSE were used to determine the need of 
blendshape addition, errors in eyes were very tiny, so they are ignorable mathemati-
cally. Thus, the further study to find adequate methods that can be used to supple-
ment blendshapes for eyes to capture fine scales is still needed.

We further extend our work to generate detail-preserved blendshapes for min-
imal-error facial retargeting. By using target blendshapes we have created in this 
paper, facial retargeting is implemented with three sources. 600 frames are captured 
from the first source (Src1) and retargeted to our target acquired from the method in 

Fig. 19   Facial retargeting. (From left) The second source, the retargeted face of our method in Sect. 3.1, 
the retargeted template face,
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Fig. 20   Facial retargeting. (From left) The third source, the retargeted face with our method, the retar-
geted template face
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Sect. 3.1. This is represented in Fig. 18. When the first source squints his eyes, the 
target’s eyes are also slightly opened while the retargeted template face just squeezes 
eyes. The following notable part is the mouth. Although our method moves like the 
source more similarly than the template model, mismatching of retargeting expres-
sions happen around the mouth since target blendshapes in this implementation have 
not been augmented yet. We plan to perform facial animation with our suggested 
method of blendshape addition to improve the quality of facial retargeting.

Also, we have gained 900 frames and 1000 frames from other two sources (Src2 
and Src3), respectively. Figure 19 indicates facial retargeting with the second source. 
The retargeted template face sometimes has incorrect retargeting with the eyes. For 
example, the first row shows that the template tends to squeeze the right eye while 
the original face just winks slightly. Our work takes a similar approach of Bouaziz 
et al. [3] in that expressions are transferred by customizing blendshapes. Their work 
adopts PCA models and a template blendshape to create user-specific blendshapes, 
but it might be insufficient in some cases where facial nerves are damaged. However, 
our method can solve this issue by defining an additional blendshape for each char-
acter as it is effective enough at transferring expressions of the second source who 
is unable to move left facial muscles onto the target as in Fig. 19. Figure 20 depicts 
mapping from the third source to the target faces with our method. Inaccurate facial 
mapping is observed in the template model’s eyes while others faithfully reproduce 
the source expressions. Specifically, the retargeted template of the bottom row winks 
unlike other faces. It is significant that our methods are successful to cover source 
expressions. Future work will be a demonstration of facial retargeting with enhanced 
target blendshapes.
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