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Abstract
Document-level relation extraction aims to model the reasoning information over 
multiple sentences of a document and capture complex dependency interactions 
between inter-sentence entities. However, modeling reasoning information effectively 
in the document remains a challenging task. In this paper, we propose a Collabora-
tive Local-Global Reasoning Network (CLGR-Net) for the Document-Level Relation 
Extraction model to effectively predict such relations by integrating rich local and 
global information from the multi-granularity graph. Specifically, CLGR-Net first 
constructs a mention-level graph and a concept-level graph. The former aggregates 
complex local interactions underlying the same entities, the latter captures long-
distance global interaction among different entities. Finally, it creates an entity-level 
graph, the nodes and edges of the entity graph are aggregated by Relational Graph 
Convolutional Networks (R-GCN) and enriched by probability Knowledge Graphs 
(KGs), based on which we design a novel hybrid reasoning mechanism to collaborate 
relevant global and local information for entities. In this way, our model can effec-
tively model reasoning information from these three graphs. The mention-level graph 
and concept-level graph are used as auxiliary information for the entity-level graph in 
the form of independent heterogeneous graphs. Our CLGR-Net model achieves more 
competitive performance than state-of-the-art on three widely used benchmarks.

Keywords Relation extraction · Document-level · Local and Global reasoning 
network · Multi-granularity graph

 * Gang Zhou 
 gzhougzhou@126.com

 Xiaoyao Ding 
 201420959449@stu.ncwu.edu.cn

 Jicang Lu 
 lujicang@sina.com

 Taojie Zhu 
 zhutaojie158@163.com

1 PLA Strategic Support Force Information Engineering University, Zhengzhou 450000, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04875-9&domain=pdf


5470 X. Ding et al.

1 3

1 Introduction

Relation extraction plays a significant role in various natural language processing 
applications, which aims to extract semantic relations between entities from the 
given text. Previous methods [1–4] have achieved remarkable success in a single 
sentence. In real-world applications, many relation instances appear in multiple sen-
tences. Many recent studies [5–9] tackle the document-level relation extraction that 
recognizes relations between all entities in the entire document. Therefore, there is a 
more complex task for document-level relation extraction.

Document-level relation extraction requires more complex reasoning compared 
to sentence-level relation extraction. According to an analysis of the Wikipedia cor-
pus [10], at least 61.1% of relations require complex reasoning skills to be extracted. 
Only 38.9% of relations can recognize simple patterns, which indicates that reason-
ing techniques play a crucial role in document-level relation extraction. For exam-
ple, As Fig. 1 shows, in order to reason the relations between Elizabeth II in S1 and 
United Kingdom in S3, as well as Commonwealth in S3 and Elizabeth II in S1. First, 
the relation of entity pairs between (United Kingdom, Commonwealth) can easily be 
identified based solely on the same sentence. Next, we find that the inter-sentential 
relation between Elizabeth II and Queen is a mention of Elizabeth II. Obviously, to 
extract (Elizabeth II, United Kingdom) and (Commonwealth, Elizabeth II) relational 
facts, it is necessary to reason local and global context feature information.

Some previous relation extraction methods focus on an utterly certain assump-
tion. However, deterministic knowledge graphs are inconsistent with real-world 
situations. We introduce probability KGs, such as ConceptNet and ProBase, to 
model related concepts for entity pairs that provide global reasoning information 
for related entity pairs. ConceptNet is a knowledge graph that expresses a core set 
of 36 relations between terms, such as PartOf, IsA and CapableOf. Probase is a 

Fig. 1  A case of document-level relation extraction from the DocRED [10], we use black arrows to 
denote intra-sentential relations and red arrows to denote inter-sentential relations
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universal probabilistic taxonomy automatically constructed from a corpus of 1.6 bil-
lion HTML texts that contains almost 2.7 million concepts. They use probabilities 
to model inconsistent, vague, and uncertain information it contains. Many of these 
ambiguous concepts are helpful in the coarse-grained understanding of document 
context.

This paper proposes a Collaborative Local-Global Reasoning Network (CLGR-
Net), including a novel reasoning mechanism. In detail, we first construct two heter-
ogeneous graphs: a mention-level graph and a concept-level graph. For the mention-
level graph, we apply R-GCN [12] on the mention-level graph to get a local-aware 
representation for each word and mention. For the concept-level graph, we utilize 
probability KGs, such as ProBase [11] and ConceptNet [13], to aggregate entities 
effectively to obtain concept feature representations. Considering that different types 
of edges between two nodes in heterogeneous graphs should have different interac-
tion strengths, we follow the basic idea of R-GCN but add a trainable parameter to 
the propagation model. Finally, the entity-level graph is constructed by collaborat-
ing a mention-level graph and a concept-level graph, integrating the local mentions 
interaction of entities and the global concepts knowledge of entities. We summarize 
our major contributions as follows:

• We propose an effective framework called CLGR-Net that captures local and 
global context interactions, to better address the long-distance dependency prob-
lems between entities.

• We propose a collaborative reasoning mechanism to fuse in concert with the 
entity reasoning block, to further improve the relational reasoning ability among 
entities.

• Our model achieves better performances than previous models on three public 
widely document-level relation extraction datasets, and further detailed analysis 
suggests that CLGR-Net can bring more applicable and reliable predictions.

2  Related work

2.1  Document‑level relation extraction

Early approaches mainly focus on intra-sentence relation extraction [1–4]. How-
ever, these approaches do not consider large amounts of relations across mentions 
and ignore relations expressed across multiple sentences. Following Yao et  al. 
[10], at least 40.7% of relations can only recognize the relation between two enti-
ties across sentence boundaries in a document. Therefore, many researchers have 
begun to explore document-level relation extraction in recent years. Most of them 
apply the graph-based models to encode heterogeneous graph structures. For exam-
ple, Christopoulou et  al. [5] first utilize heuristics to construct an edge-oriented 
graph for document-level relation extraction to generate different dependencies over 
the graph edges. Zeng et al. [14] proposed two heterogeneous graphs to model the 
document-level different interactions between entities and mentions. However, these 
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graph-based models are built upon the context of the document itself, which is dif-
ferent from our model that global interactions with the probability KGs.

2.2  Reasoning in relation extraction

Some studies also take reasoning into account by introducing an inference structure. 
Nan et al. [6] constructed a latent structure to perform relational reasoning dynami-
cally. Li et al. [8] distinguished mentions to generate entity representations of men-
tion-based reasoning. Tang et al. [15] proposed a hierarchical inference network to 
obtain document-level inference information. Wang et  al. [16] presented a docu-
ment-level RST-GRAPH and tackled the evidence reasoning module by introducing 
the Rhetorical Structure Theory (RST). The SSAN model proposed by Xu et al. [17] 
can predict entity relation through the interaction of context reasoning and struc-
ture reasoning. Zhou et al. [23] introduced two techniques of adaptive thresholding 
and localized context pooling to deal with multi-label and multi-entity problems. Li 
et al. [18] proposed a Multi-view Inference framework for relation extraction with 
Uncertain Knowledge (MIUK), which designed a multi-view reason mechanism that 
integrated local and global across mention-view, entity-view, and concept-view. In 
contrast, Li et al. [18] connected the three views in an intertwined way. Moreover, 
they do not strictly distinguish between local and global cross-view links explicitly, 
resulting in the impact of local mentions on entity views mixed with global informa-
tion. Second, the processes of node construction are different. They do not conduct 
views node representation learning like R-GCN to produce latent feature reasoning 
on the constructed graph, only calculated by averaging the embeddings to represent 
nodes. These approaches make the nodes in the graph not contain adequate informa-
tion, and the edges containing deep reasoning are not connected, failing to predict 
the relation between entities.

Compared to the MIUK model and other graph-based inference structures for 
document-level relation extraction, our model has many different external designs 
and internal principles. We structure a mention-level graph and a concept-level 
graph to interact with entity graphs using independent connections, respectively.

3  Collaborative local‑global reasoning module

As is illustrated in Fig. 2, the overall architecture of CLGR-Net mainly consists of three 
modules: encoding module (Sect.  3.1), collaborative local-global reasoning module 
(Sect. 3.2), and relation classification model (Sect. 3.3). Specifically, in encoding mod-
ule, we convert each word in the document into a vector through an encoder. In collab-
orative local-global reasoning module, we first use logsumexp pooling that can contain 
rich semantics to generate original mention nodes and construct a mention-level graph, 
and then abstract the semantics of entities to generate concept nodes and construct a 
concept-level graph. Finally, the nodes and edges in the entity-level graph are reasoned 
through R-GCN. In relation classification model, by connecting the global reasoning 
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representation of the target entity and putting the results into a sigmoid function, the 
entities of relation extraction task are completed.

3.1  Encoding module

To represent each word in the document context, we first encode an input document 
containing n words 

{
wi

}n

i=1
 into a vector. In addition to the vectorization of the words 

themselves, we add two additional features to augment the input. One is type embed-
ding, which is obtained by mapping the entity type of each mentioned word into a vec-
tor and has been proved to be useful for relation extraction [5, 10]. The other is corefer-
ence embedding, which is assigned words according to the entity to which they belong 
and help the model catch global interactive coreference information. Therefore, we 
concatenate each word wi with its corresponding entity type embedding ti and corefer-
ence embedding ci to generate mixed input vectors xi = [wi;ti;ci] , where [ ; ] is the con-
catenation operator. Finally, we feed mixed input vectors into an encoder Denc to obtain 
contextualized embedding representation hi for each word as follows:

where the Denc can use bidirectional LSTM/BERT or other units.

3.2  Local‑global representation module

3.2.1  Local representation module

In this module, we focus on local representation modeling. Based on the contextual 
representation of each word, we extract mention nodes to construct a heterogeneous 

(1)hi = Denc(xi), i ∈ [1, n]

Fig. 2  The overall architecture of CLGR-Net
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mention-level graph. Unlike existing approaches, which constructed mention nodes by 
averaging or maximum pooling words that the mention contains [5, 8], we apply log-
sumexp pooling [18] to obtain the mention node. This pooling approach is similar to 
maximum pooling, but it can better accumulate signals from local contextual informa-
tion, and it also shows better performance compared to averaging pooling in the experi-
ment, the mention node is computed as the logsumexp pooling of the word representa-
tions associated with the mention:

where si and ti are the start and end of the i-th mention, respectively.
To model the local context interactions, we treat mention nodes and construct the 

following two types of edges:

• Intra-sentence mention-mention edges Mentions are fully connected with intra-sen-
tence mention-mention edges if the mentions co-occur in the same sentence.

• Intra-entity mention-mention edges Mentions are fully connected with intra-entity 
mention-mention edges if the mentions refer to the same entity.

3.2.2  Global representation module

Such uncertain representations with KGs critically capture the uncertain information 
of document relational fact and provide more rich global representations. Relations 
between entities can constitute the probabilistic semantic relations of vague concepts, 
specifically, by observing many individual entity pairs, the possibility of its correspond-
ing concept can be to what extent determined according to a confidence score.

Inspired by Hao et  al. [19], for each given entity, we first respectively map-
pings from the entity to all concepts based on the weight values in ConceptNet and 
ProBase. If the concept of an entity is not retrieved, the corresponding concept of 
the entity is marked as [unk], and its weight value is set to 0. Then we use the soft-
max function to normalize their weight values to obtain the attention weights of the 
concept corresponding to the entity. The corresponding attention weight values are 
denoted as 

{
�s
}n

s=1
 and 

{
�t
}n

t=1
 in ConceptNet and ProBase. In order to enrich the 

global reasoning information, we generate the concept vectors �i and �i of the cor-
responding entity ei by introducing the attention mechanism [20] as follows:

In order to improve the understanding of attention weights in Eqs.  3 and   4, we 
visualize the concept of attention weights on relevant entities. As Fig. 3 shows, we 

(2)mi = log

ti∑
j=si

exp(hj)

(3)�i =

n�
s=1

�s ⋅ ei;�s =
exp

�
�s
�

∑n

s=1
exp

�
�s
�

(4)�i =

n�
s=1

�t ⋅ ei;�t =
exp

�
�t
�

∑n

s=1
exp

�
�t
�
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choose “The Elizabeth II was also the monarch of the United Kingdom and the other 
Commonwealth realms.” in the DocRED as an example, there are three entities in 
this sentence. Through the traversal of ConceptNet and ProBase, the concept cor-
responding to each entity is obtained, and Eq. 3 and Eq. 4 are used to calculate the 
concept attention weights on each entity. For example, the entity Elizabeth II, the 
most relevant concept to this entity, is rayalty in ConceptNet, so the concept has the 
largest attention weight and the darkest color. Similarly, the most relevant concept to 
this entity is woman in Probase.

Finally, we concatenate �i and �i to obtain concept node representation of ei as 
follows:

To model global document interactions, we construct the Concept-level Graph by 
connecting concept nodes with the following type of edges:

Inter-concept edges: To capture non-local relation reasoning interactions 
among concepts, we connect all concept nodes.

(5)�i = [�i;�i]

Fig. 3  Visualization of different attention weights, the deeper color denotes the higher weight, some con-
cepts are not shown for brevity
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3.2.3  Collaborative reasoning module

We construct Mention-level Graph (MG) in Sect. 3.2.1 and Concept-level Graph (CG) 
in Sect. 3.2.2. To further enhance interactions among entity pairs in a document, in this 
module, we construct Entity-level Graph (EG) and use R-GCN to perform collabora-
tive local-global reasoning.

In this study, we propose rich local-global reasoning information for different edge 
types. More specifically, R-GCN can aggregate the features across different neighbor-
ing nodes. However, various types of edges usually have different dependency influ-
ences, they should be treated differential, so we assign unequal weight values �l

t
 by 

self-learning to different edge types T  . Formally, node i and its neighbors Ni link with 
edge t at the l-th layer, and the modified graph convolutional operation generates trans-
formed representation in the (l+1)th layer for node i via as follows:

where � denotes a bilinear function, �l
t
,Wl

t
 and Wl

o
 are learned parameter.

Next, in order to cover local mention node features of all levels, we concatenate the 
outputs of all R-GCN layers to generate the final representation of mention node as 
follows:

where m0
i
 is the initial representation of mention node.

Finally similar to previous steps in mention representation, for each entity ei with 
mentions 

{
mi

j

}E(ei)

j=1
 , where E(ei) is entity ei mentioned times, and we apply logsumexp 

pooling to define the entity node ei as follows:

We combine Mention-level Graph (MG) and Concept-level Graph (CG) to generate 
Entity-level Graph (EG). There are two types of edges in EG:

• Mention-entity edges To pass the mention-level reasoning message to the entity-
level, mentions referring to the entity are fully connected.

• Concept-entity edges To pass the concept-level reasoning message to the entity-
level, concepts referring to the entity are fully connected.

To enhance local-global reasoning, we first generate the interactive local-global repre-
sentation �ij for the target entities ei and ej as follows:

(6)m
(l+1)

i
= �

⎛
⎜⎜⎝
�
t∈T

�
k∈Nt

i

�l
t

∣ Nt
i
∣
Wl

t
nl
k
+Wl

o
ml

i

⎞
⎟⎟⎠

(7)mi = [m0
i
;m1

i
;m2

i
… ;mN

i
]

(8)ei = log

E(ei)∑
j=1

exp
(
mj

)

(9)�ij = �([�i;ei], [�j;ej])
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The final local-global reasoning representation can be generated by concatenating 
the local-global interactive representation �ij and a relative distance representations 
�ij from the first mention of ei to ej as follows:

3.3  Relation classification module

Based on the local-global reasoning module introduced above, we first concatenate 
entity pair representation and local-global reasoning representation to classify the 
relations, then we use a feedforward network with the sigmoid function to calculate 
the probability of each relation type r:

where [ ; ] denotes concatenation and Wr and br are trainable parameters.
Finally, in our experiments, we use the binary cross-entropy(BCE) to train our 

model and the loss function as follows:

where sr ∈ {0, 1} denotes the true value on relation label r and R is the number of 
whole relations.

4  Experiments

4.1  Dataset and evaluation

We evaluate the effectiveness of our CLGR-Net on three document-level relation 
extraction datasets, including DocRED [10], CDR [21], and GDA [22]. DocRED 
is a large-scale human-annotated dataset based on Wikipedia texts. It consists of 
132375 entities, 96 frequent relation types, and an “NA” (no relation) relation on 
the 5053 Wikipedia document. CDR and GDA focus on biomedical area datasets 
where CDR contains the binary relations between chemical and disease entities with 
1500 documents, and GDA contains the binary interactions between gene and dis-
ease entities with 30192 documents.

For DocRED, following Yao et al. [10], we use F1 and Ign F1 as the evaluation 
indicators. Ign F1 is defined by excluding the common relation instances mentioned 
that exist in both training and dev/test sets. For CDR and GDA, considering that 
DocRED does not strictly annotate between intra-sentential and inter-sentential rela-
tions types but CDR and GDA do, following the previous work [5, 17], we utilize 
the intra-F1 and inter-F1 metrics to evaluate relation extraction performance respec-
tively on dev set.

(10)oij = [�ij;�ij]

(11)P
(
r ∣ ei, ej

)
= sigmoid

(
Wr

[
oij;ei;ej

]
+ br

)

(12)L = −

R∑
r=1

sr log
(
Pr

)
+
(
1 − sr

)
log

(
1 − Pr

)
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4.2  Baseline models

We compare our CLGR-Net with the following three types of baseline models:

• Sequence-based Models These models introduced different neural architectures 
to encode the input document, including CNN [10], LSTM [10], Context-Aware 
[10], bidirectional LSTM (BiLSTM) [10] and HIN [15].

• Graph-based Models These models constructed a document graph (homogene-
ous or heterogeneous graph) by connecting the given entities, including EoG [5], 
LSR [6], and GAIN [14].

• BERT-based Models Some models applied an excellent pre-trained model like 
BERT [25] to improve the performance of the document-level relation extraction 
model, including DISCO [16], MRN [8], ATLOP [23], HeterGSAN [7], MIUK 
[18], and SSAN [17]. Besides that, we also include the SciBERT [27] baseline 
models, SciBERT is also a pre-trained model based on BERT, which is pre-
trained on scientific text.

4.3  Implementation details

In our CLGR-Net implementation, we use three word embedding methods. CLGR-
BERT uses Uncased BERT-base (768d) [25] as encoder, for DocRED, CLGR-
GloVe uses GloVe (100d) [28] embedding with BiLSTM (256d) as word embedding 
and encoder, for CDR and GDA, CLGR-SciBERT uses SciBERT-base (768d) as the 
encoder. AdamW [29] is used as our model optimizer, and weight decay is set to 
10−4 , learning rate to 10−3 under PyTorch [30]. We tune all the hyperparameters on 
the development set and incorporate early stopping based on the best training epoch. 
All the experiments are run on NVIDIA GeForce GTX TITAN X GPU, with Intel 
(R) Xeon (R) E5-2620 v4 CPU.

5  Experimental results and analyses

5.1  DocRED results

Table  1 summarizes the results on DocRED. We observe that BERT-based mod-
els remarkably outperform sequence-based and graph-based baselines, and the best 
graph-based baseline model GAIN-Glove [14] outperforms the best sequence-based 
baseline model HIN-Glove [15]. It directly proves that BERT can take advantage of 
the document context interactions, and the graph-based structure compensates for 
BERT’s weakness in capturing long-distance, cross-sentential information.

Moreover, we observe that our model generally outperforms the best graph-based 
and BERT-based models. In particular, our CLGR-GloVe (F1 56.68) and CLGR-
BERTbase (F1 62.87) achieve substantial improvements of 2.51% and 2.91% in F1 
than the existing best GAIN-Glove model (F1 55.29) and ATLOP-BERTbase model 
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(F1 61.09) on the dev set, respectively, it is mainly due to emphasizing the local 
mention-level contextual reasoning information and global concept-level abstract 
structure in document-level relation extraction.

5.2  CDR and GDA results

Table 2 lists the results on the CDR and GDA, which besides the overall F1, Intra-
F1, and Inter-F1. We apply the BERT and SciBERT pre-trained models on the test 
set, respectively. On the CDR test set, CLGR achieves +1.4 F1/+3.7 F1 gain based 
on BERT-based/SciBERT-based, which is better than existing state-of-the-art meth-
ods. On the GDA test set, the performance of CLGR is 0.83%/1.98% better than 
the best performing model SSAN-BERTbase/ATLOP-SciBERTbase based on BERT-
based/SciBERT-based. These results again indicate the substantial effectiveness of 
CLGR.

5.3  Effect of probability knowledge graphs

We further explore the effect of probability knowledge graphs. We randomly 
sample different amounts of concept data from ConceptNet and ProBase, and we 
consider different amounts of concept data settings ranging from 20–100%. Fig-
ure 4 shows the performance of CLGR-Net under the different amounts of con-
cept data. It is observed that the F1 scores increase is slightly larger with more 

Table 1  Performances on DocRED

Groups Methods Dev Test

Ign F1 F1 Ign F1 F1

Sequence-based Models CNN [10] 41.58 43.45 40.33 42.26
LSTM [10] 48.44 50.68 47.71 50.07
BiLSTM [10] 48.87 50.94 48.78 51.06
Context-Aware [10] 48.94 51.09 48.40 50.70
HIN-GloVe [15] 51.06 52.95 51.15 53.30
CLGR-Glove 55.29 56.68 54.83 56.36

Graph-based Models EoG [5] 45.94 52.15 49.48 51.82
LSR-Glove [6] 48.82 55.17 52.15 54.18
GAIN-GloVe [14] 53.05 55.29 52.66 55.08

BERT-based Models HIN-BERT
base

 [15] 54.29 56.31 53.70 55.60
DISCO-BERT

base
 [16] 55.91 57.78 55.01 55.70

SSAN-BERT
base

 [17] 57.03 59.19 55.84 58.16
HeterGSAN-BERT

base
 [7] 58.13 60.18 57.12 59.45

MIUK-BERT
base

 [18] 58.27 60.11 58.05 59.99
ATLOP-BERT

base
 [23] 59.22 61.09 59.31 61.30

CLGR-BERT
base

61.53 62.87 61.14 62.41
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concept data. Specifically, when we use 100% of the concept data, the CLGR-Net 
model can achieve the highest F1 score of 62.87. This result indicates that prob-
ability knowledge graphs play a crucial role in our model.

How do ConceptNet and ProBase knowledge affect our model? In document-
level relation extraction, when two entities cannot simply obtain the relations 
from a complex context, we can see the role of probability knowledge. Probability 
knowledge abstracts entities into higher-level concepts. Many of these concepts 
are crossed and related so that we can infer the relation between the two entities 
through the relation between the concepts corresponding to the two entities.

Table 2  Results on CDR test set 
and GDA test set

Dataset Methods F1 Intra-F1 Inter-F1

CDR EoG [5] 63.6 68.2 50.9
LSR [6] 64.8 68.9 53.1
SSAN-BERT

base
 [17] 62.7 70.4 44.7

MRN-BERT
base

 [8] 65.9 70.4 54.2
CLGR-BERT

base
67.3 72.8 54.4

SSAN-SciBERT
base

 [17] 68.7 74.5 56.2
ATLOP-SciBERT

base
 [23] 69.4 - -

CLGR-SciBERT
base

73.1 79.2 58.4
GDA EoG [5] 81.5 85.2 50.0

LSR [6] 82.2 85.4 51.1
MRN-BERT

base
 [8] 82.9 86.1 53.5

SSAN-BERT
base

 [17] 83.4 86.7 62.3
CLGR-BERT

base
84.1 86.9 65.0

SSAN-SciBERT
base

 [17] 83.7 86.6 65.3
ATLOP-SciBERT

base
 [23] 83.9 - -

CLGR-SciBERT
base

85.6 88.7 67.1

Fig. 4  Performance comparison with the different amount of concept data on the DocRED dev set
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5.4  Ablation study

To further analyze our method, we run an ablation experiment to study the effec-
tiveness of each component of CLGR on the DocRED dev set. From Table 3, we 
find that:

• Without introducing concept node representations in CLGR, drop the result 
by 0.66/0.95. This shows that concept node representations can capture richer 
global interaction information in the long-distance non-local dependency rela-
tions, thereby enhancing the effect of entity relation extraction.

• When we replace the dynamic weighted R-GCN with the fixed weight R-GCN in 
node representation computing, F1 drops by 0.71 and 1.06, respectively. Com-
pared with traditional R-GCN, our weighted R-GCN has a more vital ability to 
reason different weight edge types by self-learning.

• After removing interactive Local-Global reasoning, the performance sharply 
goes down by F1 for 1.26 and IgnF1 for 1.42, implying that collaborative local-
global reasoning is required in order to obtain more practical inference informa-
tion in heterogeneous graphs.

In order to more clearly show the impact of each part of the ablation experi-
ment on the overall model, we give the following example, as shown in Fig. 5. 
When the model is not missing any part, CLGR-BERTbase can predict six types 
of relations. When the model removes the concept node representations, it can 
predict five types. Since the concept of James Poe in the example cannot be accu-
rately identified, the relation between They Shoot Horses and James Poe can-
not be predicted. When the model removes the dynamic weighted R-GCN, the 
model cannot perceive the information of neighbor nodes, so it cannot predict 
the relation between the two entity pairs (They Shoot Horses, 1969) and (They 
Shoot Horses, Sydney Pollack). When the model removes the interactive Local-
Global reasoning. In the example, the relation between two pairs of entities that 
require local and global reasoning cannot be predicted. In an entity pair (They 
Shoot Horses, York), it is necessary to infer that Susannah York and York are 
coreferences.

Table 3  Results of ablation 
study

Setting Dev

Ign F1 F1

CLGR-BERT
base

61.53 62.87
Concept node representations 60.87 ( ↓0.66) 61.92 ( ↓0.95)
Dynamic weighted R-GCN 60.82 ( ↓0.71) 61.81 ( ↓1.06)
Interactive Local-Global reasoning 60.09 ( ↓1.26) 61.45(↓ 1.42)
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5.5  Case study

Figures 6 and  7 show two cases study to further demonstrate the effectiveness of 
our proposed CLGR-Net model compared with the several baselines on DocRED 
and CDR, respectively.

As is shown in Fig. 6, we notice that both BERTbase-RE and ATLOP-BERTbase 
can successfully predict three entity pairs (Gregorio Pacheco Leyes, Bolivia), 
(Gregorio Pacheco Leyes, Livi Livi) and (Livi Livi, Province of Potosi) of rela-
tion on DocRED. However, due to a lack of supplementary knowledge, ATLOP-
BERTbase fails to predict the relation between Bolivia and Province of Potosi, 
while it deduces Livi Livi and Bolivia across sentences successfully. Our CLGR-
Net can identify correct logical reasoning chains: Livi Livi → Bolivia → Prov-
ince of Potosi. This case indicates that our CLGR-Net has better collaborative 
local-global reasoning ability.

As is shown in Fig. 7, the “chemical-induced disease” relation of four entity 
pairs (ethambutol, Bilateral optic neuropathy), (isoniazid, Bilateral optic neurop-
athy), (ethambutol, scotoma) and (isoniazid, scotoma) can be accurately predicted 
by SSAN-SciBERTbase and ATOLP-SciBERTbase models. However, when it comes 
to entity pair (scotoma, Bilateral optic neuropathy), it is necessary to identify that 
Bilateral optic neuropathy and bilateral retrobulbar neuropathy are coreferences, 
which requires the model to have the ability of cross-sentence coreference reason-
ing. Obviously, our model is better at this aspect.

Fig. 5  An example from DocRED to illustrate the effect of each part on the model
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6  Conclusion

In this paper, we propose CLGR-Net, a collaborative local-global reasoning net-
work for document-level relation extraction. We construct a mention-level graph 
and a concept-level graph to help alleviate long-distance dependency problems. 
Based on two heterogeneous graphs, we introduce a novel form of collaborative 
reasoning module and employ R-GCN to capture intrinsic clues and perform rea-
soning ability among entity pairs. Experimental results on three-wide datasets 
show that our CLGR-Net outperforms existing models.
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Fig. 6  A case study for our model and several baseline models on DocRED

Fig. 7  A case study for our model and several baseline models on CDR
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