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Abstract
Multiple edge-disjoint Hamiltonian cycles (EDHCs) provide the advantages of data 
broadcast in parallel and edge fault-tolerance in network communications. This paper 
investigates how to construct more EDHCs in a hypercube-variant network called crossed 
cube, denoted as CQn . The topology of CQn has more wealth than normal hypercubes in 
network properties, e.g., it has about half of the diameter of a hypercube with the same 
dimension. Then, we obtain the following results in this paper: (1) We first provide the 
construction of three EDHCs in CQ

6
 . (2) According to the recursive structure of CQn , 

we prove by induction that there exist also three EDHCs in CQn for n ⩾ 7 . (3) Finally, we 
evaluate the performance of data broadcasting by simulation through three EDHCs and 
compare it against the best previous result in [18] using two EDHCs. In particular, our 
findings significantly improved the average success rate in edge fault-tolerant data broad-
casting and two specific metrics concerning the broadcasting delivery time (latency).

Keywords  Interconnection networks · Edge-disjoint Hamiltonian cycles · Crossed 
cubes · Fault-tolerant data broadcasting

1  Introduction

The ring structure is essential for high-performance computing architecture, which 
is often used as the baseband for data transmission in interconnection networks and 
control flow in parallel and distributed environments. Many efficient algorithms with 
low communication costs have been developed based on the ring structure [1–4]. To 
acquire a ring structure passing through every node in a network, it relies on Ham-
iltonian cycles in the corresponding network topology. In particular, edge-disjoint 
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Hamiltonian cycles (EDHCs for short) can provide advantages in many applications, as 
described below.

Consider the all-to-all communication in a network system with n nodes, where 
every node needs to send a distinct message to all other nodes. Applying a ring 
structure, once a message starts sending, a node can receive a new message from 
the previous node at each step, keeps a copy of the new message for itself, and sends 
the received message to the next node. Thus, the process can be done through n − 1 
steps. Suppose that the system now contains multiple EDHCs. Then, a message can 
be partitioned into small packets (e.g., called “frames" in Ethernet), each of which 
can be sent along the multiple EDHCs. Therefore, the time required for transmis-
sion can be reduced. That is, adopting multiple EDHCs as broadband channels in a 
network can provide multiple data signals/streams simultaneously at the same time 
in parallel and provide advantages of data transmission. Furthermore, one way to 
achieve fault-tolerant interprocessor communication is by effectively utilizing dis-
joint paths between source and destination node pairs. Especially when consider-
ing link failure tolerance, the technique of using edge-disjoint paths is a common 
strategy. Thus, if a fault occurs on one edge of a Hamiltonian cycle, the message can 
be transmitted along another Hamiltonian cycle. Accordingly, constructing multiple 
EDHCs has applications to enhance edge fault-tolerant capability in data transmis-
sion [5–7].

Networks are usually modeled as undirected simple graphs G = (V ,E) , where the 
node set V(= V(G)) and the edge set E(= E(G)) represent the set of processors and 
the set of communication channels between processors, respectively. A cycle in a 
graph that contains every node exactly once is called a Hamiltonian cycle. A graph 
is Hamiltonian if it possesses a Hamiltonian cycle. Two cycles in a graph are edge-
disjoint (resp. node-disjoint) if they share no common edge (resp. common node). 
It is well-known that finding a Hamiltonian cycle in a graph is an NP-hard problem 
[8], let alone the problem of finding multiple EDHCs.

Some previous works related to the construction of multiple EDHCs in specific 
networks are described below. The known existence of two EDHCs include butterfly 
networks [9], Gaussian networks [10], locally twisted cubes [11, 12], balanced hyper-
cubes [13], augmented cubes [14], twisted cubes [15], parity cubes [16], crossed cubes 
[17, 18], and some kinds of hypercube-like networks [18] etc. However, so far, only 
a few studies have been devoted to constructing more than two EDHCs on specific 
networks. Hussain et al. [19] gave a construction of three EDHCs in Eisenstein-Jacobi 
networks. Hung [18] showed that the n-dimensional transposition networks for n ⩾ 5 
contains four EDHCs. For concerning the existence of more EDHCs in graphs or net-
works, please refer to [20] for hypertournaments, [21] for WK-recursive networks, [5] 
for hypercubes and k-ary n-cubes, and [22] for generalized hypercubes.

This paper studies the problem of constructing three EDHCs in a class of hyper-
cube-variant networks called crossed cubes and denoted by CQn (see Definition 1). 
As constructing beyond two EDHCs in CQn for n ⩾ 6 is currently an open problem, 
our study of demonstrating the existence of three EDHCs on CQn is a theoretical 
breakthrough. This result improves the previous ones of Pai [17] and Hung [18] in 
terms of quantity of Hamiltonian cycles, where the former first designed a recursive 
algorithm to construct two EDHCs of CQn in O(n2n) time when n ⩾ 4 , and the latter 
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presented an elegant parallel construction to yield two EDHCs in O(n) time using 
2n nodes of CQn as processors. Using the three EDHCs in CQn as the transmission 
channels, we can easily carry out an edge fault-tolerant broadcast from an arbitrary 
node. In addition, using three EDHCs instead of two EDHCs can improve the per-
formance of fault-tolerant and latency in data broadcasting.

So far, the Hamiltonicity of the crossed cube has been studied extensively in the 
literature. For instance, research on fault-tolerant Hamiltonicity (or pancyclicity) 
[23–26], Hamiltonicity with conditional link faults [27, 28], and Hamiltonicity (or 
panconnectedness) with required nodes in the fixed positions [29, 30]. Excepting 
the above research, the recent issues that have paid more attention to crossed cubes 
are the construction of multiple spanning trees [31–38], node-to-set disjoint paths 
[39], and the study of (conditional) diagnosability [40, 41]. For more properties and 
results of CQn , the reader can refer to [42, 43].

The rest of the paper is organized as follows. Section 2 formally gives the def-
inition of crossed cubes and introduces a previous result showing two EDHCs of 
CQ4 . Section 3 presents how to construct three EDHCs of CQ6 . Section 4 provides a 
recursive algorithm to construct three EDHCs of CQn for n ⩾ 7 . Section 5 simulates 
edge fault-tolerant data broadcasting in CQn for 6 ⩽ n ⩽ 10 and compares the exper-
imental performance with the best previous results. Finally, the concluding remarks 
are given in the last section.

2 � Preliminaries

Suppose that G is a labeled graph whose nodes are associated with distinct binary 
strings, and let Gx be the graph obtained from G by prefixing the binary string on every 
node with x. Efe [44] defined two binary strings x = x1x0 and y = y1y0 to be pair-

related, denoted x ∼ y , if and only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.

Definition 1  (Efe [44].) The n-dimensional crossed cube CQn is the labeled graph 
with the following recursive fashion: 

(1)	 CQ1 is the complete graph on two nodes with labels 0 and 1.

(2)	 For n ⩾ 2 , CQn is composed of two subcubes CQ0
n−1

 and CQ1
n−1

 such that two 

nodes x = 0xn−2 ⋯ x1x0 ∈ V(CQ0
n−1

) and y = 1yn−2 ⋯ y1y0 ∈ V(CQ1
n−1

) are 
joined by an edge if and only if

–	 xn−2 = yn−2 if n is even, and
–	 x2i+1x2i ∼ y2i+1y2i for 0 ⩽ i < ⌊(n − 1)∕2⌋,

	    where x and y are called the (n − 1)-neighbors to each other, and denote as 
Nn−1(x) = y or Nn−1(y) = x.

For conciseness of representation, sometimes the labels of nodes are changed to 
the use of decimal. For instance, Fig.  1 shows two EDHCs of the 4-dimensional 
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crossed cube CQ4 that was provided in [17], where each node is labeled by the binary 
code and its corresponding decimal (inside the circle). We can see that each Ham-
iltonian cycle in HC1 and HC2 contains 16 distinct edges, of which eight edges are 
evenly distributed in four subcubes CQ00

2
 , CQ01

2
 , CQ10

2
 , and CQ11

2
 , and then through 

eight different outer edges are joined to form a Hamiltonian cycle of CQ4.

3 � Three edge‑disjoint Hamiltonian cycles in CQ
6

In this section, we first give two EDHCs of CQ6 that were built from [17]. Then, 
we fine-tune some edges in the second Hamiltonian cycle so that the remaining 
edges are sufficient to construct the third Hamiltonian cycle.

A cycle with length � is said to be an �-cycle. Let C be a cycle. For nota-
tional convenience, we write e ∈ C instead of e ∈ E(C) . Let HC1 and HC2 be 
two EDHCs of CQ4 (see Fig. 1). By the recursive structure in Definition 1, CQ6 
can be decomposed into four copies of CQ4 , and each copy has two Hamiltonian 
cycles mentioned above. Hence, Pai [17] provided the following way to construct 
two Hamiltonian cycles of CQ6 . Partition CQ6 into four disjoint subcubes CQij

4
 

for i, j ∈ {0, 1} , and let HCij

k
 for k ∈ {1, 2} be the corresponding kth Hamiltonian 

cycle in the subcube CQij

4
 such that each cycle maps to HCk in CQ4 . For each 

k = 1, 2 , since each subcube contains Hamiltonian cycles passing through distinct 
nodes, the four Hamiltonian cycles in the subcubes are easily constructed in a 
parallel fashion. Then, the two Hamiltonian cycles of CQ6 , say HC1 and HC2 , can 
be constructed from the merge of HCij

k
 for k = 1, 2 by adjusting four edges in each 

cycle, which are described as follows:

Fig. 1   Two EDHCs HC
1
 and HC

2
 in CQ

4
 , where thick lines indicate edges of cycles
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and

For instance, Fig.  2 depicts the Hamiltonian cycle HC1 of CQ6 constructed from 
Eq. (1). From the drawing, we may imagine that two dashed lines (horizontal and 
vertical) partition the whole CQ6 into four subcubes with equal size, where nodes 
in the upper part and lower part (resp. left part and right part) are mirrored, and 
their labels have the difference ±16 (resp. ±32 ). Due to saving the space, we omit 
the drawing of HC2 constructed from Eq. (2). However, since certain edges are con-
tained in HC2 (see Fig. 1), we can be sure that some corresponding edges exist in 
HC2 , e.g., we have the following mapping of edges from HC2 to HC2:

Let A be the set consisting of the above fifteen edges in HC2 . Since CQ6 contains 
192 edges, it has the remaining 64 edges after removing two EDHCs HC1 and HC2 . 
With brute force checking, we can find that E(CQ6) − {E(HC1) ∪ E(HC2)} includes 
two 8-cycles and twelve 4-cycles, and all these cycles are node-disjoint. We list all 
fourteen cycles in detail as follows:

(1)
E(HC1) =

( ⋃

i,j∈{0,1}

E(HC
ij

1
)

)
∪ {(0, 32), (8, 24), (16, 48), (40, 56)}

− {(0, 8), (16, 24), (32, 40), (48, 56)}

(2)
E(HC2) =

( ⋃

i,j∈{0,1}

E(HC
ij

2
)

)
∪ {(2, 34), (10, 26), (18, 50), (42, 58)}

− {(2, 10), (18, 26), (34, 42), (50, 58)}.

(8, 12) ∈ HC2 →(56, 60) ∈ HC2 // + 48

(4, 5) ∈ HC2 →(20, 21) ∈ HC2 // + 16

(15, 9) ∈ HC2 →(63, 57) ∈ HC2 // + 48

(11, 1) ∈ HC2 →(27, 17) ∈ HC2 // + 16

(3, 5) ∈ HC2 →(51, 53) ∈ HC2 // + 48

(5, 4) ∈ HC2 →( 5, 4) ∈ HC2 // + 0

(12, 14) ∈ HC2 →(44, 46) ∈ HC2 // + 32

(6, 14) ∈ HC2 →(54, 62) ∈ HC2 // + 48

(6, 7) ∈ HC2 →(38, 39) ∈ HC2 // + 32

(13, 7) ∈ HC2 →(61, 55) ∈ HC2 // + 48

(13, 15) ∈ HC2 →(45, 47) ∈ HC2 // + 32

(15, 9) ∈ HC2 →(47, 41) ∈ HC2 // + 32

(11, 1) ∈ HC2 →(59, 49) ∈ HC2 // + 48

(3, 2) ∈ HC2 →(19, 18) ∈ HC2 // + 16

(10, 8) ∈ HC2 →(26, 24) ∈ HC2 // + 16
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C
1
= (56, 48, 32, 40, 8, 0, 16, 24, 56), C

2
= (60, 36, 12, 20, 60),

C
3
= (21, 15, 37, 63, 21), C

4
= (57, 43, 9, 27, 57),

C
5
= (17, 3, 33, 51, 17), C

6
= (53, 31, 5, 47, 53),

C
7
= (4, 28, 52, 44, 4), C

8
= (46, 6, 30, 54, 46),

C
9
= (62, 22, 14, 38, 62), C

10
= (39, 61, 23, 13, 39),

C
11

= (55, 29, 7, 45, 55), C
12

= (11, 25, 59, 41, 11),

C
13

= (35, 1, 19, 49, 35), C
14

= (2, 10, 42, 34, 50, 58, 26, 18, 2).

Fig. 2   The Hamiltonian cycle HC
1
 of CQ

6
 constructed from Eq. (1), where thick lines indicate edges of 

the cycle
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Let B be the set of edges picking from these cycles:

Note that we pick two edges of C6 in B, and thus B contains fifteen edges.
The third Hamiltonian cycle of CQ6 , say HC3 , can be constructed as follows (see 

Fig. 3 for illustration):

Figure  3 illustrates the construction of HC3 , where the bold lines indicate the 
edges belonging to A, which will be added to the edge set of HC3 . While lines with 
cross marks are edges belonging to B, which will be removed from HC3 . In fact, the 
construction of the third Hamiltonian cycle mentioned above is done using the edge-
swapping technique. Therefore, with the above adjustments, we need to modify the 
edge set of HC2 obtained from Eq. (2) by swapping two edge sets, A and B, as fol-
lows (see Fig. 4 for illustration):

Similarly, in Fig.  4, the bold lines indicate the edges of B that will be added, 
while lines with cross marks are edges of A that will be removed in the construction. 
We now easily check {u, v ∶ (u, v) ∈ A} = {u, v ∶ (u, v) ∈ B} , i.e., the unions of ends 
of edges in the two sets are identical. From an arbitrary starting node, by visiting 
the paths formed by the edges in Figs. 3 and 4 in sequence, we finally obtain two 
EDHCs, and hence the result is shown below.

(24, 56) ∈ C1, (20, 60) ∈ C2, (63, 21) ∈ C3,

(27, 57) ∈ C4, (51, 17) ∈ C5, (5, 47), (47, 53) ∈ C6,

(44, 4) ∈ C7, (54, 46) ∈ C8, (38, 62) ∈ C9,

(39, 61) ∈ C10, (45, 55) ∈ C11, (59, 41) ∈ C12,

(19, 49) ∈ C13, (26, 18) ∈ C14.

(3)
E(HC3) =

( 14⋃

i=1

E(Ci) − B

)
∪ A.

(4)E(HC2) = (E(HC2) − A) ∪ B.

Fig. 3   The Hamiltonian cycle HC
3
 of CQ

6
 constructed from Eq. (3)



4133

1 3

Three edge‑disjoint Hamiltonian cycles in crossed cubes with…

Lemma 1  The three Hamiltonian cycles HCi for i = 1, 2, 3 constructed from Eqs. (1)-
(4) are edge-disjoint in CQ6.

Clearly, |E(CQn)| = (nN)∕2 , where N = 2n is the number of nodes of CQn . 

When n = 6 , we have N = 26 = 64 and |E(CQ6)| = (6 × 64)∕2 = 192 . Since each 
Hamiltonian cycle contains 64 edges in CQ6 , all edges of CQ6 will be exhausted 
when we construct the above three EDHCs. By Eqs.  (1)-(4), the time required in 
the above construction is proportional to the number of edges, and thus it requires 
|E(CQ6)| = 3N = O(N) time.

4 � Three edge‑disjoint Hamiltonian cycles in CQn for n ⩾ 7

For constructing three EDHCs in high-dimensional crossed cubes, the results of CQ6 
can be viewed as the induction base, and the construction for CQn , n ⩾ 7 , will be 
proceeded by recursion. Before this, we need the following prefatory works.

For n ⩾ 6 , a node x = xn−1xn−2 ⋯ x1x0 in CQn is said to be a stable node if 

x2i+1x2i ∈ {00, 10} for all 0 ⩽ i < ⌊n∕2⌋ . Let SNn be the set consisting of all stable 

nodes of CQn . An edge is called a stable edge in a subgraph of CQn provided its two 
ends are stable nodes. A Hamiltonian cycle of CQn is sustainable if it contains a 
stable edge.

For example, CQ6 contains eight stable nodes as follows:
SN6 = {00 00 00 (0), 00 00 10 (2), 00 10 00 (8), 00 10 10 (10),

10 00 00 (32), 10 00 10 (34), 10 10 00 (40), 10 10 10 (42)}.
Let us check Figs. 2, 4, and 3 to realize whether the three EDHCs obtained in 

the previous section for CQ6 are sustainable. Since (0, 2) ∈ HC1 , (8, 10) ∈ HC2 , and 
(32, 40) ∈ HC3 , all three Hamiltonian cycles are indeed sustainable.

Fig. 4   The Hamiltonian cycle HC
2
 of CQ

6
 constructed from Eq. (4)
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For n ⩾ 7 and j ∈ {0, 1} , let SNj
n = {jx ∶ x ∈ SNn−1} . Clearly, from the definition 

of stable nodes, we have the following recursion.

Lemma 2  For n ⩾ 7 , if x ∈ SNn−1 , then (0x, 1x) ∈ E(CQn).

Proof  Let x = xn−2xn−3 ⋯ x1x0 be a stable node of CQn−1 . Then, x2i+1x2i ∈ {00, 10} 
for 0 ⩽ i < ⌊(n − 1)∕2⌋ . Clearly, 0x (= 0xn−2xn−3 ⋯ x1x0) ∈ V(CQ0

n−1
) and 

1x (= 1xn−2xn−3 ⋯ x1x0) ∈ V(CQ1
n−1

) . Since the two nodes 0x and 1x have different 
only at the leftmost bit, by the pair-related property of crossed cubes, it follows from 
Definition 1 that (0x, 1x) ∈ E(CQn) . 	�  ◻

Suppose that we have constructed three EDHCs HCi for all i = 1, 2, 3 in CQn−1 , 
where n ⩾ 7 . In what follows, we use Algorithm 1, taking HCi as the input, to con-
struct the required Hamiltonian cycle HCi for each i ∈ {1, 2, 3} in CQn . For nota-
tional convenience, we omit the subscript i of the Hamiltonian cycle (see Fig. 5 for 
illustration.)

We now show that Hamiltonian cycles described in Algorithm 1 have the follow-
ing properties.

(5)SNn =

{
SN0

n−1
∪ SN1

n−1
if n⩾7 is odd;

{jx ∶ x ∈ SN0

n−2
, j ∈ {0, 1}} if n⩾8 is even.

Fig. 5   A Hamiltonian cycle 
HC of CQn constructed from 
Algorithm 1
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Lemma 3  For odd n ⩾ 7 , if the Hamiltonian cycle HC of CQn−1 is sustainable, then 
so is HC of CQn.

Proof  Let (x, y) ∈ HC be a stable edge in the Hamiltonian cycle HC of CQn−1 . Since 
x, y ∈ SNn−1 , Lemma  2 shows the existence of edges (0x,  1x), (0y, 1y) ∈ E(CQn) , 
where 0x, 0y ∈ SN0

n−1
 and 1x, 1y ∈ SN1

n−1
 . Since n ⩾ 7 is odd, by Eq. (5), it follows 

that 0x, 0y, 1x, 1y ∈ SNn . Thus, by the construction of Algorithm 1 (see Line 4), the 
two edges (0x, 1x), (0y, 1y) ∈ HC are stable edges. 	�  ◻

Lemma 4  For even n ⩾ 8 , if the Hamiltonian cycle HC of CQn−1 is sustainable, then 
so is HC of CQn.

Proof  Since (n − 1) ⩾ 7 is odd, by Lemma  3, the Hamiltonian cycle HC con-
structed by Algorithm  1 in CQn−1 contains a specific stable edge (0x,  1x), where 
x ∈ SNn−2 . Let x� = 0x and y� = 1x . Since x ∈ SNn−2 , we have x�(= 0x) ∈ SN0

n−2
 

and y�(= 1x) ∈ SN1
n−2

 . Since n − 1 is odd, it follows x�, y� ∈ SNn−1 . By Lemma  2, 

(0x�, 1x�), (0y�, 1y�) ∈ E(CQn) . Also, since x� ∈ SN0
n−2

 and n ⩾ 8 is even, by Eq. (5), 

it follows that 0x�, 1x� ∈ SNn . Thus, by the construction of Algorithm 1 (see Line 4), 
the edge (0x�, 1x�) ∈ HC is a stable edge. 	�  ◻

The three sustainably EDHCs of CQ6 are the base of the recursive construc-
tion. The correctness of constructing sustainably Hamiltonian cycles for high-
dimensional crossed cubes in Algorithm 1 is directly followed from the induc-
tion rules described in Lemmas 3 and 4. The edge-disjoint property is evident 
because the distinct Hamiltonian cycles HCi obtained in CQn are derived from 
the EDHCs HCi of CQn−1 . Also, the construction of each Hamiltonian cycle is in 
a linear time. Therefore, we have the following main result.

Theorem 1  For n ⩾ 6 , there exist three edge-disjoint Hamiltonian cycles in CQn . In 
particular, each Hamiltonian cycle can be constructed in O(N) time, where N = 2n 
is the number of nodes in CQn.

5 � Simulation of data broadcasting using multiple EDHCs

This section aims to simulate data broadcasting using multiple EDHCs as the transmis-
sion channels in crossed cubes. We compare our results against those of Hung [18] 
by analyzing the performance using three or two EDHCs. Particularly, we evaluate the 
capability of fault tolerance by the average success rate in broadcasting with multiple 
edge failures. In addition, we also assess the efficiency through two metrics related to 
the broadcasting delivery time (or call the broadcasting latency) in the experiment.

The networks dealt with by the simulation are CQn for n ∈ {6, 7, 8, 9, 10} . Tech-
nically, algorithms of constructing EDHCs and of simulating data broadcasting are 
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implemented using C programs. We proceed the experiment by using a 3.60GHz 
IntelⓇCoreTM i7-8700 CPU and 8 GB RAM under the Linux operating system.

5.1 � Evaluation of average success rate in fault‑tolerant data broadcasting

Firstly, we are interested in evaluating the average success rate (ASR for short), which 
is the ratio of the number of successful data broadcasts over generated instances. Let 
F be the set of faulty edges and the number of edge in F considered in this section is 
within the range between 1 and 10. Here we carry out 108 simulation instances for each 
situation. The source node of broadcasting and the set of faulty edges are randomly 
generated by the uniform distribution over the whole network CQn for 6 ⩽ n ⩽ 10.

Tables 1 and 2 show the simulation results of ASR for data broadcasting in crossed 
cubes CQn adopting Hung’s two EDHCs [18] and our three EDHCs as the broadcasting 
channels, respectively.

In addition, two quantities, namely hit rate (HR for short) and density of non-Ham-
iltonian edges (DnHe for short) are compared (see the two rightmost columns in the 
tables). The former refers to the ratio of randomly generated edge failures that occur on 
non-Hamiltonian cycles, and the latter means the ratio of the edges of non-Hamiltonian 
cycles to the entire network. Let t be the number of EDHCs simulated in the experi-
ment, and let ej denote the faulty edge in the jth simulation (where 1 ⩽ j ⩽ 108 ) when 
|F| = 1 . Specifically, for a certain dimension of crossed cubes CQn , we use the follow-
ing formula to compute the hit rate:

where HCi(ej) is an indicator, i.e., HCi(ej) = 1 if the faulty edge ej is contained in 
the ith Hamiltonian cycle, and HCi(e) = 0 otherwise. Also, the term DnHe is only 
depending on n and t as follows:

We observe from Tables 1 and 2 that the two quantities HR and DnHe are almost 
very near or even the same. Figure  6 shows the corresponding trend of the ASR 
concerning the scales of CQn and the number of faulty edges when t = 2 (i.e., 
Hung’s two EDHCs in [18]) and t = 3 (i.e., three EDHCs developed in this paper), 
respectively.

From Tables 1, 2 and Fig. 6, we are aware of the following three phenomenons:

•	 Because our result (resp. Hung’s result in [18]) provides three EDHCs (resp. two 
EDHCs) as broadcasting channels, no matter what scale of CQn for 6 ⩽ n ⩽ 10 , 
its transmission can reach 100% success when |F| = 1, 2 (resp. |F| = 1) . The 
intuitive idea is that ASR should present a decreasing function to the number 
of faulty nodes. As expected, all simulations are consistent with this phenom-

HR =

108�

j=1

∏t

i=1
(1 −HCi(ej))

108
,

DnHe =
�E(CQn)� −

∑t

i=1
�E(HCi)�

�E(CQn)�
= 1 −

t ⋅ 2n

n ⋅ 2n−1
= 1 −

2t

n
.
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enon. For instance, we take CQ10 in Table  2 as an example for illustration. If 
we ask ASR ⩾ 80% , then it only permits four faulty nodes, while it can tolerate 
seven faulty nodes when we allow no more than half of the broadcasts to fail. 
Accordingly, this means that the least number of edge failures, the larger the cor-
responding ASR.

•	 For |F| > 2 , the ASR increases with expanding the scale of CQn . The reason is 
evident because when |F| is fixed, the edge failures that occur in Hamiltonian 
cycles will reduce their probability as the network expands, and thus leading to 
an increase in the success rate. Similarly, by the reasoning that the density of 
non-Hamiltonian edges gradually increases as the network grows, the hit rate 
also increases with the scale of the network.

•	 To highlight the difference in the performance of ASR using our three EDHCs 
and Hung’s two EDHCs as broadcasting channels, we take the extreme cases of 
CQ6 and CQ10 as examples to illustrate. Obviously, the former is always better 
than the latter when |F| ⩾ 2 (see Fig. 7). In the low-dimensional CQ6 , the ampli-
tude of the ASR difference varies more apparent, but the difference will gradu-
ally decrease with the increase of |F|. In contrast, in high-dimensional CQ10 , the 
magnitude of the ASR difference is relatively stable with the change of |F|.

5.2 � Evaluation of packet delivery time in data broadcasting

Next, we simulate the scenario that there exists a message of size no more than 
5  M from a source node in CQn to broadcast through multiple EDHCs. With 
the most common Ethernet frame, its frame length can carry about 1500 bytes 
of the message (excluding the initial preamble, frame delimiter, and the frame 
check sequence at the end). Hence, the message can be divided into at most 
5M∕1500 bytes = 3500 (data packets). To comprehend the difference in broadcast-
ing efficiency between two EDHCs (generated by Hung [18]) and three EDHCs 

Fig. 6   The trend of the ASR with respect to the scales of CQn for 6 ⩽ n ⩽ 10 and the number of faulty 
edges 1 ⩽ |F| ⩽ 10 : (a) Simulation using two EDHCs of Hung [18]; (b) Simulation using three EDHCs 
developed in this paper
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(developed in this paper), we carry out 106 simulation instances for each case. For 
the sake of fairness, the same message scripts are used for both cases.

For each dimension n with 6 ⩽ n ⩽ 10 , the source node s at each broadcasting 
is randomly generated by the uniform distribution over the whole network CQn . 
Let m be the number of data packets for broadcasting that is randomly chosen in 
the range 1 ⩽ m ⩽ 3500 . As the source s has two adjacent nodes in a Hamiltonian 
cycle, the broadcasting randomly picks a direction to carry out the propagation. 
A data packet will be sent to the next node sequentially along the Hamiltonian 
cycle at each time slot until it finally returns to the origin to represent the success 
of this round of transmission. Suppose we take t EDHCs as transmission chan-
nels for data broadcasting (actually, t = 2 or t = 3 in the following simulation). 
To balance the load of all transmission channels, we use a round-robin strategy 
to invoke these channels for packet propagation sequentially. That is, the first 
t packets are propagated by the channel to which they belong in sequence, the 
first channel bears the (t + 1)-th packet, the second channel bears the (t + 2)-th 
packet..., and so on.

For each node v ∈ V(CQn) − {s} and each j with 1 ⩽ j ⩽ m , let tv(j) be the deliv-
ery time that v receives the jth packet, which is calculated from the beginning. 
Then, the time for node v receiving the whole message can be represented by 
t(v) = maxm

j=1
{tv(j)} . For broadcasting the message msi (where 1 ⩽ i ⩽ 106 ) con-

taining m packets, we define two specific metrics called the average delivery time 
and the maximum delivery time as follows:

and

�(msi) =

∑
v∈V(CQn)−{s}

maxm
j=1

�
tv(j)

�

�V(CQn)� − 1

Fig. 7   The comparisons of ASR between our three EDHCs and Hung’s two EDHCs as the fault-tolerant 
broadcasting channels: a Simulation in CQ

6
 ; b Simulation in CQ

10
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Specifically, for a certain dimension of crossed cubes CQn , we use the following two 
measures to evaluate broadcasting efficiency, one is called the average broadcasting 
latency (ABL for short), and the other is the maximum broadcasting latency (MBL 
for short):

and

All experimental results showing ABL and MBL are depicted in Fig. 8. From this 
figure, we are aware of the following three phenomenons:

•	 As the network size grows, the two measures ABL and MBL will also rise. That 
is, both ABL and MBL should exhibit a positive correlation with the network 
scale.

•	 For both measures ABL and MBL, the performance of broadcasting latency 
using three EDHCs is better than that using two EDHCs. For example, the ratio 
of ABL of three EDHCs to that of two EDHCs approaches 68.85% in CQ6 and 
is near 85.54% in CQ10 . In contrast, the ratio of MBL of three EDHCs to that of 
two EDHCs comes to 67.83% in CQ6 and is near 78.97% in CQ10.

�(msi) = max
v∈V(CQn)

{
m

max
j=1

{
tv(j)

}}
.

ABL =

∑106

i=1
�(msi)

106

MBL =
106

max
i=1

{
�(msi)

}
.

Fig. 8   The comparisons of ABL and MBL between our three EDHCs and Hung’s two EDHCs as the 
broadcasting channels
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•	 Within the network dimension range of our experiments, the value of MBL is 
approximately twice that of ABL. For example, for CQn with n from 6 to 10, 
the ratios appear in order 1.98, 1.97, 1.94, 1.89, and 1.83 for broadcasting using 
two EDHCs, while the ratios appear in order 1.95, 1.92, 1.86, 1.78, and 1.68 for 
broadcasting using three EDHCs. Obviously, this ratio gets farther away from 
twice as the network dimension increases.

6 � Concluding remarks

In this paper, we study the construction of multiple edge-disjoint Hamiltonian cycles 
as broadband channels in the crossed cube networks for fault-tolerant data broad-
casting. The main contributions of this research are as follows: 

(1)	 Using the result of [17] and the technique of edge exchange, we provide the 
construction of three EDHCs in CQ6.

(2)	 By induction, we present a recursive algorithm to construct three EDHCs in CQn 
for n ⩾ 7.

(3)	 Based on (1) and (2), we simulate data broadcasting through the developed three 
EDHCs (resp. two EDHCs generated by Hung [18]) in CQn as the transmission 
channels, where n ∈ {6, 7, 8, 9, 10}.

(4)	 The comparison results show that broadcasting using three EDHCs is better than 
two EDHCs in performance, including the ASR in edge fault-tolerant broadcast-
ing and two measures ABL and MBL related to broadcasting latency.

Before closing this paper, we will reflect on the research limitations. Although it 
is easy to implement a Hamiltonian path or cycle as a channel for data broadcast-
ing, it is well known that such broadcasting delivery time is notoriously inefficient. 
Hence, if the number of nodes in the network is exponential, the topological scheme 
of broadcasting channels needs to be adequately adjusted. Usually, a tree structure 
can reduce the broadcasting delivery time by a logarithmic level, e.g., see [45–47].

In general, the reliability of a network depends on its connectivity, edge connec-
tivity, or other related variants, which are important measures for the fault tolerance 
of networks. However, if the network topology is determined, these connectivities 
are invariants. Usually, a network with higher edge connectivity can construct more 
EDHCs. As future works, we are interested to see if there exist four EDHCs of CQn 
for n ⩾ 8 . So far, this is still an open problem. Also, we can take experiments to 
simulate edge fault-tolerant data broadcasting under the conditional link faults, i.e., 
the condition means that every node must be incident with at least two fault-free 
edges [27, 28].
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