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Abstract
There are still many pressing problems in pedestrian detection, such as difficulty 
in detection due to severe pedestrian occlusion, difficulty in detecting small objects 
and low detection speed. In this paper, we propose A Fast and Efficient Pedestrian 
Detector with Center and Scale Prediction (FE-CSP). We combine channel attention 
with spatial attention, replace the traditional convolution with deformable convolu-
tion, and embed the backbone network to propose CSANet (Channel and Spatial 
Attention Network), which efficiently extracts the semantic features of the object, 
and then propose a feature pyramid network to replace the traditional concatena-
tion to perform multi-scale feature detection, which effectively improves the detec-
tion speed. By conducting experiments on CityPersons, our method achieves 10.1%, 
13.7% and 47.4% MR

−2 at a speed of 0.21 s/img on the reasonable setting, small 
setting and heavy setting, respectively. On Caltech, our method achieves 5.2% MR

−2 
at a speed of 0.06 s/img on the Reasonable setting, further demonstrating the superi-
ority and generalization ability of the proposed method.

Keywords Pedestrian detection · Channel attention · Spatial attention · Deformable 
convolution · Feature pyramid network

1 Introduction

Pedestrian detection has a large number of real-life applications, from object track-
ing [1] and video surveillance [2] to the recent research hotspot of autonomous driv-
ing [3]. In autonomous driving, cars need to complete identification and tracking of 
pedestrians to avoid collisions. In addition, since the computational power inside the 
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car is limited, this requires a lightweight pedestrian detection model with high accu-
racy and speed to enable better perception of the surrounding environment.

Pedestrian detection is one of the long-standing problems in computer vision 
and an essential problem for object detection. With the development of deep 
learning, pedestrian detection has made great progress. However, there are still 
some areas for improvement. For example, pedestrians are severely impeded, 
causing low detection efficiency; small objects are challenging to detect; as in 
real-time detection, pedestrian detection still needs significant improvement in 
detection speed.

With the development of object detection techniques, some general object 
detectors, such as two-stage detectors and their improved algorithms [4–6] and 
one-stage detectors and their improved algorithms [7–9], have been proposed 
to achieve state-of-the-art performance on benchmark Pascal VOC [10] or MS 
COCO [11]. These one-stage detection algorithms are faster but less accurate, 
while the two-stage detection algorithms have higher accuracy but lower detec-
tion speed.

Since CornerNet [12] was proposed, researchers have successively proposed 
keypoint-based detectors. For instance, FCOS [13] proposed an end-to-end 
object detector using the center point and the distance from the center point to 
the ground truth bounding box. Note that both CenterNet [14] and CSP [15] use 
a center point for object detection and achieve good results in terms of speed 
and accuracy. Unlike other keypoint predictions, center point prediction does 
not require grouping the predicted keypoints, which dramatically saves com-
putational cost and inspires us to conduct further research in pedestrian detec-
tion using center point prediction. Therefore, we propose the FE-CSP pedestrian 
detection algorithm, where we simplify pedestrian detection to a center and scale 
prediction task. Unlike the above studies, we try to go into how the use of atten-
tion mechanisms in pedestrian detection allows the backbone network to extract 
features more efficiently, especially for small and heavily occluded objects, and 
apply it to a pedestrian detection framework to achieve more efficient detection 
performance. The main contributions of this work are as follows: 

(1) To solve the problem that small objects are difficult to detect, we combine the 
Global Context Block with the Transformer Attention module and replace the 
traditional convolution with deformable convolution to propose CSANet, effec-
tively improving the feature extraction capability of the backbone network, mak-
ing the small object detection performance to be improved.

(2) To make better and more effective use of the output of the feature from the 
backbone network, we explored the effect of concatenation operation and fea-
ture pyramid network. We replaced the traditional concatenation with a feature 
pyramid network, which facilitated the detection of multi-scale objects and effec-
tively improved the detection speed of the model.

(3) In this paper, we propose a one-stage detection algorithm, FE-CSP, and con-
duct extensive comparison experiments with the other state of the arts on the 
CityPersons and Caltech datasets to fully indicate that the algorithm effectively 
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improves the pedestrian detection performance and efficiency and achieves better 
trade-off, demonstrating strong robustness and generalizability.

The rest of the paper is organized as follows. Section 2 presents the work related to 
the paper. Section 3 details the methods proposed in this paper. Section 4 describes 
the experimental comparative analysis of the method proposed in this paper with 
classical and cutting-edge algorithms. Finally, Sect. 5 is on the overall conclusion of 
the paper.

2  Related work

With the rapid development of deep learning in computer vision, pedestrian detec-
tion has been in the deep learning stage since Girshick et al. proposed the RCNN 
[16] in 2014. Generally speaking, deep learning-based detection algorithms are 
divided into two main detection frameworks, one is two-stage detection method, and 
the other one is the one-stage detection method. Also, the application of attention 
mechanisms to object detection algorithms has achieved remarkable results in recent 
years. In the following, pedestrian detection is described in terms of these two detec-
tion frameworks and attention mechanisms.

2.1  Two‑stage detection framework

The two-stage detection framework is mainly divided into two parts for detection. 
First, a series of regional proposals are generated on the image, and then further 
prediction of the regional proposals is performed to get the final result. Some gen-
eral object detectors such as two-stage based detector RCNN [16], Fast RCNN [17], 
Faster RCNN [18] and other algorithms are proposed to improve the object detec-
tion performance significantly.

In the field of pedestrian detection, Shanshan Zhang et al. [19] produced a chal-
lenging benchmark CityPersons and experimented with the Faster RCNN model 
and obtained good results. Shifeng Zhang et al. [20] designed an aggregation loss to 
force proposals to approach and closely localize to the corresponding objects to solve 
the occlusion problem in pedestrian crowding situations. Xinlong Wang et al. [21] 
designed repulsion loss to achieve detection by repelling the surrounding objects 
and applying it to a two-stage detector to solve the pedestrian occlusion problem 
effectively. Irtiza Hasan et al. [22] argue that most pedestrian detectors do not gener-
alize well. When evaluated by cross-validation sets, their performance degrades, so 
they propose a fine-tuning strategy to improve generalization and get good results on 
some benchmark datasets using a two-stage detector Cascade RCNN. However, the 
drawback of these two-stage pedestrian detectors is also evident in that the detection 
speed is not high and still needs further research.
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2.2  One‑stage detection framework

One-stage detectors remove the generation of a prior bounding box compared to 
two-stage detectors and directly predict objects and bounding boxes. With the devel-
opment of deep learning in the field of object detection, one-stage based detectors 
SSD [23], YOLO [24], RetinaNet [25], EfficientDet [26], YOLOF [27] and other 
algorithms have been proposed one after another. One-stage detectors include both 
anchor-based methods, where the detector generates bounding boxes based on a pre-
determined number of anchors with fixed scales and aspect ratios, such as the YOLO 
series [28–30], and anchor-free methods, such as CornerNet, FCOS, and other key-
point detection-based methods.

In pedestrian detection, Tao Song et  al. [31] proposed a multi-scale pedestrian 
detection method using topological line localization and temporal feature aggre-
gation to solve small-scale object detection and acted on a one-stage detector 
to achieve competitive results. Wei Liu et  al. [32] designed an efficient one-stage 
pedestrian detection framework ALFNet, a simple structure in this network but 
effective module, namely Asymptotic Localization Fitting (ALF), the default anchor 
boxes are evolved by stacking a series of prediction modules of SSD to obtain both 
the speed of SSD and the accuracy of a two-stage detector. CornerNet [12] solves 
the object detection problem as a key point detection problem by detecting the upper 
left and lower right corners of the objects to predict the bounding boxes, which is a 
pioneering work in the field of object detection. Later Wei Liu et al. [33] proposed a 
one-stage detection framework CSP, which simplifies pedestrian detection to center 
and scale prediction using convolution, and obtained competitive results. Compared 
with the two-stage pedestrian detector, the one-stage pedestrian detector has a higher 
detection speed but is still inferior to the two-stage detector in terms of accuracy.

2.3  Attention‑based detection algorithm

It is well known that the attention mechanism plays an integral part in human per-
ception [34–36], and the human visual system will choose to focus on the salient 
parts according to its needs. In recent years of deep learning research, attention 
mechanism algorithms have also been the subject of keen research by many schol-
ars. Good results have been achieved by introducing attention mechanisms into com-
puter vision.

Not all regions in an image are necessary; only those that are relevant to the task 
are important. Many research scholars proposed spatial attention mechanisms and 
improved algorithms [37, 38]. Max Jaderberg et  al. [39] resented Spatial Trans-
former Networks, which can actively transform the feature map spatially without 
additional supervised training, achieving state-of-the-art performance on multiple 
benchmarks. One dimension is the aspect ratio for two-dimensional images, and the 
other is the channel, so researchers have proposed many channel attention mecha-
nisms to improve network performance [40, 41]. Hu et  al. [42] focused on chan-
nel relations. They proposed an architectural unit called squeeze-and-excitation (SE) 
block, which improves network performance by modeling the interdependencies 
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between the channels and adaptively calibrating the channel response characteris-
tics, bringing significant performance gains at a very small additional computational 
cost.

The above approaches result from many researchers who have studied chan-
nel attention and spatial attention separately, while some others have combined 
channel attention and spatial attention by taking advantage of both and achieved 
very competitive results [43–45]. Sanghyun Woo et  al. [46] proposed the Con-
volutional Block Attention Module (CBAM), which sequentially inferred atten-
tion maps along both channel and spatial dimensions, and then attention maps 
were multiplied with the input feature maps for adaptive feature refinement and 
can be trained end-to-end with CNNs. Introducing the attention mechanism in 
the above study improves the detection accuracy. However, it brings additional 
computational cost, which affects the detection speed and still has much room for 
improvement.

3  Proposed method

In this section, we detail the proposed one-stage pedestrian detection method FE-
CSP. The framework of FE-CSP is shown in Fig. 1. First, in Sect. 3.1, we intro-
duce the CSANet (Channel and Spatial Attention Network). Then the Channel 
Attention Module and Spatial Attention Module are described in two subsections, 
respectively. Section 3.1.1 introduces the Global Context Block (GCB), a channel 
attention mechanism that can establish long-range functional dependencies. In 
Sect. 3.1.2, we detail the Deformable Convolution Network (DCN) and form the 
Spatial Attention Mechanism by combining Transformer Attention with deforma-
ble convolution, which facilitates object localization and is also more effective in 

Fig. 1  The framework of FE-CSP. (a) CSANet. A feature extraction network with Channel Attention 
Module (CAM) and Spacial Attention Module (SAM). (b) Feature fusion module. Feature fusion on the 
feature level of the backbone network. (c) Detection head. There are three branches: Center Heatmap, 
Scale Map, and Offset Pred
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acquiring object features. In Sect. 3.2, we introduce the feature pyramid structure 
for feature fusion, which effectively fuses some feature maps to generate multi-
scale high-level semantic information and improves detection speed by sharing 
parameters in each layer of the feature pyramid.

3.1  CSANet

We choose ResNet-50 as the backbone, and we improve the feature extraction 
capability of the network by embedding the Channel and Spacial Attention Mod-
ule (CSAM) into ResNet-50. The CSAM is shown in Fig.  1. The CSAM is divided 
into two submodules, channel attention and spatial attention, and channel atten-
tion is performed before spatial attention. First, we introduce Global Context Block 
(GCB), which can effectively model the global context and establish effective long-
range dependencies. Then we replace the regular convolution with deformable 
convolution in the network with feature level {C3, C4, C5}, which can accurately 
improve the feature extraction ability of the network, followed by the introduction 
of the Transformer attention module, which can extract the semantic information we 
want by combining with deformable convolution. CSANet is proposed by improv-
ing ResNet-50, and the architecture of CSANet is shown in Fig.  2. It effectively 
enhances the ability of the network to extract semantic information without adding 
much overhead.

3.1.1  Channel attention module

Traditional convolution deals with adjacent pixels, models adjacent pixels and 
achieves long-range dependence by deepening the convolution layers [40], but 
it introduces many drawbacks. The first is that the network is not refined enough, 
which can bring a lot of parameters and computation. And the deeper the network is, 
the more difficult it is to optimize. And because of the maximum distance limitation 

Fig. 2  CSANet, where C2, C3, C4, and C5 denote the feature level of the backbone network, the orange 
block represents the global context block used to establish effective long-range dependencies, and the 
green block represents spacial attention, which highlights spatially effective information by combining 
deformable convolution with Transformer attention
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of the convolution operation, long-range dependence is not fully established [41]. 
Therefore, we introduce Global Context Block (GCB), as shown in Fig.  2(a), an 
alternative view of image processing, analyzing the image from a global perspective, 
effectively establishing long-range dependencies and integrating the advantages of 
lightweight.

As shown in Fig. 2(a), GCB is divided into three main modules: a) a context mod-
eling module, which aggregates features from all locations to form a global context 
feature; b) a feature transformation module, which is used to capture interdependencies 
between channels; and c) a feature fusion module, which fuses global context features 
with features from all locations. We abstract this as the global context modeling frame-
work, defined as

Where 
∑

j �jXj denotes the context modeling module, which combines all features 
by weighted averaging and weighting �j to obtain global context features. �(⋅) repre-
sents features that capture inter-channel correlation, and F(⋅) means the fusion func-
tion, aggregating global context features to each location.

Specifically, a 1x1 convolution and softmax function is first used to obtain attention 
weights. Attention pooling is used to build global contextual features, and then a 1x1 
convolution operation is used to perform the feature transformation. Notably, the layer 
normalization is added between the two layers of bottleneck transform (before ReLU) 
to ease optimization and as a regularizer, also facilitates generalization. Finally, the 
obtained features are aggregated with the original input features, and the global context 
features are aggregated to the features at each location using addition, formulated as

where αj =
e
WkXj∑

m eWkXm
 indicates global attention pooling and 

�(⋅) = �v2ReLU(LN(�v1(⋅))) denotes bottleneck transformation.

3.1.2  Spacial attention module

To highlight the useful spatial information of the feature map, we again propose intro-
ducing the spatial attention module, which is composed of deformable convolution and 
Transformer attention, as in Fig. 2(b).

Instead of changing the computational operation of the convolution, deformable 
convolution adds a learnable parameter Δpn to the region of convolution operation, for-
mulated as

(1)Zi = F

⎛
⎜⎜⎝
Xi, �

⎛
⎜⎜⎝

Np�
j=1

�jXj

⎞
⎟⎟⎠

⎞
⎟⎟⎠
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where R denotes the receptive field, p0 is each location on the feature map, pn enu-
merates the locations in R, Δpn means the relative position to pn , and �(pn) indi-
cates the weight of the location pn.

Assuming a 3 × 3 convolution kernel is used, for each output y(p0) , the convo-
lution kernel samples nine positions from the feature map, each position being 
obtained by diffusing the central position x(p0) in all directions, but with an extra 
Δpn that allows the sampled points to diffuse into a non-gird shape. The offsets are 
obtained by convolving the original feature layer. It can be a floating-point number. 
In the learning of offsets, the gradient is backpropagated by bilinear interpolation.

Transformer attention considers a small set of sample locations to highlight all 
key features of the feature map and can be naturally extended to fuse multi-scale 
features, which, combined with the sparse spatial sampling capability of deformable 
convolution, improves the representational power of the feature map without adding 
a great deal of complexity.

It is possible to decompose the attention matrix into a product of random non-
linear functions of the original query and key, the so-called random feature so that 
the similarity information can be encoded more efficiently. Transformer attention 
has four possible attention factors: the query and key content, the query content and 
relative position, the key content only, and the relative position only. We selected 
the third factor based on the findings of the literature [47], the key content only, and 
combined it with the deformable convolution to complement each other to achieve a 
good trade-off in terms of accuracy and efficiency.

Specifically, a 3 × 3 deformable convolution operation is to achieve sparse space, 
making the features more focused on content and position offsets. A Transformer 
attention operation is to further focus on the content features and perform the feature 
fusion with the deformable convolution features. Finally, a skip connection with the 
original input feature map after another 1 × 1 convolution to obtain a feature map 
with more substantial representational power.

3.2  Feature fusion module

To effectively fuse the different scale feature maps of the backbone network, we 
adopt the FPN [48] (Feature Pyramid Network) structure, the detailed design is 
shown in Fig. 3. It uses a top-down approach and lateral connections to complete the 
fusion of the whole feature maps.

Taking ResNet-50 as an example, feature levels conv2, conv3, conv4, and conv5 
are selected as the input features of the FPN, denoted as {C2, C3, C4, C5}, and 
the strides of these feature levels relative to the original map are 4, 8, 16, and 32, 
respectively. In the top-down process, the smaller feature maps of the upper levels 
are expanded to the corresponding sizes by an upsampling operation and fuse with 
the original feature level, which has the advantage of utilizing both the high-reso-
lution information of the bottom layer, which is beneficial for object localization, 

(3)y
(
p0
)
=

∑
pn∈R

w
(
pn
)
⋅ x
(
p0 + pn + Δpn

)
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especially for small objects and the stronger semantic information of the lower reso-
lution of the top layer, which is beneficial for object classification.

Specifically, first, a 1 × 1 convolution operation is performed to change the 
number of channels in the current layer. Then it is fused with the upper layer fea-
ture maps that have been upsampled by addition to obtain the feature levels {M2, 
M3, M4, M5}. Finally, 3 × 3 convolution operations will get the final set of feature 
maps {P2, P3, P4, P5} to reduce the confounding effect brought by the upsam-
pling process. It is worth noting that P6 is obtained by downsampling P5 with a 
stride of 2. Thus, the feature pyramid finally outputs P2 to P6 feature maps, each 
with 256 channels. While many design choices are not critical, we emphasize that 
the FPN backbone is crucial. From preliminary experiments, using only one layer 
of features for detection can lead to poor performance.

3.3  Loss function

We follow the detection head of the CSP [15] model, which is divided into three 
parts, center heatmap, scale map and offset prediction. The corresponding loss 
function we use also has three parts. The classification loss is shown as:

where

(4)Lcenter = −

1

K

W∕r∑
i=1

H∕r∑
j=1

𝛼ij
(
1 − p̂ij

)𝛾
log

(
p̂ij
)

(5)p̂ij =

{
pij if yij = 1

1 − pij otherwise,
𝛼ij =

{
1 if yij = 1(
1 −Mij

)𝛽
otherwise.

Fig. 3  Feature pyramid network, 
where C2 to C5 are the input 
feature levels and P2 to P6 are 
used as output feature levels
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where pij indicates the probability of the presence of a center at location (i,  j) and 
yij = 1 indicates the presence of a center in the label. We set the � to 2 according to 
the suggestion in [25], and �ij is based on a Gaussian mask to reduce the contribu-
tion to the total loss.

For scale prediction, we apply Smooth L1 loss:

where sk denotes the predicted value and tk denotes the true value of the positive 
sample label.

Offset prediction uses the same Smooth L1 loss as scale prediction. The loss 
function of the whole network can be given as follows:

where �c , �s and �o are the weights of center prediction, scale prediction and offset 
prediction, which are set to 0.01, 1 and 0.1, respectively.

4  Experiments

4.1  Datasets and evaluation criteria

Datasets to demonstrate the effectiveness of the proposed method, we select the 
challenging pedestrian detection benchmarks CityPersons [19] and Caltech [49] 
for evaluation and to verify the generalization of the model. CityPersons is a sub-
set of Cityscapes, a collection of 5000 images taken in 27 cities in Germany and 
surrounding countries, with many scenes containing high-quality pedestrian bound-
ing box annotations. On average, there are seven people in each image. The training 
set, validation set and test set have 2975, 500 and 1575, respectively. Each image 
resolution is 2048×1024. The Caltech pedestrian dataset exists approximately 13K 
persons extracted from a 10-hour video, containing 42784 training images and 4024 
test images, each normalized to 640×480 resolution. We trained our model on the 
official training set and tested it on the official validation set. In the testing, we keep 
the original image resolution as input.

Evaluation Criteria in this paper, to evaluate the model’s performance, the evalu-
ation follows the standard Caltech evaluation metrics [49], which we mainly use as 
the evaluation metric, that is log-average Miss Rate over False Positive Per Image 
(FPPI), the smaller, the better. Miss Rate (MR) denotes the miss rate metric of 
the detection result, formulated as Eq. 4. FPPI indicates the average miss rate per 
image, formulated as Eq. 5. which is further divided into several subsets according 
to the different visibility of pedestrians, such as reasonable setting, small setting, 
heavy setting, etc., as shown in Table 1. In addition, to evaluate the model’s effi-
ciency, we use training memory (MB) and test time (s/img) as evaluation metrics. 
Also, the smaller, the better.

(6)Lscale =
1

K

K∑
k=1

SmoothL1
(
sk, tk

)

(7)L = �cLcenter + �sL scale + �oLoffset
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where FN (False Negative) means the prediction result is a negative sample, but it is 
wrong. TP (True Positive) means the prediction result is a positive sample and cor-
rect. FP (False Positive) means the prediction result is a positive sample but wrong. 
N represents the total number of pictures.

4.2  Experimental settings

The experimental system environment in this paper is 64-bit Ubuntu 16.04, NVIDIA 
GeForce GTX2080 with 8 GB memory, implemented under the deep learning 
framework PyTorch 1.4. The backbone network we use is ResNet-50 trained on Ima-
geNet. For Citypersons, the learning rate is 0.0002, Adam is used as the optimizer, 
batch_size is set as 2, and training is stopped after 80 epochs. For Caltech, the learn-
ing rate is 0.0001, batch_size is set as 4, and training stops after 40 epochs. We 
performed standard data enhancement on the training set to get sample diversity, 
mainly using data enhancement methods such as scaling, flipping, and random crop-
ping on the images. Note that the aspect ratio of the images was kept constant during 
this process.

4.3  Comparison with the state of the arts

In Table 2, we compare FE-CSP with some state of the arts on the CityPersons data-
set. For the comparison experiments with other algorithms, we selected the state 
of the arts FRCNN [19], OR-CNN [20], RepLoss [21], TLL [31], ALFNet [32], 
Adaptive NMS [50], CSP [15], APD [51], AEVB [52], AutoPedestrian [53], PRNet 
[54] and PRNet++ [55]. We compared the performance on the same dataset with all 

(8)MR =

FN

TP + FP

(9)FPPI =
FP

N

Table 1  Subset division on 
citypersons

Setting Height Visibility Images

All [20, inf] [0.2, inf] 2875
Reasonable [50, inf] [0.65, inf] 1579
Large [100, inf] [0.65, inf] 941
Medium [75, 100] [0.65, inf] 311
Small [50, 75] [0.65, inf] 351
Bare [50, inf] [0.9, 1] 769
Partial [50, inf] [0.65, 0.9] 814
Heavy [50, inf] [0, 0.65] 972
Heavy occlusion [50, inf] [0.2, 0.65] 735
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experimental settings kept as consistent as possible to keep fairness. IoU was set as 
0.5 for testing if not otherwise stated.

From Table  2, it can be seen that FE-CSP has different degrees of improve-
ment compared to many other state of the arts, both in terms of accuracy and 
speed. Specifically, in terms of accuracy, FE-CSP outperforms baseline CSP in 
Reasonable setting, Small setting, Medium setting, Large setting, Heavy setting, 
Partial setting and Bare setting by 0.84%, 2.31%, 0.02%, 0.19%, 1.8%, 0.82%, and 
0.59%, respectively. Experimentally, it is noteworthy that the FE-CSP has sig-
nificantly enhanced detection performance on small and heavily occluded objects, 
which is because small and heavily occluded objects lose a lot of useful informa-
tion when downsampling and our addition of channel attention and spatial atten-
tion enhance the retention of useful information to the extent that this informa-
tion can be detected. In terms of speed, FE-CSP improves by 36.3% compared to 
baseline CSP, which is because we replace concatenation with a feature pyramid 
network for feature fusion, which effectively eliminates a series of complicated 
operations in the concatenation process, such as using L2 normalization to focus 
feature maps at different scales on the same scale.

To visualize the detection effectiveness of FE-CSP, we show the detection quality 
of FE-CSP on CityPersons and demonstrate it in comparison with the state of the 
arts, as shown in Fig. 4. It can be seen that the other methods have poor detection 
performance, suffer from missed detection, low detection accuracy and poor qual-
ity of bounding boxes, while the bounding boxes of FE-CSP tightly surround the 
objects with no redundant bounding box and high precision.

Table 2  Comparison of FE-CSP with some state of the arts on benchmark CityPersons.

Bold numbers indicate the best results

Method Backbone Reasonable Small Medium Large Heavy Partial Bare Test Time

FRCNN[19] VGG-16 15.4 25.6 7.2 7.9 – – – –
OR-CNN[20] VGG-16 12.8 – – – 55.7 15.3 6.7 –
RepLoss[21] ResNet-50 13.2 – – – 56.9 16.8 7.6 –
TLL[31] ResNet-50 15.5 – – – 53.6 17.2 10.0 –
ALFNet[32] ResNet-50 12.0 – 5.7 6.6 51.9 11.4 8.4 0.27s/img
Ada. NMS[50] ResNet-50 11.9 – – – 54.0 11.4 6.2 –
CSP[15] ResNet-50 11.0 16.0 3.7 6.5 49.3 10.4 7.3 0.33s/img
APD[51] ResNet-50 10.6 – – – 49.8 9.5 7.1 0.12s/img
AEVB[52] ResNet-50 12.7 – – – 54.6 – – –
AutoPedes.[53] VGG-16 11.3 – – – 50.5 – – –
PRNet[54] ResNet-50 10.8 – – – 53.3 10.0 6.8 0.22s/img
PRNet++[55] ResNet-50 10.7 – – – 51.2 9.9 6.9 0.31s/img
FE-CSP ResNet-50 10.1 13.7 3.7 6.3 47.4 9.6 6.7 0.21s/img
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4.4  Ablation experiments

In this section, we analyze the results of the ablation experiments performed on 
the FE-CSP model. First, we detail the effect of CSAM on FE-CSP, exploring 
the impact of the Channel Attention Module and Spacial Attention Module on 
extracting features. Then we analyze the effect of CSAM embedding positions in 
ResNet-50. Next, we perform comparative experiments and detailed analysis on the 
way of feature fusion, and finally, we explore the quality of the bounding box under 
a more stringent IoU.

Fig. 4  Visualization comparison of detection performance on the state of the arts
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4.4.1  Validity verification of CSAM

From Table 2, we can see that the accuracy of FE-CSP on the CityPersons dataset 
has been improved to different degrees compared to the CSP algorithm. The most 
prominent is the accuracy improvement on small setting and heavy setting, which 
is 2.31% and 1.88%, respectively. After analysis, we believe there are several rea-
sons for this. First, we selected ResNet-50 as the backbone for feature extraction. 
The localization ability of the objects decreases as the feature map scale becomes 
smaller in the process of downsampling, although it has advanced semantic features. 
Secondly, the convolution operation only models the relationship with local proxim-
ity pixels. The pooling operation also loses valuable information, ignoring the corre-
lation between the whole and local ones, so we introduce the global context block to 
understand the image from a global perspective. And again, the purpose of introduc-
ing the spatial attention mechanism is to highlight the object features and preserve 
the image key information when performing spatial transformations. We have com-
bined these two modules and achieved good results.

Table 3  Effect of CSAM on the 
model.

The CAM and SAM are embedded in the C3, C4, and C5 feature 
levels
Bold numbers indicate the best results

Method CAM SAM Memory Reasonable Small Heavy

FE-CSP 2032 11.37 15.69 49.44√
3662 11.50 14.18 49.61√
4106 11.05 16.21 48.17

√ √
4261 10.14 13.69 47.42

Fig. 5  Visualization of FE-CSP (w/o CSAM) and FE-CSP (w/ CSAM) detection performance
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To verify the effect of CSAM on the final result, we conduct ablation experi-
ments, as shown in Table 3. From the table, we can see that when only the spatial 
attention module is added, the accuracy of small objects is improved, but the accu-
racy of other metrics decreases. When only the global context block is added, there 
is an increase in accuracy on heavy setting and reasonable setting, but a decrease 
in accuracy on small setting, while when both the spatial attention module and the 
global context block are added, the performance of each setting then has a signifi-
cant performance improvement. However, the parameters of the model increase, and 
later the two modules can be further investigated for a more effective combination 
and reduction of model parameters.

To see the effect of CSAM on the model more intuitively, we show the detection 
quality of FE-CSP (w/o CSAM) and FE-CSP(w/ CSAM) on CityPersons, as shown 
in Fig  5. We can observe that the FE-CSP model with CSAM has good pedes-
trian detection performance. FE-CSP(w/o CSAM) fails to detect small and heavily 
occluded objects, fails to see blurred people, and has low detection accuracy. In con-
trast, FE-CSP (w/ CSAM) has strong robustness and high detection performance for 
dense people, and FE-CSP containing CSAM can detect small objects and heavily 
obscured objects with high accuracy.

4.4.2  Effect of CSAM embedding location

In the proposed method, we combine channel attention with spatial attention to 
improve the feature extraction capability of the backbone network. At the same time, 
ResNet-50 produces four feature levels {C2, C3, C4, C5} when downsampling is 
performed. Hence, we must explore which stage of feature levels to add CSAM to 
make it work the best. Based on the literature [49]’s practical experience, we con-
ducted the ablation experiment, as shown in Table 4.

From the table, we can see that when we only apply CSAM to C5, the model has 
a low number of parameters, but the accuracy will also be low, which is because 
the feature map size in C5 is small, which is not conducive to the detection of small 
objects, the use of CSAM does not play a vital role, and the long-range dependence 
is not utilized well. In contrast, when the CSAM is applied at C4 and C5, each set-
ting is improved by ranging from 1% to 2%. When CSAM is applied at C4, some 
of the features of small objects are enhanced, and long-range dependence is also 
established relatively effectively. Then when it is used again at C5, the features are 

Table 4  Effect of CSAM embedding location on model performance.

Bold numbers indicate the best results

Method Stage Memory Reasonable Small Heavy

C3 C4 C5

FE-CSP (w/ FPN) √
3841 12.17 17.52 50.76√ √
4045 11.37 15.60 49.96

√ √ √
4261 10.14 13.69 47.42
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further enhanced, thus effectively improving the pedestrian detection accuracy. Fur-
thermore, it is worth noting that when CSAM is added to the {C3, C4, C5}, the 
accuracy of each setting works the best, and the attention mechanism can fully func-
tion. More importantly, GCB can maintain inter-channel dependence and improve 
the detection of large and small objects.

4.4.3  Effect of feature fusion approach

To enable the output features from the backbone network to be more powerful, a fea-
ture fusion module is usually added to address the inefficiency of single feature map 
detection. We explore the impact of the concatenation operation and the feature pyra-
mid network on the model during the processing of feature maps, mainly training mem-
ory, MR−2 and test time for comparison experiments, as shown in Table 5. The table 
shows that the training memory is significantly lower when using the feature pyramid 
network. The test time is also considerably lower, but the accuracy is also reduced. It 
shows that concatenation can improve some accuracy but is too complex and brings 
many parameters. FPN does not improve accuracy but brings a significant speed 
improvement. Whereas, after adding the Deformable Convolutional Network (DCN) 
[56], the situation is the same as before, although each setting has improved. Therefore, 
concatenation and FPN have advantages and disadvantages, but we finally chose to use 
FPN for feature fusion to make the model faster.

4.4.4  Quality of the bounding box

A good pedestrian detector should generate high-quality bounding boxes, which should 
tightly surround the pedestrian. To better understand the quality of generated bounding 
boxes, we evaluate the performance of FE-CSP with IoU set to 0.75 and compare it 
with baseline CSP.

Table 5  Exploring the effect of different feature fusion methods on model performance

Method DCN Feature fusion Memory Reasonable All Test Time

FE-CSP FPN 3502 11.5 38.06 0.23s/img
CONCAT 4826 11 37.57 0.33s/img√
FPN 3511 11.37 37.69 0.23s/img

√
CONCAT 4841 10.9 37.13 0.33s/img

Table 6  Comparison of FE-CSP 
with baseline CSP algorithm at 
IoU of 0.75.

 Bold numbers indicate the best results

Method IoU Reasonable Small Heavy Occ. Heavy

CSP 0.75 15.02 19.19 48.23 56.86
FE-CSP 13.37 17.7 43.79 52.79
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IoU is the ratio of the intersection and the union of the prediction box and the 
ground truth box, which measures the degree of overlap between the prediction box 
and the label box. the higher the IoU, the better the quality of the predicted bounding 
box. Table 6 shows that FE-CSP performs better than baseline CSP at higher IoU, out-
performing the CSP algorithm on the reasonable setting, small setting, heavy occlusion 
setting and heavy setting by 1.65%, 1.49%, 4.44% and 4.07%. It is worth noting that at 
higher IoU, FE-CSP can produce higher quality bounding boxes than CSP at severe 
pedestrian occlusions.

4.5  Generalizability evaluation of the proposed method

To verify the model’s generalization ability, we performed across datasets evaluation. 
We selected some state of the arts FRCNN [19], Vanilla FRCNN [19], Faster R-CNN 
[18], Cascade RCNN [22], ALFNet [32], CSP [15], PRNet [54] and F-CSP [57] for 
comparison experiments, and we present the results of the experiments on Caltech in 
Table 7.

First, we trained each detector on Citypersons and tested it on Caltech. As 
expected, all detectors suffered from performance degradation. However, except 
for the two-stage detector Cascade RCNN, FE-CSP has a better generalization abil-
ity than most the state of the arts. Specifically, FE-CSP is 7.3%, 1.5%, 7.5%, 1.8%, 
3.2% and 5% higher on reasonable setting compared to Vanilla Faster RCNN, ALT-
Net, CSP, PRNet and F-CSP respectively. Cascade RCNN uses Swin Transformer 
and HRNet as its backbone, which is a stronger backbone network, and secondly, 
Cascade RCNN is a two-stage detector, which is more refined, so it is robust, but 
the detection speed is very low. As shown in column 4 of Table  7, we trained 
and tested on Caltech and obtained 5.2% MR−2 , outperforming most detectors. In 
terms of detection speed, FE-CSP is slightly lower than ALFNet, because ALFNet 
is based on the improved SSD model, which has an inherent advantage in speed. 

Table 7  Cross dataset evaluation on caltech.

 A → B refers to training on A and testing on B
 Bold numbers indicate the best results

Method Backbone Citypersons→
Caltech

Caltech→Caltech Test Time

FRCNN [19] VGG-16 21.1 8.7 0.20s/img
Vanilla FRCNN [19] VGG-16 17.6 12.2 0.20s/img
Faster R-CNN [18] ResNext-101 11.8 9.7 –
Cascade R-CNN [22] Swin Transformer 9.1 8.0 –
Cascade R-CNN [22] HRNet 8.8 6.2 0.20s/img
ALFNet [32] ResNet-50 17.8 6.1 0.05s/img
CSP [15] ResNet-50 12.1 5.6 0.12s/img
PRNet [54] ResNet-50 13.5 5.8 –
F-CSP [57] ResNet-50 15.3 6.0 0.09s/img
FE-CSP ResNet-50 10.3 5.2 0.06s/img
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However, the accuracy is still lower. Overall, FE-CSP achieves a better speed-accu-
racy balance.

5  Conclusion

In this paper, to solve the problems of severe pedestrian occlusion, difficult detec-
tion of small objects and low detection speed, we propose to introduce a backbone 
network using a combination of channel attention and spatial attention to effectively 
establish long-range dependence and highlight useful features, which reduces the 
loss of a large amount of information. And we use the feature pyramid network to 
fuse the extracted underlying and high-layer information to obtain high-level seman-
tic features and improve the multi-scale feature representation capability. Experi-
ments demonstrate that FE-CSP effectively improves pedestrian detection perfor-
mance and outperforms most pedestrian detectors on the challenging pedestrian 
detection benchmarks CityPersons and Caltech, achieving very competitive per-
formance. However, there are still many areas where the model can be improved 
and optimized. When the pedestrians are very crowded, it is difficult for the model 
to accurately detect individual pedestrians, which may be due to the shortcomings 
of NMS post-processing. In the future, the model can be further explored for other 
detection tasks such as vehicle detection and face detection.
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