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Abstract
Complex networks are practical tools for modeling, studying, and analyzing com-
plex interactions between objects. These tools are essential in understanding appli-
cations, end-users, interactions between compute nodes, and their behaviors in com-
puter networks. Computer networks are undergoing significant expansion due to the 
proliferation of network devices and compute nodes. One of the main challenges in 
computer networks is categorizing these compute nodes into clusters of connected 
compute nodes within these large-scale structures sharing similar features (e.g., 
Central Processing Unit, memory, disk storage). This paper proposes a set of novel, 
dynamic, and proactive topology-aware clustering approaches, namely, an Integer 
Linear Program, chemical reaction optimization, and a game theory approach that 
leverages the Irving algorithm, originally proposed to solve the stable roommate 
problem, to form clusters based on the compute nodes’ features and their topological 
structures. Our proposed techniques are suggested to reduce the search space con-
cerning Network Function Virtualization, Cloud-based Networks deployment, and 
to build on-demand clusters to meet their requirements. In this regard, the solutions 
aim to help decision-makers facing issues related to scalability and computational 
complexities of their mechanisms to deploy their cloud-based services effectively. 
Experimental results demonstrate the proposed approaches’ effectiveness and suita-
bility, given their polynomial-time complexities, making them easy to integrate into 
cloud providers’ orchestration systems compared to K-Means and Density-based 
spatial clustering of applications with noise.

Keywords Network function virtualization · Attributed network infrastructures · 
Clustering · Multi-objective optimization · Topological structure · Attribute 
similarity
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1 Introduction

Complex networks, such as computer communication networks, brain networks, 
and social networks, are formal and practical methods for modeling, exploring, 
and evaluating complex interactions between objects having non-trivial proper-
ties in various fields [1]. These technologies are crucial for comprehending appli-
cations, end users, and the interactions and behavior of compute nodes in com-
puter networks. These technologies fundamentally operate within the framework 
of graph theory, where nodes stand in for objects and edges for node interactions. 
Commodity servers, computing nodes, and network devices (legacy/virtualized) 
are represented as nodes in computer networks. In contrast, edges represent their 
interactions, which, depending on the environment in which they are created, 
might take many different forms (such as dependencies, bandwidth capacity, or 
delay).

To cluster attributed graphs, several methods have been put onwards [1]. 
There are two types of these techniques: parameter-free methods and parameter-
dependent techniques. In contrast to the parameter-free strategy, which requires 
no such input, the user in a parameter-dependent approach supplies the clustering 
algorithm with the desired number of clusters. According to [2–5], clustering is 
a valuable unsupervised learning strategy. It seeks to maintain distinct entities in 
separate clusters and combine comparable ones into one cluster. Clustering has 
several uses, including financial and time series analysis, community discovery 
in social networks, and the study of geographical and astronomical data. Many 
currently used clustering techniques merely consider the nodes’ characteristics or 
topological structure in addition to the categorization. The type of the current 
problem and the intended outcome is the key factors determining the technique 
to take. The nodes or the connections between them determine this decision (i.e., 
focused on the structural part).

A similarity function is computed by taking only node attributes or structural 
attributes into account when forming clusters. Clusters are built based on this simi-
larity function because members of clusters are only grouped when they are similar. 
We consider clustering quality as part of our formulation and modeling of clustering 
and other evaluation cost functions. Clustering quality is evaluated once clusters are 
built in most existing methods for clustering attributed graphs [1–3], and [4]. Instead 
of evaluating quality during clustering, the traditional approach involves evaluating 
it afterward. In our approaches, clusters are formed by continuously improving them 
when considering the node properties and their structural aspects since the infra-
structure is heterogeneous and complex. These aspects can impact the clustering 
task, and these clusters could negatively affect the resources available to the network 
or service provider when deploying and provisioning applications and services.

Attributed graphs model real networks by augmenting their nodes with attrib-
utes. For example, these attributes pertain to CPU, Memory, and Disk Storage in 
networking. Thus, our clustering approach of an attributed graph is devoted to 
the service function chaining problem and broadly to cloud-based virtual network 
services where the goals are: 
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(1) Narrowing the search space from an algorithmic viewpoint to assist in finding 
quicker solutions for the algorithms created to deploy them.

(2) Create on-demand clusters, such as CPU-intensive and bandwidth-efficient clus-
ters, according to their demands.

As illustrated in Fig. 1, the proposed clustering approaches align with the Virtual 
Network Function Manager (VNFM) following the NFV MANO architecture [6], 
where three different approaches are proposed and compared together, namely, ILP, 
Game Theory (GT), and Chemical Reaction Optimization (CRO) [7]. Another fla-
vor for each game theory and ILP approach is introduced. Our proposed approaches 
interact with the infrastructure to get all the required information, such as the net-
work topology, CPU, and memory utilization, to perform the clustering dynamically. 
Proposing three different approaches will allow the decision-makers to choose one 
based on their cluster requirements. They may invoke a CRO-based clustering pro-
cedure, a GT-based procedure, or even the ILP solution to build the desired clus-
ters according to the underlying network topology (small-scale, medium-scale, and 
large-scale networks).

This paper fills existing gaps in the research literature with the following key 
contributions : A formulation is provided for the pooled server and network attrib-
utes for the dynamic and proactive clustering problem tailored for service function 
chains and, broadly, for virtual network services in the context of NFV. The problem 
is formulated as a Quadratic Constrained Integer Linear Program, implemented and 
solved in line with Gurobi [8], to find optimal solutions for small-scale networks. 
Then, a fast and scalable Chemical Reaction Optimization approach is designed to 
handle medium and large-scale instances of the problem, leveraging the same ILP 
structure (cost functions and constraints) for reliable benchmarking. Similarly, the 

Fig. 1  VALKYRIE’s alignment with respect to MANO architecture
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clustering problem is formulated as a matching game and solved using an adapted 
version of Irving’s algorithm [9].

Unless otherwise specified, the word valkyrie derives from Old Norse Valkyrja 
(plural valkyrjur), which is composed of two words: the noun valr (referring to the 
slain on the battlefield) and the verb kjósa (meaning “to choose”). Informally, the 
word slain means successful. Then, valkyrie means choosing successfully while 
clustering.

The rest of this paper is organized as follows. Section 2 presents the related works, 
while Sect. 3 presents the system model and states the clustering problem. Our clus-
tering techniques based on Chemical Reaction Optimization and Game Theory are 
presented in Sects. 5 and 6, respectively. Section 6 discusses their asymptotic analy-
sis. The experimental evaluation is presented in Sect. 7, followed by a discussion of 
the results in Sect. 8. Finally, Sect. 9 concludes this paper.

2  Related works

This section reviews the most relevant techniques proposed in the context of the net-
works for service function chaining.

Although very few articles have proposed the formation of virtual clusters from 
physical servers, the literature on cloud environments, primarily virtual machine 
clustering, is presented in detail to optimize resource consumption and physical 
infrastructure management. In addition, we present the techniques for community 
detection in social networks, an application of clustering with attributed graphs that 
are similar to our considered context.

2.1  Clustering in cloud environments

A topology-aware approach to hosting virtual machine clusters on a compute pool 
consisting of a set of physical machines is proposed in [10]. The virtual machine 
cluster is a set of virtual machines that host a distributed application or service. 
However, to avoid high bandwidth consumption and low performance of the offered 
service, the challenge is to locate these VMs on physical machines so that two VMs 
belonging to the same cluster are not too distant apart. Authors represent the VM 
cluster as a directed graph where the nodes are the VMs, and the links are the inter-
connections. To address this placement problem, the authors suggest a greedy algo-
rithm that first attempts to host the entire VM cluster on the same physical server 
if it has enough capacity. If not, it begins with the node with the minimum con-
nectivity weight and then places that VM on the physical machine with the least 
available capacity to host the VM. At the end of the placement, the algorithm omits 
this VM from the original graph and proceeds the same way to host the remaining 
VMs. They compare their approach to their earlier work in [11], in which connec-
tivity between VMs was not accounted for. Further, a comparison is made between 
this approach and two basic approaches: the first-come-first-served and round-robin 
approaches [12, 13], where both are applied to VM scheduling. Findings indicate 
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that this topology-aware technique enhances bandwidth consumption compared to 
the performance of the other three methods.

Authors in [14] put forward an approach to cluster virtual machines to enable 
their scheduling over a shared pool of physical machines and decrease the complex-
ity of their placement, reconfiguration, or migration. Their proposed solution strives 
to guarantee fair resource sharing among VMs, which results in increased resource 
availability provided to end-users. The clustering technique utilizes the similarity 
between VMs in terms of attributes such as the memory, operating system (OS), 
or hardware configuration. In this work, K-Means was used to perform the cluster-
ing. The authors also devise a mathematical model based on linear programming to 
improve the utilization of the clustered VMs and boost the performance.

A method to build virtual clusters made up of virtual machines devoted to high-
performance computing tasks is suggested by [15]. Since virtual clusters are often 
hosted on the same site to prevent performance deterioration and maintain the Qual-
ity of Service (QoS) delivered at a high level, the authors present multi-site clus-
tering. To enable better administration, resource availability, and resource sharing 
among several end users, the suggested strategy focuses more on the communication 
between the VMs over remote locations. Assuring that VMs may communicate with 
one another even if they are not housed on the same physical pool of servers, an 
overlay network is used to divide the networks of each virtual cluster.

Although this method may provide clients access to more resources and compu-
tational and processing capabilities, it substantially impacts connection. The same 
application would incur longer delays and more bandwidth usage if split between 
two VMs hosted in different locations.

In IaaS platforms (Infrastructure as a Service), where it is crucial to secure the 
isolation between the virtual machines serving various customers, authors in [16] 
address the security issue. The authors use a modified sequential K-Means algo-
rithm-based technique to identify unusual behavior and anomalies in resource con-
sumption patterns across specific virtual machines. If the algorithm notices unu-
sual resource usage peaks, it might indicate that a malevolent outsider is trying to 
assault the system. A clustering operation is carried out on sets of virtual machines 
depending on specific different parameters (such as CPU, Memory, and Disk Stor-
age). The architecture and features of the application are taken into account by the 
K-Means technique. The resulting clusters (such as web, database, and applica-
tions) are organized into groups based on the type of traffic received. When a virtual 
machine’s resource usage deviates significantly from the cluster centroid, it is clas-
sified as malicious. Based on a threshold, the cloud provider has established, this 
labeling choice. Using an OpenStack system, the method was tested. It was shown to 
be effective in spotting rogue virtual machines and improving the security and moni-
toring of dispersed cloud environments and IaaS systems.

The authors in [17] suggest a cluster-based technique for placing virtual network 
functions. The clustering phase, regarded as a pre-processing step, divides the sub-
strate network into coherent groups regarding particular metrics like CPU, Memory, 
and Disk Storage. The results showed that the authors’ adoption of a K-Medoids-
based strategy helped shorten the overall placement period and any necessary 
migration. It is important to note that the suggested approach considers the servers’ 
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characteristics. However, in real-world conditions, it is also required to consider the 
delays across the connections in the substrate network and their available bandwidth. 
They also assume that the properties of the nodes only determine the clustering. 
When this happens, it is probable for two servers in the same cluster to have delays 
that are too significant, which could raise the ratio of SLA/SLO violations in terms 
of the desired delay and significantly lower service performance.

2.2  Community detection in social networks

Finding groups of individuals with connections with one another and traits that indi-
cate they are friends on a social network is known as community detection. In our 
research, these entities are servers with shared attributes.

The issue of community detection is investigated in data analysis and process-
ing by [18]. Their study aims to enhance clustering quality beyond conventional 
approaches, hampered by high complexity and extensive execution time. To cre-
ate the communities, the authors suggest using the genetic algorithm heuristic. The 
objective function of this study solely takes modularity into account. Although this 
metric does not take the node’s properties into account, it is demonstrated through 
simulation that the suggested technique can produce acceptable results compared to 
the ground truth found in the data set employed. The algorithm’s run-time is not 
specified, and the suggested method was not compared to the traditional clustering 
algorithms outlined in the literature.

In the context of social networks, [19] examined several evolutionary algorithms 
for community formation. Particle swarm optimization, cat swarm optimization, 
and the genetic algorithm coupled with simulated annealing are the three basic heu-
ristics. The authors considered modularity as an objective function in this context. 
A weighted graph with nodes representing individuals and edges for connections 
between them serves as the representation of the social network. The suggested 
heuristics comparison is examined on traditional data sets, such as Zachary’s karate 
club data set [20]. The findings demonstrate that each approach’s modularity and 
the number of communities discovered vary. However, the strategy using a genetic 
algorithm combined with simulated annealing offers the best trade-off between the 
accuracy of the returned solutions and the overall execution time.

A K-Means strategy is suggested by [21] to identify communities in social net-
works. In contrast to traditional clustering algorithms, where the emphasis is mainly 
on profile similarities, the authors emphasize how people connect and consider their 
mutual interests and activities (e.g., age, gender, education). The study provides a 
"common social activity" factor, which includes both similarities in terms of fea-
tures and the type of interactions between people. Adopting K-Means also has sub-
stantial drawbacks, primarily due to the random initial phase, which entails select-
ing random first seeds or centroids, which leads to defective solutions. Additionally, 
K-Means does not scale well when there are many attributes to take into account, 
which is the issue in the context of social networks.

A group of researchers [22] have developed a technique for extracting non-over-
lapping clusters from large attributed networks that use semantic and topological 
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distances, two distance measurements. The suggested heuristics consider category 
and quantitative variables when calculating the semantic distance. They employ the 
l-neighborhood search method for the topological distance, which creates a collection 
of nodes that paths of length l may reach. The clustering operation is completed by 
calculating the maximum of the two distances between nodes. It is, nonetheless, ideally 
suited for social media.

In the context of social networks, [23] suggested a heuristic to cluster attributed 
graphs. The authors approached the clustering problem by considering vertex connec-
tion and structural similarity, which measures how many vertices two vertices have in 
common. To form non-overlapping clusters, their heuristic uses the K-Means algo-
rithm’s idea of centroids. To create homogeneous clusters that consider vertex connec-
tion and structural similarity or the shared neighbors of two vertices according to a 
user-defined weight, two distance measurements are used similarly to [22].

In order to find communities in complex networks, this study [24] enhanced the 
Cuckoo Search Optimization (CSO) technique with a Genetic Algorithm (GA). Prema-
ture convergence, delayed convergence, and local trap are issues mainly with the CSO 
algorithm. In order to enhance exploration and exploitation in complex networks, GA 
has proved highly successful in detecting communities. In order to boost the CSO’s 
speed and accuracy, GA operators have been deployed dynamically. Depending on the 
level of exploration and exploitation, the population size is dynamically changed. Nor-
malized Mutual Information (NMI) is employed as an optimization function with the 
modularity [25] as an objective Function.

Discovering communities from disjoint complex networks using multi-layer ant col-
ony optimization is proposed by [26]. The proposed multi-layer ACO (MLACO) solves 
multi-objective community detection problems and improves convergence by applying 
a parallel search method.

Numerous research studies use clustering algorithms [27] to create identical sets of 
objects in various application domains, such as social networks or cloud computing 
environments. For instance, most of the works discussed above use traditional tech-
niques based on K-Means or K-Medoids. Additionally, several research papers use 
evolutionary methods like genetic algorithms or simulated annealing. The majority 
of community detection methods based on evolutionary algorithms [28] suffer from 
slower convergence rates and a propensity to converge to local optimum solutions, 
despite the fact that many of them have been available in the literature thus far. The 
clustering methods used in the current research are applied to the data center to con-
struct homogeneous groups of servers in terms of chosen attributes. Through efficient 
resources management of the physical infrastructure, which is essential for service pro-
viders, the complexity of the service function chain (SFC) placement is reduced thanks 
to these solutions. To our knowledge, no current research has studied topology-aware 
clustering in the context of a dynamic and proactive approach tailored to NFV to sup-
port resource allocation techniques.
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3  Problem statement, assumptions and system model

The physical network infrastructure is defined formally in this part, along with a list 
of keywords used throughout the study. Before delving into the mathematical model 
employed by the ILP solution, the game theory-based method, and the meta-heuris-
tic-based approach, the problem statement is first introduced.

3.1  Definitions and notations

The formal description of the proposed mathematical model is presented, along 
with the notations used. Formally, attributed graphs extend the concept of graphs 
by enriching nodes with attributes. An attributed graph G = (V ,E,A) consists of a 
set of V nodes, a set of links interconnecting them E, and the set of node attributes A 
[1]. Thus, our physical network infrastructure is represented as an attributed graph.

Table 1 summarizes the different parameters of our clustering model with the dif-
ferent inputs.

3.2  Problem statement

In Network Function Virtualization, the problem of clustering attributed graphs is 
defined as a Quadratic Assignment Problem, which is recognized in the literature 
as one of the most challenging optimization problems. The purpose is to allocate 
n facilities to n locations typically. The price is determined by multiplying the flow 
between the facilities by the distances between the locations and the future cost of 
constructing facilities at each site. Accordingly, the goal is to assign each facility to 

Table 1  Notations utilized subsequently in the paper

Notations Descriptions

C Set of clusters or a partition
Ci Cluster Ci

Sim(i, j) Similarity ratio between servers i and j
�(C) Density function of a partition C
V The set of servers
A The set of servers attributes
E The set of links
E(Ci) The set of links within cluster Ci

�(i, j) ∈ {0, 1} Equals 1 if servers i and j belong to the same cluster and 0 otherwise
A The adjacency matrix where Ai,j = 1 if servers i and j are directly 

connected and 0 otherwise.
ki The degree of server i
xd
i

The tuple of attributes associated with the server i
�c
i
∈ {0, 1} Equals 1 if server i belongs to cluster c and 0 otherwise
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a place where the overall cost is either diminished or increased, based on the funda-
mental characteristics of the problem under consideration.

In our context, the locations stand for the clusters that will be formed, and the 
facilities are the servers. In conclusion, identical facilities are grouped in one spe-
cific place, while distinct facilities are partitioned into several locations. F1 and F2, 
which are the cost functions, are presented in the following subsections. Since the 
Quadratic Assignment Problem is NP-Hard and our model reduces to it, it dem-
onstrates that Network Function Virtualization’s clustering of attributed graphs is 
equally NP-Hard [29].

With the aid of the notion of attributed graphs, we aim to offer a collection of 
clustering methods specifically suited to the service function chaining issue and 
cloud-based virtual network service orchestration. The technique of clustering 
makes an effort to extract non-overlapping clusters using a combined distance that 
considers node attributes and takes advantage of the properties of the underlying 
networking topologies. It requires optimizing at least two objective functions to get 
a good clustering of an attributed graph (see [1, 3] for more information). Compo-
sitional and structural dimensions will always be in trade-off with one another. The 
nodes and connections, respectively, fall under these dimensions.

For node attributed graphs, the objectives are: 

(1) The structural quality of the clusters the modularity function [4] is considered, 
where higher modularity corresponds to better clustering. Thus, this measure is 
maximized.

(2) The intra-cluster homogeneity of the node attributes The similarity-based meas-
ure [1], which is the key to building clusters since cluster members are grouped 
only when being similar is considered. Thus, this measure is maximized.

Both of these objective functions have a strictly technical rationale. The attributes of 
the servers and the network architecture, consisting of several servers and links, are 
sufficient to calculate these measurements, which are simple to execute and do not 
require any extra information. Due to their linear growth, they do not require a lot of 
processing time. A minimum of two optimization objectives must be considered for 
node-attributed graphs, as stated in the survey [1]. Before implementing the cluster-
ing techniques suggested, a trade-off between compositional and structural dimen-
sions will be required.

3.3  Assumptions

The network topology’s pre-processing task is a significant factor that should be men-
tioned. The data must be processed before being used with clustering or any unsu-
pervised learning approach. According to the on-demand clusters’ requirements, the 
servers’ links are filtered in terms of bandwidth and latency. For instance, if a link link-
ing two servers is overloaded, the clustering procedure will not include it. All three 
approaches can rely on the information (e.g., CPU, Memory, Disk Storage) that can be 
provided by the data plane using monitoring tools (e.g., Nagios) as well as the current 
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network infrastructure topology (the available servers with their inter-connectivity). 
Without loss of generality, it is assumed that the network or service provider leverages 
such mechanisms and tools.

3.4  VALKYRIE clustering model

3.4.1  Objective functions

The aim is to build similar clusters while considering not only their topological dis-
tance but also the capacity of the links interconnecting them to communicate with each 
other while within the same clusters. 

1. F1 (1) aims to form clusters of servers with similar characteristics. The similarity 
will therefore be maximized by F1. Nevertheless, clusters that share one or more 
attributes but have diverse characteristics may be built. For instance, one could 
intend to create CPU-intensive, energy-efficient clusters or even multi-attribute 
clusters that combine numerous features. 

 where : 

2. F2 (2) maximizes the modularity for better clustering. Modularity is a measure-
ment of the quality of partitioning the nodes of a graph or network into communi-
ties or classes. High modularity (see [1] for a working example) features sparse 
connections between nodes in different modules but dense connections between 
nodes within modules. It is primarily used to analyze social networks [1]. 

�(i, j) is the Kronecker delta which returns one if i and j belong to the same cluster and 
zero otherwise. In our problem formulation, it is replaced with the product of �c

j
 and �c

i
 

which is equivalent to the Kronecker delta. Thus, F2 becomes:

(1)F1 =
1

2
×

∑

∀c∈C,∀i∈V ,∀j(j≠i)∈V

Sim(i, j)

Sim(i, j) = �c
i
�c
j
[

1

1 +

�∑
∀d(x

d
i
− xd

j
)2
]

(2)F2 =
1

2|E|
∑

∀i∈V ,∀j(j≠i)∈V ,∀c∈C

[Aij −
kikj

2|E|
]�(i, j)

F2 =
1

2|E|
∑

∀i∈V ,∀j(j≠i)∈V ,∀c∈C

[Aij −
kikj

2|E|
]�c

j
�c
i
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3.4.2  Constraints

Each server can only be a part of one cluster, thanks to constraint (3). The model, 
therefore, is free of outliers. The generated clusters must contain at least two servers, 
thanks to constraint (4). Depending on the requirements of the decision maker run-
ning the model or techniques, this option might be supplied with a different value. 
The decision variable is expressed by constraint (5) as binary (its value is either one 
or zero).

4  CRO‑based approach

4.1  CRO approach description

A population-based meta-heuristic termed chemical reaction optimization utilizes 
chemical reactions as a framework to address challenging optimization problems. 
The molecule representing a potential solution for the issue under considera-
tion is an essential part of CRO. The potential energy of every molecule in the 
population is what distinguishes it. CRO aims to improve population quality over 
iterations by implementing a sequence of reactions. Uni-molecular and multi-
molecular reactions make up the two main groups into which these reactions are 
classified.

• Uni-molecular reactions These reactions start with a single molecule and 
might produce just one new molecule, called On-wall ineffective collisions. 
Likewise, it could lead to the formation of two distinct solutions, which would 
be a decomposition as a single molecule would break into two separate mol-
ecules with distinct potential energies.

• Multi-molecular reactions This set consists of two entering molecules that, 
following the reaction, might produce a single molecule via synthesis or two 
new solutions out of an inter-molecular reaction. Here, synthesis is the process 
of two molecules coming into contact to form a new one. In contrast, two mol-
ecules hit in an ineffectual inter-molecular collision bounce back, and each is 
slightly altered though not in a way that affects the other.

While decomposition and synthesis function primarily as diversification tech-
niques, both forms of ineffective collisions enable intensifying the population by 
carrying out a local search in the solution space. This yields a balanced set of 

(3)∀c ∈ C ∶
∑

i∈V

�c
i
= 1

(4)∀i ∈ V ∶
∑

c∈C

𝛾c
i
>= 2

(5)∀c ∈ C,∀i ∈ V ∶ �c
i
∈ 0, 1
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operations that incorporates all these reactions, facilitating a successful search 
in the solution space and enabling the identification of nearly optimum solutions 
for the under consideration optimization problem [7]. The following parameters 
drive the overall CRO approach:

• Potential energy This is a quality measure that measures the objective function 
of a given solution/molecule.

• Kinetic energy KE This measure quantifies the tolerance of the whole system to 
accept solutions that are worse than the initial ones.

• Decomposition rate A At each iteration, this value determines the uni-molecular 
reactions to be applied: decomposition or on-wall ineffective collision.

• Synthesis rate B At each iteration, this value determines the multi-molecular 
reaction to be applied: synthesis or inter-molecular ineffective collision.

• Maximum number of iterations This is a counter that is used as a stopping cri-
terion. Once the maximum number of iterations is reached, the CRO heuristic 
converges to the optimal solution available in the current population.

Depending on the optimization problem under consideration, these parameters, 
which the network administrators provide as inputs, should be tweaked to produce 
the best optimum solution. The application of the chemical reaction optimization 
meta-heuristic to our clustering problem is discussed in the following section. Addi-
tionally, it specifies the operators employed in each of the fundamental processes as 
well as the molecular encoding.

4.2  Molecule encoding

One possible way to encode the solution is to use the grouping technique defined in 
[30] where each cluster will represent the group of servers it contains as described 
in Table 2.

Table 2 shows a topology of 10 nodes distributed in three different clusters. Using 
this encoding, if the usual operator used for the chemical reaction optimization or 
genetic algorithm is applied, then the algorithm would produce overlapping clusters 
that violate the constraint (3), requiring each node to belong to only one cluster. To 
overcome this problem, it is necessary to go with the encoding shown in Table 3.

Table 2  First molecule encoding
Cluster ID 1 2 3
Included nodes 1,3,7,10 2,4,6,8 5,8,9

Table 3  Adopted molecule 
encoding Server ID 1 2 3 4 5 6 7 8 9 10

Cluster ID 1 2 1 2 3 2 1 3 2 1
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This encoding consists of an N size array where N is the number of nodes in the 
substrate graph; each server is assigned to a selected cluster with a specific label.

4.3  Initial population

Our CRO approach consists of a centroid-based clustering where a set of points 
are specified in the data-set and then assigned to the rest of our servers to one of 
the defined centroids based on the similarity measure defined in Sect. 3.2. Prior to 
executing the different CRO operators, the choice of the initial k centroids is a criti-
cal step. The challenge in this phase is ensuring that these centroids are spread out 
enough to reflect the distribution of our servers in the data set to allow us to distin-
guish the different clusters/groups within the studied network topology. Inspired by 
K-Means++ [31], the variance of our considered servers in terms of their attributes 
and defining the initial centroids accordingly is employed. This ensures that the ini-
tialization phase would not be blind or random. The chosen centroids would repre-
sent our servers’ variety, allowing us to enhance the quality of our initial population.

4.4  Elementary reactions

This section will describe how each CRO operator is used to enhance the quality 
of the formed solutions present in the initial population. As mentioned previously 
explained in Sect. 4.1, the operators of CRO consist of two major sets:

• Uni-molecular reactions The first reaction in this set is called the On-wall inef-
fective collision. This operator consists of a single input molecule representing 
a potential solution called M1 in Algorithm  1 and then results in a new solu-
tion that is called Mo. Next, a set of nodes are selected such that they have low 
similarities within their assigned clusters in M1, re-compute their similarities to 
the updated centroids, and then re-assign them to the cluster to which they are 
the most similar in terms of the selected attributes (steps 1–3 in Algorithm 1). 
Hence, it will allow us to correct the misplaced nodes and re-enforce the homo-
geneity of the formed clusters. Once the new solution is formed, its modular-
ity is computed. If it is higher than the initial input solution M1, it is destroyed, 
and Mo is added to the population. Otherwise, M1 is kept, and resulting Mo is 
destroyed.
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The second operator in this category is the Decomposition. This reaction also 
starts with a single molecule, M1 but results in two distinct solutions D1 and D2. A 
random node is selected in the initial solution M1, which ranges between 0 and N, 
where N is the number of nodes in our data set. The first part of this molecule, M1, 
is kept in the first resulting solution, D1, meaning that the clustering from Server[0] 
to Server[R] is copied (step 2 Algorithm 2) and then assigned the rest of the nodes to 
their closest centroids based on similarity (step 3 Algorithm 2). The second solution 
is constructed from the second part of M1. However, this time nodes from Server[R 
+ 1] to Server [N] are kept (step 4 algorithm 2) and assigned servers 0 to R to their 
closest cluster again based on similarity (step 5 Algorithm  2). Once the new off-
spring is formed, the modularity of both D1 and D2 is computed, and if one of them 
is higher than that of the initial solution M1, the latter is destroyed while adding D1 
and D2 to the population. Otherwise, the new solutions are destroyed, and the popu-
lation remains unchanged.

• Multi-molecular reactions The first operator in this category is the Synthesis, and 
its entire process is described in Algorithm 3. As an input, two molecules represent 
two potential solutions chosen randomly from the current population, M1 and M2. 
The collision between these two elements results in a single output molecule Ms 
which is also a probable solution to our optimization problem. This reaction con-
sists of choosing a random point on both parents M1 and M2 and populating the off-
spring solution with elements from the first parent ranging from server[0] to server 
[R]. Then, the rest of Ms is formed by the second parent ranging from server [R + 
1] to server [N], where N is the number of servers considered in our data-set (step 
2 in Algorithm 3). Suppose the resulting modularity of the newly formed solution 
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Ms is higher than that of the initial M1 and M2. In that case, these two are later dis-
carded while Ms is added to the population. Otherwise, the population remains the 
same, and both M1 and M2 are kept in the population, while Ms is destroyed (steps 
4–8 in Algorithm 3).

The second operator in this category is the Inter-molecular ineffective collision. 
This reaction also starts with two molecules, M1 and M2, resulting in two potential 
solutions, C1 and C2. In this reaction, each new molecule is generated from its parent 
independently of the second one. Therefore, the on-wall ineffective collision defined in 
Algorithm 1 is used to generate two distinct solutions.

4.5  Overall CRO‑based clustering algorithm

Algorithm 4 describes the step-wise methodology to execute the overall steps of the 
CRO-based clustering approach process. The first step consists of generating a set of 
feasible solutions equal to the population size. It starts first by generating a random 
number B between [0,1] (step 4 Algorithm 4); if B is higher than Mol, then it randomly 
selects one Molecule from the initial population that was generated. The next step is 
to verify the number of hits attained if it is higher than the value of A (specified as 
an input to the Algorithm 4), then it applies the decomposition process 2. Otherwise, 
the on-wall ineffective collision process (Algorithm 1) will be executed. The other sce-
nario is for the case where the generated number B is lower than the input Mol. Here, 
it applies the multi-molecular operators. It is first checked if the set kinetic energy is 
lower than the value of B (specified as an input to the Algorithm 4). The synthesis 
operator (Algorithm 3) is executed. Otherwise, it applies the inter-molecular ineffec-
tive collision process and decrease kinetic energy. This process of CRO operators will 
be repeated as long as the total number of iterations has not been attained, which is the 
stopping criterion for this algorithm. Once the population reaches the maximum num-
ber of iterations set as an input, the optimal solution is chosen for modularity as defined 
in Sect. 3.4. The solution that returns the highest modularity is selected as the optimal 
solution.
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5  A game theory‑based approach

In this approach, the Irving’s algorithm was used to find what are known as stable 
matching pairs between servers, such that no two non-matched servers prefer each 
other more than their actual matching. This algorithm comprises the preference list 
computation phase (see algorithm 5) and the preference cycle elimination phase (see 
Fig. 2). In the first phase, the attributes of each server were given as inputs, along 
with the list of servers in the topology. The preference table was then built by calcu-
lating the similarity between each server i and every other server j in the substrate 
network. The similarity values calculated were ranked (sorted) in descending order 
and formed the preference table as shown in Algorithm 5.

After the preference table was built, each server should be uniquely paired with 
only one other server in the substrate, which is accomplished by applying the 
Irving Algorithm [9]. The inputs of this algorithm are the preference table, along 
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with the list of servers in the substrate topology, with their respective attributes, 
as briefly described in Algorithm 7. The Irving algorithm matches each server to 
only one other server. Each server i sends its proposal to the preferable server j 
computed in the previous algorithm and specified in the preference table. If any 
server has more than one proposal at a time, it will keep the best one and discard 
the others. This process is repeated until each server has only one proposal. Based 
on the position of the current proposal for each server in the preference table, all 
the less preferable servers will then be discarded from the preference table. This 
generates a shortlisted preference table, such as the one in Fig. 2. The last step 
in the Irving algorithm is eliminating all the preference cycles in the shortlisted 
preference table.

This process is performed by checking all the rows in the shortlisted prefer-
ence table with more than one preference. For instance, as shown in Fig. 2, server 
A has two preferences, namely, B and F (B is better and preferable). In order 
to detect the current preference cycles, starting from the first row, the second_
choice(server A) and the last_choice(second_choice(server A)) are noted, and 
this step is repeated until the preference cycle is detected, as shown in Figure. 
Once this cycle is detected, the following preferences between (A and B), (E and 
C), and (D and F) are discarded. This process is repeated until each server has 
only one preference in the table, called the stable matching solution.

Fig. 2  Preference cycle elimination process.
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The initial clusters are formed by pushing the generated pairs into different 
clusters based on similarity characteristics. This clustering is improved by check-
ing if adding one of the servers to a specific cluster would improve the modularity 
value for the whole partition. If this is the case, the server is added to one of the 
clusters. This process is performed iteratively to maximize the modularity value 
for the entire partition while minimally affecting the similarity value for each 
formed cluster, as shown in Algorithm 7.

The centroid value of each cluster is updated dynamically when the server is 
added or removed from the cluster. Two flavors of the game theory approach are 
proposed in this paper, one of which focuses more on maximizing the modularity 
with the existence of outliers. At the same time, the other one has no outliers with 
a reduced modularity value. Algorithm 7 is invoked to generate clusters without 
outliers, which improves the Irving algorithm outcome. In that case, our solution 
will force each outlier server to join one of the clusters based on the similarity 
value between this server and the centroid.

6  Asymptotic complexity analysis

A description of the algorithmic complexity of our proposed suite of VALKYRIE 
approaches is provided. It is worth mentioning that this complexity analysis is 
performed for the worst-case scenario. The way our mathematical model is 
described is NP-Hard since it embodies the form of the well-known Quadratic 
Assignment Problem [29].

CRO-based approach Our CRO-based approach consists of four algorithms, as 
described in Sect. 4.1. The complexity of each algorithm is reported as follows:
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• The initial population task runs in O(Popsize × |V|) . This is because we loop 
over the entire set of molecules ( Popsize ), i.e., candidate solutions and perform 
a set of basic operations (e.g., array creation, adding the formed molecules to the 
population and so on) on the entire set of nodes V.

• Algorithm 1 runs in O(|V|2 + |V|) . As we maximize the modularity function, we 
loop over the entire set of nodes twice in the defined equation, thus the term |V|2 . 
Furthermore, the set of nodes with low similarity is calculated in the order of 
O(|V|).

• Algorithm 2 also runs in O(|V|2 + |V|) . The same analysis can be drawn from 
Algorithm 1.

• Algorithm 3 runs in O(|V|2) . As we maximize the modularity function, we loop 
over the entire set of nodes twice in the defined equation, thus the order O(|V|2).

Based on this analysis, Algorithm  4 (CRO-based approach) complexity is 
O(|Popsize| × |V| +MaxIteration × (|V|2 + |V|)) . The first term comes from 
the initial population generation, and the second term comes from the complex-
ity of Algorithms 1 and 2, respectively. Finally, the entire process goes through 
MaxIteration iterations.

Game theory-based approach Similarly, three algorithms were employed, and 
their complexities are computed as follows:

• Algorithm 5 runs in O(|V|3 × Log(|V|)) as it uses TimSort algorithm to sort the 
similarity array which runs in O(|V| × Log(|V|)) [32]. In addition, as we maxi-
mize the modularity function, we loop over the entire set of nodes twice in the 
defined equation, thus the order O(|V|2 ). Therefore, this fact justifies the cubic 
power over the set of nodes |V|.

• Algorithm  6 runs in O(|V|2) . The matching pairs are computed while looping 
through the entire set of nodes twice in a nested structure.

• Algorithm 7 runs in O(|V|3) . In addition to the computation of the matching pairs 
performed in O(|V|2) , the similarity is checked in O(|V|) inside the two nested 
loops.

Based on this asymptotic complexity analysis, the GT-based approach complexity 
is O(|V|2 + |V|3 × Log(|V|)) . Furthermore, the CRO-based technique exhibits lower 
overhead compared to the GT-based approach. Finally, it is fair to correlate the 
results with this asymptotic complexity analysis to better appreciate one approach 
over the others in terms of their performances in each metric.

7  Evaluation

In this section, VALKYRIE is evaluated. The chemical reaction optimization algo-
rithm is assessed both on small and large-scale networks. The quality and effective-
ness of the solution with and without the presence of ground truth are evaluated. The 
ground truth refers to what is known to be accurate or authentic, supplied by direct 
observation and measurement (i.e., empirical evidence) instead of the information 
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given by inference. In the context of clustering, it refers to the clusters that need to 
be discovered by the clustering algorithm [1].

7.1  Setup

The mathematical model is implemented using Python 3.7 and solved thanks to 
Gurobi 7.5.1 [8] to get the optimal solution. Gurobi is shipped with a Python plug-
in called “gurobipy” that offers handy object-oriented modeling constructions and 
an API for all Gurobi functionalities. Our chemical reaction optimization and game 
theory procedures were implemented using Python 3.7. The experiments and imple-
mentations were carried out on a physical machine composed of 8 CPU cores and 
16 Gig of Memory.

Two types of network infrastructures were considered to evaluate VALKYRIE. 
The topologies were generated using the NetworkX library [33] which is a Python 
module for creating, processing, and studying a network’s complex structure, 
dynamics, and functions. Section  7.1.1 provides details about the scenarios, and 
Table 4 details the types of infrastructure considered in the experiments. Finally, we 
report the average values for all the experiments, which were repeated ten times as 
they were sufficient after a set of trials.

7.1.1  Scenarios

Our approaches are evaluated under a set of scenarios. It is worth mentioning two 
variants of the game theory-based approach. The GT-based approach uses algo-
rithms 6, 7, and 8, while the Enhanced-Game Theory (E-GT)-based approach 
improves GT that suffers from outliers.

Scenario 1
In this scenario, it is assumed that the topology is modular that is considered the 

ground truth. In such a scenario, the distribution of CPU cores per module is defined 
as follows: 4–11 for the first module, 12–24 for the second one, and 25–36 for the 
third one. This can be viewed as if we had three different domains where the servers 
were physically present. However, this differs from the following scenario, where no 
assumption is made on the server’s domains.

Scenario 2

Table 4  Degrees of connectivity 
in our scenarios

Network size Scenario 1 Scenario 2

20 2 3
50 7 3
100 14 3
200 29 3
300 44 3
500 74 3
1000 149 3
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In this scenario, different topologies regarding the number of servers with fixed 
connectivity degrees for each server are defined. The servers in this topology are 
randomly connected, and they are not modular, as in the case of the previous sce-
nario. The distribution of CPU cores is drawn between 4 and 64 units.

7.2  Performance metrics

VALKYRIE is evaluated according to the following metrics to assess its 
effectiveness: 

(1) Runtime the time taken by the different approaches to partitioning the network 
into the number of desired clusters is calculated.

(2) Similarity the average similarity of all the clusters is evaluated.
(3) Modularity evaluates how dense the connections between the nodes are within 

the clusters and how sparse they are while in different clusters.
(4) Density computes the proportion of edges that lie within the clusters, and a 

higher density corresponds to a better clustering. It is defined as follows: 

 where E(Ci) is the set of edges inside the ith cluster.
(5) Outliers the number of servers that do not belong to any cluster is computed.

It is worth mentioning that Density is the validation technique used to assess our 
clustering approaches. Nevertheless, the values of all the metrics, shown on the 
y-axis of the Figures, are in the range [0, 1], and the higher the value, the better it is.

8  Evaluation results

In this section, an analysis of the results is presented for three different topologies 
to test our approaches. For all the evaluations regarding ILP, the results for network 
sizes more than 200 as the runtime is exponentially increasing and takes several 
hours are not reported. Instead, a sub-optimal version of ILP is devised, denoted by 
ILP_subopt by tuning the optimality gap parameter defined in [34] to obtain quick 
solutions.

8.1  Modular topology with variable connectivity degree

Based on Fig. 3, it can be seen that the clustering time for the ILP increases expo-
nentially as the network size increases. For example, it takes hours once the number 
of servers exceeds 200. This behavior is expected as the ILP attempts to find the 
exact solution that justifies adopting one of the developed heuristics. Concerning the 
other heuristics approaches that were considered, it can be seen that CRO increases 

�(C) =
1

|E|
∑

∀Ci∈C,

|E(Ci)|
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from 0.6 s for 20 servers to 71 s for a topology of 1000 servers. For the two flavors 
of GT approaches, the runtime value ranges from 0.2 to 67 s for GT and from 0.03 
to 68 s for E-GT, while ILP_subopt ranges from 0.11 to 29 s. Although ILP_sub-
opt has the minimum runtime, all the heuristics approaches are still acceptable for 
a clustering solution by a cloud provider since clustering is done periodically and 
proactively. DBSCAN [35] and K-Means [36] clustering algorithms mostly give less 
runtime, but as mentioned in the asymptotic analysis, the running time for our pro-
posed approaches is reasonably acceptable.

Another metric that requires evaluation is similarity, as shown in Fig. 4. The ILP 
identifies the best value in terms of similarity compared to the other approaches for 
a small-scale environment (up to 200 servers). When CRO and the two flavors of 
GT heuristics are compared, it can be seen that the values are close, with GT and 
E-GT demonstrating slightly better results in terms of similarity. This may be attrib-
uted to the fact that the GT approach has outliers. Although E-GT has slightly better 
similarity values, it compares unfavorably to CRO in modularity. About the Game 
Theory approach, not all servers are included in the formed clusters, which explains 
the difference in similarity. This difference is relatively small at an average of 0.05. 
When comparing our proposed algorithms with DBSCAN and K-Means, the results 
reveal that our proposed approaches have better similarity values regardless of the 
network’s size.

Figure  5 shows the differences between the considered approaches in terms of 
modularity. The ILP and ILP_subopt solutions find the lowest values for all types of 
topologies compared to CRO and the two flavors of GT, mainly due to the simplex 
algorithm that finds the optimal tradeoff between both considered objective func-
tions. As shown in Fig. 4, ILP finds the best similarity, but Fig. 5 illustrates that this 
impacts on the modularity. As for the heuristics of CRO and the two flavors of GT, 
it can be seen that GT finds better results for small topologies ranging from 20 to 

Fig. 3  Clustering time
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50 servers, and CRO takes the lead for medium topologies of 100 servers; the lat-
ter have pretty similar values for large topologies of more than 200 servers, with an 
advantage to the GT approach. The difference in modularity can be attributed to the 
GT approach’s outliers. Another takeaway from this experiment is that our proposed 
approaches display better modularity values when compared with DBSCAN and 
K-Means regardless of the network’s size.

The density is an internal validation measure used to evaluate the quality of the 
clustering when the ground truth is not known in advance, meaning that the clusters 

Fig. 4  Similarity

Fig. 5  Modularity
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are not known before the algorithms are applied. Based on Fig.  6, it can be seen 
that CRO and E-GT have almost the same density values, which are better than 
the other approaches. This is mainly because they do not return any outliers. The 
clusters formed by CRO and E-GT include more servers and are denser than those 
returned by GT, where the number of outliers jumps up to 25% of the substrate for 
large topologies composed of 1000 servers. Although ILP-SubOpt exhibits the high-
est density, it is not deployable since some clusters contain only two servers, which 
is not preferable for the network administrator. The density values obtained by our 
proposed approaches are mostly better regardless of the network’s size than those 
obtained by the traditional DBSCAN and K-Means clustering techniques.

8.2  Random topology with fixed connectivity degree

Like the previously tested topologies, the ILP solution takes considerable time to 
converge to the optimal solution, as shown in Fig. 7. It increases sharply as the net-
work size grows. The two Game Theory flavors approach takes less time to converge 
to the sub-optimal than the CRO and ILP_SubOpt approaches. All of them except 
the ILP_SubOpt solution have a lower runtime than the previous topology, where 
the degree of each node varies. This is expected because the substrate network is 
less complex when the degree is fixed than varying connectivity degrees. The lat-
ter means a higher number of edges, more computational time, and a higher cost 
for computing the modularity values. DBSCAN and K-Means techniques exhibit a 
slightly better running time than the other approaches, particularly for DBSCAN. 
However, our proposed approaches still have a reasonably good running time.

Fig. 6  Density
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When the degree is fixed, there is no significant difference between the CRO, GT, 
and E-GT approaches. This measure is more related to the servers’ attributes than 
their connectivity. GT finds slightly better results compared to CRO when it comes 
to the similarity, as shown in Fig. 8, but again with an existence of outliers which 
explains this difference. ILP and ILP_subopt solutions exhibit the highest similar-
ity values for the small-scale environment (up to 200 servers), and finally, GT and 
E-GT have relative values. The results have also shown that some of our proposed 
approaches outperform the results obtained by DBSCAN and K-Means.

The difference in modularity is higher in this topology between GT and all the 
other approaches, as shown in Fig. 9. It can be seen that GT finds better results for 
topologies composed of above 20 servers, but the number of outliers also jumps 
in this topology which explains this gap again. The ILP and ILP_subopt solutions 
have the same behavior compared to other topologies. However, our proposed 
approaches’ modularity values are mostly better than the DBSCAN and K-Means in 
this setting.

CRO is the best in density for this type of topologies, as shown in Fig. 10, com-
pared to GT and E-GT. However, E-GT has better values than GT since it has no 
outliers and increases the number of edges inside each formed cluster. ILP_subopt 
solution shows the best value in terms of density, although it puts the servers among 
the clusters unevenly. One cluster may be formed only with two servers which is 
not ideal and appropriate for a cloud provider. Again our proposed approaches have 
shown better density values than the traditional DBSCAN and K-Means algorithms.

Fig. 7  Clustering time
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As shown in Table 5, the number of outliers increases linearly as the network size 
increases for both topologies. This only occurred in one of the proposed approaches, 
the GT approach, as all other approaches respect the constraints defined in the math-
ematical model. Having some outliers had an impact on getting better values for 
similarity (Fig. 8 and modularity (Fig. 9, which could benefit a cloud provider since 

Fig. 8  Similarity

Fig. 9  Modularity
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there could be certain cases where the Service Function Chain (SFC) request has a 
specific requirement and preference for a cluster to be deployed with higher modu-
larity and similarity values. On the other hand, both topologies detected some outli-
ers when applying the DBSCAN algorithm, as shown in Table 6.

8.3  Discussion and overall observations

Based on the presented results, we draw the following conclusions:

• The clustering time is influenced by the number of servers, links, and each serv-
er’s connectivity degree.

• The Theory-based game approach is better in modularity than other proposed 
approaches, but it suffers from outliers. It is calculated only with the clustered 
servers as the others are outliers.

Fig. 10  Density

Table 5  Number of outliers 
using Game Theory

Network’s size GT (scenario 1) GT (Scenario 2)

20 7 11
50 23 19
100 22 29
200 45 76
300 113 139
500 104 207
1000 242 454
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• ILP solution has the best similarity value for the small-scale environment ( ≤ 200 
servers). In contrast, GT has a slightly better similarity value than other heuris-
tics but suffers from outliers.

• If a cloud provider prefers no outliers when performing the substrate clustering, 
then CRO is the best heuristic solution since it has close similarity values com-
pared to other heuristics and has the highest modularity values in all topologies. 
Although ILP_subopt might have a higher similarity value than CRO, the servers 
are not evenly distributed between clusters and could lead to two servers inside 
some clusters.

• Cloud providers could choose to perform clustering using ILP_subopt solution if 
clusters with high similarity values are needed, which could be the case in some 
scenarios.

• Density shows that CRO is better than the two flavors of the Game Theory 
approach only in random topologies but not in the modular one, where E-GT has 
a higher value. Although CRO has less density value than ILP_subopt solution 
in all kinds of topologies, in most cases, it can be preferable to be chosen by the 
cloud provider to have clusters that are almost even number of servers inside 
them.

• ILP is better for small-scale networking topologies. However, CRO and Game 
Theory are better choices for large-scale networks because they exhibit reason-
able clustering runtime and a good tradeoff between similarity and modularity.

• Overall, our proposed approaches exhibit, most of the time, better performances 
compared to K-Means and DBSCAN in terms of similarity, modularity, and den-
sity but with an acceptable additional runtime.

9  Conclusion

This paper presents VALKYRIE as a suite of solutions for clustering and partition-
ing large attributed graphs for virtualized and non-virtualized environments. It is 
meant to help decision-makers eliminate scalability and computational time bur-
dens when deploying their services in cases where each end user’s requirements 
could be completely different from those of others. First, the system architecture is 

Table 6  Number of outliers 
using DBSCAN.

Network’s size DBSCAN (scenario 1) DBSCAN 
(Scenario 
2)

20 5 3
50 1 3
100 1 0
200 0 1
300 0 0
500 0 0
1000 0 0
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defined, the problem is formalized, and the system model is presented. The prob-
lem was formulated using an Integer Linear Program to get the optimal solution 
for small-scale sizes. A chemical reaction-based meta-heuristic and a game theory-
based approach were proposed to handle the scalability issues in the mathematical 
program. Our approaches jointly consider the nodes and the network attributes by 
optimizing the similarity and modularity as cost functions. Experiments with differ-
ent infrastructures have shown that our solutions achieve reasonable clustering time 
concerning their size and can find a good trade-off between density, modularity, and 
similarity as a set of cost functions and being outliers-free. However, our proposed 
approaches were also compared with the two well-known clustering techniques. 
Namely, DBSCAN and K-Means, and results have revealed a better performance in 
both topologies. Finally, given their low computational complexities, our techniques 
are viable solutions to be integrated into orchestration systems following the NFV 
MANO framework.
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