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Abstract
Quantum-dot cellular automata (QCA) is a field coupling nano-technology that has 
drawn significant attention for its low power consumption, low area overhead, and 
achieving a high speed over the CMOS technology. Majority Voter (MV) and QCA 
Inverter (INV) are the primitive logic in QCA for implementing any QCA circuit. The 
performance and cost of a QCA circuit directly depend on the number of QCA primi-
tives and their interconnections. Their optimization plays a crucial role in optimizing 
the QCA logic circuit synthesis. None of the previous works considered elitism in 
GA, all the optimization objectives (MV, INV and Level), and the redundancy elimi-
nation approach. These profound issues lead us to propose a new methodology based 
on Genetic algorithm (GA) for the cost-effective synthesis of the QCA circuit of the 
multi-output boolean functions with an arbitrary number of inputs. The proposed 
method reduces the delay and gate count, where the worst-case delay is minimized 
in terms of the level. This methodology adapts elitism to preserve the best solutions 
throughout the intermediate generations. Here, MV, INV, and levels are optimized 
according to their relative cost factor in a QCA circuit. Moreover, new methodologies 
are proposed to create the initial population, maintain the variations, and eliminate 
redundant gates. Simulation results endorse the superiority of the proposed method.
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1 Introduction

Present Complementary Metal Oxide Semiconductor (CMOS) technology approach-
ing the saturation level in terms of power efficiency , feature size [27]. QCA tech-
nology receives tremendous attention as a worthwhile substitute to CMOS technol-
ogy owing to its area efficiency and a minimal amount of power consumption [27]. 
QCA cells are the primary element of any QCA circuit. No current flow occurs in 
the QCA circuit during signal transition and propagation because of the interaction 
between the cells through Coulombic repulsion. The fundamental gates in QCA 
technology are the majority voters (MV) and inverter (INV), which are used to syn-
thesize any complex QCA logic circuit [26, 27]. In the QCA circuit, the placement 
of cells to construct the logic primitives are significant in the cost-effective synthesis 
of the logic circuit. Therefore, reduction of logic primitives, as well as levels (dis-
cussed in Sect. 4.2), plays a crucial role in designing optimal QCA logic circuits.

Automatic cell layout and its optimization is a well-studied topic on conventional 
CMOS logic circuits [17, 42, 43]. A new design of multiplexer, decoder and ALU 
were proposed in [3–5]. The AND, OR logic-based minimal form of the sum of 
product (SOP) expressions or a product of sum (POS) expressions are generally 
utilized for the implementation of the conventional logic circuits. Unlike CMOS, 
in QCA, primitive boolean logic (AND/OR) cannot be generated directly; instead, 
3-input MV is used to create such primitive boolean logic. Thus, it is tough to 
directly exploit the minimization of POS or SOP form of expression to realize the 
circuit in QCA.

Genetic Algorithm (GA) is one of the heuristic techniques [11, 38, 45], grounded 
on natural evolution theory and well recognized for the discovery of NP-hard prob-
lem resolutions [10, 21, 33]. Previously, a few mentioned works (details discussed 
in Sect. 3) have considered GA in the direction of the automatic generation of the 
optimal layout of the QCA circuit [8, 19, 20, 34, 40]. Nevertheless, each has its 
limitations considering the number of input variables, number of outputs, and opti-
mization objective. Moreover, to our knowledge, none of the previous GA-based 
optimization methods used elitism explicitly or considered the priority of the opti-
mization objectives to generate the QCA circuit. Elitism preserves the best solu-
tions which can be effectively utilized in GA to improve the optimal result [1, 6, 24]. 
The number of majority voters (MV) and inverter (INV) have been accounted for 
reducing gate count, whereas level is considered to minimize the worst-case delay 
(represented in the number of clock zones) of a QCA circuit. However, level, MV, 
and INV have different cost factors in a QCA circuit. Hence, their relative priority 
should be considered to obtain the optimal QCA circuit [25, 37].

Motivated by the above factors, we proposed a new methodology to synthesize a 
cost-efficient QCA circuit using GA. In a practical scenario, the use of multi-output 
circuits is more general; thus, its main focus is to optimize the multi-output circuit. 
The salient features of the proposed methodology are summarized below.



3852 A. K. Pramanik et al.

1 3

– A priority-driven calculation approach for fitness function is proposed for the affec-
tive dimension of candidate solutions. Priority is allotted to distinct objectives (i.e., 
level, MV, INV), bestowing their relative cost factor in the circuit.

– The proposed methodology adopted elitism in the genetic algorithm (GA) to pre-
serve the best solutions throughout the generations. Further, new methods are intro-
duced to create the initial population and maintain the variations. Also, a redun-
dancy elimination method is proposed to eliminate the possibility of any redundant 
gates from the final solution.

– The optimal QCA circuit for a multi-output function is attained because of the rela-
tive fitness value of the individual output functions. Previous (i − 1) output func-
tions are taken into consideration for the calculation of the fitness value of the ith 
output function.

– Some standard multi-output boolean functions are considered to check the effi-
ciency of the proposed method. The results establish that the proposed methodology 
expresses substantial improvement in minimizing the level and gate count over the 
existing heuristic techniques.

The rest portion of the paper is structured as follows. Section 2 contains the related con-
textual resources, including the QCA and genetic algorithm basics required to under-
stand the proposed methodology. Section 3 consists of a brief discussion of the related 
works. Details of the suggested or proposed methodology are illustrated in Sect. 4. The 
next section (Sect. 5) contains the simulation result related discussions and correspond-
ing analysis. Finally, the the conclusion of the paper is drawn in Sect. 6.

2  Background materials

2.1  QCA

The vital element of QCA technology is the QCA cell. A QCA cell works based on 
the Coulombic repulsion between electrons [27]. It (i.e., QCA cell) consists of two (2) 
electrons and four (4) quantum dots confined inside it. The four dots inside the cell 
are placed in the four corner positions [32]. When a cell is in it’s most stable state, 
the electrons transfer in the corners because of Coulombic repulsion. In this fashion, a 
QCA cell feasibly expresses two probable states in a steady position. Logically repre-
sented by P=‘-1’ and P=‘+1’, two states are considered as equivalent to binary logic 0 
and binary logic 1, respectively [31]. A QCA cell and possible states concerning elec-
tron positions are shown in Fig. 1(a) i–ii. Signal transition and propagation between 
the QCA cells occur without charging and discharging of voltage. A QCA gate is con-
structed by combining the QCA cells. Basic QCA gates are the majority voter gate 
(MV) and inverter (INV). The functionality of a three-input MV can be mathematically 
expressed by Eq. 1.

(1)F = PQ + QR + RP
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Where P, Q, R are the inputs, and F is the output. Binary logic ‘1’ is produced as 
the output of a MV when 2 out of 3 of its inputs are logic ‘1’ and binary logic ‘0’ 
for other cases [41]. Fixation of one input to a fixed polarized value of 1 or 0 leads 
MV to act as AND gate or the OR gate, respectively. The structure of an MV is 
shown in Fig. 1(b). a single-layer 5-input majority gate was proposed in [2]. Inverter 
(INV) is another basic gate in QCA. Logically, the INV is equivalent to the con-
ventional NOT gate. It takes only one input and produces the complement of the 
input as the output. Different alternative cell orientations for QCA INV gate realiza-
tion are shown in Fig. 1(c) i–ii. In a QCA circuit, the connection between the QCA 
gates is provided by using the QCA wire [26, 27]. A series of cells placed aside to 
implement a wire is shown in Fig. 1(d). Any sophisticated circuit in nanotechnol-
ogy-based QCA technology can be realized by using MV and INV gates, where the 

(a) (b)

(c) (d)

(e)

Fig. 1  QCA fundamental devices
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connections are made with the QCA wires [39]. But interconnecting the wires is 
very challenging in the fabrication step [28]. The rotated cell-based wire crossing 
approach uses two different types of QCA cells for crossing [7], shown in Fig. 1(e) 
i. Clock zone-based wire crossing shown in Fig. 1(e) ii and multi-layer based wire 
crossing approach uses more than one cell layer, represented in Fig. 1(e) iii. In this 
regard, an alternative wire crossing method based on XOR gate is reported in [14, 
22].

The direction and timing of the signal flow in a QCA circuit are controlled 
through the QCA clocking [18, 26]. QCA clocking has four (4) phases, switch 
phase, hold phase, release phase and relax phase. In the first phase (called as switch 
phase), QCA cell begins with a very low potential energy in the barrier between the 
dots, and the barrier gradually starts increasing.

In the hold phase QCA cell holds the barrier high. In the next phase (i.e., release 
phase), the strength of the barrier within the dots starts diminishing, and finally, in 
the last phase (termed as relax phase), the cell resets to the un-polarized state. A 
circuit in QCA technology is virtually split into different clock zones. A particular 
clock drives all the cells in the same clock zone. As a result, the more utilization of 
clock zones directly proportionate to the increase in the circuit delay. Figure 2 shows 
the phases of QCA clocking, and also the operation of a QCA wire in several clock 
zones.

2.2  Genetic algorithm

Genetic Algorithm (GA) is a heuristic method that is inspired by Darwin’s theory 
of natural evolution [10, 21, 33]. The significant steps of standard GA execution are 
the creation of the initial population, fitness calculation, crossover, mutation, and 
creation of the next-generation population. GA starts its execution by creating an 
initial population set of random solutions. This randomly selected population set is 

Fig. 2  QCA clocking
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popularly termed as a chromosome. A fitness function is used in GA to calculate the 
fitness value of the individual chromosome. The fitness value indicates the feasibil-
ity and defines the sustainability of a chromosome. The population set for the next 
generation is formed by way of the selection, crossover, followed by mutation pro-
cess. (a) The selection operation is applied on parent chromosomes to select some 
of them based on a given criterion for the crossover. (b) The crossover function then 
generates new offspring chromosomes from the parent chromosomes to be used in 
the next generation. (c) The mutation operation is applied to preserve discrepancies 
in the population pool. In mutation, some portion of a chromosome is randomly 
altered with a specified probability to introduce new characteristics.

GA reiterates these operations several times until the targeted goal is realized or 
the iteration reaches the maximum step. In elitism-based GA, few chromosomes 
with the most suitable value are chosen to be the elite chromosomes and passed to 
the next generation without any alteration, which ensures the optimum result [6]. 
A Multi-objective genetic algorithm considers more than one objective to be opti-
mized. Several multi-objective based genetic algorithms have been reported, suit-
able for different applications [12, 13, 24].

3  Related works

In previous literature, various non-GA-based methodologies were introduced to syn-
thesize an optimal QCA circuit corresponding to a Boolean function [25, 37, 44, 
46]. However, GA based optimization technique for the QCA circuit was initially 
introduced by [8]. A tree structure was used in this case to represent a chromosome. 
The basic gates like the majority voter (MV) gate or inverter (INV) gate have been 
represented by the internal nodes, whereas any input variables or constants were 
denoted by leaf nodes. This GA-based methodology used node count for measuring 
the fitness value. This paper [8] itself declares, due to the dissimilarities in the num-
ber of inputs in the majority and inverter, the mutation becomes complicated. New 
chromosomes were prepared randomly and inserted in the population set, replac-
ing the chromosomes with the worst fitness. This methodology can be useful in 
reducing the number of gates only and limiting the single output boolean function. 
In[23], a method was developed to reduce fixed external inputs. In [35], a GA-based 
reduction technique is proposed taking advantage of the majority gate in both three 
input and five input forms in the synthesis of the QCA circuit. Also, it incorporates 
the mutation process, as proposed in [8]. A few methodologies of applying GA in 
connection with single output functional gate can be reported in [30]. In another 
approach, a hamming oracle-oriented assessment of evolutionary search methods is 
reported [29]. In this case, GA was considered without mutation or recombination. 
At the same time, the concept of GA was found to be applied in QCA for the reduc-
tion of wire crossing constraints in [16, 36].

A GA-based methodology was proposed to synthesize optimal QCA cir-
cuits, which can be deployed on 2-output boolean functions in [19]. It was further 
extended for any multi-output Boolean functions in [20]. The investigation suggests 
that for the case of multi-output functions separately, considering the discrete output 
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function may not focus on an optimal solution [19, 20]. However, the methodology 
in [20] can be applied to multi-output Boolean functions, which can decrease the 
gates count only in a QCA circuit. Utilizing multi-objective genetic programming 
in the synthesis of optimal QCA circuit of any multi-output boolean functions is 
reported in [34]. It was inevitable that considering only gate count or worst-case 
delay may not lead to the optimal solution. Thus, along with number of gates, the 
methodology to reduce worst-case delay in terms of the height of the chromosome 
tree (level) is also required. However, consideration of the relative priority of the 
optimization objectives was missing in [34]. Another technique to generate optimal 
QCA circuits using an evolutionary algorithm was proposed in [40]. This technique 
considered the number MV and level together as the optimization objective but 
ignored the number of INV. The stable representation of the INV contains a consid-
erable amount of cells. Hence, it has a significant impact on circuit cell count and 
delay, which makes it worth considering. In contradiction with [19, 20], it did not 
consider the other output functions for optimizing a specific output function.

It is evident from the above discussion that some critical issues have not been 
explored, primarily focusing on multi-output functions. Firstly, none of the previ-
ous works considered elitism in GA, even though elitism improves the optimization 
performance [1, 6, 24]. Second, most of the works did not consider all the optimiza-
tion objectives such as MV, INV , Level, instead focused on gate and latency reduc-
tion. Third, the consideration of relative priority of the optimization objectives, even 
though it was analyzed and used in the non-GA-based QCA optimization techniques 
[25, 37] and redundancy elimination approach. The synthesis process may generate 
redundant gates, but previous works did not consider the redundancy elimination 
approach. This literature discussion and profound issues lead us to propose a new 
GA-based QCA circuit optimization method.

4  Proposed method

As discussed earlier, the previous works did not consider either elitism or all the 
optimization objectives. The priority of the optimization objectives was also ignored 
in synthesizing the optimal QCA circuit. The proposed work has considered all these 
criteria to generate the optimal QCA circuit. The proposed methodology minimizes 
the number of levels, Majority Voter (MV) and inverter (INV), in a QCA circuit by 
considering their relative priority. It takes an arbitrary multi-output Boolean func-
tion as the input, where each output is viewed as a discrete function. A full Adder 
can be represented by two functions, the sum and the carry. The output functions are 
randomly ranked from 1 to the last (1, 2, 3, ..., N).

The proposed methodology starts with the generation of the initial population set 
of random chromosomes, where each chromosome represents a logical QCA cir-
cuit, as illustrated in the Sect.  4.1. The fitness value of each chromosome is then 
calculated using the fitness function defined in Sect. 4.2. A group of chromosomes 
having the superior fitness value of all is selected as elite chromosomes (described 
in Sect.  4.3) and passed into the next generation without any alteration. For the 
crossover, parent chromosomes are selected using tournament selection. A modified 



3857

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

one-point crossover function that suits the proposed methodology is applied to gen-
erate the crossover children (Sect. 4.4). After selecting the elite chromosomes and 
the generation of the crossover children, a new set of chromosomes is generated and 
added to the next-generation population pool to keep the population size constant. 
It is to be noted here that the normal mutation function cannot guarantee a logical 
QCA circuit as an output, so it cannot be applied directly. Thus, the proposed meth-
odology considers the addition of a new set of chromosomes with the selected popu-
lation pool instead of actual mutation to maintain the variation (details in Sect. 4.5). 
The combination of elite chromosomes, crossover children, and the new chromo-
some set creates the next-generation population pool. The steps involved, from the 
calculation of fitness value to the creation of the next-generation population pool, 
are repeated several times until the specified termination condition is not reached. In 
the case of multi-output functions, as discussed above, the process is performed for 
each of the output functions.

Two different fitness functions, namely ‘fitness1’ and ‘fitness2’, are introduced 
for the calculation of the fitness value. ‘fitness1’ is used for the initial output func-
tion (i.e., output with rank 1) whereas ‘fitness2’ is used for the rest of the output 
functions (output with other ranks than 1). After the termination of the whole pro-
cess, it returns the best-combined chromosome set, which satisfies all the outputs. 
The overall glimpse of the proposed methodology is represented in a flowchart dia-
gram in Fig. 3.

4.1  Creation of initial population

The concept of the tree structure, as reported in [8], is adopted for the representation 
of the QCA logic function. The internal node represents the basic gate like MV or 
INV, whereas the leaf node represents input variables or the constants. The traversal 
of the presented tree in pre-order fashion is employed here to store the correspond-
ing QCA logic function as a chromosome. The constraints of generating a chromo-
some corresponding to a valid QCA circuit have not been addressed as per the lit-
erature. This paper proposes a method for preparing chromosomes corresponding 
to a logically correct QCA circuit with the generation of the initial population. The 
QCA basic gates (MV & INV), input variables, and constants are mapped with an 
integer value to represent a chromosome with an integer string. For example, if we 
have three input variables A, B & C, then the basic gates will be assigned an integer 
value as MV is assigned with 7, INV is assigned a value of 6. The following values 
are assigned to input variables like variable ‘A’ assigned with 5, ‘B’ with value 4 & 
‘C’ with 3, and finally the binary logic values (constants) logic ’1’ will be assigned 
as 2, logic ’0’ assigned the value 1. A random integer collection is populated with 
the assigned values to generate a chromosome, and the following rules are followed 
in this regard, as explained below: 

1. Randomly selects any number among the assigned values to the gates and input 
variables.
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2. Some more value(s) among the mapped integers are appended depending on the 
selected number in the first step. If the previously selected number corresponds to 
MV, then three (3) more numbers are appended as MV has three inputs. Similarly, 
one (1) more number is appended for INV, as it takes only one input. However, 
no extra number gets appended for variables or constants. The number(s) to be 
appended is/are also selected randomly from the mapped integers.

3. Step 2 is recursively applied for each appended number. If the string length 
exceeds the maximum specified length l (l is 2n for n inputs function), then it will 
be rejected, and a new string is regenerated using the same procedure in steps 
1 and 2 (l is assumed to be the maximum probable length of the string/chromo-
some).

The generated integer string represents a chromosome corresponding to a 
logically valid QCA circuit. Logically valid, in this case, indicates a circuit 

Fig. 3  Flow chart for the proposed methodology
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representation with proper output meaning. The tree and chromosome representa-
tion of the QCA logic function M(M(B�,C,O)A, 1) is shown in Fig. 4. For an ini-
tial population of size n, n chromosomes are generated using the aforementioned 
technique and added with the initial population set. The structurally similar chro-
mosomes in the initial population set are replaced with new chromosomes for 
maintaining diversity. Here, the term structurally similar means the chromosomes 
have similar structure representation in the tree structure.

4.2  Fitness value calculation

For calculating the fitness value of a particular chromosome, the respective out-
put function (i.e., of a multi-output function) is represented in its canonical sum 
of product (SOP) expression. As mentioned earlier, we have used two different 
fitness functions to compute the fitness value efficiently. The fitness function ‘fit-
ness1’ is applied for the initial output function (i.e., output function with rank 1), 
and ‘fitness2’ is used for all the remaining outputs. Details of the fitness functions 
are described below:

4.2.1  Fitness function (fitness1)

We have formulated the fitness function as a minimization problem; it can also be 
altered to a maximization problem without loss of generality. The algorithm for 
fitness1’ is represented in Algorithm 1.

The initial goal of the fitness function is to estimate the suitability of a chro-
mosome for synthesizing the output function. So, the fitness value of a chro-
mosome is calculated as the ratio of number of total min-terms and number of 
min-term matches with the output function. The value one as the fitness value 
(i.e., }temp_fit’= 1 ), points to the fact that the chromosome represents the output 
function.

Fig. 4  Representa-
tion of the QCA function 
M(M(B�,C,O),A, 1)
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If the chromosome successfully represents the output function (i.e., }temp_fit
’= 1 ), then the fitness value is reevaluated to reflect the worst-case delay and the 
number of gates of the chromosome. The worst-case delay of a QCA circuit is 
directly associated with the number of required clock cycles. Here, the required 
clock cycles are computed in terms of the levels in the circuit. The level is defined 
as the number of MVs in the longest path from root to leaf node in the chromosome 
tree. Unlike INV, the MV gate has 3 inputs that need proper synchronization of the 
inputs to generate the correct output. INVs are considered for gate count but not 
necessarily for measuring the level.

Though the number of gates can be reduced by reducing the number of MVs and 
INVs in the chromosome, the area and worst-case delay are directly proportional to 
the level. Therefore, it is implied that the level is the most crucial factor in minimiz-
ing the circuit instead of only the gate count. So, the fitness function is assigned 
more priority to level implicitly than the gate count. As the level is evaluated in 
terms of the number of MV gates along the longest path of a QCA circuit, the level 
cannot be more than the number of MVs in a chromosome.
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In the case of a multi-output function, optimizing the individual output functions 
separately may not lead to the optimal solution for the whole function. Thus, while 
optimizing the i th output function previous output functions (i.e., 1 to (ith − 1) ) 
should also be considered for evaluation. Initially, only ‘fitness1’ deals with a single 
output function as no other output functions are available. For other output functions 
i ( i�{2, 3,..., n}), the fitness function ‘fitness2’ will be used.

4.2.2  Calculation of fitness2

For the output functions, the fitness function is slightly altered other than the first 
output. The algorithm for ‘fitness2’ is represented in Algorithm 2.

To synthesize a valid chromosome corresponding to the output function, the 
same steps as ‘fitness1’ are followed. The algorithm ‘fitness2’ differs from ‘fitness1’ 
in the next steps, where the previous output(s) is also considered to optimize the cur-
rent output function. Throughout the overall process, a variable ‘fitness_stored’ is 
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maintained for storing the fitness of chromosomes having a lesser fitness value than 
1. In the future, if it is the case when the same chromosome is used, ‘ fitness_stored ’ 
returns its fitness value. The computation complexity can be reduced using this strat-
egy. If the present chromosome results in a valid circuit (e.g., ‘ temp_fit ’ = 1 ) and the 
corresponding fitness value does not exist in the ‘ fitness_stored ’, then only the steps 
for calculating its fitness value are executed. Matrix ‘ chromosomes_stored ’ is used 
to store the chromosome produced in the preceding outputs. Suppose the rank is i 
for the present output function. In that case, each entry in respect to the row of the 
chromosomes_stored keeps a chromosome set till (i − 1)th output starting from 1, 
number of unique majority, and inverter gates in the chromosome set and the maxi-
mum level. The ith output function is optimized, with respect to the previous (i − 1) 
outputs. Any common logic between the output functions can be realized by using 
common gates. For selecting a chromosome set from the previous (i − 1) outputs to 
combine with the current chromosome of i th output, two deciding factors are used. 
The deciding factors are named as ‘ total_gates ’ and ‘ max_level’.

The variable ‘ total_gates ’ is calculated in terms of ‘ total_mv ’ and ‘ total_inv ’. 
The value ‘ total_mv ’ is determined by subtracting the number of common MV (i.e., 
between the i th output chromosome and the chromosomes of (i − 1) outputs) from 
the number of unique MV in the chromosome set of (i − 1) outputs and similarly 
‘ total_inv ’ is determined with INVs. The value ‘ total_gates ’ is then calculated as 
the in total addition of one-third of the ‘total_inv’ with the ‘ total_mv ’. Here, INV has 
given one-third priority that of the MV because an MV receives three inputs to gen-
erate a single output and to synchronize, as discussed in [25].

The next factor, ‘ max_level ’ is calculated as the maximum level between the cur-
rent chromosome (i.e., the chromosome of i th output) and the chromosome set from 
(i − 1) outputs. All the individual output circuits together represent a single multi-
output QCA circuit. Therefore every individual circuit should operate under the 
common clock. As a result, the worst-case delay of the multi-output circuit relies on 
the worst-case delay (in terms of a clock cycle) amongst the individual output func-
tions. So maximum level (i.e., ‘ max_level ’) is considered to measure the delay in the 
worst-case situation, with the most priority when selecting a chromosome set from 
previous (i − 1) outputs. The chromosome set from (i − 1) outputs that minimize 
the maximum level (i.e., ‘ max_level ’) is chosen first. In the case of a tie among the 
chromosome sets, ‘ total_gates ’ is used to resolve the same. The minimum value of 
‘ total_gates ’ is selected in this scenario. Once a chromosome set of (i − 1) outputs is 
selected, the common logic between the current (i th) and the chosen chromosome 
set are substituted by the common logic with the minimum gate count. Finally, the 
‘level’ and ‘ no_of_gates ’ are calculated in the selected chromosome set of (i − 1) 
outputs and the current chromosome of i th output to obtain its relative fitness value. 
The overall performance of the minimized circuit does not completely rely on the 
number of cells until it increases the clock zone. However, while synthesizing the 
circuit, a clock-based cross-over may increase the number of clock zones (delay). 
Accordingly, the proposed algorithm calculates the ’ max_level ’ parameter.

Figure  5 depicts the process of combination for a two output function, 
where out1 and out2 represent the chromosomes corresponding to the two out-
put functions. The circled part in out1 and out2 depict the common logic, 



3863

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

M(A,A�,M(B,C, 0)) ⟹ (BC) also M(B,C, 0) ⟹ (BC) . But M(B, C, 0) has less 
number of gates than M(A,A�,M(B,C, 0)) so, out1 and out2 are combined by con-
necting both with M(B, C, 0).

4.3  Chromosome selection

The GA approach based on elitism is applicable in the case of preserving the chro-
mosomes with the most significant fitness value. The fitness value is considered for 
the sorting of the chromosomes. A few predetermined numbers of chromosomes 
that have better fitness from the prepared sorted list are propagated to the succeeding 
generation without modification. For the next phase (i.e., crossover), the selection of 

(a)

(b)

Fig. 5  The process of combination for a two output function
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parent chromosomes is executed by the tournament selection method. The number 
of chromosomes as identical as the tournament size is chosen randomly. Among the 
selected chromosomes, the chromosome is finally picked up, having the best fitness 
of all. The execution of the tournament selection method is iterated until the fulfill-
ment of the parent chromosome list for the crossover.

4.4  Crossover

One child chromosome will be generated from a pair of parent chromosomes. There-
fore, the selection of crossover children should be twice as compared to the par-
ent chromosomes through the selection method. Two parents are randomly chosen 
from the selected parent chromosomes to generate a single child chromosome. The 
chromosomes having an unequal length make it very difficult to directly apply the 
conventional one-point crossover method, so a modified version of the one-point 
crossover is used to generate the child chromosomes.

The process of crossover operation in between the parents is illustrated by Fig. 6 
(a–b). Two separate nodes from different parents (i.e., Parent1 and Parent2) are 
selected randomly. The chosen nodes can be internal or leaf nodes, exchanging them 

Fig. 6  The process of Crossover 
between parents

(a)

(b)
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to the corresponding sub-trees. This exchange process generates two offsprings. 
Lastly, the one with the best fitness value is designated as the child chromosome 
amongst the generated offspring.

4.5  Variation maintenance (Mutation)

As mentioned earlier, the actual mutation can not be applied here; instead, a new set 
of chromosomes is added with the population pool to maintain the variation only. It 
is due to the fact that QCA logic gates are non-uniform, and the use of MV and INV 
interchangeably may lead to an invalid QCA circuit [8, 29, 35]. The QCA circuit will 
be invalid because MV requires three inputs, whereas the INV gate requires only one 
input. The generation of mutation children is executed externally but not generated 
from the present population. The mutation children are then attached to the population 
pool of the next generation. A large-scale set of chromosomes is produced at random 
the same way as it was used to create the initial population. Then the chromosomes 
with the equal number of mutation children are selected randomly and redirected to 
the succeeding generation population pool to be considered as mutation children.

The proposed method, as given by Algorithm  3, combines two objectives into 
a single objective problem, which requires lesser computation than the advanced 
multi-objective GA. However, the proposed method might not be able to produce 
all the Pareto solutions, but it may produce a set of solutions with similar fitness val-
ues. If two or more solutions have the same fitness value, then the solution with the 
minimum level is selected. Chromosomes with the same fitness value and level, the 
chromosomes with fewer majority voter gates, will be chosen.
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Here, one additional step called ‘redundancy elimination’ is added after crossover 
to eliminate any redundant offspring generated. It removes redundant inverter gates or 
replaces majority voters or some input with equivalent variable or constant. For exam-
ple, M(1’,A,B) can be replaced by M(0,A,B) as both the functions have similar out-
put; later, one does not require an INV. The MV gate M (A,A,1) can be replaced by a 
variable A. In this algorithm, the outer loop executes several times from 2nd to the last 
output, whereas the output function for the i th output with respect to (i − 1) outputs are 
generated by the inner loop. The most crucial combination of the i th output chromo-
some with the (i − 1) output chromosomes is stored in ‘chromosomes_stored’.

The variable ‘ chromosomes_stored ’ is modified after the computation of each 
output. The inner loop of the algorithm repeat until the maximum generation or no 
enhancement is observed in best fitness throughout the ‘ thresh_generation ’ number of 
consecutive generations after generation of the correct chromosome. Beyond the final 
output, the outer loop terminates and results in the combined best chromosome, satisfy-
ing all the outputs.

5  Simulation and results analysis

5.1  Simulation environment

The proposed method is implemented using MATLAB. The simulation environment 
and design constraints are shown in Table 1.
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The proposed methodology uses 200 chromosomes and 5000 generations for 
population size and maximum generation, respectively. From the current population 
pool, 20 best chromosomes (i.e., 10% of population size) are selected as elite chro-
mosomes. Initially, 70% of the next generation chromosomes are produced through 
crossover, which excludes the elite chromosomes. The rest of the chromosomes are 
created through the process of mutation. The tournament selection method of size 3 
has been utilized to select parent chromosomes to create new offspring.

For the generation of the first justified chromosome in respect to the SOP expres-
sion, the rate of mutation is dropped by assuming a greater crossover rate of 80% . 
If a valid solution is produced well in advance than the maximum generation, a 
dynamic method is applied to conclude the GA. Periodic checking is performed 
after generating the first valid chromosome in respect to the SOP expression. The 
GA stops the execution if the best fitness value does not improve throughout 300 
consecutive generations.

5.2  Realization using regular clocking

To investigate the efficiency of the method one four input , two output function ( F1 ) 
is realized using USE [9] clocking scheme and one three input , three output func-
tion ( F2 ) is realized using RES [15] clocking schemes. Table 2 represents the reali-
zation using USE and RES clocking schemes. The count of majority voter (MV), 
inverter (INV), cell count, and latency to realize function F1 using only USE clock-
ing scheme are 5, 2, 157, 2.25, respectively. However, the count of MV, INV, cell 
count, and latency to realize function F1 using the USE clocking scheme and GA 
are 3, 2, 100, 1.25, respectively. Similarly, when F2 is realized only using RES, the 
MV, INV, cell count, and latency count are 3, 1, 103, 1.5, respectively. But when 
F2 is realized only using RES, the MV, INV, cell count, and latency count are 2, 1, 
27, 0.5, respectively. So, the MV, INV, cell count, and latency for both functions are 
reduced after applying GA.

5.3  Result analysis

To scrutinize the performance of the proposed method taking into consideration the 
multi-output function. In this regard, a comparison is performed with the existing 
methods proposed in [34] and [40]. The comparison is based on the best available 

Table 1  Simulation environment 
and design constraints Simulation software: MATLAB R2015a

Maximum generations: 5000
Population size: 200 chromosomes
Number of elite
chromosomes: 10% of the population size
Selection method: Tournament selection (size 3)
Crossover probability: Initially 0.7 afterward 0.8
Mutation probability: Not applicable
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related data in the literature. The comparisons are shown based on the data provided 
in [34] and [40]. This work mainly focused on multi-output functions, keeping away 
from comparison with single output functions. The simulation results and compari-
sons are presented in Tables 3, 4, 5, 6 and 7 with the best-suited value found in the 
literature. m0 , m1 , m2, ... represents the min-terms of the output functions. The com-
mon parts in the circuit synthesis using the proposed method are underlined.

The overall performance is evaluated based on the total number of gates (TG) and 
the maximum level. Maximum level (‘Max level’) is determined as the maximum 
number of levels among all the individual output functions (i.e., F1 , F2, ......Fn ) and 
the total number of gates (TG) is calculated as the summation of total MV (TMV) 
and total INV (TINV) gates. ‘TG’ and ‘max level’ are the significant parameters to 
optimize a QCA circuit. The area utilization for a QCA circuit synthesis relies on 
the number of gates. An increase in the gate count signifies a significant increase in 
the area of a QCA circuit. It also involves increasing the average delay of the circuit.

In [8, 19, 20, 34], TG is considered as a comparison metric. In [40], only MV 
is considered instead of TG; however, we also mentioned the number of MV for 
comparison. As discussed in the proposed method, when multiple-output functions 
are combined, all the output functions have to work under the influence of the same 
clocking scheme. Therefore, it is the maximum clock cycle for an individual out-
put function on which the clock cycle of the combined circuit depends. The clock 
cycle is measured in terms of level; thus, max level’ is taken as another comparison 
metric.

In Tables  3 and 5, for the 3 input/2 output and 3 input/4 output function, the 
proposed method does not show significant improvement. However, the proposed 

Table 2  Realization of functions using regular clocking scheme

Function Clocking scheme Before GA After GA

F1 =
∑

(m1,m3,m4,m5, 
m7,m12,m13,m15)

USE [9]

 
 

F2 =
∑

(m2,m4,m6) RES [15]
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method outperforms the other methods considering the functions presented in 
Tables 4, 6, and 7. Table 4 shows an improvement of 15.38% considering the total 
number of gates for the 4 input/ 2 output function. The proposed method shows a 
significant improvement of 16.67% in the total number of gates, and also 33.33% 
improvement in case of maximum levels for 3 input/ 3 output function (Table 6). 
17.64 % improvement is achieved for the 4 input/ 4 output function in terms of the 
total number of gates (Table 7). The proposed method utilizes a priority-driven opti-
mization methodology where utmost priority is given to level followed by MV and 
INV. For example, in Table 7, it may record a higher total majority voters (TMV) 
count in the proposed method than that of [34], the proposed method shows an 
improvement in terms of the maximum level.

Also, it is evident from the simulation results that the proposed method does 
not generate redundant gates, while some of the previous circuits contain obvious 
redundancy. For example, in Table 4, considering [34] the function F1 produced two 
redundant INV gates and also the function F2 produced one redundant INV gate, 
whereas the proposed method does not contain any redundant gates (MV, INV) 
(Table 4). The proposed method takes extra care to remove this type of redundancy 
from the logic level, which can be seen from all the tables (Table 3, 4, 5, 6 and 7).

6  Conclusion

In this paper, an elitism-based genetic algorithm is applied to synthesize optimal 
QCA circuits of any arbitrary multi-output boolean function, which improves the 
quality of the solution by preserving the best chromosomes throughout the genera-
tions. The proposed methodology uses the relative priority of the objectives where 
maximum priority has been given to reducing the level, followed by reducing the 
MV and INV and the proper placement of QCA primitives in each level in the QCA 
circuit. Moreover, the process of eradication of redundancy is executed to avoid 
the possibility of any redundant gate in the final outcome. The comparison results 
demonstrated that the proposed method achieved a 33.33% improvement in terms 
of maximum levels for 3 input/ 3 output, whereas 17.64% enhancement is attained 
in terms of the number of gates for the 4 input/ 4 output function. The simulation 
is performed till function with 4 inputs & 4 outputs without observing any loss in 
generality. The proposed method can also be utilized for the case of multi-output 
functions, where input variables can be of an arbitrary number.
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