
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:3850–3877
https://doi.org/10.1007/s11227-022-04757-0

1 3

Cost‑effective synthesis of QCA logic circuit using genetic
algorithm

Amit Kumar Pramanik1 · Mahabub Hasan Mahalat2 · Jayanta Pal3 ·
Seyed‑Sajad Ahmadpour4 · Bibhash Sen2

Accepted: 7 August 2022 / Published online: 13 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Quantum-dot cellular automata (QCA) is a field coupling nano-technology that has
drawn significant attention for its low power consumption, low area overhead, and
achieving a high speed over the CMOS technology. Majority Voter (MV) and QCA
Inverter (INV) are the primitive logic in QCA for implementing any QCA circuit. The
performance and cost of a QCA circuit directly depend on the number of QCA primi-
tives and their interconnections. Their optimization plays a crucial role in optimizing
the QCA logic circuit synthesis. None of the previous works considered elitism in
GA, all the optimization objectives (MV, INV and Level), and the redundancy elimi-
nation approach. These profound issues lead us to propose a new methodology based
on Genetic algorithm (GA) for the cost-effective synthesis of the QCA circuit of the
multi-output boolean functions with an arbitrary number of inputs. The proposed
method reduces the delay and gate count, where the worst-case delay is minimized
in terms of the level. This methodology adapts elitism to preserve the best solutions
throughout the intermediate generations. Here, MV, INV, and levels are optimized
according to their relative cost factor in a QCA circuit. Moreover, new methodologies
are proposed to create the initial population, maintain the variations, and eliminate
redundant gates. Simulation results endorse the superiority of the proposed method.

Keywords Genetic algorithm · Circuit synthesis · Quantum-dot cellular automata ·
Circuit optimization · Elitism

 * Seyed-Sajad Ahmadpour
 sajadahmadpoor@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2462-8030
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04757-0&domain=pdf

3851

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

1 Introduction

Present Complementary Metal Oxide Semiconductor (CMOS) technology approach-
ing the saturation level in terms of power efficiency , feature size [27]. QCA tech-
nology receives tremendous attention as a worthwhile substitute to CMOS technol-
ogy owing to its area efficiency and a minimal amount of power consumption [27].
QCA cells are the primary element of any QCA circuit. No current flow occurs in
the QCA circuit during signal transition and propagation because of the interaction
between the cells through Coulombic repulsion. The fundamental gates in QCA
technology are the majority voters (MV) and inverter (INV), which are used to syn-
thesize any complex QCA logic circuit [26, 27]. In the QCA circuit, the placement
of cells to construct the logic primitives are significant in the cost-effective synthesis
of the logic circuit. Therefore, reduction of logic primitives, as well as levels (dis-
cussed in Sect. 4.2), plays a crucial role in designing optimal QCA logic circuits.

Automatic cell layout and its optimization is a well-studied topic on conventional
CMOS logic circuits [17, 42, 43]. A new design of multiplexer, decoder and ALU
were proposed in [3–5]. The AND, OR logic-based minimal form of the sum of
product (SOP) expressions or a product of sum (POS) expressions are generally
utilized for the implementation of the conventional logic circuits. Unlike CMOS,
in QCA, primitive boolean logic (AND/OR) cannot be generated directly; instead,
3-input MV is used to create such primitive boolean logic. Thus, it is tough to
directly exploit the minimization of POS or SOP form of expression to realize the
circuit in QCA.

Genetic Algorithm (GA) is one of the heuristic techniques [11, 38, 45], grounded
on natural evolution theory and well recognized for the discovery of NP-hard prob-
lem resolutions [10, 21, 33]. Previously, a few mentioned works (details discussed
in Sect. 3) have considered GA in the direction of the automatic generation of the
optimal layout of the QCA circuit [8, 19, 20, 34, 40]. Nevertheless, each has its
limitations considering the number of input variables, number of outputs, and opti-
mization objective. Moreover, to our knowledge, none of the previous GA-based
optimization methods used elitism explicitly or considered the priority of the opti-
mization objectives to generate the QCA circuit. Elitism preserves the best solu-
tions which can be effectively utilized in GA to improve the optimal result [1, 6, 24].
The number of majority voters (MV) and inverter (INV) have been accounted for
reducing gate count, whereas level is considered to minimize the worst-case delay
(represented in the number of clock zones) of a QCA circuit. However, level, MV,
and INV have different cost factors in a QCA circuit. Hence, their relative priority
should be considered to obtain the optimal QCA circuit [25, 37].

Motivated by the above factors, we proposed a new methodology to synthesize a
cost-efficient QCA circuit using GA. In a practical scenario, the use of multi-output
circuits is more general; thus, its main focus is to optimize the multi-output circuit.
The salient features of the proposed methodology are summarized below.

3852 A. K. Pramanik et al.

1 3

– A priority-driven calculation approach for fitness function is proposed for the affec-
tive dimension of candidate solutions. Priority is allotted to distinct objectives (i.e.,
level, MV, INV), bestowing their relative cost factor in the circuit.

– The proposed methodology adopted elitism in the genetic algorithm (GA) to pre-
serve the best solutions throughout the generations. Further, new methods are intro-
duced to create the initial population and maintain the variations. Also, a redun-
dancy elimination method is proposed to eliminate the possibility of any redundant
gates from the final solution.

– The optimal QCA circuit for a multi-output function is attained because of the rela-
tive fitness value of the individual output functions. Previous (i − 1) output func-
tions are taken into consideration for the calculation of the fitness value of the ith
output function.

– Some standard multi-output boolean functions are considered to check the effi-
ciency of the proposed method. The results establish that the proposed methodology
expresses substantial improvement in minimizing the level and gate count over the
existing heuristic techniques.

The rest portion of the paper is structured as follows. Section 2 contains the related con-
textual resources, including the QCA and genetic algorithm basics required to under-
stand the proposed methodology. Section 3 consists of a brief discussion of the related
works. Details of the suggested or proposed methodology are illustrated in Sect. 4. The
next section (Sect. 5) contains the simulation result related discussions and correspond-
ing analysis. Finally, the the conclusion of the paper is drawn in Sect. 6.

2 Background materials

2.1 QCA

The vital element of QCA technology is the QCA cell. A QCA cell works based on
the Coulombic repulsion between electrons [27]. It (i.e., QCA cell) consists of two (2)
electrons and four (4) quantum dots confined inside it. The four dots inside the cell
are placed in the four corner positions [32]. When a cell is in it’s most stable state,
the electrons transfer in the corners because of Coulombic repulsion. In this fashion, a
QCA cell feasibly expresses two probable states in a steady position. Logically repre-
sented by P=‘-1’ and P=‘+1’, two states are considered as equivalent to binary logic 0
and binary logic 1, respectively [31]. A QCA cell and possible states concerning elec-
tron positions are shown in Fig. 1(a) i–ii. Signal transition and propagation between
the QCA cells occur without charging and discharging of voltage. A QCA gate is con-
structed by combining the QCA cells. Basic QCA gates are the majority voter gate
(MV) and inverter (INV). The functionality of a three-input MV can be mathematically
expressed by Eq. 1.

(1)F = PQ + QR + RP

3853

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

Where P, Q, R are the inputs, and F is the output. Binary logic ‘1’ is produced as
the output of a MV when 2 out of 3 of its inputs are logic ‘1’ and binary logic ‘0’
for other cases [41]. Fixation of one input to a fixed polarized value of 1 or 0 leads
MV to act as AND gate or the OR gate, respectively. The structure of an MV is
shown in Fig. 1(b). a single-layer 5-input majority gate was proposed in [2]. Inverter
(INV) is another basic gate in QCA. Logically, the INV is equivalent to the con-
ventional NOT gate. It takes only one input and produces the complement of the
input as the output. Different alternative cell orientations for QCA INV gate realiza-
tion are shown in Fig. 1(c) i–ii. In a QCA circuit, the connection between the QCA
gates is provided by using the QCA wire [26, 27]. A series of cells placed aside to
implement a wire is shown in Fig. 1(d). Any sophisticated circuit in nanotechnol-
ogy-based QCA technology can be realized by using MV and INV gates, where the

(a) (b)

(c) (d)

(e)

Fig. 1 QCA fundamental devices

3854 A. K. Pramanik et al.

1 3

connections are made with the QCA wires [39]. But interconnecting the wires is
very challenging in the fabrication step [28]. The rotated cell-based wire crossing
approach uses two different types of QCA cells for crossing [7], shown in Fig. 1(e)
i. Clock zone-based wire crossing shown in Fig. 1(e) ii and multi-layer based wire
crossing approach uses more than one cell layer, represented in Fig. 1(e) iii. In this
regard, an alternative wire crossing method based on XOR gate is reported in [14,
22].

The direction and timing of the signal flow in a QCA circuit are controlled
through the QCA clocking [18, 26]. QCA clocking has four (4) phases, switch
phase, hold phase, release phase and relax phase. In the first phase (called as switch
phase), QCA cell begins with a very low potential energy in the barrier between the
dots, and the barrier gradually starts increasing.

In the hold phase QCA cell holds the barrier high. In the next phase (i.e., release
phase), the strength of the barrier within the dots starts diminishing, and finally, in
the last phase (termed as relax phase), the cell resets to the un-polarized state. A
circuit in QCA technology is virtually split into different clock zones. A particular
clock drives all the cells in the same clock zone. As a result, the more utilization of
clock zones directly proportionate to the increase in the circuit delay. Figure 2 shows
the phases of QCA clocking, and also the operation of a QCA wire in several clock
zones.

2.2 Genetic algorithm

Genetic Algorithm (GA) is a heuristic method that is inspired by Darwin’s theory
of natural evolution [10, 21, 33]. The significant steps of standard GA execution are
the creation of the initial population, fitness calculation, crossover, mutation, and
creation of the next-generation population. GA starts its execution by creating an
initial population set of random solutions. This randomly selected population set is

Fig. 2 QCA clocking

3855

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

popularly termed as a chromosome. A fitness function is used in GA to calculate the
fitness value of the individual chromosome. The fitness value indicates the feasibil-
ity and defines the sustainability of a chromosome. The population set for the next
generation is formed by way of the selection, crossover, followed by mutation pro-
cess. (a) The selection operation is applied on parent chromosomes to select some
of them based on a given criterion for the crossover. (b) The crossover function then
generates new offspring chromosomes from the parent chromosomes to be used in
the next generation. (c) The mutation operation is applied to preserve discrepancies
in the population pool. In mutation, some portion of a chromosome is randomly
altered with a specified probability to introduce new characteristics.

GA reiterates these operations several times until the targeted goal is realized or
the iteration reaches the maximum step. In elitism-based GA, few chromosomes
with the most suitable value are chosen to be the elite chromosomes and passed to
the next generation without any alteration, which ensures the optimum result [6].
A Multi-objective genetic algorithm considers more than one objective to be opti-
mized. Several multi-objective based genetic algorithms have been reported, suit-
able for different applications [12, 13, 24].

3 Related works

In previous literature, various non-GA-based methodologies were introduced to syn-
thesize an optimal QCA circuit corresponding to a Boolean function [25, 37, 44,
46]. However, GA based optimization technique for the QCA circuit was initially
introduced by [8]. A tree structure was used in this case to represent a chromosome.
The basic gates like the majority voter (MV) gate or inverter (INV) gate have been
represented by the internal nodes, whereas any input variables or constants were
denoted by leaf nodes. This GA-based methodology used node count for measuring
the fitness value. This paper [8] itself declares, due to the dissimilarities in the num-
ber of inputs in the majority and inverter, the mutation becomes complicated. New
chromosomes were prepared randomly and inserted in the population set, replac-
ing the chromosomes with the worst fitness. This methodology can be useful in
reducing the number of gates only and limiting the single output boolean function.
In[23], a method was developed to reduce fixed external inputs. In [35], a GA-based
reduction technique is proposed taking advantage of the majority gate in both three
input and five input forms in the synthesis of the QCA circuit. Also, it incorporates
the mutation process, as proposed in [8]. A few methodologies of applying GA in
connection with single output functional gate can be reported in [30]. In another
approach, a hamming oracle-oriented assessment of evolutionary search methods is
reported [29]. In this case, GA was considered without mutation or recombination.
At the same time, the concept of GA was found to be applied in QCA for the reduc-
tion of wire crossing constraints in [16, 36].

A GA-based methodology was proposed to synthesize optimal QCA cir-
cuits, which can be deployed on 2-output boolean functions in [19]. It was further
extended for any multi-output Boolean functions in [20]. The investigation suggests
that for the case of multi-output functions separately, considering the discrete output

3856 A. K. Pramanik et al.

1 3

function may not focus on an optimal solution [19, 20]. However, the methodology
in [20] can be applied to multi-output Boolean functions, which can decrease the
gates count only in a QCA circuit. Utilizing multi-objective genetic programming
in the synthesis of optimal QCA circuit of any multi-output boolean functions is
reported in [34]. It was inevitable that considering only gate count or worst-case
delay may not lead to the optimal solution. Thus, along with number of gates, the
methodology to reduce worst-case delay in terms of the height of the chromosome
tree (level) is also required. However, consideration of the relative priority of the
optimization objectives was missing in [34]. Another technique to generate optimal
QCA circuits using an evolutionary algorithm was proposed in [40]. This technique
considered the number MV and level together as the optimization objective but
ignored the number of INV. The stable representation of the INV contains a consid-
erable amount of cells. Hence, it has a significant impact on circuit cell count and
delay, which makes it worth considering. In contradiction with [19, 20], it did not
consider the other output functions for optimizing a specific output function.

It is evident from the above discussion that some critical issues have not been
explored, primarily focusing on multi-output functions. Firstly, none of the previ-
ous works considered elitism in GA, even though elitism improves the optimization
performance [1, 6, 24]. Second, most of the works did not consider all the optimiza-
tion objectives such as MV, INV , Level, instead focused on gate and latency reduc-
tion. Third, the consideration of relative priority of the optimization objectives, even
though it was analyzed and used in the non-GA-based QCA optimization techniques
[25, 37] and redundancy elimination approach. The synthesis process may generate
redundant gates, but previous works did not consider the redundancy elimination
approach. This literature discussion and profound issues lead us to propose a new
GA-based QCA circuit optimization method.

4 Proposed method

As discussed earlier, the previous works did not consider either elitism or all the
optimization objectives. The priority of the optimization objectives was also ignored
in synthesizing the optimal QCA circuit. The proposed work has considered all these
criteria to generate the optimal QCA circuit. The proposed methodology minimizes
the number of levels, Majority Voter (MV) and inverter (INV), in a QCA circuit by
considering their relative priority. It takes an arbitrary multi-output Boolean func-
tion as the input, where each output is viewed as a discrete function. A full Adder
can be represented by two functions, the sum and the carry. The output functions are
randomly ranked from 1 to the last (1, 2, 3, ..., N).

The proposed methodology starts with the generation of the initial population set
of random chromosomes, where each chromosome represents a logical QCA cir-
cuit, as illustrated in the Sect. 4.1. The fitness value of each chromosome is then
calculated using the fitness function defined in Sect. 4.2. A group of chromosomes
having the superior fitness value of all is selected as elite chromosomes (described
in Sect. 4.3) and passed into the next generation without any alteration. For the
crossover, parent chromosomes are selected using tournament selection. A modified

3857

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

one-point crossover function that suits the proposed methodology is applied to gen-
erate the crossover children (Sect. 4.4). After selecting the elite chromosomes and
the generation of the crossover children, a new set of chromosomes is generated and
added to the next-generation population pool to keep the population size constant.
It is to be noted here that the normal mutation function cannot guarantee a logical
QCA circuit as an output, so it cannot be applied directly. Thus, the proposed meth-
odology considers the addition of a new set of chromosomes with the selected popu-
lation pool instead of actual mutation to maintain the variation (details in Sect. 4.5).
The combination of elite chromosomes, crossover children, and the new chromo-
some set creates the next-generation population pool. The steps involved, from the
calculation of fitness value to the creation of the next-generation population pool,
are repeated several times until the specified termination condition is not reached. In
the case of multi-output functions, as discussed above, the process is performed for
each of the output functions.

Two different fitness functions, namely ‘fitness1’ and ‘fitness2’, are introduced
for the calculation of the fitness value. ‘fitness1’ is used for the initial output func-
tion (i.e., output with rank 1) whereas ‘fitness2’ is used for the rest of the output
functions (output with other ranks than 1). After the termination of the whole pro-
cess, it returns the best-combined chromosome set, which satisfies all the outputs.
The overall glimpse of the proposed methodology is represented in a flowchart dia-
gram in Fig. 3.

4.1 Creation of initial population

The concept of the tree structure, as reported in [8], is adopted for the representation
of the QCA logic function. The internal node represents the basic gate like MV or
INV, whereas the leaf node represents input variables or the constants. The traversal
of the presented tree in pre-order fashion is employed here to store the correspond-
ing QCA logic function as a chromosome. The constraints of generating a chromo-
some corresponding to a valid QCA circuit have not been addressed as per the lit-
erature. This paper proposes a method for preparing chromosomes corresponding
to a logically correct QCA circuit with the generation of the initial population. The
QCA basic gates (MV & INV), input variables, and constants are mapped with an
integer value to represent a chromosome with an integer string. For example, if we
have three input variables A, B & C, then the basic gates will be assigned an integer
value as MV is assigned with 7, INV is assigned a value of 6. The following values
are assigned to input variables like variable ‘A’ assigned with 5, ‘B’ with value 4 &
‘C’ with 3, and finally the binary logic values (constants) logic ’1’ will be assigned
as 2, logic ’0’ assigned the value 1. A random integer collection is populated with
the assigned values to generate a chromosome, and the following rules are followed
in this regard, as explained below:

1. Randomly selects any number among the assigned values to the gates and input
variables.

3858 A. K. Pramanik et al.

1 3

2. Some more value(s) among the mapped integers are appended depending on the
selected number in the first step. If the previously selected number corresponds to
MV, then three (3) more numbers are appended as MV has three inputs. Similarly,
one (1) more number is appended for INV, as it takes only one input. However,
no extra number gets appended for variables or constants. The number(s) to be
appended is/are also selected randomly from the mapped integers.

3. Step 2 is recursively applied for each appended number. If the string length
exceeds the maximum specified length l (l is 2n for n inputs function), then it will
be rejected, and a new string is regenerated using the same procedure in steps
1 and 2 (l is assumed to be the maximum probable length of the string/chromo-
some).

The generated integer string represents a chromosome corresponding to a
logically valid QCA circuit. Logically valid, in this case, indicates a circuit

Fig. 3 Flow chart for the proposed methodology

3859

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

representation with proper output meaning. The tree and chromosome representa-
tion of the QCA logic function M(M(B�,C,O)A, 1) is shown in Fig. 4. For an ini-
tial population of size n, n chromosomes are generated using the aforementioned
technique and added with the initial population set. The structurally similar chro-
mosomes in the initial population set are replaced with new chromosomes for
maintaining diversity. Here, the term structurally similar means the chromosomes
have similar structure representation in the tree structure.

4.2 Fitness value calculation

For calculating the fitness value of a particular chromosome, the respective out-
put function (i.e., of a multi-output function) is represented in its canonical sum
of product (SOP) expression. As mentioned earlier, we have used two different
fitness functions to compute the fitness value efficiently. The fitness function ‘fit-
ness1’ is applied for the initial output function (i.e., output function with rank 1),
and ‘fitness2’ is used for all the remaining outputs. Details of the fitness functions
are described below:

4.2.1 Fitness function (fitness1)

We have formulated the fitness function as a minimization problem; it can also be
altered to a maximization problem without loss of generality. The algorithm for
fitness1’ is represented in Algorithm 1.

The initial goal of the fitness function is to estimate the suitability of a chro-
mosome for synthesizing the output function. So, the fitness value of a chro-
mosome is calculated as the ratio of number of total min-terms and number of
min-term matches with the output function. The value one as the fitness value
(i.e., }temp_fit’= 1), points to the fact that the chromosome represents the output
function.

Fig. 4 Representa-
tion of the QCA function
M(M(B�,C,O),A, 1)

3860 A. K. Pramanik et al.

1 3

If the chromosome successfully represents the output function (i.e., }temp_fit
’= 1), then the fitness value is reevaluated to reflect the worst-case delay and the
number of gates of the chromosome. The worst-case delay of a QCA circuit is
directly associated with the number of required clock cycles. Here, the required
clock cycles are computed in terms of the levels in the circuit. The level is defined
as the number of MVs in the longest path from root to leaf node in the chromosome
tree. Unlike INV, the MV gate has 3 inputs that need proper synchronization of the
inputs to generate the correct output. INVs are considered for gate count but not
necessarily for measuring the level.

Though the number of gates can be reduced by reducing the number of MVs and
INVs in the chromosome, the area and worst-case delay are directly proportional to
the level. Therefore, it is implied that the level is the most crucial factor in minimiz-
ing the circuit instead of only the gate count. So, the fitness function is assigned
more priority to level implicitly than the gate count. As the level is evaluated in
terms of the number of MV gates along the longest path of a QCA circuit, the level
cannot be more than the number of MVs in a chromosome.

3861

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

In the case of a multi-output function, optimizing the individual output functions
separately may not lead to the optimal solution for the whole function. Thus, while
optimizing the i th output function previous output functions (i.e., 1 to (ith − 1))
should also be considered for evaluation. Initially, only ‘fitness1’ deals with a single
output function as no other output functions are available. For other output functions
i (i�{2, 3,..., n}), the fitness function ‘fitness2’ will be used.

4.2.2 Calculation of fitness2

For the output functions, the fitness function is slightly altered other than the first
output. The algorithm for ‘fitness2’ is represented in Algorithm 2.

To synthesize a valid chromosome corresponding to the output function, the
same steps as ‘fitness1’ are followed. The algorithm ‘fitness2’ differs from ‘fitness1’
in the next steps, where the previous output(s) is also considered to optimize the cur-
rent output function. Throughout the overall process, a variable ‘fitness_stored’ is

3862 A. K. Pramanik et al.

1 3

maintained for storing the fitness of chromosomes having a lesser fitness value than
1. In the future, if it is the case when the same chromosome is used, ‘ fitness_stored ’
returns its fitness value. The computation complexity can be reduced using this strat-
egy. If the present chromosome results in a valid circuit (e.g., ‘ temp_fit ’ = 1) and the
corresponding fitness value does not exist in the ‘ fitness_stored ’, then only the steps
for calculating its fitness value are executed. Matrix ‘ chromosomes_stored ’ is used
to store the chromosome produced in the preceding outputs. Suppose the rank is i
for the present output function. In that case, each entry in respect to the row of the
chromosomes_stored keeps a chromosome set till (i − 1)th output starting from 1,
number of unique majority, and inverter gates in the chromosome set and the maxi-
mum level. The ith output function is optimized, with respect to the previous (i − 1)
outputs. Any common logic between the output functions can be realized by using
common gates. For selecting a chromosome set from the previous (i − 1) outputs to
combine with the current chromosome of i th output, two deciding factors are used.
The deciding factors are named as ‘ total_gates ’ and ‘ max_level’.

The variable ‘ total_gates ’ is calculated in terms of ‘ total_mv ’ and ‘ total_inv ’.
The value ‘ total_mv ’ is determined by subtracting the number of common MV (i.e.,
between the i th output chromosome and the chromosomes of (i − 1) outputs) from
the number of unique MV in the chromosome set of (i − 1) outputs and similarly
‘ total_inv ’ is determined with INVs. The value ‘ total_gates ’ is then calculated as
the in total addition of one-third of the ‘total_inv’ with the ‘ total_mv ’. Here, INV has
given one-third priority that of the MV because an MV receives three inputs to gen-
erate a single output and to synchronize, as discussed in [25].

The next factor, ‘ max_level ’ is calculated as the maximum level between the cur-
rent chromosome (i.e., the chromosome of i th output) and the chromosome set from
(i − 1) outputs. All the individual output circuits together represent a single multi-
output QCA circuit. Therefore every individual circuit should operate under the
common clock. As a result, the worst-case delay of the multi-output circuit relies on
the worst-case delay (in terms of a clock cycle) amongst the individual output func-
tions. So maximum level (i.e., ‘ max_level ’) is considered to measure the delay in the
worst-case situation, with the most priority when selecting a chromosome set from
previous (i − 1) outputs. The chromosome set from (i − 1) outputs that minimize
the maximum level (i.e., ‘ max_level ’) is chosen first. In the case of a tie among the
chromosome sets, ‘ total_gates ’ is used to resolve the same. The minimum value of
‘ total_gates ’ is selected in this scenario. Once a chromosome set of (i − 1) outputs is
selected, the common logic between the current (i th) and the chosen chromosome
set are substituted by the common logic with the minimum gate count. Finally, the
‘level’ and ‘ no_of_gates ’ are calculated in the selected chromosome set of (i − 1)
outputs and the current chromosome of i th output to obtain its relative fitness value.
The overall performance of the minimized circuit does not completely rely on the
number of cells until it increases the clock zone. However, while synthesizing the
circuit, a clock-based cross-over may increase the number of clock zones (delay).
Accordingly, the proposed algorithm calculates the ’ max_level ’ parameter.

Figure 5 depicts the process of combination for a two output function,
where out1 and out2 represent the chromosomes corresponding to the two out-
put functions. The circled part in out1 and out2 depict the common logic,

3863

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

M(A,A�,M(B,C, 0)) ⟹ (BC) also M(B,C, 0) ⟹ (BC) . But M(B, C, 0) has less
number of gates than M(A,A�,M(B,C, 0)) so, out1 and out2 are combined by con-
necting both with M(B, C, 0).

4.3 Chromosome selection

The GA approach based on elitism is applicable in the case of preserving the chro-
mosomes with the most significant fitness value. The fitness value is considered for
the sorting of the chromosomes. A few predetermined numbers of chromosomes
that have better fitness from the prepared sorted list are propagated to the succeeding
generation without modification. For the next phase (i.e., crossover), the selection of

(a)

(b)

Fig. 5 The process of combination for a two output function

3864 A. K. Pramanik et al.

1 3

parent chromosomes is executed by the tournament selection method. The number
of chromosomes as identical as the tournament size is chosen randomly. Among the
selected chromosomes, the chromosome is finally picked up, having the best fitness
of all. The execution of the tournament selection method is iterated until the fulfill-
ment of the parent chromosome list for the crossover.

4.4 Crossover

One child chromosome will be generated from a pair of parent chromosomes. There-
fore, the selection of crossover children should be twice as compared to the par-
ent chromosomes through the selection method. Two parents are randomly chosen
from the selected parent chromosomes to generate a single child chromosome. The
chromosomes having an unequal length make it very difficult to directly apply the
conventional one-point crossover method, so a modified version of the one-point
crossover is used to generate the child chromosomes.

The process of crossover operation in between the parents is illustrated by Fig. 6
(a–b). Two separate nodes from different parents (i.e., Parent1 and Parent2) are
selected randomly. The chosen nodes can be internal or leaf nodes, exchanging them

Fig. 6 The process of Crossover
between parents

(a)

(b)

3865

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

to the corresponding sub-trees. This exchange process generates two offsprings.
Lastly, the one with the best fitness value is designated as the child chromosome
amongst the generated offspring.

4.5 Variation maintenance (Mutation)

As mentioned earlier, the actual mutation can not be applied here; instead, a new set
of chromosomes is added with the population pool to maintain the variation only. It
is due to the fact that QCA logic gates are non-uniform, and the use of MV and INV
interchangeably may lead to an invalid QCA circuit [8, 29, 35]. The QCA circuit will
be invalid because MV requires three inputs, whereas the INV gate requires only one
input. The generation of mutation children is executed externally but not generated
from the present population. The mutation children are then attached to the population
pool of the next generation. A large-scale set of chromosomes is produced at random
the same way as it was used to create the initial population. Then the chromosomes
with the equal number of mutation children are selected randomly and redirected to
the succeeding generation population pool to be considered as mutation children.

The proposed method, as given by Algorithm 3, combines two objectives into
a single objective problem, which requires lesser computation than the advanced
multi-objective GA. However, the proposed method might not be able to produce
all the Pareto solutions, but it may produce a set of solutions with similar fitness val-
ues. If two or more solutions have the same fitness value, then the solution with the
minimum level is selected. Chromosomes with the same fitness value and level, the
chromosomes with fewer majority voter gates, will be chosen.

3866 A. K. Pramanik et al.

1 3

Here, one additional step called ‘redundancy elimination’ is added after crossover
to eliminate any redundant offspring generated. It removes redundant inverter gates or
replaces majority voters or some input with equivalent variable or constant. For exam-
ple, M(1’,A,B) can be replaced by M(0,A,B) as both the functions have similar out-
put; later, one does not require an INV. The MV gate M (A,A,1) can be replaced by a
variable A. In this algorithm, the outer loop executes several times from 2nd to the last
output, whereas the output function for the i th output with respect to (i − 1) outputs are
generated by the inner loop. The most crucial combination of the i th output chromo-
some with the (i − 1) output chromosomes is stored in ‘chromosomes_stored’.

The variable ‘ chromosomes_stored ’ is modified after the computation of each
output. The inner loop of the algorithm repeat until the maximum generation or no
enhancement is observed in best fitness throughout the ‘ thresh_generation ’ number of
consecutive generations after generation of the correct chromosome. Beyond the final
output, the outer loop terminates and results in the combined best chromosome, satisfy-
ing all the outputs.

5 Simulation and results analysis

5.1 Simulation environment

The proposed method is implemented using MATLAB. The simulation environment
and design constraints are shown in Table 1.

3867

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

The proposed methodology uses 200 chromosomes and 5000 generations for
population size and maximum generation, respectively. From the current population
pool, 20 best chromosomes (i.e., 10% of population size) are selected as elite chro-
mosomes. Initially, 70% of the next generation chromosomes are produced through
crossover, which excludes the elite chromosomes. The rest of the chromosomes are
created through the process of mutation. The tournament selection method of size 3
has been utilized to select parent chromosomes to create new offspring.

For the generation of the first justified chromosome in respect to the SOP expres-
sion, the rate of mutation is dropped by assuming a greater crossover rate of 80% .
If a valid solution is produced well in advance than the maximum generation, a
dynamic method is applied to conclude the GA. Periodic checking is performed
after generating the first valid chromosome in respect to the SOP expression. The
GA stops the execution if the best fitness value does not improve throughout 300
consecutive generations.

5.2 Realization using regular clocking

To investigate the efficiency of the method one four input , two output function (F1)
is realized using USE [9] clocking scheme and one three input , three output func-
tion (F2) is realized using RES [15] clocking schemes. Table 2 represents the reali-
zation using USE and RES clocking schemes. The count of majority voter (MV),
inverter (INV), cell count, and latency to realize function F1 using only USE clock-
ing scheme are 5, 2, 157, 2.25, respectively. However, the count of MV, INV, cell
count, and latency to realize function F1 using the USE clocking scheme and GA
are 3, 2, 100, 1.25, respectively. Similarly, when F2 is realized only using RES, the
MV, INV, cell count, and latency count are 3, 1, 103, 1.5, respectively. But when
F2 is realized only using RES, the MV, INV, cell count, and latency count are 2, 1,
27, 0.5, respectively. So, the MV, INV, cell count, and latency for both functions are
reduced after applying GA.

5.3 Result analysis

To scrutinize the performance of the proposed method taking into consideration the
multi-output function. In this regard, a comparison is performed with the existing
methods proposed in [34] and [40]. The comparison is based on the best available

Table 1 Simulation environment
and design constraints Simulation software: MATLAB R2015a

Maximum generations: 5000
Population size: 200 chromosomes
Number of elite
chromosomes: 10% of the population size
Selection method: Tournament selection (size 3)
Crossover probability: Initially 0.7 afterward 0.8
Mutation probability: Not applicable

3868 A. K. Pramanik et al.

1 3

related data in the literature. The comparisons are shown based on the data provided
in [34] and [40]. This work mainly focused on multi-output functions, keeping away
from comparison with single output functions. The simulation results and compari-
sons are presented in Tables 3, 4, 5, 6 and 7 with the best-suited value found in the
literature. m0 , m1 , m2, ... represents the min-terms of the output functions. The com-
mon parts in the circuit synthesis using the proposed method are underlined.

The overall performance is evaluated based on the total number of gates (TG) and
the maximum level. Maximum level (‘Max level’) is determined as the maximum
number of levels among all the individual output functions (i.e., F1 , F2,Fn) and
the total number of gates (TG) is calculated as the summation of total MV (TMV)
and total INV (TINV) gates. ‘TG’ and ‘max level’ are the significant parameters to
optimize a QCA circuit. The area utilization for a QCA circuit synthesis relies on
the number of gates. An increase in the gate count signifies a significant increase in
the area of a QCA circuit. It also involves increasing the average delay of the circuit.

In [8, 19, 20, 34], TG is considered as a comparison metric. In [40], only MV
is considered instead of TG; however, we also mentioned the number of MV for
comparison. As discussed in the proposed method, when multiple-output functions
are combined, all the output functions have to work under the influence of the same
clocking scheme. Therefore, it is the maximum clock cycle for an individual out-
put function on which the clock cycle of the combined circuit depends. The clock
cycle is measured in terms of level; thus, max level’ is taken as another comparison
metric.

In Tables 3 and 5, for the 3 input/2 output and 3 input/4 output function, the
proposed method does not show significant improvement. However, the proposed

Table 2 Realization of functions using regular clocking scheme

Function Clocking scheme Before GA After GA

F1 =
∑

(m1,m3,m4,m5,
m7,m12,m13,m15)

USE [9]

F2 =
∑

(m2,m4,m6) RES [15]

3869

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

Ta
bl

e
3

 C
om

pa
ris

on
 fo

r t
hr

ee
 (3

) i
np

ut
 a

nd
 tw

o
(2

) o
ut

pu
t f

un
ct

io
n(

s)

N
M

V
N

um
be

r o
f M

V,
 N

IN
V

N
um

be
r o

f I
N

V
 g

at
e,

 C
M

V
N

um
be

r o
f c

om
m

on
 M

V,
 C

IN
V

N
um

be
r o

f c
om

m
on

 IN
V

 g
at

e,
 T

M
V

To
al

 M
V,

 T
IN

V
To

ta
l I

N
V

 g
at

e,
 T

G
 T

M
V
+

TI
N

V

M
et

ho
d

fu
nc

tio
ns

C
irc

ui
t

N
M

V
N

IN
V

Le
ve

ls
C

M
V

C
IN

V
TM

V
TI

N
V

TG
M

ax
 le

ve
l

[4
0]

p
1
=
∑

m
0
,
m

2
,
m

4
,
m

7
p
1
=

M
(M

(A
,B̄

,C
),M

(1
,A

,C
)’,

M
(1

,B
,C̄

))
4

3
2

1
1

(7
−
1)

=
6

(5
−
1)

=
4

10
2

p
2
=
∑

m
0
,
m

2
,
m

3
,
m

4
p
2
=

M
(M

(1
,B

,C̄
),M

(0
,A

,B
)’,

0)
3

2
2

Pr
op

os
ed

p
1
=
∑

m
0
,
m

2
,
m

4
,
m

7
p
1
=

M
(M

(B
,0

,C
),M

(A
,C

’,1
),M

(A
,C

,B
)’

)
4

2
2

1
0

(7
−
1)

=
6

4
10

2
p
2
=
∑

m
0
,
m

2
,
m

3
,
m

4
p
2
=

M
(M

(B
,0

,A
),M

(0
,B

,C
)’,

C
)’

3
2

2

3870 A. K. Pramanik et al.

1 3

Ta
bl

e
4

 C
om

pa
ris

on
 fo

r f
ou

r (
4)

 in
pu

t a
nd

 tw
o

(2
) o

ut
pu

t f
un

ct
io

n(
s)

N
M

V
N

um
be

r o
f M

V,
 N

IN
V

N
um

be
r o

f I
N

V
 g

at
e,

 C
M

V
N

um
be

r o
f c

om
m

on
 M

V,
 C

IN
V

N
um

be
r o

f c
om

m
on

 IN
V

 g
at

e,
 T

M
V

To
al

 M
V,

 T
IN

V
To

ta
l I

N
V

 g
at

e,
 T

G
 T

M
V
+

TI
N

V

M
et

ho
d

Fu
nc

tio
ns

C
irc

ui
t

N
M

V
N

IN
V

Le
ve

ls
C

M
V

C
IN

V
TM

V
TI

N
V

TG
M

ax
 le

ve
l

[3
4]

p
1
=
∑

m
0
,
m

2
,
m

6
, m

1
2
,
m

1
3
,
m

1
4

p
1
=

M
(M

(D̄
,M

(B
,A

,1
)’,

M
(A

,B
,C

))
,

M
(A

, 1̄
,C

)’,
M

(1̄
,B

,A
))

6
5

3
3

3
(1
1
−
3
)=

8
(8
−
3
)=

5
13

3

p
2
=
∑

m
1
,
m

3
,
m

4
,

m
5
,
m

7
,
m

1
2
,
m

1
3
,
m

1
5

p
2
=

M
(M

(M
(B

,A
,1

)’,
D

,
M

(A
,B

,C
))

,M
(A

,C
, 1̄

)’,
B

)
5

3
3

Pr
op

os
ed

p
1
=
∑

m
0
,
m

2
,
m

6
, m

1
2
,
m

1
3
,
m

1
4

p
1
=

M
(M

(M
(B

,C
,1

)’,
C

,D̄
),

M
(B

,1
,Ā

),
M

(A
,0

,M
(0

,B
,C̄

))
)

6
4

3
2

2
(9

−
2
)=

7
(6

−
2
)=

4
11

3

p
2
=
∑

m
1
,
m

3
,
m

4
,

m
5
,
m

7
,
m

1
2
,
m

1
3
,
m

1
5

p
2
=

M
(M

(C̄
,0

,B
),D

,M
(1

,Ā
,B

))
3

2
2

Im
pr

ov
em

en
t(%

)
15

.3
8

sa
m
e

3871

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

Ta
bl

e
5

 C
om

pa
ris

on
 fo

r t
hr

ee
 (3

) i
np

ut
s a

nd
 fo

ur
 (4

) o
ut

pu
t f

un
ct

io
n(

s)

M
et

ho
d

M
in

te
rm

s
C

irc
ui

t
N

M
V

N
IN

V
Le

ve
ls

C
M

V
C

IN
V

TM
V

TI
N

V
TG

M
ax

 le
ve

l

[3
4]

p
1
=
∑

m
1
,
m

4
,
m

5
,
m

7
p
1
=

M
(B̄

,A
,C

)
1

1
1

3
4

(1
2
−
3
)=

9
(1
0
−
4
)=

6
15

3
p
2
=
∑

m
3
,
m

4
,
m

6
p
2
=

M
(M

(A
,1̄

,C̄
),Ā

 , M
(M

(C
,B

,A
),1

,A
))

4
3

3
p
3
=
∑

m
0
,
m

2
,
m

5
,
m

6
p
3
=

M
(M

(1̄
,B

,C
),M

(A
,1

,C
),

M
(C

,B
,A

)’
)’

4
3

2
p
4
=
∑

m
4
,
m

6
,
m

7
p
4
=

M
(B

,M
(A

,B̄
,C

),M
(A

,1̄
,C̄

))
3

3
2

Pr
op

os
ed

p
1
=
∑

m
1
,
m

4
,
m

5
,
m

7
p
1
=

M
(B̄

,A
,C

)
1

1
1

4
2

(1
3
−
4
)=

9
(8
−
2
)=

6
15

3
p
2
=
∑

m
3
,
m

4
,
m

6
p
2
=

M
(M

(A
,C

,0
)’,

M
(0

,C̄
,A

),
M

(B
,C

,0
))

4
2

2
p
3
=
∑

m
0
,
m

2
,
m

5
,
m

6
p
3
=

M
(M

(M
(B

,0
,C

)’,
A

,C̄
),B

,
M

(M
(C

,0
,A

)’,
A

,B
)’

)
5

4
3

p
4
=
∑

m
4
,
m

6
,
m

7
p
4
=

M
(M

(0
,C̄

,A
),A

,M
(B

,C
,0

))
3

1
2

Im
pr

ov
em

en
t(%

)
Sa

m
e

Sa
m

e

3872 A. K. Pramanik et al.

1 3

Ta
bl

e
6

 C
om

pa
ris

on
 fo

r t
hr

ee
 (3

) i
np

ut
 a

nd
 th

re
e

(3
) o

ut
pu

t f
un

ct
io

n(
s)

N
M

V
N

um
be

r o
f M

V,
 N

IN
V

N
um

be
r o

f I
N

V
 g

at
e,

 C
M

V
N

um
be

r o
f c

om
m

on
 M

V,
 C

IN
V

N
um

be
r o

f c
om

m
on

 IN
V

 g
at

e,
 T

M
V

To
al

 M
V,

 T
IN

V
To

ta
l I

N
V

 g
at

e,
 T

G
 T

M
V
+

TI
N

V

M
et

ho
d

M
in

te
rm

s
C

irc
ui

t
N

M
V

N
IN

V
Le

ve
ls

C
M

V
C

IN
V

TM
V

TI
N

V
TG

M
ax

 le
ve

l

[3
4]

p
1
=
∑

m
2
,
m

4
,
m

6
p
1
=

M
(B

,M
(A

,B
,1

)’,
M

(M
(1

,C
,B̄

),
1,

A
))

’
4

3
3

4
4

(1
2
−
4
)=

8
(1
0
−
4
)=

6
14

3
p
2
=
∑

m
0
,
m

1
,
m

3
,
m

6
p
2
=

M
(M

(1
,A

,C
),M

(Ā
,B

,C̄
),

M
(A

,B
,1

)’
)

4
3

2
p
3
=
∑

m
0
,
m

3
,
m

6
p
3
=

M
(M

(Ā
,B

,C̄
),1̄

,M
(M

(1
,C

,B̄
),

1,
A

))
4

4
3

Pr
op

os
ed

p
1
=
∑

m
2
,
m

4
,
m

6
p
1
=

M
(M

(1
,B

,A
),0

,C̄
)

2
1

2
3

1
(1
0
−
3
)=

7
(6

−
1)

=
5

12
2

p
2
=
∑

m
0
,
m

1
,
m

3
,
m

6
p
2
=

M
(M

(C
,0

,A
)’,

 M
(C

,A
,B

),
M

(1
,B

,A
)’

)
4

2
2

p
3
=
∑

m
0
,
m

3
,
m

6
p
3
=

M
(M

(C
,B

,A
),

M
(1

,A
,B

)’,
 M

(B
,Ā

,C̄
))

4
3

2
Im

pr
ov

em
en

t(%
)

16
.6
7

33
.3
3

3873

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

Ta
bl

e
7

 C
om

pa
ris

on
 fo

r f
ou

r (
4)

 in
pu

ts
 a

nd
 fo

ur
 (4

) o
ut

pu
t f

un
ct

io
n(

s)

N
M

V
N

um
be

r o
f M

V,
 N

IN
V

N
um

be
r o

f I
N

V
 g

at
e,

 C
M

V
N

um
be

r o
f c

om
m

on
 M

V,
 C

IN
V

N
um

be
r o

f c
om

m
on

 IN
V

 g
at

e,
 T

M
V

To
al

 M
V,

 T
IN

V
To

ta
l I

N
V

 g
at

e,
 T

G
 T

M
V
+

TI
N

V

M
et

ho
d

M
in

te
rm

s
C

irc
ui

t
N

M
V

N
IN

V
Le

ve
ls

C
M

V
C

IN
V

TM
V

TI
N

V
TG

M
ax

 le
ve

l

[3
4]

p
1
=
∑

m
3
,
m

4
,
m

7
,
m

1
5

p
1
=

M
(M

(D
,M

(C
,B

,A
)’,

B
),

M
(C

,1̄
,D

),D̄
)

4
3

3
8

6
(1
7
−
8
)=

9
(1
4
−
6
)=

8
17

4

p
2
=
∑

m
1
,
m

3
,
m

4
, m

9
,
m

1
3
,
m

1
5

p
2
=

M
(M

(D
,M

(C
,B

,A
)’,

B
),

M
(1̄

,M
(D̄

,A
,1

),B
),B̄

)
5

4
3

p
3
=
∑

m
3
,
m

6
,
m

7
,

m
1
1
,
m

1
3
,
m

1
4
,
m

1
5

p
3
=

M
(M

(1̄
,M

(D̄
,A

,1
),B

),C
,D

)
3

2
3

p
4
=
∑

m
2
,
m

6
,
m

1
0
, m

1
1
,
m

1
4

p
4
=

M
(1̄

,C
,M

(M
(C

,1̄
,D

),M
(D

,
M

(C
,B

,A
)’,

B
),D̄

)’
)

5
5

4

[4
0]

p
1
=
∑

m
3
,
m

4
,
m

7
,
m

1
5

p
1
=

M
(M

(C
,1

,D
)’

),M
(Ā

,B
,D

),
M

(C
,0

,D
))

4
2

2
3

2
(1
5
−
3
)=

12
(7

−
2
)=

5
17

3

p
2
=
∑

m
1
,
m

3
,
m

4
, m

9
,
m

1
3
,
m

1
5

p
2
=

M
(M

(D
,0

,M
(A

,B̄
,D

))
 M

(Ā
,B

,D
),M

(B
,C

,D
)’

)
5

3
3

p
3
=
∑

m
3
,
m

6
,
m

7
,

m
1
1
,
m

1
3
,
m

1
4
,
m

1
5

p
3
=

M
(M

(B
,C

,D
),0

,M
(1

,A
,C

))
3

0
2

p
4
=
∑

m
2
,
m

6
,
m

1
0
, m

1
1
,
m

1
4

p
4
=

M
(M

(C
,D̄

,0
),C

,M
(Ā

,B
,D

))
3

2
2

Pr
op

os
ed

p
1
=
∑

m
3
,
m

4
,
m

7
,
m

1
5

p
1
=

M
(B

,M
(C

,D
,0

),
M

(A
,B

,M
(B

,C
,D

))
’)

4
1

3
5

1
(1
5
−
5
)=

10
(5

−
1)

=
4

14
3

p
2
=
∑

m
1
,
m

3
,
m

4
, m

9
,
m

1
3
,
m

1
5

p
2
=

M
(B

,M
(A

,B
,M

(B
,C

,D
))

’,
M

(M
(A

,D
,0

),B̄
,D

))
5

2
3

p
3
=
∑

m
3
,
m

6
,
m

7
,

m
1
1
,
m

1
3
,
m

1
4
,
m

1
5

p
3
=

M
(C

,M
(B

,C
,D

),M
(A

,D
,0

))
3

0
2

p
4
=
∑

m
2
,
m

6
,
m

1
0
, m

1
1
,
m

1
4

p
4
=

M
(C

,D̄
,M

(B̄
,M

(A
,D

,0
),0

))
3

2
3

Im
pr

ov
em

en
t(%

)
17

.6
4

sa
m
e

3874 A. K. Pramanik et al.

1 3

method outperforms the other methods considering the functions presented in
Tables 4, 6, and 7. Table 4 shows an improvement of 15.38% considering the total
number of gates for the 4 input/ 2 output function. The proposed method shows a
significant improvement of 16.67% in the total number of gates, and also 33.33%
improvement in case of maximum levels for 3 input/ 3 output function (Table 6).
17.64 % improvement is achieved for the 4 input/ 4 output function in terms of the
total number of gates (Table 7). The proposed method utilizes a priority-driven opti-
mization methodology where utmost priority is given to level followed by MV and
INV. For example, in Table 7, it may record a higher total majority voters (TMV)
count in the proposed method than that of [34], the proposed method shows an
improvement in terms of the maximum level.

Also, it is evident from the simulation results that the proposed method does
not generate redundant gates, while some of the previous circuits contain obvious
redundancy. For example, in Table 4, considering [34] the function F1 produced two
redundant INV gates and also the function F2 produced one redundant INV gate,
whereas the proposed method does not contain any redundant gates (MV, INV)
(Table 4). The proposed method takes extra care to remove this type of redundancy
from the logic level, which can be seen from all the tables (Table 3, 4, 5, 6 and 7).

6 Conclusion

In this paper, an elitism-based genetic algorithm is applied to synthesize optimal
QCA circuits of any arbitrary multi-output boolean function, which improves the
quality of the solution by preserving the best chromosomes throughout the genera-
tions. The proposed methodology uses the relative priority of the objectives where
maximum priority has been given to reducing the level, followed by reducing the
MV and INV and the proper placement of QCA primitives in each level in the QCA
circuit. Moreover, the process of eradication of redundancy is executed to avoid
the possibility of any redundant gate in the final outcome. The comparison results
demonstrated that the proposed method achieved a 33.33% improvement in terms
of maximum levels for 3 input/ 3 output, whereas 17.64% enhancement is attained
in terms of the number of gates for the 4 input/ 4 output function. The simulation
is performed till function with 4 inputs & 4 outputs without observing any loss in
generality. The proposed method can also be utilized for the case of multi-output
functions, where input variables can be of an arbitrary number.

Acknowledgements This work is sponsored by the Young Faculty Research Fellowship (YFRF) of Vis-
vesvaraya Ph.D. scheme through the grant number MLA/MUM/GA/ 10(37)B.

Data Availability The authors declare that the data supporting the findings of this study are available
within the article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

3875

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

References

 1. Abraham A, Jain L (2005) Evolutionary multiobjective optimization. Evolutionary Multiobjec-
tive Optimization pp 1–6

 2. Ahmadpour SS, Mosleh M (2021) Ultra-efficient adders and even parity generators in nano scale.
Comput Electr Eng 96:107548

 3. Ahmadpour SS, Mosleh M, Heikalabad SR (2020) The design and implementation of a robust
single-layer qca alu using a novel fault-tolerant three-input majority gate. J Supercomput
76:10155–10185

 4. Ahmadpour SS, Mosleh M, Asadi MA (2021) The development of an efficient 2-to-4 decoder in
quantum-dot cellular automata. Iran J Sci Technol Trans Electr Eng 45:391–405

 5. Ahmadpour SS, Mosleh M, Heikalabad SR (2022) Efficient designs of quantum-dot cellular
automata multiplexer and ram with physical proof along with power analysis. J Supercomput
78:1672–1695

 6. Ahn CW, Ramakrishna RS (2003) Elitism-based compact genetic algorithms. IEEE Trans Evolut
Comput 7(4):367–385. https:// doi. org/ 10. 1109/ TEVC. 2003. 814633

 7. Bhanja S, Ottavi M, Lombardi F, Pontarelli S (2006) Novel designs for thermally robust coplanar
crossing in qca. In: 2006 Design, Automation and Test in Europe, IEEE Computer Society, vol 1,
pp 6

 8. Bonyadi MR, Azghadi SMR, Rad NM, Navi K, Afjei E (2007) Logic optimization for majority
gate-based nanoelectronic circuits based on genetic algorithm. In: 2007 International Conference
on Electrical Engineering, pp 1–5, https:// doi. org/ 10. 1109/ ICEE. 2007. 42873 07

 9. Campos CAT, Marciano AL, Neto OPV, Torres FS (2015) Use: a universal, scalable, and efficient
clocking scheme for qca. IEEE Trans Comput-Aided Des Integr Circuits Syst 35(3):513–517

 10. Changdar C, Mahapatra G, Pal RK (2014) An efficient genetic algorithm for multi-objective
solid travelling salesman problem under fuzziness. Swarm Evolut Comput 15:27–37. https:// doi.
org/ 10. 1016/j. swevo. 2013. 11. 001

 11. Chu PC, Beasley JE (1997) A genetic algorithm for the generalised assignment problem. Comput
Operations Res 24(1):17–23

 12. Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving
multi-objective problems, vol 5. Springer, Berlin

 13. Deb K (2015) Multi-Objective Evolutionary Algorithms, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 995–1015. doi: https:// doi. org/ 10. 1007/ 978-3- 662- 43505-2_ 49

 14. Dysart TJ, Kogge PM (2007) Probabilistic analysis of a molecular quantum-dot cellular autom-
ata adder. In: 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Sys-
tems (DFT 2007), IEEE, pp 478–486

 15. Goswami M, Mondal A, Mahalat MH, Sen B, Sikdar BK (2019) An efficient clocking scheme for
quantum-dot cellular automata. Int J Electron Lett pp 1–14

 16. Gunter AK (2019) Design and investigation of genetic algorithmic and reinforcement learning
approaches to wire crossing reductions for pnml devices

 17. Hen CK (2011) Design and development of automated digital circuit structure base on evolution-
ary algorithm method. Int J Electron Comput Commun Technol 2(1):1–8

 18. Hennessy K, Lent CS (2001) Clocking of molecular quantum-dot cellular automata. J Vac Sci
Technol B Microelectron Nanometer Struct Process Meas Phenomena 19(5):1752–1755

 19. Houshmand M, Khayat SH, Rezaei R (2009) Genetic algorithm based logic optimization for
multi- output majority gate-based nano-electronic circuits. In: 2009 IEEE International Confer-
ence on Intelligent Computing and Intelligent Systems, vol 1, pp 584–588, doi: https:// doi. org/
10. 1109/ ICICI SYS. 2009. 53577 75

 20. Houshmand M, Saleh RR, Houshmand M (2011) Logic Minimization of QCA Circuits Using
Genetic Algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 393–403. doi: https://
doi. org/ 10. 1007/ 978-3- 642- 20505-7_ 35

 21. Jong KAD, Spears WM (1989) Using genetic algorithms to solve np-complete problems
 22. khosroshahy MB, Daliri MS, Abdoli A, Navi K, Bagherzadeh N (2016) A 3d universal structure

based on molecular-qca and cnt technologies. J Mol Struct pp 86–95
 23. Khosroshahy MB, Moaiyeri MH, Angizi S, Bagherzadeh N, Navi K (2017) Quantum-dot cellular

automata circuits with reduced external fixed inputs. Microprocess Microsyst 50:154–163

https://doi.org/10.1109/TEVC.2003.814633
https://doi.org/10.1109/ICEE.2007.4287307
https://doi.org/10.1016/j.swevo.2013.11.001
https://doi.org/10.1016/j.swevo.2013.11.001
https://doi.org/10.1007/978-3-662-43505-2_49
https://doi.org/10.1109/ICICISYS.2009.5357775
https://doi.org/10.1109/ICICISYS.2009.5357775
https://doi.org/10.1007/978-3-642-20505-7_35
https://doi.org/10.1007/978-3-642-20505-7_35

3876 A. K. Pramanik et al.

1 3

 24. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a
tutorial. Reliab Eng Syst Safe 91(9):992–1007

 25. Kong K, Shang Y, Lu R (2010) An optimized majority logic synthesis methodology for quan-
tum-dot cellular automata. IEEE Trans Nanotechnol 9(2):170–183. https:// doi. org/ 10. 1109/
TNANO. 2009. 20286 09

 26. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. In: Pro-
ceedings of the IEEE

 27. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnol-
ogy 4(1):49

 28. Liu P, Ni J, Chu Z (2022) Wire-crossings optimization based on majority-of-five and xor-of-
three primitives in qca. Int J Theor Phys 61(3):1–22

 29. Machado RS, Castellanos J, Lahoz-Beltra R (2016) Evolutionary synthesis of qca circuits: a cri-
tique of evolutionary search methods based on the hamming oracle. Int J Inf Technol Knowl
10(3):203–215

 30. Neto OPV, Pacheco MAC, Barbosa CRH (2007) Neural network simulation and evolutionary
synthesis of qca circuits. IEEE Trans Comput 56(2):191–201

 31. Orlov A, Amlani I, Bernstein G, Lent C, Snider G (1997) Realization of a functional cell for
quantum-dot cellular automata. Science 277(5328):928–930

 32. Pal J, Bhattacharjee S, Saha AK, Dutta P (2019) Study on temperature stability and fault toler-
ance of adder in quantum-dot cellular automata. In: 2019 5th International Conference on Signal
Processing, Computing and Control (ispcc), IEEE, pp 69–74

 33. Potvin JY (1996) Genetic algorithms for the traveling salesman problem. Ann Operations Res
63(3):337–370

 34. Rezaee R, Houshmand M, Houshmand M (2013) Multi-objective optimization of qca circuits
with multiple outputs using genetic programming. Genet Program Evol Mach 14(1):95–118.
https:// doi. org/ 10. 1007/ s10710- 012- 9173-6

 35. Roohi A, Menbari B, Shahbazi E, Kamrani M (2013) A genetic algorithm based logic optimiza-
tion for majority gate-based qca circuits in nanoelectronics. Quant Matter 2(3):219–224

 36. Roohi A, Thapliyal H, DeMara R (2015) Wire crossing constrained qca circuit design using
bilayer logic decomposition. Electron Lett 51(21):1677–1679

 37. Sarvaghad-Moghaddam M, Orouji AA, Houshmand M (2017) A multi-objective synthesis meth-
odology for majority/minority logic networks. J Comput Electron 16(1):162–179. https:// doi. org/
10. 1007/ s10825- 016- 0938-7

 38. Sastry K, Goldberg DE, Kendall G (2014) Genetic Algorithms, Springer US, Boston, MA, pp
93–117. doi: https:// doi. org/ 10. 1007/ 978-1- 4614- 6940-7_4

 39. Sridharan K, Pudi V (2015) Design of arithmetic circuits in quantum dot cellular automata nano-
technology, vol 599. Springer, Berlin

 40. Tehrani MA, Navi K, Kia-kojoori A (2013) Multi-output majority gate-based design optimiza-
tion by using evolutionary algorithm. Swarm Evolut Comput 10:25–30. https:// doi. org/ 10. 1016/j.
swevo. 2012. 12. 002

 41. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J
Appl phys 75(3):1818–1825

 42. Vasicek Z, Sekanina L (2016) Evolutionary design of complex approximate combinational cir-
cuits. Genet Program Evol Mach 17(2):169–192. https:// doi. org/ 10. 1007/ s10710- 015- 9257-1

 43. Vijayakumari C, Mythili P, James RK, Kumar CA (2015) Genetic algorithm based design of
combinational logic circuits using universal logic modules. Procedia Comput Sci 46:1246–1253

 44. Walus K, Schulhof G, Jullien GA, Zhang R, Wang W (2004) Circuit design based on majority
gates for applications with quantum-dot cellular automata. In: Conference Record of the Thirty-
Eighth Asilomar Conference on Signals, Systems and Computers, 2004., vol 2, pp 1354–1357
Vol.2, doi: https:// doi. org/ 10. 1109/ ACSSC. 2004. 13993 74

 45. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
 46. Zhang R, Walus K, Wang W, Jullien GA (2004) A method of majority logic reduction for quan-

tum cellular automata. IEEE Trans Nanotechnol 3(4):443–450

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TNANO.2009.2028609
https://doi.org/10.1109/TNANO.2009.2028609
https://doi.org/10.1007/s10710-012-9173-6
https://doi.org/10.1007/s10825-016-0938-7
https://doi.org/10.1007/s10825-016-0938-7
https://doi.org/10.1007/978-1-4614-6940-7_4
https://doi.org/10.1016/j.swevo.2012.12.002
https://doi.org/10.1016/j.swevo.2012.12.002
https://doi.org/10.1007/s10710-015-9257-1
https://doi.org/10.1109/ACSSC.2004.1399374

3877

1 3

Cost‑effective synthesis of QCA logic circuit using genetic…

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Amit Kumar Pramanik1 · Mahabub Hasan Mahalat2 · Jayanta Pal3 ·
Seyed‑Sajad Ahmadpour4 · Bibhash Sen2

 Amit Kumar Pramanik
 amit.pramanik21@gmail.com

 Mahabub Hasan Mahalat
 mahabubhasan.mahalat@gmail.com

 Jayanta Pal
 jayantapal@tripurauniv.ac.in

 Bibhash Sen
 bibhash.sen@cse.nitdgp.ac.in

1 Department of CSE, Dumka Engineering College, Dumka, Jharkhand, India
2 Department of CSE, NIT Durgapur, Durgapur, West Bengal, India
3 Department of IT, Tripura University, Suryamaninagar, India
4 Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Kadir Has

University, Istanbul, Turkey

http://orcid.org/0000-0003-2462-8030

	Cost-effective synthesis of QCA logic circuit using genetic algorithm
	Abstract
	1 Introduction
	2 Background materials
	2.1 QCA
	2.2 Genetic algorithm

	3 Related works
	4 Proposed method
	4.1 Creation of initial population
	4.2 Fitness value calculation
	4.2.1 Fitness function (fitness1)
	4.2.2 Calculation of fitness2

	4.3 Chromosome selection
	4.4 Crossover
	4.5 Variation maintenance (Mutation)

	5 Simulation and results analysis
	5.1 Simulation environment
	5.2 Realization using regular clocking
	5.3 Result analysis

	6 Conclusion
	Acknowledgements
	References

