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Abstract
Aiming at the problem of user’s task offloading in mobile edge computing and 
the potential leakage of location privacy during the offloading process, a privacy-
preserving computing offloading scheme based on whale optimization algorithm 
is proposed. Using differential privacy technology to obfuscate the user’s location 
information, the user can make task offloading decisions according to the obfuscated 
distance. Considering the delay, energy consumption, and their weighted sum, the 
offloading problem is modeled as a convex optimization problem. Then, the whale 
optimization algorithm is adopted to solve this optimization problem to achieve a 
balance between privacy protection and resource consumption. Experiments are 
conducted to verify the relationship between the degree of privacy leakage, the 
computation-offloading cost and real distance, privacy-preserving impact factor, the 
respective weights of time delay and energy consumption The experimental results 
show that the offloading scheme proposed in this paper has good performance in 
terms of cost and privacy protection.

Keywords  Edge computing · Computing offloading · Differential privacy · Whale 
optimization algorithm

1  Introduction

With the popularization of smart terminals and the Internet of Things, various termi-
nal applications continue to emerge, which not only bring rich entertainment experi-
ence to users, but also consume more computing resources and energy consumption 
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of terminals [1]. The computing capability of the user terminal device is limited, and 
cannot complete the processing of a large number of computing tasks in a short period 
of time. Mobile edge computing (MEC) is a new computing model [2]. By deploying 
computing resources at the edge of the network and spatially adjacent to end users, 
MEC can reduce service delay and terminal energy consumption [3].Computing off-
loading technology [4, 5], as one of the key technologies of MEC, transmits compute-
intensive terminal applications to adjacent MEC nodes for processing through wireless 
links, and utilizes sufficient computing resources and energy of MEC servers to reduce 
the latency and energy consumption of terminal processing tasks, effectively improv-
ing service quality and user experience [6]. However, while edge computing provides 
users with high-quality and convenient computing services, users’ personal privacy is 
also under great threat [7]. During task offloading, mobile devices tend to offload more 
tasks to the edge server when the wireless channel conditions between the user and the 
edge server are good, while they tend to perform more computing tasks locally when 
the wireless channel conditions are poor. The wireless channel condition between the 
user and the edge server is closely related to the distance between them. The smaller 
the distance between the user and the edge server, the better the wireless channel con-
dition, and vice versa. Therefore, an untrusted edge server or an attacker can infer the 
wireless channel information by monitoring the user’s task offloading ratio, thereby 
inferring the user’s location information. Most previous studies have only considered 
the cost of task offloading [8], and there has not been much research on the location 
privacy issues that may occur in the process of computing offloading. This paper stud-
ies the location privacy leakage problem that may occur during computation offloading 
in edge computing environment, and propose a privacy-preserving edge computing off-
loading scheme based on whale optimization algorithm (WOPP), which uses the whale 
optimization algorithm to select the offloading strategy that minimizes the cost while 
using differential privacy technique to protect the user’s real location information to 
achieve the balance between privacy protection and cost control.

The main contributions of this article are as follows:

1.	 Aiming at the problem of location privacy leakage that may occur in the process 
of computing offloading, a privacy protection mechanism is proposed, which uses 
differential privacy technology to obfuscate the user’s real location;

2.	 The latency and energy consumption cost generated by the computing offloading 
process are modeled as a convex optimization problem, applying the whale opti-
mization algorithm to solve this optimization problem, and an offloading strategy 
that minimizes the cost is obtained.

3.	 The effects of different parameters on the WOPP algorithm are obtained through 
experiments, and the effectiveness of the WOPP algorithm is verified by compar-
ing it with other classical computing offloading schemes.
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2 � Related work

At this stage, research schemes on computing offloading are mainly carried out from 
three different optimization objectives: minimizing delay time, minimizing energy 
consumption, and balancing delay time and energy consumption [9–11]. Jiang et al. 
[12] studied the multi-user task offloading problem in the multi-server environment 
in edge computing, and transformed the task offloading problem of minimizing 
energy consumption into a constrained multi-dimensional multi-knapsack problem, 
and proposed a multi-pointer network (Multi-pointer network) to solve the problem. 
Wang et al. [13] developed an intelligent pricing mechanism to coordinate the com-
putational offloading method of multi-layer devices to solve the problems of network 
congestion and node overload, each MEC server utilizes multi-agent reinforcement 
learning to determine its offloading strategy and resource allocation, thereby reduc-
ing the total energy consumption. Li et al. [14] proposed a task offloading algorithm 
based on double deep Q-learning net (DDQN) and a federated learning (FL) adap-
tive task offloading algorithm in MEC. The algorithm combines the QoS model and 
the deep reinforcement learning algorithm to obtain an optimal offloading policy 
according to the local link and node state information in the channel coherence time 
to address the problem of time-varying transmission channels and reduce the com-
puting energy consumption and task processing delay. Lv et  al. [15] explored the 
joint optimization problem of computing offloading and resource allocation for vari-
ous IoT services in SD-MEC (software defined mobile edge computing) networks. 
In order to minimize the delay and power consumption of system utilities, a new 
distributed DL-based computation offloading and power resource allocation algo-
rithm is proposed. However, the above literature mainly aims at reducing the cost of 
computational offloading and does not consider the privacy leakage that may occur 
during the computational offloading process. In recent years, people have realized 
the importance of privacy, and privacy-preserving mechanisms have been applied 
to various domains to secure users’ privacy [16, 17], and some privacy-preserv-
ing mechanisms oriented to task offloading have been proposed. Zhao et  al. [18] 
proposed a privacy-preserving computing offloading method based on k-anonym-
ity, aiming at the problem that users’ offloading tasks and offloading frequency 
in mobile edge computing (MEC) may cause users to be locked out by attackers. 
Considering that most existing blockchain mining service computing offloading 
frameworks ignore users’ privacy, Nguyen et al. [19] proposed a MEC-based user 
privacy model for mobile network, in which mobile devices select an efficient off-
loading decision through a constrained Markov decision process. The literature [20] 
proposed a privacy and energy co-aware data aggregation computation offloading 
scheme and used a fog-assisted three-layer secure computing architecture to ensure 
data offloading security. The WOPP scheme proposed in this paper considers the 
relationship between user location information and user task offloading decisions, as 
well as the trade-off between privacy protection and cost control.
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3 � System model and problem definition

3.1 � System scenario

This paper assumes that the system consists of a terminal device and a mobile edge 
server. The terminal device has m tasks waiting to be processed. The task set of the 
user terminal is modeled as TASK =

{
task1, task2,… , taskm

}
 , and the ith task is 

modeled as taski =
{
Ui,Di,Ri, r

s
i

}
 , where Ui represents the data volume of the ith 

task, Di represents the data volume of the processing result of the ith task, and Ri rep-
resents the number of CPU cycles required by the CPU of the user terminal device or 
MECS to process each bit task, rs

i
 represents the number of MECS resources required 

to process the ith task. Model the MECS as mecs =
(
fe,P

D, rs
)
 , where fe is the pro-

cessing capability of the mecs, which can be expressed by the number of CPU cycles 
per second, PD denotes the transmitting power of the MECS, and rs denotes the num-
ber of computational resources owned by the MECS. The user terminal device is mod-
eled as User =

(
f c
l
,Pl,P

U
)
 , where f c

l
 denotes the computing capability of the user ter-

minal, which can be expressed by the number of CPU cycles per second, Pl denotes 
the computing power of the user terminal device, and PU denotes the transmitting 
power of the user terminal device to send data to the MECS. The offloading decision 
of the ith task is represented by the offloading ratio �i.

The mobile edge computing model is shown in Fig. 1. The user terminal device 
can connect wirelessly with the MECS and offload all or part of the tasks to the 
MECS for processing, and the MECS helps the user terminal device to process 
and return the results to the user terminal device, which is shown in Fig. 2.

3.2 � Latency model

3.2.1 � Local computing latency

When part of the ith task is allocated to the user device for computation, the local 
execution time Ti

l
 of the task can be calculated as in Eq. (1)

Fig.1   Schematic diagram of computational offloading
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3.2.2 � External computing latency

When part of the task is offloaded to MECS for execution, the delay includes trans-
mission delay Ti

u
 , MECS processing delay Ti

c
 and result return delay Ti

b
 . Since the 

result return delay is usually small, it is not considered. According to Shannon’s for-
mula, the transmission rate Vu at which the user terminal equipment sends the task 
to the MECS and the data transmission rate Vd at which the MECS sends the result 
back to the user terminal equipment are shown in Eqs. (2) and (3)

where B denotes the bandwidth between the user terminal device and the MECS, d−r 
denotes the channel coefficient between the user terminal device and the MECS, d 
denotes the distance between the user terminal device and the MECS, r denotes the 
fading factor of the channel, and �2 denotes the noise power of the channel.

(1)Ti
l
=

(
1 − �i

)
U

i
∗ Ri

f c
l

(2)Vu = B ∗ log2(1 +
PU ∗ d−r

�2
)

(3)Vd = B ∗ log2(1 +
PD ∗ d−r

�2
)

(4)Ti
u
=

�iUi

Vu

dmax

d2

1.Select [d1,d2]

d1

2.Confuse distance

3.make decisions

Fig. 2   Privacy protection mechanism process
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Thus, the total delay Ti
e
 generated by the user terminal device offloading the ith task 

to the MECS for processing is Eq. (6).

3.2.3 � Total delay

Since local execution and external execution are parallel, the total latency should be 
the greater of the two.

3.3 � Energy consumption model

3.3.1 � Local computing energy consumption

When a task is processed at the user terminal device, the user terminal device CPU 
generates energy consumption. Assume that the energy consumption of the i-th task 
of the user terminal equipment processed at the user terminal equipment is Ei

l
 , as 

shown in Eq. (8)

3.3.2 � External computing energy consumption

The energy consumption generated when user terminal device offloads the task to 
the MECS for processing includes the transmission energy consumption generated 
by the local user terminal device when the user terminal sends tasks to the MECS, 
the energy consumption generated by the MECS when it processes the task from the 
user terminal device, and the energy consumption generated by the MECS when it 
returns computation results to the user terminal device. Since the MECS is always 
powered, this paper mainly considers the energy consumption generated by the local 
user terminal device uploading data to the MECS. Assume that the energy consump-
tion of the user terminal device uploading the ith task is Ei

u
 , as in Eq. (9).

(5)Ti
c
=

Di ∗ Ri

fe

(6)Ti
e
= Ti

u
+ Ti

c
+ Ti

b

(7)Ti = max
{
Ti
l
, Ti

e

}

(8)Ei
l
= Ti

l
∗ Pl

(9)Ei
u
= PU ∗ Ti

u
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3.3.3 � Total energy consumption

3.4 � Problem model

Assume that for the ith task, the total cost of the system to process the user terminal 
device task is Ci as in Eq. (11).

In edge computing scenarios, latency and energy consumption are the two most com-
monly used metrics to measure the performance of offloading schemes [21]. Considering 
the cost required by the task during execution comprehensively, � is defined as the weight 
coefficient of task execution delay, which indicates the user’s concern about delay; � is the 
weight coefficient of task execution energy consumption, which indicates the user’s con-
cern about energy consumption, satisfying � + � = 1 . In this paper, the delay and energy 
consumption are considered comprehensively, and the goal is to minimize the weighted 
sum of system delay and energy consumption, which is defined as the problem Q.

The problem Q: 
N

min
k=1

C(�i).

4 � Privacy protection mechanism

4.1 � Mechanism description

In order to protect the user’s location privacy, a new distance confusion probability 
density function is used, which can be used by the user to confuse the real distance 
between it and the edge server to avoid the leakage of the user’s location information. 
Suppose the real distance between the user and the edge server is d and the obfuscated 
distance is d∗ , let dmax represent the maximum coverage radius of the edge server, d1 
and d2 represent the upper and lower bounds of the range of the user’s obfuscated dis-
tance, respectively, Δd = d2 − d1 , with d1 < d2 and d1,d2 ∈

[
0, dmax

]
 , With the con-

fusion range, the differential privacy mechanism is applied to confuse the distance 
between the user and the edge server. Existing differential privacy schemes based on 
Laplace mechanism are difficult to be directly applied to the scenario where task off-
loading protects user’s location privacy. Therefore, considering the limitation of the 
confusion range 

[
d1, d2

]
,under the condition that the total probability of confusing the 

distance in the range 
[
d1, d2

]
 is guaranteed to be 1, the probability density function of 

confusing the distance d into the distance d∗ is set as follows:

(10)Ei = Ei
l
+ Ei

u

(11)Ci = �Ti + �Ei

(12)f (d∗) =

{
�

2Δd
e
−

�|d∗−d|
Δd +

e
�(d1−d)

Δd +e
−
�(d2−d)

Δd

2Δd

0, otherwise
, if d∗�

[
d1, d2

]
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Accordingly, the user can obfuscate the real distance between himself and the 
edge server, and the untrustworthy edge server or the attacker can only infer the 
user’s obfuscated location by the user’s task offloading ratio at the same time, and at 
this time, due to the randomness provided by differential privacy for adjacent data 
sets, it is difficult for an attacker to deduce the user’s real location in reverse from 
the obfuscated location, thereby protecting the user’s location information.

The KL divergence (Kullback–Leibler divergence) [22] is used to measure the 
degree of fit between the mechanism with privacy protection and the mechanism 
without privacy protection when the real distance between the user and the edge 
server is d. Suppose Q(d∗|d) represents the probability distribution of task offloading 
by the user according to the real distance without privacy protection,P(d∗|d) repre-
sents the probability distribution of user obfuscation according to the true distance 
when a differential privacy mechanism is added to protect privacy, then the degree 
of fitting Q(d∗|d) with P(d∗|d) is:

According to the definition of KL divergence, if the value of DKL(P||Q) is 
smaller, it indicates that the higher the degree of fit between P(d∗|d) and Q(d∗|d) , 
the higher the probability of leakage of information about the true distance between 
the user and the edge server, and the worse the degree of privacy protection. There-
fore, when the real distance between the user and the edge server is d , the degree of 
privacy leakage of the user is the inverse of the above formula:

In general, when the wireless network between the user and the edge server is in 
good condition (closer), the confused distance should be set to be relatively close 
to the edge server in a high probability, so that after the task offloading decision 
is made based on the confusion distance, it is guaranteed that the user will offload 
more tasks to the edge server to save the user’s resource consumption at the real 
location. In order to ensure the effectiveness of the task offloading decision made 
by the user based on the confusion distance d∗ on the real distance d , it must be 
ensured that the confused distance d∗ takes values on the left and right sides close to 
the real distance d , then there is a confusion range d1 ≤ d ≤ d2 , and the closer d1 , d2 
and d are, the better the decision-making utility of task offloading at the confusion 
distance. However, when the range Δd between d1 and d2 shrinks, although the task 
offloading decision based on the confusion distance can optimize the user’s energy 
consumption and computational delay at the real distance, the degree of privacy 
leakage of the user’s location information becomes larger. Therefore, before task off-
loading according to the confused location, the lower and upper bound values of the 
confusion range should be adjusted to achieve a balance between privacy protection 
and task offloading utility based on the user’s privacy protection needs and the wire-
less channel between the user and the edge server. The formula for adjusting the 

(13)DKL(P||Q) =
d2∫
d1

Q(d∗|d) log Q(d∗|d)
P(d∗|d) dd

∗

(14)PLd1,d2
= −∫

d2

d1

Q(d∗|d)logQ(d
∗|d)

P(d∗|d) dd
∗
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lower bound value d1 and the upper bound value d2 of the confusion range to balance 
the utility of privacy protection and task offloading is:

where E is the user’s energy consumption, T  is the user’s computational delay cost, 
and � as an impact factor reflects the user’s attention to the degree of privacy leak-
age. In the most extreme case, users do not pay any attention to the leakage of their 
location privacy, at this time, � = 0.

When the user’s confusion range is determined, a confused distance d∗ can be 
randomly selected from 

[
d1, d2

]
 according to the distance confusion probability den-

sity function, and a task offloading decision can be made based on the confusion 
distance to complete the task offloading.

4.2 � Theoretical analysis

For the real distance d between the user and the edge server and its proximity dis-
tance d′ , it can be proved that after applying the privacy protection mechanism pro-
posed in this paper, the probability Pr(d∗|d) of confusion from the real distance d 
to d∗ and the probability Pr

(
d∗|d�) of confusion from the proximity distance d′ to d∗ 

satisfies the definition of ε-differential privacy.

(15)min
d1,d2

E + T + � ⋅ PL

Pr(d∗|d)
Pr

(
d∗|d�

) =

�

2Δd
e
−

�|d∗−d|
Δd +

e
�(d1−d)

Δd +e
−
�(d2−d)

Δd

2Δd

�

2Δd
e
−

�|d∗−d� |
Δd +

e

�(d1−d� )
Δd +e

−
�(d2−d� )

Δd

2Δd

=
e
−

�|d∗−d|
Δd +

e
�(d1−d)

Δd +e
−
�(d2−d)

Δd

�

e
−

�|d∗−d|
Δd +

e

�(d1−d� )
Δd +e

−
�(d2−d� )

Δd

�

≤ max

⎛⎜⎜⎝
e
−

��d∗−d�
Δd

e
−

��d∗−d� �
Δd

,
e

�(d1−d)
Δd + e

−
�(d2−d)

Δd

e
�(d1−d� )

Δd + e
−

�(d2−d� )
Δd

⎞⎟⎟⎠

≤ max

⎛⎜⎜⎝
e

�
����d
∗−d

� ����
Δd ,max

⎛⎜⎜⎝
e

�(d1−d)
Δd

e
�(d1−d� )

Δd

,
e
−

�(d2−d)
Δd

e
−

�(d2−d� )
Δd

⎞⎟⎟⎠

⎞⎟⎟⎠

≤ max
(
e� ,max(e� , e�)

)
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The above proofs show that the privacy protection mechanism proposed in this 
paper satisfies the definition of ε-differential privacy.

5 � Task offloading mechanism

For the selected confusion interval 
[
d1, d2

]
 , the confusion position d∗ is generated 

based on the real distance d , and the whale optimization algorithm is used to make a 
task offloading decision with the objective of minimizing the resource consumption 
under the confusion location: the unloading ratio �i.

The whale algorithm simulates a special hunting mechanism of humpback 
whales—a bubble net foraging method which can be simply expressed as follows: 
the whale dives around the prey at a water depth of 10 ~ 15  m, swims in a spiral 
posture around the prey in a gradually contracting range toward the surface, and 
protrudes bubbles of different sizes while swimming, and the exhaled bubbles form 
a circular or square bubble net. The bubbles form a ring or a square bubble net, 
and then the prey will be attacked by the whale. In this paper, the optimal prey is 
equivalent to the optimal unloading strategy, and the process of searching for the 
prey around the whale is equivalent to the process of optimizing finding the optimal 
unloading decision vector.

The three stages of whale predation are mathematically modeled below: (1) ran-
dom search for prey; (2) surround prey; (3) bubble attack on prey.

5.1 � Prey search (global search)

The random search for prey in the initial position corresponds to the global search 
stage of the whale algorithm. At this time, the coefficient vector |A|> 1, the math-
ematical model of this stage is as follows:

where X(t) represents the position vector of the current whale, Xrand represents the 
position of a random whale in the current whale population, A and C represent the 
coefficient vector, and the calculation formula of the coefficient vector is as follows:

= e�

(16)D = ||C ⋅ Xrand − X(t)||

(17)X(t + 1) = Xrand − A ⋅ D

(18)A = 2a ⋅ r − a

(19)C = 2r

(20)a = 2 − 2 ⋅
t

Tmax
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where a linearly decreases from 2 to 0 during the iteration; r is a random vector of 
[0, 1] ; t denotes the current number of iterations, and Tmax represents the maximum 
number of iterations.

5.2 � Encircling prey

In the prey-encircling stage, each whale represents an independent individual in the 
algorithm, the position of each individual in the search space represents a solution of 
the optimization process, the optimal prey position is unknown in the search space, 
and the optimal candidate solution of the WOA (Whale Optimization Algorithm) is 
location of the optimal whale (prey). After the optimal solution is established, other 
search agents gradually approach the optimal whale search agent (prey). the way the 
whale circles its prey is represented by the following mathematical model:

where t represents the current number of iterations, X(t) represents the current posi-
tion vector of the whale, X∗(t) represents the position of the best whale obtained so 
far, and X(t + 1) represents the position vector of the target prey.

5.3 � Bubble‑net attacking method (local search)

The bubble predation method simulates the local search process of whales, when 
the coefficient vector |A|< 1 in the mathematical model and mathematically models 
the whale bubble predation. Two strategies for updating the position are designed as 
follows:

(1)	 Shrinking encircling mechanism
	   The update of the whale’s position is represented by Eq. (19). When |A|<1, the 

searcher’s next position may exist at any position between the current position 
and the prey.

(2)	 Spiral predation mechanism
	   The whale searches through a spiral motion, and the formula for position 

update is as follows:

(21)D = ||C ⋅ X
∗(t) − X(t)||

(22)X(t + 1) = X
∗(t) − A ⋅ D

(23)D
�

= ||X∗(t) − X(t)||

(24)X(t + 1) = D
�

⋅ ebl ⋅ cos(2�l) + X
∗(t)
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where indicates the distance of the current whale to the prey (best solution obtained 
so far), b is a constant for defining the shape of the logarithmic spiral, l is a random 
number in [−1, 1].

Both mechanisms are carried out simultaneously during bubble-net attacking 
period with a probability of 0.5, calculated as follows:

where p is a random number between [0, 1].

5.4 � Fitness function

In the whale algorithm, the objective function of the problem is usually used as a fit-
ness function to evaluate the pros and cons of each solution. For a certain unloading 
decision �i (candidate solution of the problem), assuming its fitness evaluation func-
tion f (�i) . The formula is as follows:

(25)X(t + 1) =

{
X
∗(t) − A ⋅ D, p < 0.5

D
�

⋅ ebl ⋅ cos(2𝜋l) + X
∗(t), p ≥ 0.5

(26)f
(
�i
)
= C

(
�i
)

Fig. 3   Process flow diagram of 
WOPP Begin

Obfuscate the user's real location 
according to the privacy protection 

mechanism

Using WOA  to select the optimal 
offloading ratio λ

λ

 i

Task offloading according to the i

i<m

End

Yes

No



3017

1 3

Privacy‑preserving edge computing offloading scheme based…

5.5 � Algorithm process

Figure  3 depicts the basic flow of the privacy-preserving computing offloading 
scheme based on whale optimization algorithm (WOPP). The whole scheme is 
divided into two stages. The first stage is to obfuscate the user’s real location to pro-
tect the privacy of the location; the second stage is to use WOA to select the offload 
ratio, and the user can offload tasks according to the optimal offload ratio �i.

In order to depict the entire implementation of the algorithm in more detail, the 
pseudo-code of the algorithm is given here.
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6 � Experimental simulation and result analysis

The experimental environment is Windows10 operating system, Intel(R) Core(TM) 
i5-1135G7, CPU (2. 40 GHz), 16 GB RAM. In order to verify the effectiveness of 
the WOPP algorithm for computational offloading, experiments were conducted 
using MATLAB. We utilized the dataset for Shanghai Telecom’s base stations 
[23–25] to simulate the scenario and perform data offloading. The dataset covers 
3233 SBSs and 9481 subscribers. Each entry in the dataset consists of a user iden-
tifier, traffic flow, session time, location zone number, and sector ID. In addition, 
each SBS has its own location zone number and sector ID, so we can obtain its 
geographic location using the Google Map API. The experiments verify the impact 
of three important indicators, the weight � , the real distance d between the user and 
the edge server, and the user privacy leakage impact factor � on the effect of the 
WOPP algorithm. The effectiveness of the WOPP algorithm is verified by compar-
ing it with PSO (Particle Swarm Optimization) [26], GA (Genetic Algorithm) [27], 
WOA [28]. The main parameter settings for the simulation experiments are shown 
in Table 1.

6.1 � The relationship between d and the cost and privacy leakage

The performance of the WOPP algorithm regarding resource consumption and 
privacy protection for different real distances d between users and edge servers is 
shown in Fig. 3, where the real distance d between the user and the edge server is 
randomly taken within [50, 250] m, the privacy leakage impact factor � of the user is 
0.002, and the privacy budget � of the user regarding differential privacy is 0.1.

Figure 4a shows that in order to better balance the relationship between user 
resource overhead and privacy leakage, when the distance between the user and 
the edge server increases, the lower bound d1 and the upper bound d2 of the con-
fusion interval become larger centered on the true distance d . The Δd of the con-
fusion interval [d1, d2] does not change significantly. When the distance increases, 
the wireless channel condition between the user and the edge server will gradu-
ally become worse, and then the user will perform the task more locally, and the 
resource cost of the user will gradually increase, and when the distance increases, 
the degree of privacy leakage increases with the distance after the user selects a 
suitable confusion interval. It is namely that the degree of privacy leakage does 
not change significantly with the increase in distance when the size of the confu-
sion interval does not change significantly, as shown in Fig. 4b.

6.2 � The relationship between ω and the cost and the degree of privacy leakage

The performance of the WOPP algorithm regarding resource consumption and 
privacy leakage with different privacy leakage impact factors ω of users is shown 
in Fig. 5, where the real distance d = 150m between the user and the edge server, 
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the privacy leakage impact factor � of the user is one of {0.001,0.002,0.003,0.00
4,0.005}, and the privacy budget � of the user is 0.1.

Figure 5a shows that the Δd of the confusion intervals [d1, d2] is getting larger 
when the user’s privacy leakage impact factor � increases, this is because, when 
the user’s privacy leakage impact factor ω increases, the user is more concerned 
about the leakage of location privacy. Therefore, the privacy leakage is smaller 
only when the confusion interval is larger. Figure 5b shows that the increasing Δd 
leads to a progressively larger resource overhead for the user, which is because 
the utility of the user’s task offloading decision based on the confusion dis-
tance becomes lower with respect to the true distance when the confusion inter-
val becomes larger. In turn, the larger the confusion interval, the progressively 
smaller the user’s privacy leakage.

6.3 � Influence of weight ̨  on WOPP algorithm

It can be seen from Fig.  6 that in the same experimental environment, when the 
weight α increases, WOPP is more biased to optimize the latency of user terminal 
task offloading, and the system produces smaller latency at this time, however, this 
will weaken the optimization of system energy consumption, so the system energy 

Table 1   Parameter setting Parameter Value

B Random integer in 10 ~ 50 MHz
fe Random integer in 50 ~ 60 GHz
f c
l

7 GHz
�2 10−9 dBm
PD Random integer 30 ~ 80dBm
N 50
Maxgen Maxgen = 500

(a) (b)

Fig. 4   The relationship between d and the cost and privacy leakage
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consumption will increase while reducing the system latency. In addition, in Fig. 6a, 
we can see that the impact of the weight change on the system latency is not sig-
nificant when the task volume of the user terminal device is small, because when 
the task volume is small, the resources of MECS are sufficient, and the tasks are 
offloaded to MECS for execution at this time, so the resulting latency is similar, but 
from Fig. 6b, we can see that the impact of the weight change on the system energy 
consumption at small task sizes is larger than that on the delay, because the chan-
nel conditions are different when users send data to each MECS, so the impact of 
weight on energy consumption is relatively obvious.

6.4 � The relationship between task volume and delay and energy consumption

Comparing WOPP with PSO, GA, and WOA, under these four schemes, the delay 
and energy consumption of the system processing user terminal tasks vary with the 
number of tasks as shown in Fig. 7a, b.

From Fig. 7a, b, it can be seen that the latency and energy consumption gener-
ated by the system processing user terminal device tasks increase continuously with 
the increase in task volume, which is because the workload requires more time for 
transmission and computation, and the latency and energy consumption of WOA 
increase less than PSO and GA when the task volume increases, which is because 
WOA searches the solution space more adequately and can search for the global 
optimum in the continuous iterative process in order to make the system generate 
less latency and energy consumption when processing the tasks of all user devices. 
Considering the cost of privacy protection, the latency and energy consumption of 
WOPP are higher than those of WOA, but lower than those of PSO and GA.

(a) (b)

Fig. 5   The relationship between ω and the cost and privacy leakage
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7 � Summary

During the offloading process of mobile edge computing, since there is a certain 
relationship between the user’s offloading decision and the real distance between 
the user and the edge server, an untrusted edge server or an attacker can infer the 
wireless channel information by monitoring the user’s task offloading ratio, thereby 
inferring the user’s location information, resulting in location privacy leakage. Aim-
ing at this problem, a privacy-preserving edge computing offloading scheme WOPP 
based on whale optimization algorithm is proposed. This scheme combines the pri-
vacy-preserving mechanism and the offloading ratio optimization selection mecha-
nism, first using differential privacy to obfuscate the user’s distance, and then using 
an optimization algorithm to select the best offloading ratio based on the obfuscated 
location, which protects the user’s location privacy while controlling the offload-
ing cost. It is experimentally verified that the degree of privacy leakage and the 

(a) (b)

Fig. 6   Effect of weight on system delay and energy consumption

(a) (b)

Fig. 7   Effect of increasing task volume on total delay and energy consumption
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computation-offloading cost are closely related to real distance, privacy-preserving 
impact factor, the respective weights of time delay and energy consumption, which 
are compared by PSO, GA, WOA, etc. It is shown that the WOPP algorithm is 
highly usable in controlling the offloading cost.
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