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Abstract
Security represents one of the main critical issues in the Internet of Things (IoT), 
especially the routing attacks in the core network where the loss of information 
becomes very harmful. This paper proposes a novel scheme called deep learning-
based early stage detection (DL-ESD) using IoT routing attack dataset (IRAD), 
including hello flood (HF), decreased rank (DR), and version number (VN) to 
enhance the detection capability of routing attacks. The experiments have been 
performed in three phases: (i) features extraction using linear discriminant analy-
sis (LDA), which aims to generate features more distinguishable from each other, 
(ii) the features normalization using min–max scaling to eliminate the worst over-
fittings to the existence of fewer data points in training samples, and (iii) selection 
the substantial features. The binary classification methods have been employed to 
measure the proposed model’s training efficiency. We have performed the training 
stage on deep learning techniques such as logistic regression (LR), K-nearest neigh-
bors (KNN), support vector machine (SVM), naïve Bayes (NB), and multilayer per-
ceptron (MLP). The comparison results illustrate that the proposed MLP classifier 
has a high training accuracy and the best runtime rate. Consequently, the proposed 
scheme achieved prediction accuracy reaching 98.85%, precision of 97.50%, recall 
rate 98.33%, and 97.01% F1 score rate with better performance than state-of-the-art 
studies.
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1 Introduction

The Internet of Things (IoT) is currently leading the charge in the digital land-
scape. It offers driving forces such as cost reduction, business revenue growth, 
new business prospects, security, improved decision-making, improved infra-
structure, and improved citizen experience [1]. It is a global revolution in the 
information industry and mighty changes in people’s lives by integrating the 
globally digital and physical into a single ecosystem due to this massive digital 
development, IoT networks are becoming more vulnerable to cyber-attacks [2, 3], 
the attackers make hard efforts to cause damage to the infrastructure of networks 
to carry out hostile acts such as stealing intellectual property and destroying cru-
cial data using developed techniques [4, 5]. Therefore, more than 70 percent of 
IoT devices are vulnerable to security attacks, and this is now regarded the most 
open issues given the lack of protection systems that allow attackers to launch 
serious attacks such as denial of service (DoS) and routing attacks [6, 7]. Many 
IoT devices, such as sensors and actuators, consume low amounts of power to 
operate for longer. [8]. Routing layers are a passage port into the targeted devices 
through IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN), an 
open IoT networking protocol designed by resource-constrained devices [9].

However, routing protocol (RPL) is specified by IETF to handle the specific 
properties and constraints of networks, several routing attacks occur through 
malicious node activities over routing among data packets [10], and the rank 
value increases from the root node to the child node [11]. The attacker can manip-
ulate the Destination Oriented Directed Acyclic Graph (DODAG) issuance sys-
tem by raising their rank in the hierarchical tree and acquiring multiple children 
who route the packets through the attacker’s parent. Consequently, the attacker 
can lure multiple child nodes to choose them as a parent by intentionally chang-
ing the rank values and thus attracting significant traffic heading to the root node 
(the parent branch) to flow through itself [12].

Deep learning techniques have made a significant contribution to tracking the 
behavior of malicious nodes in the routing protocol; the detection and mitigation 
mechanisms to deal with routing attacks usually are classified either based on 
modifications to the existing RPL procedures or added procedures to RPL stand-
ards [13]. These methods can be classified into mitigation and intrusion detection 
systems IDSs such as relating the nodes or packets to their locations within the 
network using GPS, acknowledgment-based methods by sending a message and 
receiving an acknowledgment, and trust-based methods against the IoT networks 
[14]. DL-based IDS in IoT environment: IDS also uses deep learning in hetero-
geneous IoT networks. For instance, Kim et al. [15] trained the IDS model based 
on the long short-term memory (LSTM) architecture using a recurrent neural 
network (RNN). The authors ran tests to determine the best hyper-parameter for 
the best false alarm and detection rates. Similarly, the authors [16] implemented 
effective and quick anomaly-based IDS in low-power IoT networks using random 
neural networks (RaNN). The authors proposed a two-layer approach in which the 
system learns typical behavior at the first layer and detects various illegal memory 
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access (IMA) issues and data integrity attacks on the network at the second layer. 
The suggested approach is centralized, delivering the results to a single server.

DL-based attack detection and mitigation: By utilizing the fog ecosystem, Dior 
et al. [17] developed a DL-based attack detection technique in IoT. In essence, the 
edge node closest to smart objects is where the attack detection methods are exe-
cuted. The distributed attack detection mechanisms decide on the learning architec-
ture’s output based on the available data, considering various learning mechanism 
parameters. Abeshu et  al. [18] presented a distributed DL-based attack detection 
technique for the Internet of Things. They implemented DL approaches for threat 
detection using the fog computing architecture, one of the preferred architectures for 
implementing IoT applications.

Recent studies on routing attack detection of constrained resource devices have 
disregarded task distributions and parallel processing of detections scenarios during 
learning steps, where all the computations of deep learning networks to be addressed 
in constrained resource devices, any malicious attack of routing attacks on core IoT 
network can cause enormous loss in network resource consumption. However, it 
only required tracing malicious nodes in the network, power drain of constrained IoT 
devices [19]. However, parallelism training in the edge nodes reduces the training 
stage. Thus, intrusion detection should be in real time. Due to the nature of con-
strained resource objects in IoT environment, it puts as much computational process 
and continuous workload on the peripherals as possible.

In order to mitigate the exposure of restricted resources to potential attacks and 
real-time intrusion detection, the proposed DL-ESD model is designed in a high-
level and lightweight method through many stages, starting with data processing 
which we eliminate the irrelevant features, features extraction using linear discri-
minant analysis (LDA), aims to generate features more distinguishable from each 
other, the features normalization using min–max scaling to eliminate the worst 
overfittings to presence of fewer data points in training samples, then selection the 
important features. The training accuracy has been achieved the best runtime using 
binary classification and adopted to keep the service’s survival.

The MLP classifier performance is presented in two different phases. (i) Con-
Figby specifies the optimization algorithm and tracks the loss and other metrics we 
apply. Initializing the form with these settings requires calling the model. The com-
pile function is as follows: The word “sgd” denotes a random regression ratio. Also, 
“binary_crossentropy” is defined as a loss function for the outputs with the values 1 
or 0—finally, a precision tracking process. (ii) Comprises the network’s training pro-
cess by calling the model and specifying the data for the network training.

1.1  The contributions

In summary, the key contributions of the paper are provided as follows:

(a) Proposing a DL-ESD model-based deep learning for routing attacks detection 
in early stage before the harmful node can declare on a new version number and 
create a new DODAG network.
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(b) Integration of LDA technique and min–max scaling contribute more distinct 
features, enhancing DL-ESD model performance in the training and testing 
stages.

(c) Enhancing the detection accuracy of malicious nodes by the linearity of deep 
learning reduces the training time.

(d) The binary classification proved that detection efficiency using MLP is higher 
than other shallow ML algorithms. That offers better prediction, high classifica-
tion accuracy, and low error rates compared to recent studies.

The remainder of this paper is structured as follows: Section 2 discusses related 
work of deep learning and IDSs solutions for routing attacks in RPL protocol and 
attack scenarios in the DODAG network. Section 3 describes the framework archi-
tecture sequence, preprocessing data, and the implementation stages of the DL-
ESD model. Section 4 shows  the analysis and evaluation results, then classification 
by  comparing DL-ESD model with state-of-the-art studies. Finally, Sect.  5 con-
cludes and opens new perspectives for future research.

2  Related work

This section discusses the recent studies on routing attacks and the detection meth-
ods. These studies can be classified into two categories: DL-based routing attack 
detection methods and routing attack scenarios in the DODAG network are widely 
used in constrained resource devices.

2.1  DL‑based RPL protocol in IoT

Recent studies have addressed direct and indirect routing attacks against node 
resources and countermeasure classifications using emerging mitigation and detec-
tion technologies and IDSs in RPL networks. These techniques are categorized as 
per the following schemes: (i) relating the nodes or routing the packets to their loca-
tions within the network using GPS, (ii) acknowledgment-based methods by sending 
a message and receiving an acknowledgment, and (iii) trust-based methods against 
the IoT networks.

The authors [19] researched the effects of the constrained resources consumption 
and the issue of effecting the routing attacks on energy consumption since the fake 
control messages and building of loops in the DODAGs reduce the lifetime RPL 
network. Another related study using the IRAD dataset proposed a reliable DL-
based routing attack detection approach; the model considers adversarial training 
and develops a generative adversarial network classifier (GAN-C) with support vec-
tor machine (SVM). This study adopts DL parallel learning [20]. Also, the author 
[21] suggested a novel secure framework for detection routing attacks networks in 
IoT networks based on industrial IoT networks. The approach can detect hello flood, 
version number, black hole, and sinkhole attack. The framework performance is 
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evaluated on performance parameters such as attack detection accuracy, true posi-
tive, false-positive rate, and end-to-end delay.

Meanwhile, hello flood causes saturation of routing nodes and traffic congestion 
in DODAG networks. However, the version number attack increases the control 
packet overhead, energy usage, and end-to-end delay. It also introduces rank incon-
sistencies and routing loops. It is worth mentioning that energy usage is critical in 
IoT networks as most nodes are battery-based, and it sometimes becomes a challeng-
ing task to recharge them [22]. Thus, it is highly desirable to conduct such a study to 
detect the malicious nodes early with less power consumption and network continu-
ity of service. The processed data reduces the training duration time and increasing 
of training accuracy.

Authors [23] have developed an intelligent intrusion detection system (IDS) by 
combining deep learning algorithms with network virtualization to detect suspicious 
behavior on IoT networks. When the DNN detects an unknown intrusion, it saves 
the corresponding tuple of the only filtered features in the “cache” as feedback. 
This mechanism is utilized for re-training the DNN model, which contributes to the 
detection system labeling functionality and feature extraction. This study did not 
address the significant range of device identifiers. The main study [24] proposed a 
DNN model can detect attacks based on big data; the study created own real dataset 
called IoT routing attack dataset (IRAD) includes three types of attacks: hello flood 
(HF), decreased rank (DR), and version number (VN). The proposed model has been 
trained based on this IRAD dataset, and the performance results show high accuracy 
and F1 score up 98%. Another IoT dataset consists of five groups of attacks gener-
ated by Kamel SOM et  al. [19] and proposed a new model based on convolution 
neural network (CNN). It predicts the suspicious traffic in IoT networks and detects 
routing attacks. Three methods have been used to preprocess the generated datasets 
of features selection, Chi-squared, and weight by tree importance to reduce the over-
fitting and noise to be a fitting input during training the proposed CNN model.

Authors [25] have also designed a novel scheme for detecting the decreased rank 
attack and verifying the harmful nodes from the DODAG network using round-trip 
time. In [10], authors have proposed a security routing been found that the critical 
point at N = 40 for many classes appeared in different attacks. A related study by the 
same authors in [26] enhanced a DNN approach based on supervised machine learn-
ing. Several scenarios have been implemented and simulated for the three attacks: 
hello flood, decreased rank, and version number. The results demonstrate that the 
malicious node of the hello flood generates the maximum number of packets among 
neighbor nodes in the DODAG network. Consequently, it raises the power expendi-
ture of neighbors and does not impact the DODAG construction. Another model 
based on machine learning is presented in [29], consisting of data collection, feature 
extraction, and two classification methods. The IRAD dataset has been used to train 
ML-RPL model for new features that have been added manually; ML-RPL indi-
cates an accuracy rate up to 97%. However, all the above approaches are considered 
models-based on RPL using various classification methods and the same dataset and 
still suffer from the DODAG Information Object (DIO) control message overhead 
and the uneven accuracy data of packet delivery ratio. Table  1 depicts the recent 
works related to IDS system and detection of routing attacks in RPL protocol. The 
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highlight of recent literature studies was made according to the closest studies that 
used the same dataset or other data for the same attacks with different features.

2.2  RPL attack scenarios

Many attack scenarios have been simulated to choose the preferred neighbors mote 
and keep the energy resource of constrained devices along (refer to Fig. 1). Almusay-
lim et al. [10] referred to choosing the best parent when node (N = 12, 6, and 26) 
sends a DAO control message to the sink node N starts the distribution module after 
selecting the preferred parent P, while the module calculates the MAC value via the 
specified parameters. The sink maintains the information table to store four groups 
of information about all nodes of messages received from the DAO. Likewise, the 
central unit running is extracted in the incoming information pool via the DAO mes-
sage for N node. Then, the MAC value is calculated if the two MAC values match. It 
will ensure that the N node sends the message while maintaining the integrity of the 
received DAO message [31].

Thus, Palattella et  al. [32] referred if N is an intermediate node, the sink node 
checks the N rank received from the node or child nodes it belongs to. Also, if the 
order does not match the order that the node received from the DAO message, the 
source declares N node malicious. A number of routing attacks target resource-con-
strained devices in IoT networks. In this section, we explain the three most types of 
attacks. In addition, the MAC value is validated, the sink starts to check the rank of 
the N node only when it is a leaf node, and then the pool checks for the presence of a 
low-rank and hyper-level attack [21].

2.2.1  Hello flood

This attack occurs in the routing layers. The malicious node sends DODAG Informa-
tion Solicitation DIS messages successively to multiple nodes on the RPL network. 

Fig. 1  RPL network constructions: a hello flood, b decreased rank, and c version number
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The hello flood attack shortens the interval between each two successive DIS mes-
sages [28]. After infiltrating the RPL network, the malicious node will immediately 
begin sending out multiple DIS messages to all of their neighboring nodes in the 
network, as shown in Fig. 1a. Consequently, adjacent nodes receiving DIS messages 
must respond with DIO messages, resulting in a set of timer and repeated DIO mes-
sages that waste a significant amount of power from neighboring devices receiving 
a request from the malicious node [10]. Agiollo et al. [33] developed an intrusion 
detection system that can deal with multiple attacks to avoid the overhead of RPL. 
So, in hello flood and DIS attack scenarios, the malicious node has an abnormal 
amount of control packets. DETANOR’s attack classification mechanism identifies 
the attackers as those devices transmitting an abnormal amount of control packets.

2.2.2  Decreased rank

The harmful node in a decreased rank attack declares its false low rank through the 
DIO control message to attract traffic to its neighboring nodes, as shown in Fig. 1b. 
The (root node) takes the 1st rank in DODAG construction [10]. Node 1 (root) sends 
multicast DIO messages containing all the information of its neighbor nodes. The 
neighbor nodes in rank 1 choose the root node as a parent. Therefore, after con-
necting DODAG, the adjacent nodes of root nodes 2, 3, and 4 multicasts their DIO 
messages by setting the rank to 2nd. The rank of nodes increases in a descending 
direction. If nodes discard high-value DIO messages from the rank value, they visu-
alize the DIO message coming from child nodes (down) [25]. Node 3 can add nodes 
2 and 4 as a preferred parent as in the node three range. Moreover, all descending 
nodes receive DIO messages from neighbor nodes but decide on harmful nodes as 
the preferred parent based on the best rank.

Node 6 is harmful and declares a false rank value (rank = 1st) to enable neighbor-
ing nodes 5, 9, 8, and 7 to move toward the harmful node, indicated by dotted arrows 
[21]. The sixth node means that its rank value is rank 1st, while its actual ranking 
value is 4. In the current circumstances, nodes 5, 7, 8, and 9 decide the harmful node 
six as the favorite parent and reroute the traffic through node 6, as shown in Fig. 1b.

2.2.3  Version number

This attack is one of the most efficient attacks in routing layers; particularly in the 
network layer, the malicious node alters a DIO message [32]. In contrast, the mali-
cious node receives a DIO message in the IoT network. The DODAG version num-
ber is incremented in a DIO message, and the malicious node forwards the infected 
DIO message [25]. These require overhauling the entire DODAG architecture. These 
frequently forced DODAG re-assessment also wastes the key parameter “power” 
from all nodes belonging to DODAG construction. Thus, the nodes in the network 
lose their energy rapidly, as shown in Fig. 1c. As a result, the life of the network is 
greatly affected. A. Mayzaud et al. [34] proposed a monitoring strategy with dedi-
cated algorithms for detecting version number attacks; the solution’s performance 
has been evaluated through experiments and quantified with the sup. Almusaylim 
et al. [10] proposed a security routing protocol (SRPL-RP) for RPL rank and version 
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number attacks. The proposed protocol detects and isolates attacks and adds them to 
the blocklist. The detection is based on a comparison of the ranking mechanism. The 
analysis results indicate that the PDR packet delivery rate of (98.48%) and SRPL-
RP achieved an accuracy rate of (99.92%) under version number attacks. Sahay 
et  al. [35] proposed an inclusive framework for the prediction of version number; 
the framework includes a feed-forward neural network that uses the traffic as an 
input for prediction version number attack. Therefore, the framework uses the smart 
contract-fortified blockchain technique to establish secure channels to access in IoT 
resources.

3  Proposed DL‑ESD model

This section introduces the phases of the proposed model, describes the DL-ESD 
structure and implementation, also provides a detailed explanation of data process-
ing, and then builds the deep neural network.

3.1  Framework overview

The framework structure consists of three levels: data preprocessing, deep learning 
networks, and classification, as depicted in Fig. 2. It describes the framework struc-
ture as follows: Data processing is divided into three phases; feature selection, the 
linear discriminant analysis (LDA) has been used for feature extraction and a linear 
projected transformation utilized for feature extractions in different aspects. It means 
that feature extraction based on machine learning techniques can obtain an optimal 
contrast level between the extracted features and improve the performance of the 
training stage. Data normalization and visualization; in this phase, min–max scaling 
methods normalize the dataset and adopt the standard quintile conversion to dis-
perse marginal values, and then, the correlation coefficient is also measured to select 
the dependency level for best features. In the third stage, the dataset is split into a 
75% training and 25% testing set using scikit-learning and Pandas function (). In this 
stage, features are scaled to be compared on a common basis, and then, the preproc-
essed data is fitted into our classifier to extract the most important features. There-
fore, the experiments are performed the deep learning techniques. In the last level, 
the performance of deep learning techniques is measured and compared to the MLP 
technique. To achieve the research objectives in capability detection for the mali-
cious nodes in the routing layer, we have proposed a novel deep learning-based early 
stage detection (DL-ESD) using IoT routing attack dataset (IRAD). The deep learn-
ing techniques have been compared to make detecting attacks most accessible. How-
ever, MLP technique has proved ability highly in training accuracy and duration, 
which is the most contribution of our model to improving detection accuracy. Binary 
classification methods also have been employed to improve performance efficiency.

DL-ESD model is presented under two different phases. The first phase: 
ConFigby specifies the optimization  using adam optimizer  as faster training in 
less time and more efficiency  and tracks the loss and other metrics we apply. 
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Initializing the form with these settings requires calling the model. The compile 
function is as follows: The word “sgd” denotes a random regression ratio. In the 
second line, “binary_crossentropy” is defined as a loss function for the outputs 
with the values 1 or 0—finally, a precision tracking process. The second phase 
includes the training process by calling the model to specify the data we want 
to train the network on, namely X_train and Y_train, and then setting the mini-
batch size at 32 and choosing the training time epochs = 100. With ten iterations. 
Finally, we decide on our verification data which leads measure model perfor-
mance that can verify at each point of the verification data.

Packet sniffer: Enter the interface’s name to sniff node information that can be seen 
now.

Training and testing our neural network: Enter the name of the CSV data-
set file you wish to use. If you want to load a previous model, enter “y” and the 
model’s name. Otherwise, just press Enter. Based on the size of the dataset and 

Fig. 2  Proposed framework for detection of routing attack of RPL-based IoT networks
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model topology, the process may take a bit of time. Once completed, enter “y” to 
see the weights and intersections of the model after training, input “y” again to be 
saved model (end as “.sav,” must).

Data viewer: It allows displaying data within a dataset. Enter the name of (.CSV) 
dataset that you would display, input “a” to see all, input “n” to see numeric data 
only, and “c” to see categorical data only.

Live deep neural network: DNN uses a trainer to detect routing attacks from 
the menu. Enter the name of the interface that would detect RPL attacks when the 
input of the trained model’s file name, as that will run until stopped or an attack is 
detected.

Visualizing loss and accuracy: Displays a visual representation of how the ANN 
model sounds. It can change code, currently showing an input layer of 9n, two hid-
den layers of 100n, and “1n” as an output layer.

3.2  Data preprocessing

The IRAD dataset has been used in this study for training and testing stages within 
various scenarios. Three datasets samples are used, and each sample contains two 
classes: the malicious and benign samples listed in Table 2 [24]. Therefore, when 
the completion of the simulation stage. The packet capture (PCAP) files have been 
converted into a comma separated value (CSV) format using a Wireshark analyzer 
and developed a preprocessing script for Python data that applies a feature extrac-
tion process for the converted CSV files [24].

3.2.1  Features extraction

This phase aims to reduce the number of dataset features by discarding the original 
overfitting features, creating new features from existing ones, and summarizing the 
most information in raw features. To eliminate the overfitting and get issue-oriented 
attributes to distinguish between routing attack and normal RPL traffic. Moreover, 
it reduces the running of training and validation time. The LDA method reduces the 
dimensions and shows feature samples on a straight line to produce more distinct 
features. The number of extracted features must equal one since each subset has two 
classes of attack and benign [36]. The flow identifiers such as Source IP, destination 
IP, source port, destination port, packet length, time, and protocol type are elimi-
nated to avoid bias toward malicious or legitimate nodes. The IRAD datasets contain 
qualitative and quantitative features. Our learning algorithm allows for quantitative 

Table 2  IRAD datasets values Dataset No. of values (GB)

Hello flood attack 64,178,435 0.75
Version number attack 22,868,210 0.27
Decreased rank attack 49,873,385 0.58



2637

1 3

Deep learning‑based early stage detection (DL‑ESD) for routing…

values only. However, we applied feature conversion qualitative features to convert 
its integrated format. Thus, the selected features such as DAO are used for unicast-
ing destination information according to the parents selected.

In RPL also, DIO is the message type. It holds the current sequence for the node 
and uses the specified metrics as distance or hop count to decide the optimal route 
over the base node. DIS is another message form, and nodes use DIS to join WSN. 
Other types of IRAD datasets are RPL nodes that are simulated data nodes. Firstly, 
we have calculated several transmitted and received packets for every node in 100 s 
in the scheduled time and then split these values into 1000 ms to obtain each node’s 
DIO transmission and receiving rates (DTR, DRR), respectively. In all time ranges, 
the time it takes for each node to be sent and received is calculated. It can also cal-
culate the total transmission time and receiving time by adding up each transmission 
and receiving time, a 1000 ms data packet and each node’s transmission and receiv-
ing time. The number of control data packets was calculated in the window size for 
each node and extracted features as per the steps outlined above. The benign and 
hostile datasets have the same structure when mixed.

3.2.2  Features normalization

Normalization is one of the most used methods for shifting values between 0 and 
1 in a given range. It cleans up the data and lowers bias, resulting in high detection 
accuracy and improving the performance and training stability of the model [37]. 
Thus, we have performed feature normalization to drag datasets into the same range. 
The min–max scaling methods proved the easiest, most intuitive, and more flexible 
for normalizing the values in the selected features, which X* is the new feature from 
0 to 1, RPL.FEATURES is the original feature value and RPL.FEATUREmin and 
RPL.FEATUREmax are the maximum and minimum values of the selected features 
as shown in Eq. (1), respectively.

Each feature is imposed separately on the standard quintile conversion. The goal 
of the transformation is to disperse marginal values of DAO, DTR, and Trickle tim-
ers reset features, which could alter the connection between values [38]. The best 
nine features for training and testing have been chosen after data normalization and 
offset, including DIS, DIO, and DAO for transmitted and received 6LoWPAN attrib-
utes with high scores as shown in Fig. 3a–c. Finally, all concatenated datasets have 
different network topologies for each attack.

3.3  Selection of importance features

As the aforementioned result of steps, the importance features were selected by the 
strongest relationship with the output variable and have been selected by scikit-
learn, removing the common and irrelevant features. The features are adjusted based 

(1)X∗ =

(

RPL.FEATURE − RPL.FEATURE
min

)

(

RPL.FEATURE
max

− RPL.FEATURE
min

)
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on the DIO, DAO, and 6LoWPAN characteristics with comprehensive detection, as 
listed in Table 3. We addressed the missing values in Pandas DataFrame and use 
a function that is null () and not null (). Both functions help in checking whether 
a value is NaN or not. This function can also be used in Pandas series to find null 
values in a series and then split the dataset into training and test sets. The important 
features can use to enhance the prediction models. That can apply to selecting these 
features to keep the highest scores or remove the lowest scores. Figure 3a–c depicts 
the score of the best nine features after computing its correlation and variance analy-
sis. The ablation experiments have been applied for 18 features using the Pearson 
coefficient correlation in each phase. Some features were subjected to measuring the 

Fig. 3  Feature selection and importance of data preprocessing

Table 3  Selection of the important features

No. Features Detected attack Min–max (X*)

1 Reception rate HF, VN 0.00668793e−05
2 Transmission rate HF, DR, and VN 0.78469016e−05
3 Rcv average per sec HF, DR,  and  VN 0.67000000e−01
4 Rcv total duration Per sec HF, DR,  and  VN 1.00000000e−03
5 DAO DR 0.99997274e−01
6 DIS DR  and  VN 1.00000000e+00
7 Trans total duration per sec HF, VN 0.03000000e−01
8 DIO HF, DR,  and  VN 0.01000000e−01
9 TR/RR HF, DR,  and  VN 0.45000000e−01
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correlation with the others, the results indicate that the nine features are considered 
with a high level of dependence, whereas further experiments indicate to the lack of 
correlation in other features. The PCC (r) for variables x and y is calculated using 
Eq. (2)

The important features selected for the three attacks rely on the packets transmis-
sion rate and reception average for 6LoWPAN protocol and the DIO control mes-
sages. The important features were selected using a combination of deep neural net-
works, Pearson correlation coefficients, and histograms [39]. The extracted features’ 
value was assessed using the DNN technique to determine the optimal number of 
neurons needed in the network, bagging the means to combine unbiased and noisy 
variables to create a model with a lower variance. Therefore, the analysis has been 
conducted on selected features using MLP classifier, a feed-forward with at least 
three-node layers in ANN. For MLP classifier, only one hidden layer multilayer per-
ceptron is utilized, relying on different activation functions.

3.4  Deep neural network (DNN)

The hidden layers have been decided in the DL-ESD model based on our experimen-
tal approach. We added the independent variables as input values (X) and dependent 
variables output values (0, 1) divided by 2. The network has been tuned by adding 
the extra nodes to reach optimal results with two hidden layers. Therefore, we tested 
the model’s accuracy by varying the number of layers and selecting the one that 
produces the best result. The neural network consists of 4 layers; the input layer has 
nine neurons. The output layer has just two neurons as the last layer; this is called a 
regression model as depicted in Fig. 4. The first hidden layer includes 100 neurons 
and 100 neurons in the second hidden layer. ReLU activation function is used in 
hidden’s layers. In contrast, the sigmoid function utilizes in the output layer as it is 
known that network training involves identifying the network model as a structure 
and then finding the best values from the data to fill in the model. Before starting 
training, the dataset is split again at a rate of 0.3 as a validation dataset to adjust the 
model’s training performance.

Let X = X =
{

X1,X2,X3,… ,Xn

}

 be the input vector with n = 9, the steps are used 
to enter the product sum activation function “SOP” to calculate the value of “S” 
of “X” as input values for our features as shown in  Eq.  (3) and “W” to measure 
weights. However, the nonlinear activation function is represented by A(.) and wi 
and bi  indicate the weights and bias of hidden layers i as Eq. (4) and the activation 
function ReLU is used in hidden layers, while the Eq. (5) shows the mathematical 
representation in the neuron that achieved ANN as illustrated in Eq. (6)

(2)R =
n(
∑

xy) − (
∑

x)(
∑

y)
�

[n
∑

x2 −
�
∑

x)2
�

[n
∑

y2 −
�
∑

y)2
�.

(3)S = X1 ∗ W1 + X2 ∗ W2 + b
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To enhance the measurement accuracy in the output layer, we used the ReLU and 
Tanh functions, but the accuracy rate is ineffective as it exceeds 65.3% and 55.8%. 
Besides, the sigmoid function has a distinct “S” curve and a mathematical repre-
sentation for ReLU and Tanh function in binary classification. After (7) sigmoid 
function is used in the output layer, our model’s accuracy exceeds 98.98%. We also 
decrease the sharp increase by nearly 62–98% during training phases by applying 
regularization and dropout. The randomly selected nodes increase additional time 
and cost to drop out in each stage. As a result, the performance of our deep lay-
ers is significantly reduced. In other words, when handling large datasets, interac-
tions between neurons almost always result in overfitting. We also apply dropout 
and regularization for these reasons. As in [37], Keras is used as a framework for 
deep learning because it includes several advantages, such as its modularity makes 
it easy to construct and test complex neural networks. Firstly, Keras is a powerful, 
easy-to-use Python library. Secondly, it is a high-level API for building and training 
DL models. Therefore, it makes it possible to create deep neural networks quickly.

(4)Hi(x) = A
(

wT
i
x + bi

)

(5)ReLU(x) = max(0,X)

(6)Y =
∑

(inputs) ∗ (weights) + bias

(7)Y =
1

1 + e−x

Fig. 4  Structure of our deep neural network
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DNN

DL-ESD network optimization Adjust Adam Optimizer

Tensorflow also includes several implementations for creating a complex DL 
model. In the training process, the datasets were shuttled to optimize the deep learn-
ing model performance and avoid overfitting [40]. The preprocessed dataset is split 
into x_train and Y_test. The first, X, is the unlabeled portion, and Y is the second 
portion. More specifically, Y is the supervised learning portion of our model that 

(8)Output = f (0, 1)
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makes learning algorithms. X and Y are divided into X_train, X_test, Y_train, and 
Y_test. Train parts are utilized in the training section, while test components meas-
ure the training process performance.

4  Experimental results and evaluation

The primary objectives of this research are to develop methods for RPL attack 
detection to improve prediction accuracy rates in IoT networks with low error. As 
the outcome is actual, the system prediction is true; otherwise, it is all false. This 
case is called positive if the forecast is related to the attack. Otherwise, it is negative. 
Therefore, there are four logical possibilities: true and safe prediction, correct and 
attack, false-negative and safe attack, respectively, where: True Positive “TP,” True 
Negative “TN,” False Positive “FP,” and False Negative “FN.” The classification 
error is the ratio of incorrect predictions to totality prediction numbers [19, 41].

Accuracy (ACC): is the percentage of true detection over total data instances.

Precision: represents how many of the returned attacks are correct.

Recall: measures the ratio between a true positive and a total of both a true posi-
tive and a false negative.

F1 score: is the weighted harmonic mean of the precision and recall and reflects 
the balance between P and R.

Upon nature and amount of the dataset, we applied different ratios and picked the 
75–25 ratio to give the best performance result. Also, the picked ratio is proportional 
to the midsize of our data into 75% for the training set and 25% for the testing set to 
evaluate the provided model with a biased evaluation fit on the training dataset. Fig-
ure 5a shows that training epochs rate is very appropriate and it also  can be inferred 
that the DL-ESD model has performed best in training and testing accuracy.

Table 7 represents routing attack has various methods of feature selection. The 
features have been applied to each problem in the dataset and fed to the neural net-
work. It can be seen that the MLP technique has high accuracy, precision, recall, 
and F1 score values performed well. Also, Fig. 5b depicts the loss rate values to the 
model parameters by adjusting the weight vector values through various optimiza-
tion approaches that have reduced the training time. It means how efficiently our 

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Precision =
TP

TP + FP

(11)Recall =
TP

TP + FN

(12)F1 = 2∗
(Precision ∗ Recall)

(Precision + Recall)
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model behaves after every optimization iteration, in which the weights change in 
each iteration of 10 iterations. In training phase, the higher number of neurons and 
epoch, the higher accuracy, and the lower the loss rate. In Fig. 6, the ROC curve 
close observation of performance matrices shows the ability of sensitivity to cor-
rectly predict malicious nodes as harmful nodes while specificity ability to predict 
normal nodes as malicious nodes correctly.

4.1  Confusion matrix

The detection accuracy rate of the DL-ESD scheme success should be high, but the 
false-positive rate should be lower [42]. The misclassification rate is directly pro-
portional to the false alarm rate, as presented in Tables 4 and 5. The classification 
results illustrate high performance in our scheme. Figure 7a shows that the bias rate 
of the safety packets is increasing, and the false-negative rate of the total hostile 

Fig. 5  Measuring performance of training and testing epochs: a accuracy rate of DL-ESD, b loss error of 
DL-ESD

Fig. 6  Receiver operating 
characteristic
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packets is decreasing; it can be summarized that the classifier understands the posi-
tive value of one class from another.

Figure 7b illustrates the sensitive rate of the classifier and the simple raise in 
the bias ratio to the positive values. In contrast, the classifier decreases the sensi-
tive rate of false negative for a package rate. It can be summarized that the classi-
fier can understand the positive value of a class from another.

Table 4  Prediction rate of 
training stage

Predicted class

Actual class 718,861 67
70 2671

Table 5  Prediction rate of 
testing stage

Predicted class

Actual class 308,032 81
75 1099

Fig. 7  Overall performance of measure the detection ratio of model: a precision, b recall, c F1 score, and 
d confusion matrix



2645

1 3

Deep learning‑based early stage detection (DL‑ESD) for routing…

Figure 7c exhibits the F1 score as the weighted average of the sensitivity and 
precision rate for positive and negative values. F1 is usually more effective than 
precision, especially if the class distribution is uneven. But this model reflects the 
balance between P and R classes, which the confusion matrix indicates to uneven 
class distribution. Thus, that will be contributed much to classifier performance.

The proposed detection method effectively achieves the highest TPs, TNs, and 
lowest instances of FNs. Figure 7d indicates that the prediction ratio for TP’s input 
values is the classification result, and TN is largely high. At the same time, the false 
committed by the classifier for (FN, FP) is low. It also indicates that the classifier 
performance and the expected ratios are satisfactory. The detection rate with training 
confusion metrics and multiple datasets are listed in Table 6. The binary classifica-
tion approach is obtained for training and testing stages based on DNN technique. 
Due to the inability to measure the bias ratio among the classes in the classifier, it is 
necessary to rely on classification reports to obtain a deeper concept of the strength 
and performance of the classifier more than the accuracy. The experimental results 
in class 0 and class 1 classification report indicate that the MLP classifier is more 
biased toward class 0 in training and testing, as listed in Tables 6 and 7.

4.2  Training and testing analysis

The ablation experiments drive the enhancement of the neural network performance 
based on the correlation coefficient to considered features. The features are split into 
different levels accordingly to the node’s behavior. We have applied the incremental 
training stage and conducted several tests over IRAD preprocessed features, includ-
ing the multiclass categories of three attacks and normal nodes for binary classifica-
tion based on MLP classifier; we also compared MLP with shallow machine learn-
ing, KNN, SVM, NB, LR, and MLP techniques and state-of-the-art routing attacks. 
The test is applied using the weights learned during the training stage. This sec-
tion reports the average of running the training model 10 iterations. The compari-
son results show the effectiveness of early detection and identify the best parent in 

Table 6  Training classification 
from confusion matrices for our 
model

Class Precision Recall F1 score Support

Benign 1.00 1.00 1.00 718,925
Attack 0.96 0.97 0.97 2744
Avg 1.00 1.00 1.00 721,669

Table 7  Testing classification 
from confusion metrics for our 
model

Class Precision Recall F1 score Support

Benign 1.00 1.00 1.00 308,116
Attack 0.97 0.97 0.99 1171
Avg 1.00 1.00 1.00 1171
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the DODAG construction to keep the IoT network in service. Table 8 and Fig. 8a 
summarize the training and testing accuracy results compared to supervised DL 
algorithms.

The training accuracy of HF demonstrates that MLP technique achieves a per-
formance reach of 0.992% higher than the four techniques within 78 ms of train-
ing duration and up to 0.5% of testing period. In Fig. 8b, the DR sample indi-
cates that among both MLP and KNN a relative parity of training accuracy with 
an approximate increase of MLP with 0.98% within 33 ms as an optimal time 
is observed. In Fig.  8c, the MLP technique in VN shows high detection accu-
racy of 0.97% compared to other methods within 46% ms of training duration. In 
order to evaluate the robustness and effectiveness, Fig. 8d compares the test per-
formance accuracy of our classifier with four other classifiers K-nearest neigh-
bors (KNN), logistic regression (LR), support vector machine (SVM), and naïve 
Bayes (NB). HF in SVM has a lower accuracy than the other classifier. There-
fore, it cannot be recommended because its learning time is also high, while the 
MLP classifier has higher accuracy and lowest time, as listed in Table 8.

Figure 8e shows the test performance accuracy compared with the other four 
classifiers; the test accuracy of NB and LR is low compared to the other classi-
fier. Therefore, they cannot be recommended because its learning time is high, 
while the MLP classifier is higher accuracy and lowest time, as listed in Table 8.

Figure 8f shows the test performance accuracy compared with four other clas-
sifiers; the test accuracy of five classifiers is uneven and has a slight improve-
ment from each other. Therefore, they can be recommended due to good learn-
ing time, as shown in Table 8’..

Table 8  Calculating scoring time during the training and testing stages of our approach based on binary 
classification compared to different ML techniques in our work

Attack Dataset rows Classifier Training (ms) Testing (ms)

Hello flood (HF) 1,048,576 KNN 94.05 7.30
SVM 205 22.05
NB 120.40 33.02
LR 8033 120.84
MLP 78.32 5.22

Decreased rank (DR) 1,047,821 KNN 56.45 10.03
SVM 42.128 14.81
NB 42.043 11.70
LR 6140 168.14
MLP 33.02 8.05
KNN 0 21.04

Version number (VN) 1,048,576 SVM 311.52 33.07
NB 4065.10 78.91
LR 2601.76 42.41
MLP 46.40 15.10
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4.3  Performance discussion

Upon the analysis methods in Sect.  4, the performance results show a speed and 
decrease in epoch time, which is reflected in the perfect performance of the model. 
Table 9 compares the performance metrics for our model to recent studies that gen-
erated IRAD dataset, and other studies that used the same dataset. DNN model 
obtained the best performance of HF attack through training the detection model 
using five features, the DR and VN attacks were trained using ten features, and the 
performance accuracy of DR and VN models is higher with 0.94 and 0.95 F1 score. 

Fig. 8  Comparison of training and testing accuracy of our classifier with other techniques: training accu-
racy of HF (a), training accuracy of DR (b), training accuracy of VN (c), as well as the testing accuracy 
of HF (d), training accuracy of DR (e), and testing accuracy of VN (f)
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Whereas, our model used nine features for each attack during training with uneven 
correlation level. ML-RPL used binary classification and multi-classification for  a 
sample of IRAD dataset is DR attack. In the binary classification, the training accu-
racy reached 97.17% and 97.01% for testing accuracy, while in multi-classification 
used the same parameters with SoftMax as the activation function, the training and 
testing accuracy of the model obtained 96.59% and 96.39% for testing phase. GAN 
is used to detect any fake samples that could confuse the learning cycle of the detec-
tion model. The performance measuring is compared between GAN-C and an inde-
pendent SVM classifier to select the proper model in IoT.

The training results showed slight improvement, although the proposed model 
evaluated the performance compared to one classifier. It took a lower number of 
epochs (about 50) to reach an accuracy of 91%. In contrast, our proposed classifier 
evaluated the performance accuracy with four algorithms. It leaves no doubt that 
our model is more efficient. In the same context, Table 10 states that the DL-ESD 
scheme has the highest accuracy compared with the DNN [24], the author of the 
IRAD dataset used in our study.

Almusaylim [10] proposed a security routing protocol (SRPL-RP) for RPL 
rank and version number attacks. The proposed protocol detects and isolates 
attacks and adds them to the blocklist. The detection is based on a comparison of 
the ranking mechanism. The analysis results indicate that the PDR packet deliv-
ery rate of (98.48%) and SRPL-RP achieved an accuracy rate of (99.92%) under 
routing attacks. A recent study [29] suggested a machine learning model consist-
ing of three steps: data collection, feature extraction, and two classification meth-
ods. The decreased rank IRAD dataset has been used to train ML-RPL model for 
new features that have been added manually. MLRP indicates that the accuracy 
rate is up (97%). The authors depend on actual sensor code through the data gen-
erated in the simulation scenarios, and the performance accuracy reached 96%. 
CCN method [19] predicts suspicious traffic on IoT networks, and the authors 
generated an IoT dataset consisting of five datasets. Due to the lack of studies that 
use the IRAD dataset, we chose two subsets to compare with the used datasets in 
our research. The results indicate a relative decrease in the detection of version 
number motes; the detection accuracy rate in both HF and VN attacks reached 
93.63%. In iIoT, [21] is based on Industrial IoT networks that detect hello flood, 

Table 10  Comparison classification results of our model with state-of-the-art studies

Rank Methods DL type Accuracy (%) Loss (%) Ref. no.

7 GAN-C Unsupervised 91 9.08 [20]
6 iIoT Unsupervised 92.00 7.35 [21]
5 CNN Supervised 93.63 6.02 [19]
4 DNN Supervised 96.53 4.11 [24]
3 ML-RPL Supervised 97.01 3 [29]
2 SRPL-RP Hybrid 98.30 1.70 [10]
1 DL-ESD Supervised 98.85 2.5 –
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version number, black hole, and sinkhole attacks. The performance accuracy 
among the Interval rate (200–1000  s) of hello flood indicates 92%, and version 
number reaches 93%, respectively.

GAN-C model [20] takes adversarial training into account and has created a 
generative adversarial network classifier (GAN-C) with support vector machine 
(SVM). The study adopts DL parallel learning, and the results show a relatively 
much lower level of training to achieve an appreciable detection accuracy of 91%. 
What gives our adopted mechanism a preference over the proposed mechanisms 
is that DL-ESD can find easy arithmetic solutions at a high rate of efficiency, 
as the detection accuracy has reached (98.85%), the precision rate of (97.50%), 
recall rate of (98.33%), and F1 score rate of (97.01%), model performance values 
are evidence of the model scalability.

5  Conclusion and future work

This study proves that deep learning techniques are more efficient in complex 
security issues in IoT security. A new scheme called DL-ESD has been per-
formed to detect routing attacks early. The LDA proved a potential to maximize 
the distances between the mean classes (between classes) and reduce the distance 
between the mean of the same class (intraclass), which produced more distinct 
features, it was implemented with the MLP classification algorithm. At the same 
time, the data was normalized using min–max scaling, which eliminated the 
worst overfittings of fewer data points in training samples. The important fea-
tures are based on the highest correlation level features. The introduced approach 
applies the binary classification method in lightweight deep learning techniques. 
It can classify the behavior as a normal node or routing attack as available in the 
processed dataset. Therefore, we  observe a high enhancement in MLP classifier 
performance, it  shows high accuracy in testing and training and a low runtime 
compared to other classifiers. The results of DL-ESD model performance also 
show better detection efficiency. This scheme requires firmware adjustment on 
IoT objects, and its computational complexity is still low. In future work, we plan 
to enhance the detection range using a better technique based on edge computing 
environment of widely comprehensive routing attacks in RPL protocol.
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