
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:2180–2211
https://doi.org/10.1007/s11227-022-04741-8

1 3

Toward a context‑driven deployment optimization
for embedded systems: a product line approach

Abdelhakim Baouya1 · Otmane Ait Mohamed2 · Samir Ouchani3

Accepted: 21 July 2022 / Published online: 8 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Producing a large family of resource-constrained multi-processing systems on chips
(MPSoC) is challenging, and the existing techniques are generally geared toward a
single product. When they are leveraged for a variety of products, they are expen-
sive and complex. Further in the industry, a considerable lack of analysis support
at the architectural level induces a strong dependency on the experiences and pref-
erences of the designer. This paper proposes a formal foundation and analysis of
MPSoC product lines based on a featured transition system (FTS) to express the
variety of products. First, features diagrams are selected to model MPSoC product
lines, which facilitate capturing its semantics as FTS. To this end, the probabilistic
model checker verifies the resulting FTS that is decorated with tasks characteristics
and processors’ failure probability. The experimental results indicate that the formal
approach offers quantitative results on the relevant product that optimizes resource
usage when exploring the product family.

Keywords Product derivation · Model checking · Reliability · Product usage
contexts · MPSoC

 * Abdelhakim Baouya
 abdelhakim.baouya@univ-grenoble-alpes.fr; abdelhakim.baouya@gmail.com

 Otmane Ait Mohamed
 otmane.aitmohamed@concordia.ca

 Samir Ouchani
 souchani@cesi.fr

1 Université Grenoble Alpes, VERIMAG, Grenoble, France
2 ECE Department, Concordia University, Montreal, Canada
3 Ecole d’Ingénieur CESI, Aix-en-Provence, France

http://orcid.org/0000-0003-2182-7501
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04741-8&domain=pdf

2181

1 3

Toward a context‑driven deployment optimization for embedded…

1 Introduction

Efficient utilization of computation components in Multi-Processing System-On-
Chip (MPSoC) is still a primary issue. Design-Space Exploration (DSE) techniques
[46] have been proposed to automatically explore the driven alternative architectures
by various system quality attributes (i.e., communication traffic, power, energy), and
reporting the near-optimal ones. This daunting process is handled at different levels
of abstraction in the design flow [27], and its efficiency relies on the used technique
to evaluate the design point at that abstraction level [20, 41]. Architectural DSE,
referred to as deployment [3] independently to physical structures, usually focuses
on the overall system design and its quality attributes (i.e., the number of processing
units, allocation). In contrast, micro-architecture DSE focused on the internal com-
ponent architecture space (i.e., bus arbiter policy, processor architecture). However,
although the evaluation tools at a low level can perform a cycle-accurate analysis [5,
43], it is still challenging to exploit them due to (i) a large number of options and
configuration parameters values and (ii) the prohibitively high total run-time.

Based on the Product Line (PL) [8] philosophy, Feature Diagrams (FDs) are a de
facto standard where diverse platform variants are identified upfront, and a model
of their differences and commonalities is created. Based on the hardware platform
configuration provided by Meedeniya et al. [35], the feature diagram for the MPSoC
PL shown in Fig. 1 depicts all possible MPSoC configurations (called “products”).
Also, features selection for a particular product is not made arbitrarily. The product
usage contexts often dictate features selection. The notion of context variability is
introduced by [21] and [47] to identify the features selection context.

Fig. 1 System feature diagram of the MPSoC PL

2182 A. Baouya et al.

1 3

In this paper, the MPSoC product line is divided into two kinds of lines: system
and context. The former portrays the hardware platform features, whereas the latter
describes the conditional assembly. The study shines a spotlight on the decision-
making at the architectural level by using probabilistic model checking to produce
a reliable product configuration that optimizes tasks assignment and prunes all pos-
sible design alternatives that do not meet given constraints.

1.1 Variability‑intensive system

According to Van Gurp et al. [48], “Variability” is commonly understood as
the ability of a software system or software artifacts (i.e., components, modules) to
be adapted so that they fit a specific context. Building on the definition of variabil-
ity, Variability-intensive System [34] is a system where variability and related chal-
lenges contribute essential influences to software analysis, design, implementation,
and evolution. When designed and appropriately implemented, variability-intensive
systems can significantly improve development costs, speed, and quality compared
to developing and maintaining single products. The variability-intensive system
includes product lines, configurable or customizable single systems [17], context-
aware mobile applications [32], or OSGi1 bundles.

1.2 Problem statement

By relying on the deployment studied in the state-of-the-art [26, 31, 38, 51]. All
of them state the lack of deployment efficiency in an MPSOC. Sengupta et al. [44]
and Conrady et al. [13] rely mainly on meta-heuristic approaches, especially Genetic
algorithms, to deploy a processing element. Still, unfortunately, the process requires
considerable processing time and memory capacities to come up with only an
approximate solution. While other approaches [26, 31] focus more on the low-level
view of MPSOC, however, they do not consider the different layers of MPSOC like
drivers and other embedded software.

1.3 Current challenges

A product of the MPSoC product line is specified by features encompassing a sub-
set of processing and networking elements. A literature search [49] revealed how to
model products by means of transitions system (TS) as shown in Fig. 3a, b. Both TS
are produced randomly and do not rely on some selection criteria, the user selects
the physical unit (e.g., transition (� = �)

���
�������������→ (� = �) in Fig. 3a) modeled as states

transition and then makes the deployment (e.g., transition (� = �)
���������
�������������������������������������→ (� = �)

in Fig. 3a) modeled also as states transition. The satisfaction is based on the user
preference. The first variant in Fig. 3a contains two processors and one bus, whereas
the second one, the platform is constituted of three processors and two buses (i.e.,

1 Open Services Gateway initiative.

2183

1 3

Toward a context‑driven deployment optimization for embedded…

we refer by ��� to processors, ��� to buses, and �� to tasks). No logic is applied for
selection criteria. Although the problem related to MPSoC variability-space explo-
ration is addressed in several works Mendis et al. [36], Xie et al. [51], Malazgirt and
Yurdakul [31], none has provided accurate means for checking variability-intensive
MPSoC over temporal properties concerning its usage context.

1.4 Contributions

The paper relies on the formalism of the Featured Transition System (FTS) proposed
by Classen et al. [11] that captures all products at a glance. The model is fed to
a probabilistic model checker that provides critical insights on the optimal deploy-
ment, such as the number of allocated processing elements, while considering reli-
ability as an objective. The model is enhanced with quality metrics related to the
operational profile of product components, such as the processing speed and data
sizes that are requested to be served by the processing elements.

Our approach is composed of two main phases as portrayed in Fig. 4—FTS con-
struction and quantitative assessment—and validation phase. In the first phase, we
combine the system, the context’s feature diagram, the task’s graph, and the compo-
nents’ reliability obtained from quality metrics [37] to build the FTS in the PRISM
input language. The output of this phase is checked by STORM tool [14], a model
checker that offers better performance than traditional symbolic model checkers. In
particular, we identified a set of properties that can be expressed in a probabilistic
fashion (i.e., in PCTL) to address the following question: “How reliable is the map-
ping of software tasks on an MPSoC platform.” The validation phase considers tasks
and hardware platform to perform simulation using the SCoPE tool that opens per-
spectives of integration with the TASTE tool [2]. A list of acronyms used in the rest
of the article is given in Table 1. In a nutshell, we summarize the main contribution
of our work.

• Providing the main concepts needed to understand MPSOC components and fea-
ture diagrams.

• Formalizing the deployment problem in MPSOC in an understandable and easy
way.

• Presenting the theoretical foundation of PTS and FTS as well as describing their
semantics in PRISM.

• Developing an approach that runs three phases (construction, verification, vali-
dation) to check the correct and precise deployment of the different components
in MPSoC.

• Experimenting and validating our developed approach on a real and complex use
case.

The paper is organized as follows. Section 2 reviews the preliminaries, and
Sect. 3 introduces the needed concepts related to our reference architecture. Then,
Sect. 4 develops our approach regarding tasks assignment and the FTS construc-
tion and verification. As an application, a case study from an automotive area in

2184 A. Baouya et al.

1 3

Sect. 5 demonstrates the efficacy of the proposed approach. Sections 6 and 7 present
an overview of the related work and concludes the paper, respectively.

2 Preliminaries

This section provides the required concepts forming the basics of our contribution.

2.1 Probabilistic transition system

Probabilistic Transition Systems (PTSs) [18] are a modeling formalism that extends
classical Transition Systems (TSs) to exhibit probabilistic and nondeterministic fea-
tures. Definition 1 formally illustrates a PTS where ����(�) denotes the set of con-
vex distributions over the set of states S and �= [..., �� ↦ ��, ...] is a distribution in
����(�) that assigns a probability �(��) = �� to the state �� ∈ �.

Definition 1 (Probabilistic Transition System) A Probabilistic transition system is a
tuple � = ⟨�̄, �, �,Σ , 𝛿⟩:

• �̄ is an initial state, such that �̄ ∈ �,
• � is a set of states,
• � ∶ � → ��� is a labeling function that assigns each state � ∈ � to a set of atomic

propositions taken from the set of atomic propositions (��),
• Σ is a finite set of actions,
• �∶ � × Σ → ����(�) is a probabilistic transition function assigning for each � ∈ �

and � ∈ Σ a probabilistic distribution � ∈ ����(�).

For PTS’s composition, this concept is modeled by the parallel composition as
stipulated in Definition 2. During synchronization, each PTS resolves its probabilis-
tic choice independently. For transitions, ��

�

������→ �� and ��
�

������→ �� that synchronize in �
then the composed state (�′�, �′�) is reached from the state (��, ��) with probability
(��(�

�
�) × ��(�

�
�)). In the no synchronization case, a PTS takes a transition where

the other remains in its current state with probability one.

Definition 2 (Parallel composition) The parallel composition of two
PTSs: �� = ⟨�̄�, ��, ��,Σ�, 𝛿�⟩ and �� = ⟨�̄�, ��, ��,Σ�, 𝛿�⟩ is a PTS
� = ⟨(�̄�, �̄�), �� × ��, ��� ∪ ��� ,Σ� ∪ Σ�,𝛿⟩ where: �∶ �� × ��,Σ� ∪ Σ� is a set of
transitions (��, ��)

�

������→ �� × �� such that one of the following requirements is met.

1. ��
�

������→ �� , ��
�

������→ �� , and � ∈ Σ� ∩ Σ�,
2. ��

�

������→ �� , �� = [�� ↦ �] , and � ∈ Σ� ⧵ Σ�,
3. ��= [�� ↦ �] , ��

�

������→ �� , and � ∈ Σ� ⧵ Σ�.

Example 1 To illustrate the applicability of PTS to model dependability, we rely on
the case study presented in [28]. The system comprises a processor (M) which reads

2185

1 3

Toward a context‑driven deployment optimization for embedded…

and processes data from three sensors (�� , �� and ��) and uses them to control two
actuators (�� and ��). A concrete example of such a system might be a gas boiler,
where the sensors are thermostats and the actuators are valves. Any of the three
sensors can fail with probability � expressed by transitions (� = �) → (� = �) and
(� = �) → (� = �) in Fig. 5a, but they are used in triple modular redundancy: the
processor can determine sufficient information to proceed provided two of the three
are functional. If more than one becomes unavailable the system is shut down. In
similar fashion, it is sufficient for only one of the two actuators to be working, but
if this is not the case, the system is shut down. The processor can also fail (Fig. 5b).
This can be either a permanent fault expressed by transition (� = �) → (� = �) with
probability �� or a transient fault expressed by transition (� = �) → (� = �) with
probability �� . In the latter case, the situation can be rectified automatically by the
processor rebooting itself as expressed by transition (� = �) → (� = �) . In either
case, the system is automatically shut down. The graphical representation of PTS
associated with the sensor and processor behavior is portrayed in Fig. 5.

2.2 Property specification

The properties specification language PCTL associated with PTSs is expressed by
the following BNF grammar:

Where “ap” is an atomic proposition, � ∈ ℕ , � ∈]�, �[and ⋈∈ { < , ≤ , > , ≥ } .
“ ∧ ” represents the conjunction operator and “ ¬ ” is the negation operator. The proba-
bilistic path operator �

⋈�[�] provides the probability to satisfy a path formula �
with the constraint ⋈ � . “X,” “ ∪� ” and “ ∪ ” are the next, the bounded until and the
until temporal logic operators, respectively. Other operators can be derived such as:

• ����� ≡ ¬����,
• �� ∨ �� ≡ ¬(¬�� ∧ ¬��),
• �� ⇒ �� ≡ ¬�� ∨ �� ,
• �� ⇔ �� ≡ �� ⇒ �� ∧ �� ⇒ �� ,
• Future: �� ≡ ���� ∪ � or �≤�� ≡ ���� ∪≤� � where � ≥ �,
• Generally: �� ≡ ¬(�¬�) or �≤�� ≡ ¬(�≤�¬�) and � ≥ �.
• �

≥�[��] = �
≤�−�[�¬�]

Below, two requirements (queries) of the system presented in Fig. 5 are expressed in
PCTL and illustrated in the natural language.

• �=?[(� < �)&&(� = �)] “The probability that the number of working sensors has
dropped below 2 and the processor is functioning (and so can report the fail-
ure).”

�∶∶ = ���� | �� | �� ∧ �� | ¬� | �
⋈�[�]

�∶∶ = �� | �� ∪
≤� �� | �

��

2186 A. Baouya et al.

1 3

Fig. 2 Context feature diagram of the MPSoC PL

Fig. 3 TS products generated
from Figs. 1 and 2

(a)

(b)

2187

1 3

Toward a context‑driven deployment optimization for embedded…

• �=?[(� = �) ∪ (� = �)] “The probability that the processor will be rebooted after
a transient failure.”

To specify a satisfaction relation of a PCTL formula in a state “s,” a class of adver-
saries has been defined [18] to solve the nondeterministic choice in a PTS. Hence, a
PCTL formula should be satisfied under all adversaries. The satisfaction relation of
a PCTL formula is denoted by “ ⊨ ” and defined as follows, where “s” is a state and
“ � ” is a path (sequence of states). In this paper, the path “ � ” is obtained by a memo-
ryless adversary [18].

• � ⊨ ���� is always satisfied,
• � ⊨ �� ⇔ �� ∈ �(�) and L is a labeling function,
• � ⊨ 𝜑� ∧ 𝜑� ⇔ � ⊨ 𝜑� ∧ � ⊨ 𝜑� ,
• � ⊨ ¬𝜑 ⇔ � ⊭ 𝜑,
• � ⊨ �

⋈�[𝜓] ⇔ �({𝜋|𝜋 ⊨ 𝜓}) ⋈ � such that the probability of the path �= ��...��
is given by �(�) =

∏�−�

�=�
�(��, ��+�),

• 𝜋 ⊨ �𝜑 ⇔ 𝜋(�) ⊨ 𝜑 where �(�) is the second state of �
• 𝜋 ⊨ 𝜑� ∪

≤� 𝜑� ⇔ ∃� ≤ � ∶∀� < �,𝜋(�) ⊨ 𝜑� ∧ 𝜋(�) ⊨ 𝜑�,
• 𝜋 ⊨ 𝜑� ∪ 𝜑� ⇔ ∃� ≥ � ∶ 𝜋 ⊨ 𝜑� ∪

≤� 𝜑�.

2.3 Feature diagrams

Product Line (PL) engineering [45] is a method for expressing large-scale systems,
including common and variable features. To express such configuration, FD is dedi-
cated to express variability as depicted in Figs. 1 and 2. A FD has exactly one root
(in the example platform and context). Features have a type: either they are
“mandatory” (e.g., Feature BUS in Fig. 2), stating that they must be selected or
“optional” (e.g., Feature RISC in Fig. 2), stating that may be selected during
the derivation process. Multiple optional features are structured in groups and also
have a type: an “or” group means that at least one of the group’s features has to
be selected, whereas an “And” group requires the selection of all features. A con-
figuration of an FD is said to be valid if it does not contradict any of the constraints
imposed by the context FD.

Table 1 A list of acronyms used in the article

MPSoC Multi-processing systems on chips PL Product line
FD Feature diagram PCTL Probabilistic computation tree logic
LTL Linear-time temporal logic FTS Featured transition system
MDP Markov decision process PTS Probabilistic transition system
RISC Reduced instruction set computer DSE Design space exploration

2188 A. Baouya et al.

1 3

Fig. 4 Proposed methodology for context-driven deployment

2189

1 3

Toward a context‑driven deployment optimization for embedded…

2.4 Context feature diagrams

A system is defined as context-aware if it provides relevant services to the user
depending on the context where the system is evolving. For instance, the adaptation
feature of smartphones that changes the orientation of the screen (landscape/portrait
mode) depends on the phone position. Designers of context-aware systems identify
the relevant context features used to adapt the system behavior. Our approach relies
on the topology (i.e., connectivity map) structure that describes the physical connec-
tions of hardware components. We use “context” variability to model those “con-
text” features intend to be selected or not. The related FD is depicted in Fig. 2. For
instance, depending on the current processing element, multiple processors could be
selected and linked in the same region. If the processing element PE5 is selected,
then multiple successors are available such as: PE3, PE4, PE6, PE3. Also, if the
PE5 and PE6 are selected, in this case one network element, NE3 is selected.

However, contemporary product lines approaches do not distinguish context fea-
tures independently from the system features. According to Capilla et al. [9], one
approach is to model context by anchoring system features in one branch and con-
text features in another, as in Hartmann and Trew [21], Ubayashi et al. [47]. How-
ever, this approach overloads the number of the relationship between both types of
components. The second alternative is to label only those features that relate to con-
text changes as in Mauro et al. [7, 15, 33]. The second alternative is the basis of our
approach, distinguishing system features from context features.

3 FTS formalism

In this section, we recall the basic concepts and definitions that will be used through-
out the paper.

(a)

(b)

Fig. 5 Overall system structure of sensors-processor in Example 1

2190 A. Baouya et al.

1 3

Let � be a set of all features of a variability-intensive system. A specific set of
features � ⊆ � specifies an instance of the variability expressed in the system feature
diagram or product in PL terminology. A variability system is then a set of products,
i.e., a set of sets of features �� ⊆ P(�).

Definition 3 An FD � is a tuple ⟨�, ��⟩ , where � ⊆ � is the set of features and
�� ⊆ P(�) is the set of products; We also write [[�]]��.

In this paper, the behavior of the individual product is represented with probabilis-
tic transition systems (PTS). A PTS is a directed graph where transitions are labeled
with actions. As an example, the semantics of a subset of hardware platform derived
from the �� in Fig. 1 is a combination of processing and networking elements (using
short features names): {{���, ���, ���}, {���, ���, ���}, {���, ���, ���}}.

A configurable product behavior of � is a non-empty infinite sequence
� = �������� with �� ∈ � such that ��

��+�
���������������→ ��+� for all � ≥ � . A path is an execution

from which the information about the transitions has been removed, i.e., , the path �
for the execution � is the sequence ���� … . The ith state in a path � is denoted by �� ,
and the first state being �� . The semantic of a TS, written [[��]]�� , is a set of paths.

Classen et al. [11] propose a Featured Transition System (FTS) to describe the
behavior of all the products of a PL. Features labeling the FTS transitions belong
to the product if and only if the transitions are part of the product behavior. For
instance, the situation in which a transition is present if and only if both features
� and � that are part of the product can be easily modeled with feature expression
� ∧ � Feature expressions are obtained from the context feature diagram. For-
mally, FTS can be described in terms of automata as:

Definition 4 An FTS is a tuple ��� = ⟨�̄, �, �,Σ, 𝛿, �, 𝛾⟩:

• ⟨�̄, �, �,Σ, 𝛿, �, 𝛾⟩ is a PTS,
• d is a feature model, and
• 𝛾 ∶ 𝛿 → ({⊥,⊤}|�| → {⊥,⊤}) is a Boolean function over a set of features labe-

ling each transition with a feature expression.

The behavior of two products introduced in Figs.3a, b of the PL hardware
platform in Fig. 1 can be represented with FTS as in Fig. 6. The feature expres-
sion (i.e., required features to enable the transition) of the transition is shown
next to its actions label, separated by a slash. PE1 is selected when transi-
tion ((� = 10) → (� = 11)) is triggered if and only if the feature expression
(��� ∧ ���) ∨ ((PE3 ∨ PE4 ∨ PE5) ∧ NE1) is stated true.

Feature expression configuration is obtained from the context feature dia-
gram where ��� is part of ������� and ������� . ��� is selected when transi-
tion ((� = ��) → (� = ��)) is triggered if and only if the feature expression
��� ∨ ��� ∨ ��� ∨ ��� is stated true. Feature expression construction is detailed
in Sect. 4.4.

2191

1 3

Toward a context‑driven deployment optimization for embedded…

In the case where processor ��� is selected, two alternatives are available to
select a networking element since the choice is non-deterministic. Two transi-
tions (� = ��) → (� = ��) and (� = ��) → (� = ��) can be fired since the Boolean
feature expressions leading to the selection of NE1: ��� ∨ ��� ∨ ��� ∨ ��� and
NE3: ��� ∨ ��� are evaluated to true, respectively, except the expression leading
to the selection of NE2: ��� ∨ ��� is evaluated to false.

Definition 5 (Projection in FTS) The projection of an FTS fts to a product � ∈ [[�]]
noted ���|� is a PTS pts’=⟨�̄, �, �,Σ, 𝛿, �,𝛾⟩ where 𝛿� = {� ∈ 𝛿|� ⊨ 𝛾(�)}.

The behavior of a particular product of the PL is deduced through a projection.
So, If the feature expression of FTS transitions is not evaluated to be true, then these
transitions are removed. Definition 5 portrays the projection of an FTS.

In the deployment plan of SPL in Fig. 1, e.g., a valid product in the transition
system of Fig. 3b (i.e., projection) is derived randomly where the hardware plat-
form contains a set of physical units (i.e., ���, ���, ���). This is not admitted by
the FTS semantics according to which the platform requires the selection of one

Fig. 6 FTS of software and hardware platform

2192 A. Baouya et al.

1 3

processor from {���, ���, ���, ���, ���, ���} . The choice between the transitions
(� = 10) → (� = 11) , (� = 10) → (� = 14) could be non-deterministic in the first
step of the derivation. Moreover, there are more alternatives during the derivation
process depending on the presence of some physical units (e.g., (� = 10) → (� = 12)
is selected only if the Boolean expression ��� ∨ ��� ∨ ��� ∧ ��� is satisfied).
Finally, one of the product projection corresponds to ���|{��,..,��,���,���,���}.

The FTS represents all products configurations of the PL, and its semantics com-
prises the semantics of all feasible projections. Its formal definition is given below.

Definition 6 (Semantics of FTS)

FTS are meant to represent the configuration (i.e., behavior) of the myriad
instances of the variability-intensive system. A product derivation is driven by the
evaluation of feature expression in FTS. Meanwhile, we do not expect engineers to
write this specification manually. So, context information is employed to enrich our
FTS model. We need to provide an algorithm considering system and context fea-
ture model as inputs to build our FTS.

4 Correct modeling and sound analysis of FTS

In this section, we present FTS modeling using the PRISM language. We use the
STORM model checker to accept PRISM source code as input language. Indeed,
STORM model checker provides a range of different engines that pursue different
approaches to reason on Markov models such as Sparse, Decision Diagram (DD),
Hybrid (combine the Sparse and DD engines), etc. The innovation brought by Storm
Model Checker is the exploration and abstraction-refinement-based engines [6]. The
former is based on the idea of applying techniques from machine learning. On the
fly, it tries to explore parts of the system that contribute most to the model checking
result. The latter starts with a coarse over-approximation of the concrete model. This
abstract model is then analyzed. Then, based on the obtained results, one of two
things happens, either the result carries over to the concrete model and can return
an answer, or refining the abstracted model. In the last case, the abstraction is per-
formed continuously until reaching a particular answer.

4.1 PRISM language

To construct and analyze FTS with STORM [14], it must be specified in PRISM
language. A description of the supported models is provided in [22]. Markov Deci-
sion Process (MDP) is selected because it captures probabilistic systems’ behavior
by supporting non-determinism and uncertainty. FTS requirements are specified by
PCTL temporal logic to express all properties.

[[���]]��� =
⋃

�∈[[�]]��

[[���|�]]���

2193

1 3

Toward a context‑driven deployment optimization for embedded…

Generally, a probabilistic system “ � ” that is described as a PRISM program “ � ”
that comprises a set of “ � ” modules (n > 0), the state of each one is defined by the
evaluation of a countable set of finite-ranging local variables. The global state of the
system is the evaluation of the local variables (��) and the global ones (��) denoted
by � = �� ∪ ��.

The behavior of each module is a set of guarded commands. Generally, a com-
mand takes the following form: [�]� → �� ∶ �� +⋯ + �� ∶ �� , or, [�]� → � ,
which means, for the action “ � ” if the guard “ � ” is true, then, an update “ �� ” is
enabled with a probability “ �� ”. For the second case, for the action “ � ” if the
guard “ � ” is true, then, the update “ � ” is enabled. A guard is a logical proposi-
tion consisting of variables evaluation and propositional logic operators. The
update “ �� ” is an evaluation of variables expressed as a conjunction of assign-
ments: (��

�
= ����)&…&(��

�
= ����) where �′

�
 are local variables and ���� are

values evaluated via expressions denoted by “eval” that requires type consistency
(eval ∶ �� → ℕ ∪ {����, �����}). The formal definition of a command is given in
Definition 7.

Definition 7 (PRISM command) A PRISM command is a tuple � = ⟨�, �, �⟩ , where:

• � : is an action label,
• � : is a predicate over �,
• � ∶ {(��, ��)� � > 1, 0 < � < 1,

∑�

�=1
�� = 1 and �� = {(�, ����(�)) ∶ � ∈ ��}}

A module that describes the behavior of a sub-part of a system can be consid-
ered as a set of commands. The variables of each module are declared and initial-
ized locally. A module is formally defined in Definition 8.

Definition 8 (PRISM module) A PRISM module “ � ” is a tuple � = ⟨��, ��, �⟩ ,
where:

• �� : is a finite set of local variables associated with the module M,
• �� : is the initial values of ��,
• � = {�� ∶ 0 ≤ � ≤ �} is a finite set of commands that defines the behavior of

the module M.

To describe the composition between modules, PRISM uses the following
Communicating Sequential Processes (CSP) [23] operators.

• Synchronization: It is a parallel composition of modules. For two modules ��
and �� , their synchronization is denoted by ��||�� and they can synchronize
only on actions appearing in both �� and ��.

• Interleaving: It is an asynchronous parallel composition of modules that are
fully interleaved without synchronization. �� interleaves with �� is denoted by
��|||��.

2194 A. Baouya et al.

1 3

• Parallel Interface: It is a restricted parallel composition of modules. The mod-
ules synchronize only on shared actions. For example, let {�, �,…} be the set
of shared actions between �� and �� , the interface parallel composition of ��
and �� in {�, �,…} is denoted by: ��|[�, �,…]|��.

As a result, Definition 9 stipulates formally a system containing � modules and
combined by a CSP algebraic expression.

Definition 9 (PRISM system) A PRISM system is a tuple
� = ⟨�, �, ���, ��,… , ��, ������⟩ , where:

• � = ��
⋃�

�=1
��� : is a finite set of the union of global and local variables,

• � = ��
⋃�

�=1
��� : is a finite set of the initial values of global (��) and local (��)

variables,
• exp is a set of global logic expressions,
• ��,… , �� is a countable set of modules,
• CSPexp is a CSP algebraic expression.

Example 2 The PRISM model of the system described in Fig. 5 comprises three mod-
ules, one for the sensors, one for the actuators, and one for each processor. Lines
5–10 in listing 1 show the section of the PRISM language description which models
the sensors. This constitutes a single module sensor with an integer variable � repre-
senting the number of sensors currently working. The module’s behavior is described
by one guarded command, which represents the failure of a single sensor. Its guard
“ � > � ” states this can occur at any time, except when all sensors have already failed.
The action (�� = � − �) simply decrements the counter of functioning sensors.

2195

1 3

Toward a context‑driven deployment optimization for embedded…

Lines 12–21 in listing 1 show a second module which is the PRISM language
description of the input processor. The module has a single variable i with range
{�, �, �} which indicates which of the three possible states the processor is in, i.e.,
whether it is working, is recovering from a transient fault, or has failed. The three
guarded commands in the module correspond, respectively, to the processor failing,
suffering a transient fault, and rebooting. Two points of note are as follows. Firstly,
the guards of these commands can refer to variables from other modules, as evi-
denced by the use of � ≥ � . This is because the processor ceases to function once it
has detected that less than two sensors are operational. Secondly, the last command
contains an additional label reboot, placed between the square brackets at the start of
the command. This is used for synchronizing actions between modules, i.e., allow-
ing two or more modules to make transitions simultaneously.

4.2 FTS reachability

As reported in Sect. 1.4, the primary purpose of the proposed approach is to capture
the FTS based on its system and context feature diagram and encode it into PRISM
input language as PTS. Thus, the PRISM model checker performs a search in the
state space of the FTS, and thus it needs an equal representation in PRISM language
that is faithful to the FTS semantics. Therefore, the model checking algorithm has to
keep track of the states and the products in which they are reachable.

The reachability relation � is the computed structure by the model checking algo-
rithm as the FTS is explored. It is a set of couples (�, ��) such that a state � is reach-
able by the products in ��.

Definition 10 A reachability relation of an FTS is a total function, � ∶ � ↦ �(�) ,
so that ∀� ∈ �, � ∈ �(�) , � is reachable in ���|�:∃� ∈ [[���|�]]�� , � ∈ N , and
����(��) = �.

Computing � is efficiently handled by STORM while exploring the FTS. STORM
model checker implements a lot of engines as the constructed models can be stored
as binary decision diagrams (BDDs) and multi-terminal BDDs (MTBDDs). They
have demonstrated to enable the verification for large hardware circuits. Moreover,
encoding the reachable states in PRISM language by Boolean variables that are true
if the reachable state is selected.

Given a state � reachable by-products in �� , a transition leaving � , say � = � → �� ,
can be fired for all products if the selected feature belongs to the connectivity con-
text of the required components, else, �′ will only be reachable by a subset of �� . It
is formalized in the following definition.

2196 A. Baouya et al.

1 3

Definition 11 The successors of a state � ∈ � for a product �� ∈ �(�) are given by:

Let us illustrate this with the configuration platform given in Fig. 6.
State (� = ��) is an initial state, and thus reachable by all products. From
there, the transitions (� = 10)

���
�������������→ (� = 11) can be only fired by products in

[[(��� ∧ ���) ∨ (��� ∧ ��� ∧ ��� ∧ ���)]] . The transition (� = 17)
���
�������������→ (� = 20)

can be fired for all products in [[(��� ∨ ���)]].

4.3 FTS platform construction

Figure 7 defines the metamodel that structures the construction of the FTS based on
the feature diagram. The class ������� located in the top left captures the initial
node of the feature diagram through the function �������() . The class �������
contains a set of nodes and it is specified by the relation ��������() with a cardinal-
ity (� → ∗). The class ���� is identified by its attribute ���� of type ������ . This
class is endowed with four operations. ������() indicates if the ���� is the root of
the feature diagram, whereas the operation ������() indicates if the Node has no
successors. For example, the processing element ��� in Fig. 1 is a leaf node and
the �������� is the root. The operation ���������() returns the predecessor of
the currently visited node except the root in which the operation returns ���� . The
operation �����������() returns the set of nodes that are located at the same level.
If the node has successors, the relation �������������() identifies the kind of suc-
cessors according to the concepts studied in Sect. 2 by the class ����� . Three kinds
of relationships are identified in the paper as a function: ��() , ���() , and ����() .

����(�, ��) = {(��, ���)|�
�

������→ �� ∈ � ∧ ��� = �� ∩ [[�(� → ��)]]}

Fig. 7 Feature diagram metamodel

2197

1 3

Toward a context‑driven deployment optimization for embedded…

Each operation returns a set of successors. Meanwhile, when the feature diagram
is explored, Algorithm 3 has to identify the nature of that relationship through the
operation ����() , �����() and ������() . Each of that operation returns a Boolean
value. Moreover, the node could be ��������� or �������� . The types of the suc-
cessors are identified when the operation ������() returns true. For the sake of
accuracy, three kinds of nodes are identified: ��������� , ������� or ���� using
the operations ������������() , ���������() and ������() , respectively. The rela-
tive operations belong to the class ����.

Table 2 Mapping from feature diagram to PRISM formula

2198 A. Baouya et al.

1 3

Based on the metamodel in Fig. 7, the task graph and the feature diagrams
exploration process are modeled in Listing 2 and Listing 3. In Listing 2, the
exploration starts by exploring the system feature diagram as depicted in lines
3–7. In lines 13–44, the algorithm verifies the type of successors. In line 15, the
algorithm checks if the successors are multiples, then it deeply traverses the tree
until the three leaves are located. If the kind of the feature is a processor (Line-
19), then the algorithm returns the context of that leaf as PRISM formula ctx

i
 .

The formula is defined by Table 2 as follows as described in line 22. The engine
will check if the formula is satisfied to activate the next state. Line 23 portrays
a probabilistic command where the successful execution depends on the quality
metrics reported in the task graph (see Sect. 3). When the processor is selected,
then the equivalent commands are depicted in lines 30–31. The algorithm

2199

1 3

Toward a context‑driven deployment optimization for embedded…

explores recursively the feature diagram (line 36) such that the exploration termi-
nates when the leaf is located.

The algorithm in Listing 3 is customized according to the context of the deploy-
ment. So, the objective is to find the tree leaves and their siblings to construct the
formula. For instance, in lines 7–19, if the node successor’s branch is a disjunc-
tion, the formula is generated following Table 2 (line 2). In contrast, if the successor
branch is a conjunction, the formula is produced following Table 2 Line-1. However,
if the siblings are optional or mandatory, as shown in Table 2line 1, the PRISM code
is generated according to lines 19–32 in Listing 2.

2200 A. Baouya et al.

1 3

4.4 FTS software construction

Following the same manner of the platform construction, the same metadata
that structures the construction of the FTS based on the feature diagram is used.
In Fig. 6, a top part is dedicated for task selection based on its predecessors. For
instance, Task �� is selected if the task �� and �� were selected and that, the transi-
tion ((� = 0) → (� = 1)) is enabled. The same process is executed for the rest of
the tasks. It is represented by the PRISM command in Listing 4 (lines 1–16). Each
task is declared as a Boolean variable and initialized to false (line 4–7) except the
FTS node “ ̄� ” is initialized to true. In the beginning, the STORM engine selects
randomly one task from a set of tasks, as mentioned in line 9. When the command
is enabled, it sets the task variable to true. The context in which the task is selected
depends on its tasks predecessor. For instance, a task is considered as an initial task
means that its context formula is set to true (line 16).

5 Evaluation

The developed tool2 takes as input system and context feature diagrams related to the
hardware platform and the tasks graph to build FTS in PRISM language. STORM
model checker accepts PRISM language as input and PCTL properties to perform
verification on automotive systems following steps presented in Fig. 4.

5.1 Construction phase

The application in Fig. 9 is mapped into the MPSoC system is the Automatic Brak-
ing System (ABS) [35]. The logical views of the subsystems are depicted in Fig. 8.
The “ ����������� ” is the decision-making unit concerning the wheels braking

2 Eclipse Modeling Tools: Tools and run-times for building model-based applications.

2201

1 3

Toward a context‑driven deployment optimization for embedded…

levels, while the “ ������������������� ” computes adjustment factors from the
wheel-load sensing inputs. Transceiver software components (4 to 7) are associated
with each wheel and communicate with brake actuators and sensors. “ ���������� ”
is the software component that reads from the dedicated sensor and sends data to the
“ ���������������������� ” software module (Fig. 9).

Additional parameters are considered in the construction of the FTS model. i) soft-
ware workload (wl): a computational load of a software component in executing a
requested task, and ii) the processing speed (��) expressed in MI (million instructions).
Also, parameters are specified for the link between component �� to �� . Data size (��)
is the quantity of data exchanged between tasks �� and �� during one communication
event and expressed in KB (kilobytes). To obtain a reliability estimation of the auto-
motive architecture in focus, the FTS is extended with reliability’s of the ABS system
processing elements and communication links. So, the reliability of component ��� can
be computed as:

(1)R� = �
−��(�(��))×

��(��)

��(���)

Fig. 8 Task graph

Fig. 9 Automatic braking system

2202 A. Baouya et al.

1 3

Where �(��) denotes the processing elements ��� selected for �� , and �� its failure
rate. A similar computation can be employed for the reliability of communication
elements which are characterized by failure rates (��) of hardware buses and the
time taken for communication defined as a function of buses data rates �� and data
sizes �� required for software communication:

The resulting FTS is portrayed in Fig. 10, where processing and networking ele-
ments fail with probability � − ���� and � − ���� , respectively. For instance, if ���
is selected then a failure may happen with probability � − ���� when the transition

(� = 11)
�������
�������������������������→ (� = 10) is triggered. A correct processor selection is modeled with

transition (� = 11)
���������
�������������������������������������→ (� = 17) with probability ���� . Also, Networking ele-

ments behave as the same fashion as processing elements. For instance, if the network-
ing element ��� is selected a failure may happen may happen with probability � − ����

when the transition (� = 19)
�������
�������������������������→ (� = 17) is triggered. A correct bus selection is

modeled with transition (� = 19)
���������
�������������������������������������→ (� = 21) with probability ����.

5.2 Verification phase

To perform analysis, we first study the longest expected time to assure tasks deploy-
ment successfully on hardware platforms. STORM model checker provides quantitative

(2)R� = �
−��(�(��),�(��))×

��(�� ,��)

��(�(��),�(��))

Fig. 10 A part of FTS in Fig. 6 with components reliability

2203

1 3

Toward a context‑driven deployment optimization for embedded…

results of all possible architecture configurations, including worst and best-case sce-
narios. This is done using PCTL properties of the form:

which represent the minimum (best case) and maximum (worst case) expected time
value, from the beginning until the completion of deployment. Thus, the model is
enhanced with rewards associated with states or transitions.

For the MDP model, it associates to each state a value characterizing the
expected time between any two deployments. Depending on the task characteris-
tics, the minimum and the maximum expected time for task assignments is 39.8 and
41-time units, respectively. Moreover, we can determine that the application model
is mapped to the maximum desired number of processing elements such that the
PRISM label reference “success” is true (Listing 5 line 6). This label expresses that
the application tasks were deployed. We augment our model with a reward structure
that computes the number of processing elements during the assignment to respond
to this property. The relative enhancement is described Listing 5 in lines 1–3.

The reward is assigned to transitions of a model labeled with actions PE
i
 . It is

specified similarly to state rewards, within the rewards...endrewards construct.
To check the reliable deployment with optimal processors and buses utilization,

the properties (5) and (6):

enable us to estimate the minimum and maximum probability that the deployment
terminates within 40 time steps with a certain number of buses “NE” and processors
“PE.”

Our assessments show that not all the deployment candidates are faithful to
the requirement of ISO 26262 [25]. This standard targets reliability near 99.99%.
Quantitative experiments depicted in Table 3 pinpoint the optimal derived MPSoC
platform exploiting five processors, with a probability of 99.997% in the best and
worst cases. The evaluation provides a clear view of the number of processors the

(3)Rmin = ?[�(}}�������”)]

(4)Rmax = ?[�(}}�������”)]

(5)Pmin = ?[� ≤ 40 (}}�������” & }}��” & }}��”)]

(6)Pmax = ?[� ≤ 40 (}}�������” & }}��” & }}��”)]

Table 3 Deployment probability Processors Min probability Max probability

1 0.26 0.27
2 0.48 0.5
3 0.65 0.7
4 0.93 0.94
5 0.99 0.99
6 0.80 0.81

2204 A. Baouya et al.

1 3

designer may use to perform the deployment. The advantage of the verification is
the ability to enrich our model with parameters that are not visible in the simulation,
like reliability. Uncertainties need to be taken into account for system reliability
modeling and assessment. The exponential distribution is used to model uncertain-
ties with components failure rates. The approach cannot record the identity of the
processors running the tasks due to the high complexity of the FTS model storage.
However, a high or a low number of processors is not enough to judge the validity
of the deployment. In some cases, the number of processors impacts the consumed
energy, which leads to finding a trade-off between the number of processors and
energy consumption.

5.3 Validation phase

Although our proposed approach based on probabilistic model checking can esti-
mate solutions that satisfy the high-level constraints and design objectives, the qual-
ity of such solutions can also be radically different at a low level. Many metrics can
be used in these comparisons. So, we try to validate the relevant product based on
simulation as in Fig. 4 to check the performance that is not visible at the FTS level
(i.e., Fig. 6). Thus, we measure the quality of our solutions in terms of CPU usage
and energy.

SCoPE tool [42] is a C++ library that implements the mechanic to perform
MPSoC HW/SW co-simulation and also Network-on-Chip (NoC) analysis. Results
may encompass energy, execution time, power, and several executed instructions.
Moreover, these outputs may feed design-space exploration to select suitable proces-
sors for embedded systems.

The designer starts by defining the hardware infrastructure as it is represented
in the feature diagram. The hardware primitives are described in the SCoPE C++

2205

1 3

Toward a context‑driven deployment optimization for embedded…

library. SCoPE hardware components are interconnected using standard TLM2
interfaces. When the simulation is done, and results are accepted, the engineers can
embed the code and the platform architecture at the high-level representation of the
TASTE tool [2, 12] using AADL [16]. A portion of the SCoPE platform description
is presented in “Appendix”.

According to the study, the obtained estimations are close to the high-level
assessment based on model checking, such that the 80% usage of processors is never
attained for the deployment in five and six processors. In contrast, the core energy
required to execute the application is acceptable. The different combinations of
products in the deployment schema in Fig. 3 are detailed in Figs. 11 and 12. The

Fig. 11 Energy consumption

Fig. 12 The variation on CPU utilization

2206 A. Baouya et al.

1 3

graphical representation in Fig. 12 portrays the minimum and the maximum CPU
utilization for each processor’s configuration. Also, Fig. 11 portrays the consumed
energy while the application is running.

To examine the data variation on the graph, it can be seen that the platform with
at least one processor and at most four processors results in high CPU utilization
and energy. These observations are in line with the already obtained results in Paul
et al. [40], Hoque et al. [24], Cinque et al. [10], such that the on-chip cache in the
processor is becoming sensitive to failures induced by “soft error.” Another impor-
tant observation that does not appear in our experiments is that as the processing
elements are used, the volume of exchanged data via buses increases, lengthening
the actual execution time tasks. As observed, it does not influence our experiments.

6 Related work

The current work related to the application of PL is vast and varied, and we try to
survey relatively close ones. The aspects covered in this section are modeling lan-
guage and traditional DSE approaches.

6.1 Model representation

Ziadi et al. [52] propose a UML profile for variability with optional and alternatives
stereotypes. This profile is used to model behavior with sequence diagrams, and no
verification mechanisms are provided. In contrast, Ghezzi and Sharifloo [19] and
Lanna et al. [29] proposed UML and feature diagrams for variability. The diagram
used to model product line behavior is a sequence diagram with stereotypes that
should correspond to the variability expressed in the feature diagram. The behavio-
ral diagram is transformed into a probabilistic model such as DTMC. Moreover, the
approach provides the mechanism to check quantitatively whether the derived prod-
ucts satisfy reliability properties expressed in PCTL.

Andrés et al. [1] provided a formal representation of an FD. They define an alge-
braic language, called SPLA, to describe Software Product Lines and use SAT-
solver to check the satisfiability of an SPL. Varshosaz et al. [50] and Classen et al.
[11] proposed featured transitions systems (FTSs), a compact mathematical pack-
age to express the behavior of all possible derivations that could occur. Then, the
implemented model checking algorithms check all products and identify faulty ones
against LTL properties.

These relevant papers do not give a meaning to context features that drive the
selection of system features. Some articles, such as Mauro et al. [33], Hartmann and
Trew [21] and Ubayashi et al. [47] defined approaches and frameworks that allow
modeling customizable evolving context-aware PLs and offer much more expressiv-
ity for a product derivation and adaptation [4, 39].

2207

1 3

Toward a context‑driven deployment optimization for embedded…

6.2 Design space exploration

In literature, DSE methods depend on the particular abstraction level and design
objectives. For example, at lower levels of abstraction, evaluations tools such as RTL
simulators [30, 53] are capable of caring slow but cycle-accurate analysis. Mean-
while, at the higher level of abstraction, estimation techniques ranging from analyti-
cal models to system-level simulation such as [26, 31, 36, 38, 51] allow designers
to obtain estimations of the final deployment candidate. Despite the design solution
achievement with a relatively low number of simulations, a total run-time typically
in orders of hours of each DSE experiment is still a common denominator. An exten-
sive overview of existing work in the field of software deployment is provided [46].

Compared to the existing works, our paper extends the proposed work [11, 50]
to model the tasks and the hardware elements derivations. Moreover, the paper
addressed the problem of evaluating the deployment reliability regarding the hard-
ware components’ operational profile. In particular, we introduced a probabilistic
model checking approach that can self-balance the number of architectural points
to the intended percentiles of the values, which ultimately characterize the system
reliability.

7 Conclusion

In this work, we presented a context-driven deployment methodology to analyze
a real-time application mapped on an MPSoC system following the product line
approach. The presented method relies on the probabilistic model checker called
STORM as a basis for modeling and analyzing the real-time applications and
MPSoC platforms. The application is characterized by a set of tasks where the plat-
form is derived by varying the components of the hardware library. For an illustra-
tion purpose, we presented a real case study adapted from the automotive industry.
Compared to the traditional techniques based on simulation, our proposed approach
can estimate the reliability of the MPSoC system according to the platform topology
constraints. Besides, the user can introduce more restrictions upon the parameteriz-
able model for further resources management, such as power/energy and memory
access.

In addition to traditional design objectives such as system performance, there is
an increasing need for taking system security into account. Embedded systems are
becoming more ubiquitous and interconnected, and they attract attackers. Security,
however, cannot be quantified because it interferes with conventional system objec-
tives, contrary to the earlier mentioned ones. Further, addressing this issue at the
very early design stage required new techniques. Our future target is to make the
software reconfigurable at run-time to accommodate dynamic tasks that require
dynamic resource usage.

2208 A. Baouya et al.

1 3

Appendix: SCoPE platform description

The description of the system to be simulated is done in the sc_main function. In
this function, we described the HW platform, the SW infrastructure, and the applica-
tion SW. The structure of a common SCoPE sc_main function is portrayed in List-
ing 6. For each OS model, it is required to indicate the number of processors that
will be controlled by the OS (line 9). To load the application SW, it is necessary to
load in the OS models and the name of the entry function of each application in line
14.

Funding The research leading to the presented results has been undertaken within the research profile
CPS4EU (https:// cps4eu. eu/)—Cyber-Physical Systems For Europe, funded by the European Union,
grant number: 826276.

Data availability All data generated or analyzed during this study are included in this published article. A
link to PRISM source code is available at: https:// github. com/ hakim uga/ Towar ds-a- Conte xt- driven- Deplo
yment- Optim izati on- for- Embed ded- Syste ms.

Declarations

 Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

https://cps4eu.eu/
https://github.com/hakimuga/Towards-a-Context-driven-Deployment-Optimization-for-Embedded-Systems
https://github.com/hakimuga/Towards-a-Context-driven-Deployment-Optimization-for-Embedded-Systems

2209

1 3

Toward a context‑driven deployment optimization for embedded…

 Conflict of interest The authors declare that they have no conflict of interest.

 Informed consent Informed consent was obtained from all individual participants included in the study.

References

 1. Andrés C, Camacho C, Llana L (2013) A formal framework for software product lines. Inf Softw
Technol 55(11):1925–1947

 2. Baouya A, Mohamed OA, Bennouar D, Ouchani S (2019) Safety analysis of train control system
based on model-driven design methodology. Comput Ind 105:1–16

 3. Baouya A, Mohamed OA, Ouchani S, Bennouar D (2021) Reliability-driven automotive software
deployment based on a parametrizable probabilistic model checking. Expert Syst Appl 174:114572.
https:// doi. org/ 10. 1016/j. eswa. 2021. 114572

 4. Bashari M, Bagheri E, Du W (2018) Self-adaptation of service compositions through product line
reconfiguration. J Syst Softw 144:84–105

 5. Bhat A, Samii S, Rajkumar R (2017) Practical task allocation for software fault-tolerance and its
implementation in embedded automotive systems, pp 87–98

 6. Brázdil T, Chatterjee K, Chmelík M, Forejt V, Křetínský J, Kwiatkowska M, Parker D, Ujma M
(2014) Verification of Markov decision processes using learning algorithms. In: Cassez F, Raskin JF
(eds) Automated Technology for Verification and Analysis. Springer, Cham, pp 98–114

 7. Brugali D, Capilla R, Mirandola R, Trubiani C (2018) Model-based development of qos-aware
reconfigurable autonomous robotic systems. In: 2018 Second IEEE International Conference on
Robotic Computing (IRC), pp 129–136. https:// doi. org/ 10. 1109/ IRC. 2018. 00027

 8. Capilla R, Bosch J, Trinidad P, Ruiz-Cortés A, Hinchey M (2014) An overview of dynamic software
product line architectures and techniques: observations from research and industry. J Syst Softw
91:3–23

 9. Capilla R, Ortiz Óscar, Hinchey M (2014) Context variability for context-aware systems. Computer
47(2):85–87. https:// doi. org/ 10. 1109/ MC. 2014. 33

 10. Cinque M, Cotroneo D, Della Corte R, Pecchia A (2019) A framework for on-line timing error
detection in software systems. Future Gen Comput Syst 90:521–538

 11. Classen A, Cordy M, Schobbens PY, Heymans P, Legay A, Raskin JF (2013) Featured transition
systems: foundations for verifying variability-intensive systems and their application to ltl model
checking. IEEE Trans Softw Eng 39(8):1069–1089

 12. Conquet E, Perrotin M, Dissaux P, Tsiodras T, Hugues J (2010) The taste toolset: turning human
designed heterogeneous systems into computer built homogeneous software. In: European Congress
on Embedded Real-Time Software (ERTS 2010), Toulouse, France

 13. Conrady S, Kreddig A, Manuel M, Doan NAV, Stechele W (2021) Model-based design space explo-
ration for fpga-based image processing applications employing parameterizable approximations.
Microprocess Microsyst 87:104386. https:// doi. org/ 10. 1016/j. micpro. 2021. 104386

 14. Dehnert C, Junges S, Katoen JP, Volk M (2017) A storm is coming: A modern probabilistic model
checker. Computer aided verification. Springer, Berlin, pp 592–600

 15. de Sousa Santos I, de Jesus Souza ML, Carvalho MLL, Oliveira TA, de Almeida ES, de Castro
Andrade RM (2017) Dynamically adaptable software is all about modeling contextual variability
and avoiding failures. IEEE Softw 34(6):72–77. https:// doi. org/ 10. 1109/ MS. 2017. 41212 05

 16. Feiler PH (2010) Model-based validation of safety-critical embedded systems. In: 2010 IEEE Aero-
space Conference, pp 1–10. https:// doi. org/ 10. 1109/ AERO. 2010. 54468 09

 17. Ferreira F, Vale G, Diniz JP, Figueiredo E (2021) Evaluating t-wise testing strategies in a com-
munity-wide dataset of configurable software systems. J Syst Softw 179:110990. https:// doi. org/ 10.
1016/j. jss. 2021. 110990

 18. Forejt V, Kwiatkowska M, Norman G, Parker D (2011) Automated verification techniques for prob-
abilistic systems. In: Bernardo M, Issarny V (eds) Formal Methods for Eternal Networked Software
Systems (SFM’11), LNCS, vol 6659. Springer, pp 53–113

 19. Ghezzi C, Sharifloo AM (2013) Model-based verification of quantitative non-functional properties
for software product lines. Inf Softw Technol 55(3):508–524; special issue on software reuse and
product lines

https://doi.org/10.1016/j.eswa.2021.114572
https://doi.org/10.1109/IRC.2018.00027
https://doi.org/10.1109/MC.2014.33
https://doi.org/10.1016/j.micpro.2021.104386
https://doi.org/10.1109/MS.2017.4121205
https://doi.org/10.1109/AERO.2010.5446809
https://doi.org/10.1016/j.jss.2021.110990
https://doi.org/10.1016/j.jss.2021.110990

2210 A. Baouya et al.

1 3

 20. Gries M (2004) Methods for evaluating and covering the design space during early design develop-
ment. Integration 38(2):131–183. https:// doi. org/ 10. 1016/j. vlsi. 2004. 06. 001

 21. Hartmann H, Trew T (2008) Using feature diagrams with context variability to model multiple
product lines for software supply chains. In: 2008 12th International Software Product Line Confer-
ence, pp 12–21

 22. Hensel C (2018) STORM model checker. http:// www. storm check er. org. Accessed 21 Dec 2018
 23. Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8):666–677. https://

doi. org/ 10. 1145/ 359576. 359585
 24. Hoque KA, Mohamed OA, Savaria Y, Thibeault C (2014) Probabilistic model checking based dal

analysis to optimize a combined tmr-blind-scrubbing mitigation technique for fpga-based aerospace
applications. In: 2014 Twelfth ACM/IEEE Conference on Formal Methods and Models for Code-
sign (MEMOCODE), pp 175–184. https:// doi. org/ 10. 1109/ MEMCOD. 2014. 69618 56

 25. International Organization for Standardization (ISO) (2013) Road vehicles—Functional safety—
Part 9: Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses. https:// www.
iso. org/ fr/ search. html?q= 26262. Accessed 19 Jan 2019

 26. Jiang W, Sha EHM, Chen X, Yang L, Zhou L, Zhuge Q (2017) Optimal functional-unit assign-
ment for heterogeneous systems under timing constraint. IEEE Trans Parallel Distrib Syst
28(9):2567–2580

 27. Keutzer K, Newton AR, Rabaey JM, Sangiovanni-Vincentelli A (2000) System-level design: orthog-
onalization of concerns and platform-based design. IEEE Trans Comput Aided Des Integr Circuits
Syst 19(12):1523–1543. https:// doi. org/ 10. 1109/ 43. 898830

 28. Kwiatkowska M, Norman G, Parker D (2006) Controller dependability analysis by probabilistic
model checking. Control Eng Pract 15(11):1427–1434

 29. Lanna A, Castro T, Alves V, Rodrigues G, Schobbens PY, Apel S (2018) Feature-family-based reli-
ability analysis of software product lines. Inf Softw Technol 94:59–81

 30. Mahapatra A, Schafer BC (2018) Veriintel2c: abstracting rtl to c to maximize high-level synthesis
design space exploration. Integration

 31. Malazgirt GA, Yurdakul A (2016) Prenaut: design space exploration for embedded symmetric mul-
tiprocessing with various on-chip architectures. J Syst Archit 6:66

 32. Marinho FG, Andrade RM, Werner C, Viana W, Maia ME, Rocha LS, Teixeira E, Filho JBF, Dantas
VL, Lima F, Aguiar S (2013) Mobiline: a nested software product line for the domain of mobile and
context-aware applications. Sci Comput Program 78(12):2381–2398. https:// doi. org/ 10. 1016/j. scico.
2012. 04. 009. special Section on International Software Product Line Conference 2010 and Funda-
mentals of Software Engineering (selected papers of FSEN 2011)

 33. Mauro J, Nieke M, Seidl C, Yu IC (2018) Context-aware reconfiguration in evolving software prod-
uct lines. Sci Comput Program 163:139–159

 34. Maxim B, Mistrík I, Galster M (2019) Software engineering for variability intensive systems: foun-
dations and applications

 35. Meedeniya I, Aleti A, Grunske L (2012) Architecture-driven reliability optimization with uncertain
model parameters. J Syst Softw 85(10):2340–2355

 36. Mendis H, Indrusiak LS, Audsley NC (2015) Bio-inspired distributed task remapping for multiple
video stream decoding on homogeneous nocs. In: 2015 13th IEEE Symposium on Embedded Sys-
tems For Real-Time Multimedia (ESTIMedia), pp 1–10

 37. Mühlbauer F, Schröder L, Schölzel M (2018) Handling of transient and permanent faults in dynami-
cally scheduled super-scalar processors. Microelectron Reliab 80:176–183

 38. Ouni B, Mhedbi I, Trabelsi C, Atitallah RB, Belleudy C (2017) Multi-level energy/power-aware
design methodology for mpsoc. J Parallel Distrib Comput 100(C):203–215

 39. Pascual GG, Lopez-Herrejon RE, Pinto M, Fuentes L, Egyed A (2015) Applying multiobjective
evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications. J
Syst Softw 103:392–411

 40. Paul S, Cai F, Zhang X, Bhunia S (2011) Reliability-driven ecc allocation for multiple bit error
resilience in processor cache. IEEE Trans Comput 60(1):20–34. https:// doi. org/ 10. 1109/ TC. 2010.
203

 41. Pimentel AD (2017) Exploring exploration: a tutorial introduction to embedded systems design
space exploration. IEEE Des Test 34(1):77–90. https:// doi. org/ 10. 1109/ MDAT. 2016. 26264 45

 42. Posadas H, Villar E, Ragot D, Martinez M (2010) Early modeling of linux-based rtos platforms
in a systemc time-approximate co-simulation environment. In: 2010 13th IEEE International

https://doi.org/10.1016/j.vlsi.2004.06.001
http://www.stormchecker.org
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/MEMCOD.2014.6961856
https://www.iso.org/fr/search.html?q=26262
https://www.iso.org/fr/search.html?q=26262
https://doi.org/10.1109/43.898830
https://doi.org/10.1016/j.scico.2012.04.009
https://doi.org/10.1016/j.scico.2012.04.009
https://doi.org/10.1109/TC.2010.203
https://doi.org/10.1109/TC.2010.203
https://doi.org/10.1109/MDAT.2016.2626445

2211

1 3

Toward a context‑driven deployment optimization for embedded…

Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, pp 238–
244. https:// doi. org/ 10. 1109/ ISORC. 2010. 18

 43. Qiu X, Ali S, Yue T, Zhang L (2017) Reliability-redundancy-location allocation with maximum
reliability and minimum cost using search techniques. Inf Softw Technol 82(Supplement C):36–54

 44. Sengupta A, Sedaghat R, Sarkar P (2012) A multi structure genetic algorithm for integrated design
space exploration of scheduling and allocation in high level synthesis for dsp kernels. Swarm Evol
Comput 7:35–46. https:// doi. org/ 10. 1016/j. swevo. 2012. 06. 003

 45. Siavvas MG, Chatzidimitriou KC, Symeonidis AL (2017) Qatch—an adaptive framework for soft-
ware product quality assessment. Expert Syst Appl 86:350–366

 46. Singh AK, Dziurzanski P, Mendis HR, Indrusiak LS (2017) A survey and comparative study of hard
and soft real-time dynamic resource allocation strategies for multi-/many-core systems. ACM Com-
put Surv 50(2):1–40

 47. Ubayashi N, Nakajima S, Hirayama M (2010) Context-dependent product line practice for con-
structing reliable embedded systems. Software Product Lines: Going Beyond. Springer, Berlin, pp
1–15

 48. Van Gurp J, Bosch J, Svahnberg M (2001) On the notion of variability in software product lines. In:
Proceedings Working IEEE/IFIP Conference on Software Architecture, pp 45–54. https:// doi. org/ 10.
1109/ WICSA. 2001. 948406

 49. Varshosaz M, Mousavi MR (2019) Comparative expressiveness of product line calculus of com-
municating systems and 1-selecting modal transition systems. In: Catania B, Královič R, Nawrocki
J, Pighizzini G (eds) SOFSEM 2019: Theory and Practice of Computer Science. Springer, Cham, pp
490–503

 50. Varshosaz M, Beohar H, Mousavi MR (2018) Basic behavioral models for software product lines:
revisited. Sci Comput Program 168:171–185

 51. Xie G, Chen Y, Liu Y, Wei Y, Li R, Li K (2017) Resource consumption cost minimization of reliable
parallel applications on heterogeneous embedded systems. IEEE Trans Ind Inform 13(4):1629–1640

 52. Ziadi T, Hélouët L, Jézéquel JM (2004) Towards a uml profile for software product lines. In: van der
Linden FJ (ed) Software Product-Family Engineering. Springer, Heidelberg, pp 129–139

 53. Zoni D, Cremona L, Fornaciari W (2018) Powerprobe: run-time power modeling through automatic
rtl instrumentation. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp
743–748

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1109/ISORC.2010.18
https://doi.org/10.1016/j.swevo.2012.06.003
https://doi.org/10.1109/WICSA.2001.948406
https://doi.org/10.1109/WICSA.2001.948406

	Toward a context-driven deployment optimization for embedded systems: a product line approach
	Abstract
	1 Introduction
	1.1 Variability-intensive system
	1.2 Problem statement
	1.3 Current challenges
	1.4 Contributions

	2 Preliminaries
	2.1 Probabilistic transition system
	2.2 Property specification
	2.3 Feature diagrams
	2.4 Context feature diagrams

	3 FTS formalism
	4 Correct modeling and sound analysis of FTS
	4.1 PRISM language
	4.2 FTS reachability
	4.3 FTS platform construction
	4.4 FTS software construction

	5 Evaluation
	5.1 Construction phase
	5.2 Verification phase
	5.3 Validation phase

	6 Related work
	6.1 Model representation
	6.2 Design space exploration

	7 Conclusion
	References

