
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:832–866
https://doi.org/10.1007/s11227-022-04701-2

1 3

Multi‑objective NSGA‑II optimization framework for UAV 
path planning in an UAV‑assisted WSN

Manish Kumar Singh1   · Amit Choudhary2 · Sandeep Gulia3 · Anurag Verma4

Accepted: 30 June 2022 / Published online: 20 July 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
The recent technological advancements such as IoT-enabled sensor nodes, Global 
Positioning System, Wi-Fi transceivers, and lightweight lithium-ion batteries enable 
the use of Unmanned Aerial Vehicles (UAV) for data collection in wireless sensor 
networks. In a UAV-assisted wireless sensor network (UAV-WSN), the sensor nodes 
are installed at the ground and a UAV works as the sink node. The UAV-based sink 
flies over the sensed region and receives the data packets of surrounding ground 
nodes. A UAV-WSN offers improved data collection efficiency as the UAV-based 
sink avoids the ground obstacles and establishes line-of-sight communication with 
the ground sensor nodes. However, the UAV’s flight trajectory needs to be opti-
mized to achieve minimized UAV energy consumption during flight operation and 
minimized node energy consumption in data transmission. This paper presents a 
hybrid data routing protocol for UAV-WSN that considers optimized planning of the 
UAV’s flight trajectory in parallel with energy-efficient data communication amid 
ground sensor nodes and the UAV. The presented scheme utilizes multi-objective 
NSGA-II optimization heuristics to optimize UAV’s flight trajectory. The developed 
NSGA-II model evolves into an optimal UAV flight trajectory that simultaneously 
achieves the objectives of minimized UAV energy consumption, minimized node 
energy consumption, and maximized average RSSI. A maximized RSSI further 
brings about a significant increase in network throughput rate. Simulation results 
depict that the proposed UAV-WSN scheme achieves improved network lifetime and 
network throughput rate compared to other state-of-the-art protocols.
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1  Introduction

A Wireless Sensor Network (WSN) integrates the sensing, computational and com-
munication capabilities of distributed sensor nodes with wireless networking [1]. 
Sensor nodes are deployed at various positions in the phenomenon to be sensed. 
These sensor nodes measure the specified physical parameters of the phenom-
enon such as air temperature, humidity level or CO2 level, etc. The sensed data is 
sent from the source node to a centralized sink. The sink then processes the node 
data  and sends it to the cloud  servers for distant user access [2]. Wireless Sensor 
Networks are used for variety of applications such as environmental monitoring [3], 
vehicular tracking [4], forest fire control [5] and precision agriculture [6], etc.

WSN nodes are generally equipped with limited power resources that do not 
last long [7, 8]. Although the nodes are usually rechargeable, they are difficult to 
recharge in bulk. Hence, maximizing the lifetime of the sensor nodes is a critical 
design objective of a WSN [1]. A WSN node spends a major portion of its resid-
ual energy on data transmission [9, 10]. In the case of single-hop transmission, 
the boundary nodes consume more energy on data transmission as compared to 
the nodes near the sink. This is because the transmission energy consumption of 
a node depends on the transmission distance [11]. Multihop transmission helps 
reduce the energy consumption of boundary nodes as it utilizes intermediate relay 
nodes (RN). The RN collects the data from the boundary nodes and retransmits 
it to the sink [2]. In the case of hierarchical clustering-based transmission, the 
nodes are grouped into multiple clusters. Every cluster of nodes designates a suit-
able cluster member node as the cluster head (CH). The CH in a cluster gathers 
the packets from other cluster nodes. The CH further aggregates the collected 
packets into a single datum and transmits the datum to the sink. Clustering is an 
energy-efficient data transmission approach as it uses data aggregation. [12, 13].

The Low Energy Adaptive Clustering Hierarchy (LEACH) protocol of Wendi 
et al. [3] implements a clustering-based data transmission scheme. LEACH adopts 
Probabilistic Weight Function (PWF)-based approach for CH selection. The stable 
Election Protocol (SEP) of Georgios et al. [8] is another clustering-based protocol 
that elects CH nodes based on node residual energy and offers even load distribu-
tion among network nodes. Moussa et al. in [2] presented the hybrid Multihop-Clus-
tering-based Energy-aware Cluster-based Routing Protocol (ECRP). In ECRP, the 
CH nodes collect the data packets from other nodes of their clusters. Then, the CH 
nodes communicate their packets to sink in a Multihop manner.

Wang et al. in [14] presented the “Routing Algorithm with Mobile Sink Sup-
port (RAMSS)” scheme. RAMSS combines the clustering approach with the sink 
mobility technique. Here, the sink is rotated in the sensed region on a predefined 
trajectory. The sink stops after every fixed time interval and gathers the packets 
from the surrounding source nodes. The mobile sink significantly decreases node 
energy expenditure  during data communication by reducing the mean distance 
between the nodes and the sink. However, the concept of mobile sink is not fea-
sible for complex environments such as the dense forest or hilly terrain where the 
obstacles inhibit mobile sink to complete data collection tasks [15].
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The recent research works in the WSN field, suggest UAV-assisted data collection 
in wireless sensor networks [16]. In a UAV-based wireless sensor network (UAV-
WSN), the sensor nodes are installed at the ground and a UAV works as the sink 
node. The UAV-based sink moves on a predefined flight trajectory in the air and 
receives the data packets of surrounding sensor nodes. The rotary wing drones are 
suitable for UAV-WSN applications as they can hover over a specific region and its 
flight control operation is much easier. The UAV-based WSN systems are widely 
used for various data sensing applications such as remote sensing [17–19], precision 
agriculture [6], etc. Figure 1 shows a pictorial representation of a UAV-WSN. As 
compared to the ground-based mobile sink, the UAV sink avoids the ground obsta-
cles and establishes line-of-sight communication with the ground sensor nodes. 
Hence, the application of UAV-based sink enhances the network coverage and data 
collection efficiency, significantly [17]. Along with many advantages, the UAV-
WSNs also have some drawbacks. For example, the high maneuverability of UAV-
based sink and the variations in flight altitude may result in undesired changes in 
the network topology [20]. The fluctuations in network topology cause connectivity 
problems and affect the network’s throughput performance. Hence, developing a low 
power and high throughput data routing scheme for UAV-WSN is a tedious task.

The state-of-the-art UAV-WSN protocols implement the various type of data 
routing schemes such as Single-hop [21–23], Multi-hop [24], Hierarchical cluster-
ing-based routing [25–28], or Hierarchical Tree-based routing [29, 30], etc. Further, 
an effective UAV-WSN protocol also considers the UAV’s flight trajectory optimiza-
tion mechanism.

UAV flight trajectory optimization is a multi-objective optimization problem 
(MOOP). Solving a UAV’s flight trajectory optimization problem requires imple-
menting a global search metaheuristic such as Artificial Bee Colony (ABC) Algo-
rithm [31], Genetic Algorithm (GA) [21, 32], Dynamic Programming based on 
Traveling Salesman Problem [22, 33], or NSGA-II Algorithm [34], etc. A global 
search metaheuristic is a computational procedure that improves its candidate 
solutions in terms of the target objective functions in iterations and gives the 

Fig. 1   A UAV assisted wireless sensor network
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optimal solution to an optimization problem. The optimization may or may not be 
a subject of inequality and/or equality constraints [35].

Poudel et  al. presented Hybrid Path Planning (HPP) protocol for UAV-WSN 
[31]. HPP implements Probabilistic Road-map and Artificial Bee Colony (ABC) 
algorithm for UAV’s flight trajectory optimization. The optimized UAV flight tra-
jectory achieves concurrent optimization of multiple objective functions such as 
minimized UAV flight time, minimized node energy consumption, and minimized 
flight path length. Further, the HPP incorporates a hierarchical clustering-based 
data routing scheme for ground node data transmissions. Similar to HPP, H-UAV-
WSN [36], HHA [23], GA-UAV [21], DP-TSP [22], and EFDC [32] are state-of-
the-art UAV-WSN protocols that implement an effective UAV’s trajectory optimi-
zation mechanism.

Section  2 presents a detailed survey of important UAV-WSN protocols. Fol-
lowing observations are made based on the survey presented:

(a)	 Minimized ground node energy consumption in data transmission and the mini-
mized UAV energy consumption during flight operation are the critical design 
objectives for an energy-efficient UAV-WSN system [15, 23, 31, and 36].

(b)	 Maximized Received Signal Strength (RSSI) at the UAV sink provides a tremen-
dous improvement in data collection efficiency and network throughput rate [25, 
27, and 28].

(c)	 In addition, it is also observed that none of the existing UAV trajectory optimi-
zation schemes perform concurrent minimization of UAV energy consumption 
and ground node energy consumption objectives along with the maximization 
of RSSI objective by applying the NSGA-II optimization heuristic. NSGA-II 
is a non-dominated sorting-based fast and elitist Multi-Objective Evolutionary 
Algorithm (MOEA). NSGA-II converges to the Pareto-optimal solutions for a 
MOOP within a shorter operating period. Furthermore, NSGA-II offers lesser 
O (MN2) computational complexity as compared to the O (MN3) complexity of 
other non-dominated sorting-based MOEAs [37]. However, Gupta et al. in [34] 
have used the NSGA-II algorithm for trajectory optimization but they considered 
sensing Quality, data collection delay, and UAV flight distance objectives.

In this paper, we present a hybrid data routing protocol for UAV-WSN that 
considers the optimized planning of the UAV’s flight trajectory in parallel with 
energy-efficient data communication amid ground sensor nodes and the UAV. The 
presented protocol utilizes multi-objective optimization heuristics NSGA-II [37] 
to optimize the UAV’s flight trajectory. The objectives of trajectory optimization 
are (a) to minimize UAV energy consumption in-flight operation, (b) to minimize 
node energy consumption in data transmission, and (c) to maximize received sig-
nal strength (RSSI) at the UAV.

As per the presented protocol, the ground nodes (GN) are divided into the mul-
tiple number of clusters and a UAV-based sink follows an optimized air route 
(flight trajectory). In order to gather the packets from the ground nodes, the UAV-
based sink stops at a specific location above the first cluster and starts hovering 
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over there. Now it establishes line-of-sight communication with the ground nodes 
of first cluster and receives their data packets on TDMA basis. After receiving 
the packets, the UAV starts following its flight trajectory until it reaches the next 
data collection point over the second cluster. In this manner, the UAV sink covers 
all the nodes of the network and returns to the starting point. The point where the 
UAV hovers over a cluster and collects the data packets from its nodes is termed 
as the “UAV Hover Point (UHP)” of that cluster.

The incorporated NSGA-II-based optimization mechanism decides the optimized 
coordinates of the UAV Hover Points for each cluster of the network. These opti-
mized UAV hover points together form an optimized flight trajectory for the UAV 
sink. In its first run, the NSGA-II algorithm decides the optimized UHP of the 
first cluster. The chromosomes in the initial NSGA-II population carry three genes 
through which they indicate the 3D coordinates of the tentative UHP points over the 
first cluster. A multi-objective fitness evaluation operator estimates the chromosome 
fitness in terms of the following parameters: (i) the energy consumed by the UAV 
in flying from the UAV’s starting point to the UHP indicated by the chromosome, 
(ii) the energy consumed by the nodes of the first cluster in data transmission to the 
UAV hovering at the UHP indicated by the chromosome and (iii) the average signal 
strength (RSSI), the UAV receives from the nodes of the first cluster while hovering 
at the UHP indicated by the chromosome. Further, the NSGA-II algorithm iterates 
through the remaining NSGA-II steps, which include non-dominated sorting, selec-
tion, crossover, mutation, and elitism. The presented NSGA-II-based model devel-
ops into a non-dominated set of Pareto-optimal UHP coordinates for the first clus-
ter. The rendered UHP coordinates meet the desired objectives of minimized UAV 
energy consumption, minimized node energy consumption in data transmission, and 
maximized RSSI. The maximized resultant RSSI brings about a significant increase 
in network throughput rate. Similarly, in its second and the further runs, the NSGA-
II algorithm decides the optimized UHPs for other clusters of the network.

The presented protocol is simulated using the relevant models such as Hasini’s 
UAV energy consumption model [38], First-order node energy consumption model 
[3, 39], and the Log-distance path loss model [11]. MATLAB scripts along with 
the optimization toolbox (Version R2018a) are used for protocol simulation. Results 
are obtained in terms of network lifetime performance, network throughput perfor-
mance, and network latency performance. A quantitative comparison with other 
relevant protocols proves that the proposed UAV-WSN routing scheme provides an 
elongated network lifetime and better QoS performance.

According to our extensive review process, it is for the first time that the fast and 
elitist NSGA-II MOEA is being proposed for UAV’s trajectory optimization in order 
to achieve following objectives: (i) “Minimized ground node energy consumption” 
(ii) “Minimized UAV energy consumption,” and (iii) “Maximized received signal 
strength (RSSI) at the UAV” The major contributions of the presented work are as 
follows:

(a)	 Proposed a tri-variable chromosome pattern for initial NSGA-II population. 
Each chromosome in the NSGA-II population represents the 3D coordinates of 
a random UHP location.
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(b)	 Proposed a multi-objective fitness estimation function that evaluates the NSGA-
II chromosome fitness in terms of following objectives: (i) UAV’s energy con-
sumption in flight operation, (ii) node energy consumed in data transmission and 
(iii) average signal strength (RSSI), the UAV receives from the ground nodes.

(c)	 The proposed optimization framework results into the Pareto-optimal UAV tra-
jectories which optimizes the target objectives.

(d)	 The developed UAV-WSN protocol is scalable and suitable for the low-mainte-
nance situations such as precision agriculture.

The present article is further organized into the following sections: Sect. 2 pre-
sents the survey of related works along with a brief introduction to the NSGA-II 
algorithm. Section 3 highlights various models and assumptions used for protocol 
implementation and experimental purposes. Section  4 elaborates on the proposed 
NSGA-II-based UAV-WSN protocol. Section 5 discusses the protocol performance. 
Section  6 highlights the concluding remarks and presents suggestions for future 
work.

2 � Literature review

This section presents a brief survey of state-of-the-art UAV-WSN protocols. The 
section ends with a brief introduction to multi-objective NSGA-II optimization 
algorithm.

2.1 � Related works

Several types of data routing protocols have been reported for UAV-WSNs in the 
existing literature. These protocols implement diverse types of data routing schemes 
such as Single-hop [21–23], Multi-hop [24], Hierarchical clustering-based rout-
ing [25–28], and Hierarchical Tree-based routing [29, 30, and 36], etc. Further, the 
surveyed protocols either utilize predefined UAV flight trajectories or incorporate 
dedicated UAV flight trajectory optimization mechanisms to achieve distinct perfor-
mance objectives such as minimized UAV flight time [31], minimized time delivery 
constraint [23], Minimized ground node energy consumption [23, 24] or minimized 
flight trajectory length [33], etc.

Jawhar et al. [24] presented the UAV-based Liner Sensor Network (ULSN) pro-
tocol. ULSN is applicable for the Linear Sensor Networks (LSN) that implement 
ground source nodes (SN) along with the ground relay nodes (RN). SNs commu-
nicate their data packets to the nearest RN in a Multihop manner. The relay node 
after doing data aggregation transmits the collected data to a UAV-based sink which 
flies back and forth along the LSN. ULSN improves the network’s packet delivery 
ratio significantly. However, ULSN does not incorporate any trajectory optimiza-
tion mechanism for the UAV sink. The UAV sink follows predefined movement 
trajectories.
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ULSN implements the multi-hop-based routing scheme that results in the elon-
gated network latency, whereas the hierarchical clustering-based data routing 
schemes provide energy-efficient data routing along with acceptable latency and 
good throughput rates. Following UAV-WSN protocols incorporate hierarchical 
clustering-based data routing schemes:

Dios et  al. in [25] presented the Cooperation-based UAV-WSN (C-UAV-WSN) 
protocol. C-UAV-WSN is a hierarchical clustering-based data routing protocol that 
implements a cooperative UAV-WSN approach. As per the cooperative UAV-WSN 
approach, the altitude of the UAV flight trajectory is kept within the transmission 
ranges of CH nodes. This improves the network connectivity between ground sensor 
nodes and the UAV, significantly. However, due to ground obstacles and the noisy 
channels, some of the short-range ground nodes remain uncovered and present cov-
erage-hole problems.

To eliminate the coverage-hole problem of UAV-WSN, Okcu et  al. [27] pro-
posed the RSSI-based Hybrid and Energy-Efficient Distributed (RHEED) protocol. 
RHEED is a clustering-based protocol. It selects those ground nodes as CH which 
receive excellent “Received Signal Strength (RSSI)” from the UAV. Other short-
range ground nodes act as child cluster nodes. Similar to RHEED, the UAV-assisted 
Routing Protocol (URP) of Uddin et al. [28] selects the CH nodes that are installed 
nearby to the UAV trajectory. Such nodes possess better RSSI connectivity to the 
UAV data collection points. The Bayesian classifier mechanism is used for CH 
selection. URP and RHEED provide improved data collection efficiency and net-
work throughput rate due to better RSSI connectivity amid CH nodes and the UAV 
sink. However, due to the use of a single UAV, large and sparse networks may still 
show the coverage-hole problem.

The Aerial-based Data Collection (ADC) protocol of Caillouet et al. [29] is suit-
able for monitoring the large and sparse networks as it utilizes a fleet of UAVs for 
collecting the ground sensor data. ADC is a hierarchical tree-based UAV-WSN pro-
tocol. ADC incorporates a heuristic pricing scheme that minimizes the data collec-
tion cost by solving the three-dimensional ground node positions in terms of UAV 
mobility and connectivity variations. The UAV-aided Compressive Data Gathering 
(UAV-CDG) of Ebrahimi et al. [30] is another tree-based UAV-WSN protocol that 
creates a forwarding tree of cluster-based data transmission scheme so that the over-
all network energy consumption in data transmission and overall UAV flight time 
gets minimized. The ADC and UAV-CDG schemes are suitable for large and sparse 
networks.

Zanjie et al. [26] proposed an optimal Dynamic Programming-based Algorithm 
(DPA) that efficiently allocates the available channel bandwidth for data transmis-
sion and the limited energy resources for data sensing and transmission. Simultane-
ously, allocation of bandwidth and energy resources maximizes the data transmis-
sion rates. Further, the DPA implements a dual-layer clustering-based data routing 
scheme.

Singh et al. in [40] presented the Proficient Data Gathering (PDG) technique for 
UAV-WSNs. The PDG incorporates the hierarchical clustering-based data routing 
scheme in a multi-UAV WSN system. Here, the CH nodes are selected based on 
the weighted probability function (WPF) approach. The ground nodes are rated for 
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CH selection by estimating a WPF index that is a function of the node’s residual 
energy, node’s distance from the sink, and average network energy. The ground node 
achieving above threshold WPF becomes the CHs. Non-CH nodes make links with 
the nearest CH node. Simulation results reflect that the PDG offers a significant 
improvement in network lifetime.

Hierarchical clustering-based UAV Routing Protocol (HC-URP) of Udin et  al. 
[41] implements clustering-based data routing scheme in UAV-WSN. The UAV in 
HC-URP follows the predefined flight trajectory. However, the flying UAV can devi-
ate from its predefined path up to a certain extent as per location of the cluster heads.

The UAV-WSN protocols discussed so far do not incorporate any dedicated 
UAV’s flight trajectory optimization technique [24–30, 40, 41]. Due to non-opti-
mized random UAV paths, some of the ground nodes that face the noisy channel 
or have a short transmission range are unable to link with the UAV-sink and remain 
uncovered [25, 27, and 28].

In general, a global search metaheuristic such as Artificial Bee Colony Algo-
rithms [31], Genetic Algorithm (GA) [21, 32], Tabu search algorithm [32], Dynamic 
Programming based on Traveling Salesman Problem [22, 33], or NSGA-II Algo-
rithm [34] are implemented to solve the UAV’s flight trajectory optimization 
problem.

An optimization problem can be categorized as a linear or nonlinear optimiza-
tion problem. The linear optimization is the one in which the objective function is 
a linear function of the decision variables, whereas the nonlinear optimization or 
nonlinear programming (NLP) is the one in which any of the inequality/equality 
constraints or the objective function is a nonlinear function of the decision varia-
bles [37]. Further, an optimization problem can be categorized as a single or multi-
objective optimization problem. A Multi-Objective Optimization problem (MOOP) 
involves simultaneous maximization and/or minimization of multiple objectives 
[42].

The problem of UAV’s flight path optimization needs to achieve multiple target 
objectives simultaneously which may be as follows: (a) To minimize the overall 
UAV flight time and distance [31, 33, and 34], (b) To minimize UAV energy con-
sumption and Node energy consumption [23, 31, and 36], (c) To minimize Packet 
delivery time [23], (d) To maximize node coverage and data collection efficiency 
[23, 24, and 28], (e) To minimize node’s Age of Information (AoI) and Network’s 
average AoI [21, 22], and (f) To minimize the mean distance amid ground nodes and 
the UAV [36], etc. Hence, an UAV’s flight path optimization is a Multi-Objective 
nonlinear optimization problem [22]. Following UAV-WSN-based research works 
incorporate the dedicated multi-objective nonlinear UAV’s flight path optimization 
mechanisms.

The Projection-based comprehensive data gathering (PCDG) protocol of Ebra-
himi et al. [33] is a hybrid protocol that considers the optimized planning of UAV 
flight trajectory besides data collection from ground sensor nodes. The PCDG per-
forms the following operations in one cycle: (a) dividing the ground nodes into mul-
tiple node clusters, (b) deciding the hierarchy of different nodes for data forwarding, 
(c) performing the CH selection, and (d) Optimizing the trajectory of UAV through 
Traveling Salesman Problem (TSP)-based heuristic algorithm. The objectives of 
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trajectory optimization are to minimize the total number of transmissions and UAV 
travel distance.

The Hybrid UAV-aided WSN routing (H-UAV-WSN) protocol of Popsecu et al. 
[36] also considers the optimization of UAV’s trajectory besides high throughput 
data communication amid ground sensors and UAV sink. The objectives of trajec-
tory optimization are to minimize node energy consumption along with the mean 
distance between the CH nodes and the UAV.

Mazayev et al. in [23] presented a Hybrid Heuristic Algorithm (HHA)-based tra-
jectory optimization framework for UAV sinks. HHA optimizes the trajectories of 
multi-UAV sinks so that the objective of UAV-based node packet collection is per-
formed under the desired delivery time constraints. HHA protocol adopts the flat 
data routing scheme where ground nodes sense and communicate their data packets 
to flying UAV-sink, directly. Direct data transmission may lead to excessive node 
energy consumption in data transmission.

The Genetic Algorithm (GA)-based UAV path optimization mechanism (GA-
UAV) has been proposed by Liu et al. in [21]. The GA-UAV protocol provides the 
optimized UAV trajectory through which the UAV-sink collects the ground node 
data packets with minimized Age of Information (AoI). The AoI parameter reflects 
the sum of ground node data uploading time and the UAV flight time. The GA-UAV 
is beneficial for emergency and real-time data monitoring applications. However, to 
prove the efficiency of the proposed technique, its network lifetime and throughput 
performance also need to be measured. Similar to the GA-UAV, Mao et al. [22] also 
attempted to minimize the ground node’s AoI value in a multi-UAV-based densely 
populated WSN system. In this study, the shortest Hamiltonian AoI optimal UAV 
trajectories are determined through the dynamic programming based on Traveling 
Salesman Problem (DP-TSP).

Nazib et  al. in [32] considered the WSNs located in Hilly trains and presented 
the UAV sink-based Energy-Efficient and Fast Data Collection (EFDC) scheme. 
EFDC implements 2 tier clustering-based data routing scheme along with the hybrid 
GA and Tabu search algorithm to determine optimal UAV data collection points. 
EFDC offers significant improvements in network lifetime, delay, and load balanc-
ing metrics. However, simulation scenarios do not consider dynamic environmental 
conditions.

Gupta et al. in [34] presented the Optimal Path Planning for UAV (OPP) proto-
col. OPP utilizes non-dominated sorting-based fast and elitist NSGA-II optimization 
heuristic for trajectory optimization. The objectives of trajectory optimization are 
to maximize Sensing Quality along with the minimization of UAV data collection 
delay and UAV flight distance.

We presented a brief survey of state-of-the-art UAV-WSN protocols. Table  1 
depicts the details of the different UAV-WSN protocols, surveyed. Based on the pre-
sented survey, it is observed that an effective UAV-WSN protocol not only considers 
the data routing scheme but also the optimization of UAV’s flight trajectory. Further, 
the “Minimization of ground node energy consumption” along with the “Minimiza-
tion of UAV energy consumption” are the critical design objectives for elongating 
UAV-WSN lifetime [1, 23, 31, and 36], whereas the “Maximization of RSSI at the 
UAV” leads to a tremendous improvement in network throughput rate [27, 28].
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2.2 � NSGA‑II algorithm

NSGA-II is an MOEA that finds the Pareto-optimal solutions for the linear or 
nonlinear multi-objective optimization problems (MOOP) [35, 37]. Solving a 
MOOP needs simultaneous optimization of two or more objective functions 
fk(x);k = 1, 2, ..I under the given inequality ga(x) > 0;a = 1, 2, ..A and/or equality 
constraintshb(x) = 0;b = 1, 2, ..B . The NSGA-II works as follows:

2.3 � Step‑1: Population initialization

First of all, NSGA-II creates an initial population of chromosomesP = (x1;x2;… xN
) . Here xi;i = 1, 2, ..N are the population chromosomes and N is the population 
size. Every chromosome xi in the NSGA-II population is a set of gene variables, 
i.e.,xi =

(

gi1;gi2;… giM
)

 . Here gij;j = 1, 2..M are the genes of chromosome xi and M 
is the number of variables. Through its gene variables, a chromosome presents a ran-
dom solution to the target MOOP. NSGA-II creates its initial population as follows:

Note: Here rand is a single uniformly distributed random number in between (0, 
1). The LBj & UBj are the application-dependent lower and upper bounds for gene 
gij;j = 1, 2..M.

2.4 � Step‑2: Non‑domination sorting‑based fitness evaluation

After creating the initial population, NSGA-II calculates the values of objective 
functions fk

(

xi
)

;k = 1, 2, ..I for every chromosome xi;i = 1, 2, ..N of initial popula-
tion. Subsequently, NSGA-II identifies the non-dominated set of chromosomes from 
the initial population by applying the non-domination-based sorting algorithm as 
follows:
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The chromosomes which remain unmarked are the non-dominated Pareto-optimal 
solutions that represent the first non-dominated front F1.

Further, the NSGA-II algorithm runs the @distancecrowding function that esti-
mates crowding distance values of every Pareto-optimal solution on front F1. A solu-
tion’s crowding distance is the average distance between its two nearby solutions. 
The boundary solutions with minimum and maximum objective function values are 
assigned infinite crowding distances, ensuring that they are always chosen. Crowd-
ing distance is calculated as follows:
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Note: Suppose there are xi; i = 1… NF1 Pareto-optimal solutions in 
front F1 and a particular solution xi gives the values of multiple objectives 
as fk

(

xi
)

;k = 1, 2, ..I . Now, F1 (i) fk denotes the value of fk (xi) objective of ith 
solution in front F1.

After identifying the Pareto-optimal chromosomes of the first non-dominated 
front F1, the NSGA-II omits these chromosomes from the current population. 
Then, the remaining population is again processed for non-dominated sorting and 
the second non-dominated front F2 is obtained. In this manner, the whole NSGA-
II population is divided into various non-dominated fronts.

2.5 � Step‑3: Tournament selection

In this step, NSGA-II creates a mating pool of parent chromosomes. To fill up the 
pool, the NSGA-II arbitrarily picks up two chromosomes from the current popu-
lation. The chromosome of the lower front is selected as the parent chromosome 
as it dominates a larger set of chromosomes in terms of target objectives. If the 
front of two chromosomes is common then the chromosome of larger crowding 
distance is selected as the parent chromosome. A predefined Crossover rate vari-
able ρc decides the number of parent chromosomes to be selected.
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2.6 � Step‑4: Crossover

In this step, NSGA-II arbitrarily picks any two parent chromosomes from the mat-
ing pool and produces an offspring chromosome through their crossover. During the 
crossover, a crossover point is randomly decided. The genes of the offspring chro-
mosome before the crossover point come from the first parent and the remaining 
genes come from the second parent.

The predefined Crossover rate variable ρc decides the number of crossovers to be 
performed during an NSGA-II iteration.

An offspring population is created by replacing the first parent chromosome in 
current population by its newly generated offspring chromosome. Figure 2 demon-
strates the crossover step.

2.7 � Step‑5: Mutation

In the Mutation step, NSGA-II selects a random gene from a random chromosome 
of the offspring population and locally perturbs it with a random value under the 
related gene bounds. A predefined mutation rate variable ρm determines how many 
mutations to perform in an NSGA-II iteration. Figure 3 demonstrates the mutation 
step.

2.8 � Step‑6: Elitism

In the elitism step, the current and the offspring populations are merged and the 
combined population is divided into various non-dominate fronts: F1, F2 & so on. 

Fig. 2   Crossover step
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Now, the NSGA-II starts from the F1 front of the combined population and copies 
the top N number of solutions into a new population.

In this way, a cycle of the NSGA-II algorithm is completed. Further, NSGA-II 
iterates through the steps-2 to 6 till a predefined stopping condition is not met. In the 
end, the final NSGA-II population is again sorted to obtain the front F1. The chro-
mosome of finally obtained front F1 is the final Pareto-optimal solutions for the tar-
get multi-objective optimization problem. Figure 4 depicts the NSGA-II flowchart.

3 � Models and assumptions

This section presents the details of various models and assumptions used for proto-
col implementation and experimental purposes.

3.1 � UAV energy consumption model

This work considers the empirical model proposed by Hasini et al. [38], for estimat-
ing the UAV energy consumption under different flight scenarios. Hasini’s model 
is based on the experimental studies carried out using Intel’s Aero-drone [43] with 
4000 mAh ECO-S LiPo batteries [44].

As per the model, Eq. 1 gives the energy consumption of the UAV for the “Verti-
cally upward movement” scenario.

Fig. 3   Mutation step



848	 M. K. Singh et al.

1 3

The parameter Dup in Eq. 1 is the vertical distance covered by the UAV while 
moving vertically upward with the vertical movement speed of 1 m/sec.

Equation. 2 gives the energy consumption of the UAV for the “Vertically 
downward movement” scenario.

The parameter Ddown in Eq.  2 is the vertical distance covered by the UAV 
while moving vertically downward with the vertical movement speed of 1 m/sec.

Equation. 3 gives the energy consumption of the UAV for the “Horizontal 
movement” scenario.

The parameter Thori in Eq.  3 is the time (in sec) of the UAV’s horizontal 
movement while the horizontal movement speed is 1 m/sec.

(1)E = 315Dup − 0.852

(2)E = 68.956Ddown − 65.183

(3)E = 308.709Thori − 0.852

Fig. 4   NSGA-II flowchart
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3.2 � Node transmission energy consumption model

This work considers the “First-Order Node Energy Consumption Model” to estimate 
the amount of energy that is expended by a node during data communication [39, 45].

As per the model, Eq. 4 estimates the energy expended by a node in transmitting its 
data packet to another node.

The parameters k, d and Eelec in Eq. 4 are data packet bit count, transmission dis-
tance (m), and the transceiver energy consumption (J per bit), respectively. The param-
eters �fs and �mp are the amplifier coefficients of free space and multipath communica-
tion, respectively. The parameter do is the threshold distance that is calculated as 
d0 =

√

�fs∕�mp.
Equation 5 gives the energy expended by the receiver node in receiving k-bit data 

packet.

Equation  6 gives the energy expended by the aggregating node for k-bit data 
aggregation.

The parameter EDA in Eq. 6 is per bit data aggregation energy consumption.

3.3 � Path loss model

This work considers the Log-distance path loss model, as given by Eq. 7. This model 
estimates the path loss faced by a signal in 2.4 GHz narrow ISM band communication 
[11].

The parameter PL in Eq. 7 denotes the path loss (in dB), f denotes the transmission 
frequency (in MHz), D denotes the distance between transmitting and receiving nodes 
(in m), Do denotes the reference distance (in m) and η denotes the path loss index. The 
parameter Gσ is a Gaussian arbitrary variable of zero mean and σ standard deviation.

3.4 � UAV‑WSN topology

This work considers a UAV-WSN of 128 nodes and a single UAV-based sink for 
implementation and simulation of the proposed protocol. Nodes are installed on 
ground in a 100 X 100 m2 network area.

(4)ETX(k, d) =

{

k.Eelec + k.𝜀fs.d
2 if d < do

k.Eelec + k.𝜀mp.d
4 if d ≥ do

(5)ERX(k) = k.Eelec

(6)EDA(k) = k.EDA

(7)PL(in dB) = 20. log10

(

4�Dof

C

)

+ 10� log10

(

D

Do

)

+ G�
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The considered UAV-WSN topology creates optimum number of node clusters. 
If the total number of nodes in the network is n and the node density is ρ, then the 
required number of optimal clusters is given by Eq. 8.

where the variable dmax denotes the transmission range of the ground nodes. In the 
present work, n is 128, the network area is 10000 m2 and dmax is 40  m. Then, ρ 
becomes 128/ (100 × 100), i.e., 0.0128 per m2. Hence, the optimal number of clus-
ters becomes popt≈16. Thus, the considered UAV-WSN topology creates 16 node 
clusters. The shape of every cluster is taken as rectangular with a 25 m dimension 
size. Every cluster comprises 8 ground nodes.

The UAV sink follows an air route (flight trajectory) that is optimized by the 
proposed NSGA-II-based protocol. Figure 5 shows the ground nodes along with 
an arbitrary flight trajectory for the UAV sink of the target UAV-WSN.

For collecting the data packets from the ground sensor nodes, the UAV stops at 
a specific location above the first cluster and starts hovering over there. Now, the 
hovering UAV establishes line-of-sight communication with the nodes of the first 
cluster and receives their data packets on a TDMA basis.

After receiving the packets, the UAV starts following its flight trajectory until 
it reaches the next data collection point over the second cluster. In this manner, 
the UAV sink covers all the nodes of the network. The location from where the 
hovering UAV collects the data packets of the nodes of a cluster is called the 
“UAV Hover Point (UHP)” of that cluster.

(8)popt =
n

dmax

√

3�
+ 0.5

Fig. 5   Target UAV-WSN
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4 � Proposed UAV‑WSN protocol

This section presents the design steps of the proposed NSGA-II-based UAV-WSN 
protocol that considers the optimized planning of the UAV’s flight trajectory along 
with the clustering-based data routing. The presented protocol works in the follow-
ing phases:

4.1 � UAV’s flight trajectory optimization phase

During its trajectory optimization phase, the presented protocol generates the opti-
mized UHP coordinates for each cluster to achieve the following objectives: i) Mini-
mized UAV energy consumption, (ii) Minimized node energy consumption in data 
transmission, and (iii) Maximized packet success rate (network throughput). The tra-
jectory optimization phase operates in the following steps:

4.2 � Step 1: Population initialization

In its first run, NSGA-II-based protocol finds the optimized UHP location for the 
first cluster of nodes. The proposed form of the NSGA-II algorithm creates an ini-
tial population of chromosomes P =

(

x1, x2,… xn
)

 where n is the population size. 
Every chromosome xi;i = 1, 2, ..n of the NSGA-II population consists of three genes 
(

Gi1,Gi2&Gi3

)

 through which it indicates the random 3D coordinates of a tentative 
UHP location over the first cluster. The three genes 

(

Gi1,Gi2&Gi3

)

 of a chromosome 
xi are initialized randomly within the upper and lower bounds that fulfill the phys-
ical dimensions of the first cluster of nodes, i.e., 0 ≤ Gi1 < 25, 0 ≤ Gi2 < 25, and 
Gi3 = Uh . Here, Uh is a predefined parameter that indicates the altitude (in meter) 
at which the UAV will fly over the cluster. Figure  6 shows the initial NSGA-II 
population.

Fig.6   Initial NSGA-II population
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4.3 � Step 2: Multi‑objective fitness evaluation

After initializing its population, the NSGA-II algorithm estimates the fitness of each 
chromosome-xi; i = 1, 2…n of the initial population in terms of following three objec-
tive functions:

(i) UAV energy consumption (Objective-1): The three genes of the chromosome xi , 
i.e., 

(

Gi1,Gi2&Gi3 = Uh

)

 give the 3D coordinates of a tentative UHP location. To reach 
to the UHP point 

(

Gi1,Gi2,Uh

)

 , the UAV first flies vertically upward from the starting 
point (0, 0, 0) to the point 

(

0, 0,Uh

)

 . Then, it flies horizontally from the point 
(

0, 0,Uh

)

 
to the UHP location 

(

Gi1,Gi2,Uh

)

 . Figure 7 shows the UAV’s flight trajectory amid 
starting point to the UHP location.

The first objective function is the amount of energy expended by the UAV in flying 
from the starting point to the UHP location as indicated by the chromosome-xi.

Suppose, EUAV_i denotes the UAV’s energy consumption. The speed of the UAV’s 
flight Vh is taken as 1 m/sec. Now, using Hasini’s UAV model (Eqs.1, 2 and 3), EUAV_i 
is estimated by Eq. 9.

Note: NSGA-II attempts to minimize the EUAV objective.
(ii) Node energy consumption (Objective-2): Now, the hovering UAV establishes 

line-of-sight communication with the nodes of the first cluster and receives their data 
packets on a TDMA basis using IEEE 802.11 MAC protocol. The second objective 
function is the overall residual energy that is consumed by the nodes of the first clus-
ter in transmitting their data packets to the UAV sink hovering at the UHP location 
(

Gi1,Gi2,Uh

)

 of chromosome-xi.
Suppose ENode_i denotes the overall node energy consumption in data transmission. 

Now using the First-Order Node Energy Consumption Model (Eqs. 4, 5 and 6), ENode_i 
is estimated by Eq. 10.

(9)EUAV_i = 315Uh + 308.709

√

(

G2
i1
+ G2

i2

)

− 1.704

(10)ENode_i =
∑

∀j∈U

k.Eelec + k.𝜀fs.d
2
j−sin k

; ifdj−sin k < do
k.Eelec + k.𝜀mp.d

4
j−sin k

; ifdj−sin k ≥ do

Fig.7   UAV’s flight trajectory to the UHP of chromosome-xi
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The parameter U in Eq. 10 represents the set of the cluster-1 nodes. The param-
eter dj−sin k is the Euclidean distance between node-j ;∀j ∈ U and the UAV sink. If 
(

Xj, Yj, 0
)

 are the coordinates of node-j, then dj−sin k is given by Eq. 11.

Note: NSGA-II attempts to minimize the ENode objective.
(iii) Received signal strength at UAV (Objective-3): The last objective of the 

proposed UAV’s path optimization process is to maximize the packet success rate 
(network throughput). The probability of successful packet delivery is positively 
correlated to the signal strength (RSSI) received by the sink from the transmitting 
node. Hence, the enhancement in RSSI provides a remarkable enhancement in net-
work throughput. Hence, the third objective is the average signal strength, the UAV 
receives from the nodes of the first cluster while hovering at the UHP location indi-
cated by the chromosome-xi.

Suppose, RSSIi denotes the average signal strength, the UAV sink receives from 
the nodes of the first cluster. Now, using the path loss model (Eq. 7), RSSIi is esti-
mated by Eq. 12.

The parameter Pt in Eq.  12 is the signal transmit power (in dBm) of nodes. 
Parameter m is the number of nodes in a cluster.

Note: NSGA-II attempts to maximize the RSSI objective.

4.4 � Step 3: NSGA‑II iterative operations

After multi-objective fitness evaluation, the NSGA-II-based UAV-WSN proto-
col carries out the iterative NSGA-II steps like non-dominated sorting, selection, 
crossover, mutation, and elitism. These steps have been elaborated in sub-Sect. 2.2. 
NSGA-II stops its iterations when the predefined termination criteria get fulfilled.

4.5 � Step 4: Applying proposed protocol to the target UAV‑WSN

The proposed NSGA-II-based UAV-WSN protocol has been applied to cluster-1 of 
the UAV-WSN system in Figure 5. Table 2 depicts the values of different NSGA-II 
parameters.

Figure 8 a, b & c depicts the three-dimensional objective space for the initial pop-
ulation, the 50th population, and the finally achieved Pareto population, respectively. 
Figure 9 depicts the chromosomes of the finally achieved Pareto optimal population.

The final Pareto population consists 36 chromosomes which give different Pareto-
optimal UHP locations for cluster-1. Table 3 shows the Pareto population chromo-
somes and their respective objective values. Giving the highest priority to the node 
energy consumption and RSSI objectives, we chose the chromosome-x1, i.e., (16.79, 

(11)dj−sin k =

√

(

Gi1 − Xj

)2
+
(

Gi2 − yj
)2

+
(

Uh − 0
)2

(12)

RSSIi =
∑

∀j∈U

(

Pt − 20. log10

(

4�Dof

C

)

− 10� log10

(

dj−sin k

Do

)

− G�

)

∕m
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13.54, and 1) as the final Pareto optimal UHP location for cluster-1. The chosen 
Pareto-optimal UHP location provides the lower value of node energy consumption 
objective along with the highest value of the Average RSSI objective.

After finding the optimized UHP location for cluster-1, the proposed UAV trajec-
tory optimization scheme finds the UHP location for cluster-2. For this, the UHP 
location of cluster-1, i.e., (16.79, 13.54, and 1) is taken as the starting point of the 
UAV. Now, the NSGA-II algorithm (step 1 to step 3) executes again to find the opti-
mized UHP location for cluster-2. Similarly, in its third and further runs, the NSGA-
II-based UAV-WSN protocol finds the optimized UHP locations for the remaining 
clusters of UAV-WSN. These optimized UHP locations create an optimized flight 
trajectory for the UAV sink.

Figure  10 shows the optimized flight trajectory for the UAV sink as generated 
by the proposed NSGA-II-based UAV-WSN protocol. This optimized flight trajec-
tory attains the goals of minimum node energy consumption in data transmission, 
minimum UAV energy consumption in data collection, and the maximum RSSI. 
Enhancement in RSSI provides a remarkable enhancement in network throughput.

4.6 � UAV‑based data routing phase

After trajectory optimization, the ground sensor nodes sense the specified param-
eters of the ambient environment and save the sensed information in form of a data 
packet.

After data sensing, the UAV sink follows the optimized flight trajectory and stops 
at the UHP location over the first cluster of nodes, and starts hovering over there. 
The hovering UAV establishes line-of-sight communication with the ground nodes 
of the first cluster. Further, the UAV-based sink transmits a TDMA duty cycle sched-
ule for node data transmissions of cluster-1. Figure 11 shows the TDMA schedule.

As per the implemented TDMA schedule, a 1 ms time slot is allotted to each 
cluster member node, out of which 0.2  ms subslot is used for control message 

Table 2   NSGA-II Parameters Parameter Value

Number of iterations 100
Population size 100
Number of genes 3
Function tolerance 1 × 10–4

Distance measure Function @distancecrowding
Pareto front Population fraction 0.35
Selection operator Tournament
Tournament size 2
Crossover rate 0.8
Crossover operator Single point
Mutation rate 0.1
Mutation operator Adaptive feasible
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Fig. 8   Objective space a Initial 
generation b 50th genera-
tion population c Final pareto 
generation
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communication and 0.8  ms subslot is used for data communication. There is a 
0.25 ms guard slot between every two consecutive node slots. The ground nodes 
operate and transmit their packets in the allotted slots only. Else, they stay in 
hibernation mode. Now, the clustering-based data communication takes as 
follows:

Fig. 9   Final pareto generation population chromosomes

Table 3   Pareto population 
chromosomes and objectives 
values

Pareto front chromosome- xi Objective space

xi Gi1 Gi2 Gi3 ENode_i EUAV_i RSSIi

x1 9.16 11.62 1 1.6017 4567.68 − 91.29
x2 6.18 9.25 1 1.6035 3434.42 − 144.88
x3 9.41 12.12 1 1.6016 4736.81 − 115.43
x4 7.44 5.45 1 1.6044 2847.47 − 98.08
x5 0.00 0.04 1 1.6192 10.43 − 100.90
x6 6.26 5.45 1 1.6052 2562.39 − 97.45
x7 17.17 14.04 1 1.6005 6846.65 − 92.01
x8 0.02 0.04 1 1.6192 11.42 − 110.70
x9 16.79 13.54 1 1.6005 6659.48 − 92.98
x10 14.26 10.38 1 1.6008 5444.13 − 93.44
x11 3.09 0.04 1 1.6140 953.08 − 103.61
x12 0.00 1.11 1 1.6174 342.05 − 104.21
: : : : : : :
x35 6.83 9.31 1 1.6031 3565.36 − 95.22
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(i)	 The highest residual energy node of a cluster with a minimum distance to the 
cluster’s UHP location acts as the cluster head node.

(ii)	 The ground sensor nodes transmit their data packets one by one based on the 
TDMA schedule provided by the UAV sink.

(iii)	 A ground sensor node transmits its data packet either to the UAV-based sink 
directly or the ground cluster head node, whichever is nearer.

(iv)	 After all the alive nodes of the first cluster have transmitted their packets, the 
ground cluster head node aggregates the packets it received and creates a com-
bined datum packet. Data aggregation compresses the amount of data to be 
sent. Hence, the clustering-based data communication is an energy-efficient data 
transmission approach. [12, 13].

(v)	 The ground cluster head node transmits the aggregated datum to the UAV sink 
in the end.

After receiving the packets of the nodes of the first cluster, the UAV sink starts 
following its flight trajectory until it reaches the next optimized UHP location of 

Fig. 10   Optimized flight trajectory generated by the proposed NSGA-II based UAV-WSN protocol

Fig. 11   TDMA MAC slots
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the second cluster. In this manner, the UAV sink covers all the nodes of the net-
work and returns to the starting point.

4.7 � Computational complexity of the proposed algorithm

The computational complexity of an algorithm is determined based on arithmeti-
cal and logical operations, the algorithm carries out for its execution. The proposed 
UAV’s trajectory optimization scheme is based on the NSGA-II Multi-objective 
Evolutionary Algorithm. The computational complexities of various operations of 
NSGA-II for one iteration are as follows:

(1) Non-dominated sorting: O
(

M(2N)2
)

(2) Crowding-distance assignment: O(M(2N)log(2N))

(3) Tournament selection: O(N)
(4) Crossover, Mutation and Elitism: O(N)
Here, M represents the number of objectives while N represents the size of the 

NSGA-II population. The non-domination-based sorting function governs the 
overall computational complexity of the NSGA-II algorithm. Hence, the proposed 
NSGA-II-based UAV trajectory optimization scheme shows the complexity of 
O
(

MN2
)

 level [37].
If the time complexity is to be talked about, then the proposed scheme took 

9.70993  s execution time when executed on a 2.39  GHz Core i3 processor-based 
system. Thus, the time complexity of the proposed scheme is 9.70993 s.

5 � Simulation & analysis of proposed protocol

The proposed NSGA-II-based protocol has been applied to the UAV-WSN of 128 
nodes and a single UAV-based sink. Figure 10 shows the implantation of the target 
UAV-WSN in a 100 m X 100 m sensing area. Ground nodes are equally divided into 
16 clusters and the UAV’s flight trajectory is optimized using the proposed NSGA-
II-based protocol.

The performance of the proposed UAV-WSN protocol has been estimated in 
terms of network lifetime, network stability period, energy efficiency, throughput, 
end-to-end delay, and implementation cost metrics. MATLAB scripts along with the 
optimization toolbox (Version R2018a) are used to assess the protocol performance. 
The proposed protocol is simulated on a 2.39 GHz Core i3 processor-based comput-
ing system with 4 GB RAM. Table 4 depicts different simulation parameters.

For proving the authenticity and better performance of obtained results, they 
are compared with the results of SEP [8], ECRP [2], RAMSS [14], and HC-URP 
[41] protocols. The Stable Election Protocol (SEP) is a clustering-based data rout-
ing protocol while Energy aware Cluster-based Routing Protocol (ECRP) is a hybrid 
Multihop-Clustering-based protocol. The SEP and ECRP are applicable for the 
WSN system with the fixed sink node. The Routing algorithm with mobile sink 
support (RAMSS) protocol is applicable for mobile sink-based WSN systems. The 



859

1 3

Multi‑objective NSGA‑II optimization framework for UAV path…

Hierarchical clustering-based UAV Routing Protocol (HC-URP) is applicable for 
UAV sink-based WSN system.

5.1 � Network lifetime & energy efficiency

The count of transmission rounds performed by the network until its first node 
dies indicates network’s stability, whereas the amount of transmission rounds 
performed by the network until all its nodes die, indicates its lifetime. Figure 12 

Table 4   Simulation parameters Parameter Value

Eelect 50 nJ/bit
εmp 10 nJ/bit/m2

εfs 0.0013 nJ/bit/m4

Data packet size 4000 bits
Control message size 20 bits
Network area 100 × 100 m2

Number of nodes N 128 nodes and 1 UAV sink
UAV’s speed for horizontal motion Vh 1 m/sec
UAV’s speed for vertical motion VV 1 m/sec
UAV’s hovering altitude Uh 1 m
Node energy Eo 0.6 J
Reference distance Do for path loss 10 m
Frequency of operation f 2.4 GHz (ISM band)
Path loss coefficient γ 2
St. Deviation for Gaussian variable σ 0 No multi-path fading
Receiver sensitivity Prsens  − 113 dBm
Transmitted power Pt 30 dBm
Wakeup duration of node Ton 1 ms
Transition time (sleep to ideal) Ttranon 0.245 ms
Transition time (ideal to sleep) Ttranon 0.25 ms

Fig.12   Network lifetime performance
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depicts the stability and lifetime periods of different protocols by showing the 
number of alive nodes vs the number of data transmission rounds. Table 5 shows 
the statistics of network stability and lifetime performance for different protocols.

As per the results obtained, the proposed NSGA-II-based UAV-WSN proto-
col provides the network stability period of 1290 data-transmission rounds, while 
the SEP, ECRP RAMSS, and HC-URP protocols show the stability periods of 
527, 1185, 1233, and 632 data-transmission rounds, respectively. Likewise, the 
proposed NSGA-II-based UAV-WSN protocol provides the enhanced network 
lifetime period of 3888 rounds, while the SEP, ECRP, RAMSS, and HC-URP 
protocols show the lifetime periods of 2145, 1765, 2542, and 2981 transmission 
rounds, respectively. Hence, the obtained results reveal that the proposed UAV-
WSN protocol provides a remarkable increase in network stability period and 
lifetime as compared to other existing protocols.

The SEP and ECRP protocols are applicable for the ground sink-based WSN 
while RAMSS is applicable for Sink Mobility-based WSN. The mobile sink 
offers a significant reduction in node energy consumption in data transmission 
by reducing the mean distance between the nodes and the sink. Hence, RAMSS 
offers increased network lifetime as compared to SEP and ECRP protocols.

The HC-URP protocol is applicable for UAV-based WSN systems. As com-
pared to the ground-based mobile sink, the UAV sink avoids the ground obsta-
cles, establishes line-of-sight communication with the ground sensor nodes, and 
offers a substantial reduction in node energy consumption in data transmission. 
Thus, the HC-URP offers an increased network lifetime as compared to SEP, 
ECRP, and RAMSS protocols. However, HC-URP does not incorporate any tra-
jectory optimization mechanism.

The proposed protocol integrates the multi-objective NSGA-II optimization 
algorithm that optimizes the flight trajectory of the UAV sink for minimized node 
energy consumption in data transmission. Hence, the ground sensor nodes work 
for a longer operating period. Hence, the proposed NSGA-II optimization-based 
UAV-WSN protocol provides a remarkable increase in network lifetime as com-
pared to other existing protocols.

Figure 13 shows the residual energy performances of the various protocol. The 
results prove that the proposed UAV-WSN protocol attains an energy efficiency of 
70.25% as compared to other protocols.

Table 5   Dead node percentage

Parameter SEP [8] ECRP [2] RAMSS [14] HC-URP [41] Proposed

Stability period 527 1185 1233 632 1290
Network lifetime 2145 1765 2542 2981 3888
Application Ground SINK-Based 

WSN
Sink mobility-based 

WSN
UAV sink-based WSN
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5.2 � Throughput

A network’s throughput is a measure of its ability to deliver node data packets to the 
sink node, successfully. Figure 14 displays the number of data packets reaching the 
sink without dropping. The results depict that the proposed NSGA-II-based UAV-
WSN protocol offers a successful delivery of 2.026 X 105 packets to sink in 3500 
transmission rounds. While, in the same number of transmission rounds, successful 
packet delivery counts for SEP, ECRP, RAMSS and HC-URP protocols are 0.28 X 
105, 0.62 X 105, 1.46 X 105 & 1.00 X 105 packets, respectively.

From the obtained result, it is also observed that the SEP and ECRP protocols 
deliver the least throughput performance. Both of these protocols are applicable 
for wireless sensor networks with a fixed grounded sink node. Here, the node sig-
nals commonly face multipath fading and increased path loss due to ground obsta-
cles and vegetation. The mobile-sink and UAV-sink-based techniques can reduce 
the average distance between nodes and sinks. Due to this, the average path loss 
is reduced and the network throughput is also improved. Hence, the mobile sink-
based RAMSS protocol and the UAV sink-based HC-URP protocol offer improved 

Fig.13   Network residual energy performance

Fig. 14   Network throughput performance
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throughput performances. However, HC-URP does not incorporate any trajectory 
optimization mechanism.

The proposed UAV sink-based protocol incorporates the multi-objective NSGA-
II optimization algorithm that optimizes the flight trajectory of the UAV sink for 
minimum node energy consumption in data transmission, minimum UAV energy 
consumption in data collection, and the maximum RSSI. Enhancement in RSSI pro-
vides a remarkable enhancement in network throughput. Hence, the proposed UAV-
WSN protocol provides a remarkable increase in network throughput as compared to 
other existing protocols.

5.3 � End to end delay (latency)

A network’s latency performance is a measure of end to end delay in data commu-
nication over a wireless sensor network. Figure 15 depicts the end to end network 
latency results applicable for the different protocols. As the result depicts, the pro-
posed protocol shows a latency of 150 ms which is better than the latency perfor-
mances shown by the SEP, ECRP, and HC-URP protocols. However, the sink mobil-
ity-based RAMSS protocol shows the least latency result of 135 ms.

5.4 � Financial cost for implementation

The cost of the physical installation of a UAV-based wireless sensor network com-
prises of following expenses:

(a)Cost for implanting ground nodes and sink node.
(b) Cost of UAV and its control system.

(c)Other various expenditures such as the cost of recharging node batteries and 
cost of software implementation, etc.

Table 6 presents an account of the fiscal cost of implementing different protocols. 
Here the Csn is the per unit cost of a sensor node, Csink the per unit cost of a sink 
node, CUAV is the cost of UAV and its control system, and CTrajectory is the cost of 

Fig. 15   Network latency performance
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building the trajectory for a ground-based mobile sink. The number of sensor nodes 
is “n.” Here we have assumed that the Csn and Csink are common for each protocol.

The RAMSS is a ground-based mobile sink WSN protocol. The cost of building 
the trajectory for a ground-based mobile sink is usually much higher than imple-
menting a UAV-based sink node. Hence, as per the cost analysis given in Table 6, 
the cost of implementing a UAV-based WSN is lower than implementing a ground-
based mobile sink WSN. However, the implementation of UAV-based WSN is 
expensive as compared to a general WSN system.

6 � Conclusions and future work

An optimized flight trajectory for UAV-based sink offers the enhanced network life-
time and throughput performance of a UAV-WSN. In this paper, we presented an 
NSGA-II-based UAV-WSN protocol that considers the optimized planning of the 
UAV’s flight trajectory along with the clustering-based data routing. The proposed 
UAV-WSN protocol provides an optimized UAV flight trajectory that achieves the 
objectives of minimum node energy consumption in data transmission, minimum 
UAV energy consumption in data collection, and maximum RSSI. Enhancement in 
RSSI provides a remarkable enhancement in network throughput. The simulation 
results reveal that the proposed UAV-WSN protocol provides improved network 
lifetime and network throughput rate compared to other state-of-the-art existing 
protocols.

The proposed UAV-WSN protocol implements single-UAV-based data collection 
in wireless sensor networks. The use of a single UAV degrades the network’s aver-
age Age of Information (AoI) performance. Moreover, the single UAV-based UAV-
WSN system may show the coverage-hole problem for sparse networks.

6.1 � Future work

Our future work will focus on developing a multi-UAV-based UAV-WSN proto-
col that would optimize the UAV’s flight paths to achieve the following objectives 
simultaneously: (a) Minimization of UAV and node energy consumption (b) Maxi-
mization of node coverage and data collection efficiency (c) Minimization of Net-
work’s average AoI. Further, the projected multi-UAV-based UAV-WSN protocol 

Table 6   Financial cost of 
various algorithm

S.N Algorithm Cost

1 SEP nCsn + Csink

2 ECRP nCsn + Csink

3 RAMSS nCsn + Csink + CTrajectory

4 HC-URP nCsn + Csink + CUAV

5 Proposed (UAV-WSN) nCsn + Csink + CUAV
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will incorporate the hybrid TDMA and FDMA-based MAC mechanism that will 
overcome the issues of cross-channel interference in a multi-UAV sink situation.
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