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Abstract
With the development of cloud computing, a growing number of workflows are 
deployed on cloud platform that can dynamically provides cloud resources on 
demand for users. In clouds, one basic problem is how to schedule workflow for min-
imizing the execution cost and the workflow completion time. Aiming at the prob-
lem that the maximum completion time and cost of multiple workflows are too high, 
this paper proposes a model of dynamic multi-workflow scheduling in cloud envi-
ronment and a new scheduling algorithm which is named as MT (multi-workflow 
scheduling technology). In MT, the heterogeneity of resources is considered when 
calculating the priority of tasks. Then, the technique for order of preference by simi-
larity to ideal solution (TOPSIS) method is used to rank the resources when select-
ing resources for tasks. Finally, MT takes the estimated minimum completion time 
of the workflow and the cost of the task as two attribute indexes in TOPSIS deci-
sion matrix. Also, it uses a fixed reference point instead of calculating ideal solution, 
which ensures the uniqueness of the evaluation criteria when there is a change in the 
number of resources. Simulation experiments are illustrated to verify the effective-
ness of the proposed algorithm in reducing the maximum completion time and cost 
of multiple workflows. Compared with the state-of-the-art methods, the maximum 
completion time and cost can be reduced by at most 17 and 9% , respectively.
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1 Introduction

With the rapid development of cloud computing technology, the cloud resource 
provides an efficient computing service model and provided great convenience 
for human life [1, 2] and is widely used in complex applications with the power-
ful computing capability [3], such as transportation, medical care, education and 
e-commerce industries [2]. In clouds, the cloud model consists of a great number of 
servers which are equipped with adequate cloud resources, such as CPU cores and 
memory and multiple virtual machines (VMs) instances are running simultaneously 
on these servers. In this way, many workflows applications are executed in cloud 
environment. As a result, there are many challenges for cloud service providers how 
to effectively schedule applications with cloud resources [4].

Workflow scheduling in cloud computing refers to obtaining the corresponding 
time and space mapping relationship between tasks and resources [5] and allocat-
ing tasks to proper resources according to different scheduling objectives, which 
not only plays a decisive role in the whole cloud workflow system, but also greatly 
affects QoS requirements of users [6]. Many heuristics or meta-heuristic algorithms 
[7–9] have been proposed for workflow scheduling to optimize a single objective, 
such as the scheduling length or execution cost. However, more than one objective 
need to be taken into consideration. Time and cost are the two most important but 
conflict QoS parameters, which increases the difficulty of workflow scheduling. In 
addition, current approaches mainly focuses on single workflow scheduling. As for 
multiple workflows, they will schedule the workflows sequentially, which cannot 
extract all the features of workflows so as to give the optimal scheduling strategy. In 
the cloud, the resources with the best performance usually have the most expensive 
prices. Therefore, how to balance these two parameters in scheduling when multiple 
workflow dynamically arrive is a challenge.

In this paper, we design a scheduling and optimization algorithm for dynamic 
scheduling multiple workflows in clouds. Different from current approaches, the 
proposed approach can schedule multiple workflows simultaneously, and the objec-
tive of this paper is to minimize the maximum completion time and the total cost for 
executing the dynamic multiple workflows. The main contributions are as follows:

• We consider the heterogeneity of resources when calculating the priority of 
tasks. And the TOPSIS1 method is adopted to select resources for tasks.

• A new algorithm called MT is proposed, which can minimize the maximum 
completion time and the total cost of the multiple worklflows. Considering the 
influence of resource selection on the completion time of the child tasks, the 
estimated minimum completion time of the workflow is applied as one attrib-
ute index, and the sum of the tasks’ execution cost and data transmission cost is 

1 The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria 
decision analysis method, it is based on the concept that the chosen alternative should have the shortest 
geometric distance from the positive ideal solution and the longest geometric distance from the negative 
ideal solution [10].
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taken as the other attribute index, which can further reduce the execution time 
and cost of the workflow. In addition, it adopts a fixed reference point instead of 
calculating ideal solution, which ensures the uniqueness of the evaluation criteria 
when there has a change in the number of resources.

• Simulation experiments are carried out to verify the effectiveness of the pro-
posed algorithm. Experimental results validate that the proposed MT algorithm 
can generated less maximum completion time and total cost of multiple work-
flows than the state-of-the-art algorithms.

The remainder of this paper is organized as follows. Section 2 presents the related 
work. System model and the scheduling problem are given in Sect. 3. The proposed 
MT algorithm is introduced in Sect.  4. In Sect.  5, experiments are carried out to 
evaluate the algorithm’s efficiency. Finally, Sect. 6 concludes the paper.

2  Related work

There are many researches on workflow scheduling. And they can be divided into 
several categories according to different optimization objectives, such as cost or 
scheduling length. The heterogeneous earliest-finish-time (HEFT) algorithm has 
been proposed in [7], which is a heuristic algorithm to minimize the scheduling 
length of the workflow in the heterogeneous environment. Based on this, Lin et al. 
[11] proposed scalable heterogeneous earliest-finish-time (SHEFT) algorithm, 
which successfully realized the elastic scaling of resources in the process of schedul-
ing, and effectively reduced the execution time of tasks. Besides the heuristic algo-
rithms, some scholars use meta-heurisitc algorithms to slove these problems. Buyya 
[12] proposed particle swarm optimization (PSO) to generate the schedule plan. And 
[13] adopted ant colony optimization (ACO) algorithm to schedule workflows. For 
optimizing the execution cost and time, Pareto optimal scheduling heuristic (POSH) 
as a multi-objective heuristic optimization algorithm has been proposed by Su [14] 
in 2013, which aims to achieve the balance between the execution cost and the maxi-
mum completion time of the workflow. It selects tasks in the same way as described 
in HEFT. In the stage of resource selection, the task execution cost and execution 
time are weighted respectively and added to obtain a new objective function. Based 
on the new objective function, the optimal resource for the task can be selected.

Recently, Li et al. considered a multiobjective workflow scheduling problem and 
proposed a scoring and dynamic hierarchy-based NSGA-II (nondominated sorting 
genetic algorithm II), to minimize both workflow makespan and cost [15]. Chen 
et  al. [16] adopted co-evolutionary multiple populations to design a novel multi-
objective workflow scheduling algorithm with the ant colony system to minimize 
both workflow execution time and cost. Zhu et  al. [17] proposed an evolutionary 
multiobjective optimization (EMO)-based algorithm with novel schemes for fitness 
evaluation, genetic operator. Garg and Singh [18] designed a multiobjective work-
flow scheduling optimization approach to optimize makespan and monetary cost 
simultaneously for the whole workflow execution with designed genetic operations 
in hybrid clouds.
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However, previous studies are only focused at the single workflows. Aiming at the 
multiple workflows, the online workflow management (OWM) algorithm designed 
by Hsu et al. [19] to solve the scheduling problem of multiple and hybrid parallel 
workflows. However, because only idle resources are considered, the task may be 
delayed, which causes the increase of the completion time of the workflow. Different 
from current works, the proposed approach in this paper focuses on the workflow 
scheduling which has multi-objectives. In addition, our approach can schedule the 
multiple workflows simultaneously, which will match the optimal resources for each 
task, so as to make full use of the resources.

3  System model

The dynamic multi-worklfow model is illustrated in Fig. 1. After accepting the appli-
cation requests, the system abstract them into the directed acyclic graph (DAG) and 
store them in the workflow repository. Ready task pool refers to tasks that are fully 
prepared and can be scheduled at any time in the workflow repository according 
to certain selection rules, such as round robin or first come first schedule. Various 
scheduling algorithms are embedded in the scheduler, which can intelligently select 
the optimal scheduling algorithms to assign tasks to appropriate resources according 

Fig. 1  The dynamic scheduling model of multiple workflows
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to the users’ personalized needs, and obtain the corresponding mapping relationship 
between tasks and resources.The task waiting queue mainly stores the correspond-
ing waiting tasks on each resource. Finally, the specific scheduling is implemented 
in the cloud environment according to the scheme given in the scheduler and the 
order of tasks in the task waiting queue. The usage status of related cloud resources 
in the cloud also needs to be feed back to the scheduler in real time to provide real-
time information for schedule subsequent tasks. In this paper, when a resource in the 
cloud resource pool executes a task, it can only process one task at a time, in other 
words, the execution of the task can’t be preempted.

Cloud service provider such as Amazon cloud can provide a platform which com-
prises a large number of virtual machines (VMs) or containers with different types. 
The VMs and containers in the cloud environment are collectively referred to as 
resources in the paper. The cloud environment is heterogeneous, that is, there are 
differences in computing and storage capacities among the cloud resources. And let 
P = {p1, p2,… , p|P|} denote the cloud resources provided, and |P| is the size of the 
resources. Traditionally, the applications submitted by different users could be mod-
eled as workflows and denoted as GS = {G1,G2,… ,G|M|} , where |M| is the number 
of the workflows. Each workflow can be decomposed into many subtasks with prec-
edence constraints. In this paper, the workflow is abstracted as a DAG and denoted 
as G(T, E, W, C), where T = {t1, t2,… , t|N|} is the set of |N| tasks, and E is the set of 
communication edges, where E = {eij‖i, j = 1,… �N�} represents the data depend-
ency constraints set for tasks of workflow. The cij ∈ C is the data transmission time 
between ti and tj . W is the |N| × |P| computation matrix, and |N| is the number of 
tasks in the DAG and |P| is the number of resources provided. wi,k ∈ W represents 
the time of task ti processed on resource pk . The workflow model based on DAG is 
shown in Fig. 2 and the corresponding computation matrix is shown in Fig. 3.

Next, some definitions of the DAG model are described as follows:

• pred(ti) : The set of the parent tasks of task ti . In the Fig. 2, task t1 is the parent 
task of task t2 , t3 , t4 , t5 and t6 . The task set composed of task t2 , t4 and t6 is the par-
ent task set of task t8 , and the set composed of task t2 , t4 and t5 is the parent task 
set of task t9 . If a task has no parent task, the task is called the entry task of the 
DAG. If a DAG has more than one entry task, for convenience, a dummy entry 
task is added in the beginning of the DAG, which has zero execution time and 
zero–weight with the actual entry task.

• succ(ti) : The set of the child tasks of task ti . In the Fig. 2, the set composed of 
task t2 , t3 , t4 , t5 and t6 is the child task set of t1 , and the task set consist of task t8 
and t9 is the child task set of task t2 . If a task’s child task set is empty, the task is 
called the exit task of the DAG. If an DAG has more than one exit task, for con-
venience, a dummy exit task is added in the ending of the DAG, which has zero 
execution time and zero–weight with the actual exit task of the DAG.

• EST(ti, pk)∕EFT(ti, pk) : The earliest start/finish time of task ti in resource pk.
• AST(ti)∕AFT(ti) : The actual start/finish time of task ti based on the actual sched-

uling.
• Makespan(Gm) : The finish time for the workflow Gm . The finish time of Gm can 

be calculated by: 
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Fig. 2  The DAG model of workflow

Fig. 3  The corresponding computation matrix in Fig. 2
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 where AFT(Gm.texit ) indicates the actual finish time of the exit task of Gm and 
AST(Gm.tentry) is the actual start time of the entry task of Gm.

3.1  Cost model

Cloud provides a strategy of pay-as-you-go pricing, where users are charged according 
to the used time of the resources. Owning to the various capacities of the resources, 
their prices are also different. Resources with rapid processing speed are expensive, and 
cheaper resources always have slow processing capacities. In the paper, task’s cost con-
sists of computation cost and transmission cost. We use price(pk) to denote the price 
per unit time associated with processor pk and price(pt) to represent the price of data 
transmission in unit time. The computation and transmission cost of task ti is

The cost of workflow Gm is the sum of actual cost of all its tasks

3.2  Problem formulation

Based on the system scheduling model and the cost model, the scheduling problem in 
this paper is to search the proper map from tasks to resources to minimize the maxi-
mum completion time and cost in the multi-workflow system when multiple workflows 
arrive dynamically, which is

where Makespan(GS) represents the maximum completion time of all workflows 
in GS , i.e., the total time from the beginning of the first task to the completion of 
last task in GS . C(GS) represents the total cost of all workflow. Makespan(GS) and 
C(GS) are calculated via

(1)Makespan(Gm) = AFT(Gm.texit ) − AST(Gm.tentry),

(2)C(ti, pk) = price(pk) ∗ wi,k +
∑

tm∈pred(ti)

cmi ∗ price(pt),

(3)C(Gm) =
∑
ti∈Gm

C(ti, pk).

(4)
minimize Makespan(GS),

minimize C(GS),

(5)

Makespan(GS) = max
Gm∈GS

max
texit∈Gm

AFT(texit )

C(GS) =
∑

Gm∈GS

C(Gm)
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4  Minimize the maximum completion time and cost 
of multi‑workflows

In this section, an algorithm named MT based on TOPSIS method is proposed 
for minimizing the maximum completion time and cost for multi-workflows. 
The algorithm mainly contains two phases, which are the task selection and the 
processor selection based on TOPSIS method. The multi-workflow scheduling 
process by MT algorithm is shown in Fig. 4. These two phases are described in 
detail as follows.

4.1  Task selection

The traditional method of calculating tasks’ priorities, such as the average execution 
time of tasks on resources when calculating ranku in HEFT [7] algorithm, eliminates 
the heterogeneity among resources’ performance. In this section, we consider the 
heterogeneity of resources in the cloud computing when calculating the priorities of 
tasks and iteratively calculate the rank value of tasks on each resource in turn

where Rankn(ti, pk) represents the longest distance between task ti and the exit task 
when resource pk is selected by task ti . wi,k and wexit,k indicate the execution time 
of task ti and texit on resource pk , respectively. cij is the time of data transmission 
between task ti and its child task tj.

According to equation (6), the priority of task ti can be determined by

After obtaining the value of Rankn for all tasks in each workflow, place the tasks in 
the init_queue of the corresponding workflow in the order of decreasing Rankn . In 
order to ensure fairness, for the unscheduled workflows, the tasks with the largest 
Rankn in every workflow’s init_queue are submitted to the ready_pool , and then the 
tasks in the ready_pool are reordered according to the following formula

where PRT(Gm) represents the percentage of the remaining unscheduled tasks in the 
workflow Gm , and CPL(Gm) is the critical length of Gm . The equation indicates that 
if there are two workflows with the same number of tasks, the task of the workflow 
with the less unscheduled tasks and the smaller CPL will gets a high priority.

After calculating the Rankr of all tasks in the ready_pool , selecting the task 
tcurr with the largest Rankr value, and determining the appropriate resources for 

(6)

{
Rankn(ti, pk) = wi,k + max

tj∈succ(ti)
{cij + Rankn(tj, pk)},

Rankn(texit , pk) = wexit,k ,

(7)Rankn(ti) =
∑
pk∈P

Rankn(ti, pk)∕|P|.

(8)Rankr(Gm ⋅ ti) =
1

PRT(Gm)
+

1

CPL(Gm)
,
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the selected task according to TOPSIS method. Before introducing the strategy 
of resource selection, next we first introduce TOPSIS method for multi-attribute 
decision-making.

Fig. 4  The multi-workflow scheduling process by MT algorithm
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4.2  Overview for TOPSIS method

TOPSIS [20] method for multi-attribute decision-making is simple in calcula-
tion and rigorous in logic, which can intuitively show the gap among the various 
schemes. The main steps of the TOPSIS method is

(1) Based on the evaluation index of the problem and the given multiple optional 
schemes, the original decision matrix X of the problem is determined via

where xij is the value of the jth evaluation index on the ith scheme, m is the number 
of given optional schemes, and n is the number of attribute indexes.

(2) Because the attribute indexes to be evaluated are different from each other, the 
dimensions of data in decision matrix X are also quite different. In order to eliminate 
the influence of data dimension, this section uses vector method to standardize the 
data of X as follows

After the standardization of X, the dimensionless matrix Q is

(3) In the actual problem, the significance of different attribute indexes are various. 
Thus, it is necessary to determine the weight of attribute indexes in advance accord-
ing to the actual demand, and to multiply the determined index weight by the cor-
responding value in Q to obtain the weighted matrix V as

(4) Determining the positive ideal solution Z+ and negative ideal solution Z− in 
matrix V, and for different types of indexes, Z+

j
 and Z−

j
 can be expressed as follows, 

respectively,

(9)
X =

⎡
⎢⎢⎢⎣

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋮ ⋮

xm1 xm2 ⋯ xmn

⎤
⎥⎥⎥⎦
,

(i = 1, 2,… ,m;j = 1, 2,… , n),

(10)
qij =

xij�
m∑
i=1

xij
2

(i = 1, 2,… ,m; j = 1, 2,… , n).

(11)
Q =

⎡
⎢⎢⎢⎣

q11 q12 ⋯ q1n
q21 q22 ⋯ q2n
⋮ ⋮ ⋮ ⋮

qm1 qm2 ⋯ qmn

⎤
⎥⎥⎥⎦
,

(i = 1, 2,… ,m; j = 1, 2,… , n).

(12)

vij = qij ∗ wj,

n∑
j=1

wj = 1,

(i = 1, 2,… ,m; j = 1, 2,… , n).
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(5) Determining the Euclidean distance between scheme i and positive ideal solution 
Z+ and negative ideal solution Z− as

(6) The relative closeness Ri between the scheme i and the ideal solution Z+ is

It can be seen from equation (16) that the closer Ri is to 1, the closer the scheme is 
to the positive ideal solution Z+ , in other words, the better the scheme i is compared 
with other schemes. Each candidate scheme is sorted according to the principle of 
the relative closeness decreasing.

(7) According to the practical problems and the sorting results of all schemes, the 
best scheme can be selected.

4.3  Resource selection based on TOPSIS method

Combined with the actual scheduling problem of this paper, this section uses TOP-
SIS method to select th most appropriate resource for the task tcurr . The main steps 
is:

Step1: Deterimine the original decision matrix Xm∗n . The number m of Xm∗n is the 
size |P| of the set of provided resources. The objective of the paper is to minimize 
the completion time and cost of the workflows. Thus, the number n is 2. When the 
task tcurr is executed on the resource pi , the EFT(tcurr , pi) of tcurr on the resource pi is 
firstly calculated by using formula (17) and the resource insertion strategy is

(13)
Z+
j
=

{
min(vij), index of minimization,

max(vij), index of maximization,

(i = 1, 2,… ,m; j = 1, 2,… , n),

(14)
Z−
j
=

{
max(vij), index of minimization,

min(vij), index of maximization,

(i = 1, 2,… ,m; j = 1, 2,… , n).

(15)

d+
i
=

�
n∑
j=1

(Z+
j
− vij)

2,

d−
i
=

�
n∑
j=1

(Z−
j
− vij)

2,

(i = 1, 2,… ,m; j = 1, 2,… , n).

(16)Ri =
d−
i

d+
i
+ d−

i

, (i = 1, 2,… ,m).

(17)
EST(tcurr , pi) = max{Tavail(pi), max

tm∈pred(tcurr )
(AFT(tm) + cm(curr))},

EFT(tcurr , pi) = EST(tcurr , pi) + wcurr,i,
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where Tavail(pi) is the available time of resource pi , and the inner max of EST(tcurr , pi) 
indicates that only if all parent tasks of tcurr have been finished and the data required 
by tcurr have arrived at pk , then tcurr can be ready for processing.

When optimizing the completion time of the workflow, we should not only 
consider the impact of resource selection on the current task’s completion time, 
but also take the influence on the task completion time of the child task. There-
fore, calculating the maximum value of the shortest path from all child tasks of 
tcurr to the exit task is

where ws,o + c(curr)s represents the sum of the computation time of the child task ts 
on resource po and the data transmission time between ts and tcurr when tcurr selects 
pi . Note that, when tcurr and ts select the same resource, the data transmission time is 
c(curr)s = 0.

Adding Min(tcurr , pk) to the calculated EFT(tcurr , pi) to estimate the minimum 
completion time of the workflow MinG(tcurr , pi) = EFT(tcurr , pi) + Min(tcurr , pi) . 
Making MinG(tcurr , pi) as the first attribute index of the decision matrix, namely, 
xi1 = MinG(tcurr,pi).

The second attribute index of the decision matrix is the sum of the computa-
tion cost and the data transmission cost of tcurr is defined as xi2 = C(tcurr,pi ).

step2: The dimensionless matrix Qm∗n is obtained by standardizing Xm∗n 
according to the equation (10).

step3: According to the equation (12) and the weight determined for the two 
attribute indexes, we can get the weighted matrix Vm∗n . In this paper, we assume 
that the completion time is more significant than the cost, so we set the weight of 
time and cost to 0.9 and 0.1, respectively.

step4: When the traditional TOPSIS method matches resources for tasks, if the 
size of the given resource increases or decreases, it is likely that the ideal solu-
tion will change, which may cause that the evaluation results of the same two 
resources will reverse. In order to solve this problem, we use a fixed reference 
point instead of determining ideal solution (Sect. 4.2 (4)), which can ensure the 
uniqueness of evaluation criteria and the robustness of the proposed algorithm 
under different size of resources.

Since the two attribute indexes in this section belong to the indexes of mini-
mization and , We use 0 as the positive ideal solution and 1 as the negative ideal 
solution as follows

Based on the above analysis, AZ+ = [0, 0] , AZ− = [1, 1] in this section.
step5: Replace Z+ and Z− with AZ+ and AZ− in (15). Calculate the euclidean 

distance between each resource and AZ+ according to (15).

(18)Min(tcurr , pi) = max
ts∈succ(tcurr )

{min
po∈P

{ws,o + c(curr)s +Min(ts, po)}},

(19)

AZ+
j
= 0,

AZ−
j
= 1,

(j = 1, 2,… , n).
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step6: Obtain the relative closeness between each resource scheme and the absolute 
ideal solution AZ+ according to the formula (16), and rank all resources in descending 
order of the relative closeness.

step7: Select the resource psel with the highest value of the relative closeness for task 
tcurr , and assign tcurr to resource psel for execution.

The process of our algorithm for dynamic multi-workflow scheduling is shown in 
Algorithm 1.
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5  Experiments

5.1  Test environments and metrics

The experiment is implemented in the heterogeneous experimental environment 
(2.11 ghz, 8GB RAM) using java language. The heterogeneous experimental envi-
ronment consists of several VMs which are with different service unit prices and 
computing capacities. The parameters for experiments are shown in Table 1. The 
unit price per unit time of resources is set as 0.3$∕h ≤ price(pk) ≤ 0.7$∕h . The 
unit price of data transmission between resources is set as price(pcomm) = 0.1$∕h . 
The task execution time is denoted by 10us ≤ wj,k ≤ 100us which means the dif-
ferent computing capacities of VMs. The Larger wj,k means lower computing 
capacity for a VM.

In addition, the five types of workflows used in the experiment are shown in 
Fig. 5. They are linear algebra, Gaussian elimination, Diamond graph, Complete 
binary tree, and Fast Fourier transform, respectively. To illustrate the number of 
tasks of each workflow, we introduce a parameter �.

(a) Linear algebra: The total number of tasks is |N| = �(� + 1)∕2 . And the 
Fig. 5a is the worklfow with � = 5.

(b) Gaussian elimination: The total number of tasks is |N| = �
2+�−2

2
 . And the 

Fig. 5b is the worklfow with � = 5.
(c) Diamond graph: The total number of tasks is |N| = �

2 . And the Fig. 5c is 
the worklfow with � = 4.

(d) Complete binary tree: The total number of tasks is |N| = 2� − 1 . And the 
Fig. 5d is the worklfow with � = 5.

Table 1  Parameters for 
experiments

Parameter Value

wj,k 10us ≤ wj,k ≤ 100us

ci,j 10us ≤ ci,j ≤ 100us

price(pk) 0.3$∕h ≤ price(pk) ≤ 0.7$∕h

price(pcomm) 0.1$/h

(a)Linear alge-
bra

(b)Gaussian
elimination

(c)Diamondgraph (d)Completebinary tree (e)FastFourier
transform

Fig. 5  Five types of workflows
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(e) Fast Fourier transform: The total number of tasks is 
|N| = 2 × � − 1 + � × log2� , where � = 2y . And the Fig.  5e is the worklfow with 
� = 4.

There are more than one entry task in the workflow of Linear algebra, so we add 
a virtual entry task and all the actual entry tasks are set as the immediate succes-
sor tasks of the virtual entry task. There are more than one exit task in the com-
plete binary tree and Fast Fourier transform workflows. Therefore, a virtual exit task 
should be added and all the actual exit tasks should be set as the immediate prede-
cessor tasks of the virtual exit task. Note that, the data transmission time between 
the added virtual tasks and the actual tasks is zero.

Furthermore, the number of tasks in linear algebra, Guassian elimination, Dia-
mond graph, Complete binary and Fast Fourier transform workflows are shown in 
Table 2. The proportion of the five types of workflows is the same under different 
number of workflows, that is, when the number of multiple workflows is 10, the 
number of workflows of each type is 2, and when the number of multiple workflows 
is 20, the number of workflows of each type is 4. Moreover, the workflow param-
eters are set as 10us ≤ wi,k ≤ 100us , 10us ≤ cij ≤ 100us in Table 1.

The performance metrics of the algorithm in this paper are the maximum com-
pletion time of multi-workflow Makespan(GS) and the total cost of the system 
C(GS) . All of the results for each experiment are average values after 20 times of the 
dynamic and multiple workflows’ execution.

5.2  Experiments results

In this subsection, the effectiveness of MT algorithm is validated. And we show 
the effectiveness of the algorithm from three aspects: the number of workflows, the 
arrival time interval of workflow and the number of resources.

5.2.1  Varying number of workflows

The compared algorithms are OWM, FDWS and MPOSH, where MPOSH is the 
extension of POSH to the problems of multiple workflow by simply adding the func-
tion of receiving multiple workflows. This part evaluate the performance of four 
algorithms by different workflow numbers.

In Fig.  6, the workflow arrival interval is 30, and the number of workflows is 
set in the range of 10, 20, 30, 40, 50. The number of resources provided is 100. 

Table 2  Workflow types for 
experiments

Workflow name Task number

linear algebra 120
Guassian elimination 119
Diamond graph 121
Complete binary 127
Fast Fourier transform 95
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According to Fig.  6, the makespan of four algorithms are increasing with the 
increase of the workflow number. The reason is that the set of given resources is 
fixed, and the increase of the amount of tasks to be processed will inevitably lead 
to the increase of time consumption and cost. In addition, it can be seen that the 
makespan and cost of MT algorithm are lower than those of the other three algo-
rithms under different workflow numbers. This is mainly because the MT algorithm 
considers the heterogeneity of VMs for sorting tasks and adopts the TOPSIS method 
to rank the resources for executing tasks, which can further reduce the execution 
time and cost of the workflow. Furthermore, to fully demonstrate the benefits of the 
proposed algorithm, we set the workflow arrival interval as 10 and the number of 
resources as 100. The number of workflows is set in the range of 20, 40, 60, 80 
which is used to evaluated the makespan and cost of four algorithms for workflows 
with different workflow numbers in Fig. 7. From Fig. 7, the makespan of four algo-
rithms are increasing with the increase of the workflow number. In addition, it can 
be seen that the makespan and cost of MT algorithm are lower than those of the 

Fig. 6  Makespan(GS) and C(GS) values of the different number of workflows

Fig. 7  Makespan(GS) and C(GS) values of the different number of workflows
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other three algorithms under different workflow numbers. Hence, the experimental 
results demonstrate that MT outperforms three state-of-the-art algorithms in terms 
of makespan and cost with different workflow numbers.

5.2.2  Varying the arrival time interval of workflow

In this subsection, the performance of FDWS algorithm, OWM algorithm, MPOSH 
algorithm and MT algorithm are compared from the perspectives of maximum com-
pletion time and total system cost of multiple workflows by different arrival time 
interval of multiple workflows. The number of workflows in this part is 30, and the 
number of resources is 100. The experimental results are shown in Figs. 8 and 9.

In Fig. 8, the arrival time interval of workflow is set to 10, 20, 30, 40, 50 respec-
tively. Figure 8 indicates that under the same number of workflows, the makespan of 
the four algorithms gradually increases with the increase of the arrival time interval 
of the workflows. Moreover, compared with the other three algorithms, the makes-
pan and cost of multiple workflows obtained by MT algorithm are the smallest. And 

Fig. 8  Makespan(GS) and C(GS) values of the different arrival interval of workflows

Fig. 9  Makespan(GS) and C(GS) values of the different arrival interval of workflows
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the performance of MPOSH algorithm is worse than FDWS and OWM algorithms. 
Furthermore, the arrival time interval of workflow is set to 60, 70, 80, 90 and 100 in 
Fig. 9. From Fig. 9, the makespan of all algorithms are increasing with the increase 
of the arrival time interval. In addition, it can be seen that the makespan and cost 
of MT algorithm are lower than those of the other three algorithms under different 
arrival time interval. Hence, We can observe that the performance of MT is better 
compared with the FDWS, OWN and MPOSH in these experiments.

5.2.3  Varying number of resources

We evaluate the performance of four algorithms with different number of resources 
in this part. The experimental results of the four algorithms when the number of 
resources changes as shown in Figs. 10 and 11.

In Fig. 10, the number of resources is set to 10, 20, 30, 40 and 50, respectively. 
The number of workflows set in this part is 10, and the arrival time interval of work-
flow is 10. As depicted in Fig. 10, with the change of the number of resources, the 

Fig. 10  Makespan(GS) and C(GS) values of the different number of resources

Fig. 11  Makespan(GS) and C(GS) values of the different number of resources
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MT algorithm can also achieve the best performance in the maespan and the cost 
compared with the other three algorithms. It shows that the MT algorithm has a good 
robustness when there has a change in the number of resources provided. This is 
mainly because that MT algorithm adopts absolute ideal solution of 0-1 type instead 
of relative ideal solution to ensure the uniqueness of evaluation criteria and avoid 
the reverse order of the same two resources when it uses the TOPSIS method to 
select resources for tasks. To further demonstrate the effectiveness of MT, the num-
ber of workflows is set as 30, and the arrival time interval of workflow is 30. The 
number of resources is set to 100, 120, 140, 160, 180 and 200 in the experiments, 
respectively. The experimental results of the four algorithms when the number of 
resources changes as shown in Fig. 11. It can be seen from Fig. 11 that the makes-
pan and cost of MT algorithm are lower than those of the other three algorithms 
under different resource numbers. Hence, We can observe that the performance of 
MT is better compared with the FDWS, OWN and MPOSH in these experiments.

6  Conclusion

In this paper, we focus on the optimization of maximum completion time and total 
cost for the dynamic multi-workflow. Firstly, the system model and framework of 
dynamic multi workflow scheduling are proposed. Secondly, the optimization algo-
rithm of dynamic multi workflow scheduling based on TOPSIS is designed, and the 
task priority calculation method, selection process and resource selection based on 
TOPSIS in heterogeneous computing environment are given. Finally, experiments 
hava been carried out in five types of real workflows, which fully prove the superior-
ity and effectiveness of the scheduling algorithm proposed in this paper in reducing 
the maximum completion time and saving the total cost of the multiple workflows. 
In the future, we intend to extend MT to other workflow scheduling problems such 
as energy-aware and privacy-aware workflows scheduling in clouds.
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