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Abstract
In recent years, the prosperity of deep learning has revolutionized the Artificial Neu-
ral Networks. However, the dependence of gradients and the offline training mecha-
nism in the learning algorithms prevents the Artificial Neural Networks from further 
improvement. In this study, a gradient-free training framework based on data assimi-
lation is proposed to avoid the calculation of gradients. In data assimilation algo-
rithms, the error covariance between the forecasts and observations is used to opti-
mize the states. The Feedforward Neural Networks are trained by gradient decent, 
data assimilation algorithms (Ensemble Kalman Filter and Ensemble Smoother 
with Multiple Data Assimilation), respectively. Ensemble Smoother with Multiple 
Data Assimilation trains Feedforward Neural Networks with pre-defined iterations 
by updating the parameters (i.e. states) using all the available observations which 
can be regarded as offline learning. Ensemble Kalman Filter optimizes Feedforward 
Neural Networks when new observation available by updating parameters which can 
be regarded as real-time learning. Two synthetic cases with the regression of a Sine 
function and a Mexican Hat function are conducted to validate the effectiveness of 
the proposed framework. Quantitative comparison with the root mean square error 
and coefficient of determination show that better performance is obtained by the 
proposed framework than the gradient decent method. Furthermore, the uncertainty 
of the parameters is quantified which shows the reduction in uncertainty along with 
the iterations in Ensemble Smoother with Multiple Data Assimilation. The proposed 
framework explores alternatives for real-time/offline training the existing Artificial 
Neural Networks (e.g. Convolutional Neural Networks, Recurrent Neural Networks) 
without the dependence of gradients and conducting uncertainty analysis at the 
same time.
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1  Introduction

Artificial Neural Networks (ANNs) have been investigated and utilized exten-
sively by researchers in numerous fields to conduct predictions and classifications 
based on the knowledge learning from training data [1, 2]. Significant accom-
plishments have been achieved by applying ANNs in computer vision, speech rec-
ognition and natural language processing [3, 4]. ANNs were mathematical mod-
els of biological neural networks which constitute animal brains [5] with neurons, 
connections (axons) and transfer functions (synapse). After decades of researches 
and developments, ANNs have evolved from Perceptron [6] to Hopfield network 
[7], to Backpropagation Neural Network [8] and more recently to deep learning 
[2] which promotes the third wave of Artificial Intelligence (AI). Nonlinear map-
ping capability was obtained by applying sufficiently large number of neurons, 
connections, weights, bias, transfer functions and learning algorithms. ANNs are 
capable of approximate any function with any given precision from a mathemati-
cal perspective [9, 10]. However, critical issues should be addressed for applying 
ANNs more effectively.

The first issue is the dependence of gradient during training ANNs. Although 
the number of neurons, connections, weights, bias, transfer functions are essen-
tial aspects for ANNs, a training procedure which adjusts the weights and biases 
is necessary to ensure the behaviour of ANNs as expected. Backpropagation 
has played an important role since 1980s which is efficient for training ANNs 
with a teacher-based supervised learning algorithm. The errors are backpropa-
gated through the networks based on gradient decent algorithm (GD). However, 
the algorithm might be trapped in local minima because of the dependence of 
local gradient information. Although some improved methods (e.g. Batch Gradi-
ent Descent, Stochastic Gradient Descent and Mini-batch Gradient Descent) have 
been proposed, the convergence of ANNs during training stages is another prob-
lem which would further influence the performance of training and predicting. 
Therefore, some researchers propose to train ANNs with Heuristic Algorithms 
(HAs). For example, Zhao Hong proposed General Vector Machine (GVM) 
which trains ANNs with Monte Carlo algorithm and Least Square Errors [11]. 
The accuracy and generalizability performed well in relatively small data sets, 
but this method could hardly obtain satisfying results in large data sets with the 
exponential increase of computational cost. Simulated Annealing was integrated 
with GD and backpropagation to avoid local optima during training ANNs [12]. 
Researches and progresses have been obtained by applying Genetic Algorithm to 
adjust the weights and bias during training procedure. However, solid theoretical 
basis was missing due to the origination of HAs.

The second issue is the uncertainty analysis of ANNs. Uncertainty has always 
been intrinsic property in all kinds of prediction models (including black-box and 
deterministic models) [13]. Uncertainty analysis is to quantitatively identify and 
reduce uncertainties in models which tries to determine how likely the outputs 
are if some aspects of the system are not exactly known [14]. Ignoring the sources 
and influences of uncertainty would undermine the robustness and reliability of 
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the results and analysis from a model [15, 16]. There are four important sources 
of uncertainties for a model [13]: (1) uncertainties in input data; (2) uncertainties 
in data used for calibration; (3) uncertainties in model parameters; (4) uncertain-
ties due to imperfect model structure. Generally, there are broadly two groups 
of uncertainty assessment methods [17], i.e. the Bayesian methods [18] and the 
Generalized Likelihood Uncertainty Estimation (GLUE) method [19]. The Bayes-
ian methods analyse the uncertainty of a model by assuming a prior probability 
over hypotheses to determine the probability of a particular hypothesis based on 
observed evidence. The GLUE method conducts a large number of model runs 
with many random parameter values selected from a priori probability distribu-
tion. The parameter values are accepted or discarded based on a certain subjective 
threshold which leads to a major drawback of GLUE method depending on sub-
jective decisions rather than statistically consistent error models. Furthermore, 
the large number of model runs is not practical due to the computational cost of 
complex models.

Data Assimilation (DA) is originated from and has a long tradition in meteor-
ology and oceanography [20, 21]. The essence of DA is to deal with uncertainty 
by assimilate different kinds of observations. It is well known that a free-running 
model will accumulate errors until its prediction is no long useful [22]. The only 
way to avoid this procedure is to allow the model to be influenced by observations 
[23]. DA provide a solution to evolve the models (update the states) by involving 
available observations. This procedure has different names in different fields, e.g. 
states estimation [24]; optimization [25]; history matching [26]; retrieval produc-
tion [27]; inverse modelling [28]. The objective of DA is to produce information 
about the posterior Probability Density Function (PDF) by different approaches. 
There are three categories of Bayesian-based strategies of DA methods: (1) Vari-
ational DA with implementations of 3D-Var or 4D-Var; (2) Ensemble DA which 
implements based on Ensemble Kalman Filter (EnKF); (3) Monte Carlo methods 
which allow the assimilation of information with non-Gaussian errors. The EnKF 
[29] is derived from the merge of Kalman Filter [30] and Monte Carlo estimation 
methods [31]. The algorithm has been examined and applied in various fields such 
as metrology, oceanography, petroleum engineering and hydrogeology [32–34], 
since it was first proposed by Evensen [29]. The simple conceptual formulation 
and relative ease of implementation (no derivation of a tangent linear operator or 
adjoint equations are required) with affordable computational requirements result in 
the popularity of EnKF. The system states can be forecasted and updated simulta-
neously with minimized error covariance in real time. Bocquet et. al showed the 
possibilities of combining DA and machine learning from a Bayesian perspective 
[35]. In [36], the Kalman filter was used to sequentially update the output weights 
of a single-layer feedforward network based on Online Sequential Extreme Learn-
ing Machine to conduct online learning and handle the effects of multicollinearity. 
The Extended Kalman Filter (EKF) has been used to optimize parameters of Sup-
port Vector Machine [37], Feedforward Neural Network (FNN) [38–40], Radial 
Basis Function Neural network [41], Recurrent Neural Network (RNN) [42, 43]. 
Chen et. al proposed a training method based on the ensemble randomized maxi-
mum likelihood algorithm which avoided the gradient while training and performed 
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uncertainty analysis at the same time [44]. Ensemble Smoother with Multiple Data 
Assimilation (ESMDA) [45] was introduced based on the Ensemble Smoother (ES) 
proposed by van Leeuwen and Evensen [46] in order to avoid stopping and restart-
ing the model when observations happen. Furthermore, a range of methods based on 
Monte Carlo techniques are formed to conduct DA. For example, the Particle Filter 
(PF) represents a PDF by ensembles (particles) without the limitation of Gaussian-
ity of the distribution. Bao et. al proposed to combine ESMDA with GAN to deal 
with the non-Gaussianity [47]. DA algorithms offer an opportunity for optimizing 
the parameters (i.e. states), quantifying the uncertainty and gradient-free training of 
ANNs at the same time.

In this paper, a novel training framework for ANNs was proposed by adopt-
ing data assimilation. This training framework avoids the dependence of gradient 
and hence some disadvantages of GD-based methods. ESMDA trains ANNs with 
pre-defined iterations by updating the parameters using all the available observa-
tions which can be regarded as offline learning. EnKF optimizes ANNs when new 
observation available by updating parameters which can be regarded as real-time 
learning. To illustrate the idea, a fully connected FNN integrated with EnKF and 
ESMDA is implemented. Two synthetic cases with the regression problems of Sine 
function and Mexican Hat function are conducted to test and validate the proposed 
framework. Furthermore, the uncertainty of FNN parameters is analysed and quanti-
fied by ESMDA. The paper is organized as follows. Section 2 provides the theory 
of FNN, data assimilation and the proposed framework. Section 3 presents the data 
and settings of the synthetic cases to validate the proposed framework. The results 
are demonstrated in Sect. 4. Finally, summary and conclusions are given in Sect. 5.

2 � Methodology

2.1 � Notations

Extensive use of mathematical notations is made in this section. The DA-related 
notations in this paper are consistent with the symbols used in our previous work 
[48] as much as possible. To better understand the equations, the notations are sum-
marized and described in advance (Table 1).

2.2 � Feedforward neural network

A Feedforward Neural Network (FNN) is an ANN wherein the information flows 
from the input layer through the transfer functions to the output layer. There are no 
feedback connections, and hence, the neurons do not form a cycle. Neurons were 
proposed by Frank Rosenblatt [6] inspired by Warren McCulloch and Walter Pitts 
[5]. In a neuron, the output is calculated by a nonlinear function (activation func-
tion or transfer function) of the sum of its inputs as: y = f

�
∑p

i=1
wi�i

�

 . An FNN is 
formed by the combination of such neurons as in the biological neural networks. 
Without losing generality, the three-layer FNN (input layer, hidden layer and output 
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Table 1   List of symbols

Symbols Descriptions

ψ The inputs of Artificial Neural Networks
w The weights of Artificial Neural Networks
f Activation (Transfer) function of Artificial Neural Networks
h The outputs of hidden layer of Artificial Neural Networks
b The biases of Artificial Neural Networks
y The output of output layer of Artificial Neural Networks
n The number of neurons in the input layer of Artificial Neural Networks
Nh The number of neurons in the hidden layer of Artificial Neural Networks
m The number of neurons in the input layer of Artificial Neural Networks
t Time variable
X State vectors
A The parameters vector
B The state vector
Nx The dimension of X
Na The dimension of A
Nb The dimension of B
M Nonlinear model operator
Y Measurements
H Observation operator
R Covariance
P The covariance matrix of X
Ne The number of ensembles
K Kalman gain matrix
α Inflation coefficient
ξ, ν, ε Gaussian distribution errors

Fig. 1   The structure of Feedforward Neural Networks and neurons
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layer) is used as an example of FNNs in this study (Fig. 1). The feedforward process 
is the same as common fully connected neural networks as follows:

where ψi, hj and yk represent the nodal values in the input layer, hidden layer and 
output layer, respectively; n, Nh and m are the number of neurons in the input layer, 
hidden layer and output layer; wji is the weight connecting the input ψi and the jth 
neuron in the hidden layer; bj represents the bias in the output layer; wkj is the weight 
connecting the jth neuron in the hidden layer (hj) and the output yk; f1 and f2 are the 
activation functions in the hidden layer and the output layer.

2.3 � Data assimilation

Generally, data assimilation combines information from a variety of sources to 
improve the accuracy of predictions and takes the uncertainty from measurements, 
inputs, parameters and model structures into account at the same time. In a nonlin-
ear dynamic system, the state space X is defined as:

where Xt is the state vectors at time t with the dimension of Nx; Nt denotes the num-
ber of time steps; A represents the parameters vector with dimension of Na; B rep-
resents other state vectors with dimension of Nb; Nx denotes the number of all state 
vectors in Xt which equals Na + Nb.

The system is treated as derivations of state equation (Eq.  (4)) and observation 
equation (Eq. (5)) through time t.

where f denotes the forecast (prior estimation) of the states; a denotes the analysis 
(posterior estimation) of the states; Xt

f represents the forecast of the states at time 
t; Mt-1 is the nonlinear model operator; Xt-1

a is the analysis of the states at time t-
1; � ∼ N

(

0,R�

)

 and � ∼ N
(

0,R�

)

 indicate the Gaussian distribution errors with 
zero mean and covariance matrix Rξ and Rν; Yt is the observation vector at time 

(1)hj = f1

(

n
∑

i=1

wji × �i

)

i = 1, 2,… , n; j = 1, 2,… ,Nh

(2)yk = f2

(

Nh
∑

j=1

wkj × hj + bj

)

k = 1, 2,… ,m

(3)Xt =

(

A

B

)

t = 1, 2,… ,Nt

(4)X
f

t = Mt−1

(

Xa
t−1

)

+ � � ∼ N
(

0,R�

)

(5)Yt = Ht−1

(

X
f

t

)

+ � � ∼ N
(

0,R�

)



19026	 C. Chen et al.

1 3

t; H represents the observation operator which connects the model states and the 
observations.

2.3.1 � Ensemble kalman filter

The EnKF is a sequential data assimilation algorithm based on KF. There are 
typically two steps in EnKF: the forecast step and the analysis (update) step. In 
the forecast step, the forecast states is updated according to Eq. (4). In the analy-
sis step, the observation data Yo are first perturbed by random errors:

where Yt
o represents the perturbed observation data at time t; ε ~ N(0, Rε) indicates 

Gaussian random observation errors with zero mean and covariance matrix Rε.
The analysis states are obtained by updating the forecast as follows:

The analysis covariance matrix at time t is

Here

Define

where Kt is the Kalman gain matrix at time t; Ne represents the ensemble size; Pt
f 

is the forecast covariance matrix at time t; xft  is the mean of ensemble members for 
forecast states.

Equations  (4) ~ (11) illustrate the process of recursive optimal estimation 
in EnKF which is able to dynamically update the system estimates when new 
observations become available.

(6)Yo
t
= Yo

+ � � ∼ N
(

0,R�

)

(7)Xa
t
= X

f

t +
P
f

tH
T

HP
f

t H
T + R�

(

Yo
t
− Yt

)

(8)Pa
t
=

(

I −
P
f

tH
T

HP
f

t H
T + R�

H

)

P
f

t

(9)P
f

t =
1

Ne − 1

Ne
∑

i=1

(

x
f

i,t
− x

f

t

)(

x
f

i,t
− x

f

t

)T

(10)x
f

t =
1

Ne

Ne
∑

i=1

x
f

i,t

(11)Kt =
P
f

tH
T

HP
f

t H
T + R�
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2.3.2 � Ensemble smoother with multiple data assimilation

Equations  (4) ~ (11) show that the ensemble-based sequential data assimilation (e.g. 
EnKF, PF) updates the states at the time when observations happen which results in the 
necessity of restarting the simulations. The recurrent simulation may be inconvenient 
when the purpose is to incorporate different kinds of data for history matching. There-
fore, Ensemble Smoother with Multiple Data Assimilation (ESMDA) is proposed to 
update the states by simultaneously assimilating all the available data. Unlike sequen-
tial data assimilation, it is not necessary to restart the simulations in ESMDA. This 
procedure enables ESMDA to obtain better data matches with lower computation cost.

ESMDA is an iterative Ensemble Smoother with a predefined number of iterations 
for data assimilation. An inflation coefficient αi is introduced to the measurement error 
in each iteration. The requirement of inflation coefficient is described in Eq.  (12) to 
maintain correct posterior mean and covariance.

where Ni is the predefined number of iterations for data assimilation. Apparently, 
there are many alternatives for inflation coefficient which satisfies the requirement. 
The determination of αi refer to [49].

The inflation coefficient is used to inflate the perturbation of all observation data and 
its covariance matrix in Eq. (13) and Eq. (14) which leads to:

2.4 � Training FNN with DA

Assume the structure (the number of layers, the nodes in each layer and the connection 
between nodes) of FNN for a specified problem is determined and represented by M*. 
The weights (w in Eq. (1) and (2)) and biases (b in Eq. (2)) are regarded as states (X*) 

of M* which leads to X∗
=

(

w

b

)

.

In the perspective of DA, substitute M in Eq. (4) with M*, we can obtain:

(12)
Ni
∑

i=1

1

�i
= 1

(13)Y = Yo
+
√

�i� � ∼ N
�

0,Re

�

(14)K =
PfHT

HPfHT +
√

�iR�

(15)X
∗f

t = M∗

t−1

(

X∗a
t−1

)

+ �∗ � ∼ N
(

0,R�

)

(16)Y∗

t
= H∗

(

X
∗f

t

)
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where Yt
* represents the outputs of M* with the element of yk in Eq. (2); X* is the 

parameters which can be updated by Eq. (7)–(11).
In the perspective of FNN, the optimization of parameters (w and b) in the 

back-propagation process is replaced by data assimilation. The ESMDA can be 
used to train the FNN with the historical data. The sequential data assimilation 
can be used to adjust the model trained by ESMDA with the real-time observa-
tions. The procedure of FNN trained by sequential data assimilation and ESMDA 
is shown in Fig. 2.

Fig. 2   The procedure of FNN trained by a sequential data assimilation; b ESMDA. The combination of 
FNN and DA can be summarized as Algorithm 1 (for EnKF) and Algorithm 2 (for ESMDA). There are 
several hyper-parameters for Algorithm  1 and Algorithm  2 which should be determined based on the 
prior information of the actual situation
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3 � Synthetic cases

The performance of the proposed integration of FNN and DA is validated through 
two synthetic cases. The main purpose of the synthetic cases is to analyse the 
capability of the proposed method in generating accurate estimations without gra-
dient information by comparing the performance of the proposed method with the 
traditional GD method. In the synthetic cases, two regression datasets are gener-
ated from Sine function and Mexican Hat function (hereafter, refer to Sine func-
tion case and Mexican Hat function case). Different optimization methods (GD, 
EnKF, ESMDA) are conducted to train the FNN model. The methods used in the 
synthetic cases are summarized in Table 2.

Table 2   Methods used in synthetic cases

Datasets Model Optimization of FNN Performance criteria

Sine function FNN GD EnKF ESMDA RMSE R2

Mexican Hat function FNN GD EnKF ESMDA RMSE R2
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3.1 � Performance criteria

As recommended by [50], the root mean square error (RMSE) and coefficient of 
determination (R2) are used to assess the performance of different training algo-
rithms in the two synthetic cases (as shown in Eq. (20) and (21)). The RMSE meas-
ures the average magnitude of the error between model simulations (M) and obser-
vations (O). As shown in Eq.  (20), the errors are squared before averaged, large 
errors take a relatively high weight. Therefore, RMSE is useful when large errors are 
undesirable. R2 measures the predictive ability of models.

where N represents the total number of observations; O is the average of 
observations.

Besides, the computation time was also recorded as a criterion to assess the com-
putation costs of different models.

3.2 � Data

In the Sine function case, two datasets (training data and validation data) are gener-
ated. The data in training stage are generated in (0, 2π) with interval of 0.01π which 
results in 201 samples. The data in validation stage are generated in (0, 2π) with 
interval of 0.1 which results in 63 samples. Detail information of the data is sum-
marized in Table 3.

In the Mexican Hat function case, two datasets (training data and validation data) 

are generated using ψ(t) = 2
√

3��
1

4

�

1 −

�

t

�

�2
�

e
−

t2

2�2 with σ = 1. In particular, 200 

samples are generated in [− 5, 5] for the training dataset; 30 samples are generated 
in [− 5, 5] for the validation dataset. Detail information of the data is summarized in 
Table 4.

(20)RMSE =

√

√

√

√
1

N

N
∑

i=1

(

Mi − Oi

)2

(21)R2
= 1 −

∑N

i=1

�

Oi −Mi

�2

∑N

i=1

�

Oi − O
�2

Table 3   Data description for the 
Sine function case

Training stage Validation stage

Number 
of sam-
ples

Range Interval Number 
of sam-
ples

Range Interval

Input 201 [0, 2π] 0.01π 63 [0, 2π] 0.1
Output 201 [− 1, 1] * 63 [− 1, 1] *
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The data used in the two synthetic cases are shown in Fig. 3.

3.3 � Experimental Settings

The architecture of FNN is predefined to be fully connected network with one input 
layer, one hidden layer and one output layer. Based on the features of the dataset, 
the number of neurons in each layer is one, ten and one. respectively. The parame-
ters (weights and bias) are randomly initialized from a normal distribution. The loss 
function in gradient decent method is mean square error (MSE). 10,000 epochs with 
learning rate of 0.12 are used for gradient decent method to train the FNN. Without 
loss of generality, the biases between the hidden layer and output layer are selected 
as states to be updated in EnKF. The hyperparameters in EnKF, the ensemble size 
Ne, the prior parameter covariance matrix Rξ and the observation error covariance 
matrix Rε are 50, 0.1 and 0.005, respectively. The observation error covariance Rε 
is set to be a small value because the observations used in EnKF are generated from 
the Sine wave which was accurate and much more trustworthy than the FNN model. 
EnKF is used in the ESMDA to conduct the procedure of data assimilation. The pre-
defined number of iterations for data assimilation Ni, the ensemble size Ne, the prior 

Table 4   Data description for the Mexican Hat function case

Training stage Validation stage

Number of 
samples

Range Number of 
samples

Range

Input 200 [− 5, 5] 30 [ − 5, 5]
Output 200

�

−
4

√

3�
1

4

e
−

3

2 ,
2

√

3�
1

4

�

30
�

−
4

√

3�
1

4

e
−

3

2 ,
2

√

3�
1

4

�

Fig. 3   Data used in the training stage and validation stage for a the Sine function case and b the Mexican 
Hat function case
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parameter covariance matrix Rξ and the observation error covariance matrix Rε are 
3, 50, 0.1 and 0.1, respectively.

4 � Results and discussions

4.1 � Performance of FNN model optimized by EnKF

In the Sine function case, the results calculated from FNN which optimized by 
different methods are shown in Fig.  4. After 10,000 epochs of training, the FNN 
model with gradient decent method approaches the Sine Function with some biases. 
The RMSE and R2 values for GD-optimized FNN model are 0.0948 and 0.9819. 
Although the values of performance criteria are relatively acceptable, there is still 
bias in the peak and trough of the curve which may be caused by the difference 
of gradient changes and static learning rate of the algorithm. In the experiment of 
EnKF-optimized FNN model, there are ensembles for the parameters which gener-
ated from a random normal distribution. To calculate the performance criteria, the 
ensemble mean is used as the final model outputs. The EnKF-optimized FNN model 
indicates a better match to the Sine Function (the red curve in Fig. 4) with RMSE of 
0.0317 and R2 of 0.9980. Each realizations of parameters can be regarded as a pos-
sible realization of FNN. On the contrary to the gradient decent algorithm, EnKF is 
capable of capturing the variance of gradient changes because of the updating proce-
dure in the algorithm. The evolution of parameters (shown in Fig. 5) also reflects the 
correction processes of the parameters to adapt the larger gradient changes. After 
randomly generating the FNN parameters (biases from the hidden layer to the out-
put layer), the uncertainty of parameter remains relatively large because of the large 
difference between the FNN model and the Sine wave according to Eq.  (7). The 

Fig. 4   Comparison of the results from FNN optimized by Gradient Descent (black curve) and EnKF 
(Red curve for ensemble mean and grey area for uncertain zone) in the Sine function case (color figure 
online)
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same situation can be found at “x = 1.5π”. On the contrary, the parameter uncer-
tainty is reduced when “x ∈ (0.75π, 1.25π)” because of the relatively small difference 
between the FNN model and the Sine wave (Fig. 5). These results indicate that the 
EnKF optimized FNN model with higher accuracy than gradient decent algorithm. 
Furthermore, the EnKF is able to optimize the parameters of FNN in real time by 
incorporating real-time observations which is intrinsic quality of the methods.

In the Mexican Hat function case, the hyper-parameters of FNN and EnKF are 
identical with those in the Sine function case. The results calculated from FNN 
which optimized by different methods are shown in Fig.  6. The RMSE and R2 
value for GD-optimized FNN model are 0.0329 and 0.9891. In the experiment of 
EnKF-optimized FNN, the ensemble means of the model outputs are used to cal-
culate the performance criteria with RMSE of 0.018 and R2 of 0.9967. The better 

Fig. 5   Parameters trained by EnKF and Gradient Decent in the Sine function case

Fig. 6   Comparison of the results from FNN optimized by Gradient Descent (black curve) and EnKF 
(Red curve for Ensemble mean and grey area for uncertain zone) in the Mexican Hat function case (color 
figure online)
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performance is attributed to the update scheme of the model states which is shown 
in Eq. (7) ~ (11). The evolution of parameters shown in Fig. 7 illustrates the update 
process. From Fig. 6 and Fig. 7, one can tell that the variance of parameters is larger 
when the difference between observations ( Yo

t
 ) and simulations (Yt) are large which 

can be explained by Eq. (7). These results indicate that EnKF is able to optimize the 
parameters of FNN by implementing the update process with higher accuracy.

4.2 � Performance of FNN model optimized by ESMDA

In the Sine function case, the outputs and the corresponding parameters of four iter-
ations are shown in Figs. 8 and 9. Figure 8 displays the outputs of the models with 
grey area indicating uncertain zone, blue curve indicating Sine function, black curve 
indicating optimized outputs from GD, red curve indicating ensemble means of the 
outputs. In the first iteration, 50 samples of parameters are randomly generated using 
normal distribution with covariance matrix Rξ, the FNN model is executed with the 
generated samples to yield outputs. The uncertain zone of the outputs for the first 
iteration is the largest because of the random generation of parameters (shown in 
Fig. 9) which results in the largest uncertainty of the parameters. In the second itera-
tion, the distributions of the parameters are updated by the EnKF which significantly 
narrows down the uncertain zone of the outputs. In the third and fourth iteration, 
the distributions of the parameters are slightly updated without significant effects on 

Fig. 7   Parameters trained by EnKF and Gradient Decent in the Mexican Hat function case

Fig. 8   Comparison of the results from FNN optimized by Gradient Descent (black curve) and. ESMDA 
(Red curve for Ensemble mean and grey area for each ensemble) in the Sine function case (color figure 
online)
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Fig. 9   Parameters trained by ESMDA in the Sine function case
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the outputs. The mean of the 50 ensembles is considered as the best estimation for 
the outputs in each iteration. The RMSE and R2 are calculated to conduct quantita-
tive comparisons between the observations and simulations (Table 5). Table 5 indi-
cates that better results are obtained by ESMDA than those obtained by GD which 
proves the effectiveness of the ESMDA for updating the parameters. The evolution 
of parameters (biases from the hidden layer to the output layer) are shown in Fig. 9. 
In each figure, the histogram of the ensembles is used to indicate the distribution of 
the parameters. The red line indicates the ensemble mean of the updated parameters. 
The convergence of the parameters with the increase of iterations indicates the effec-
tiveness of the ESMDA. The variances of the parameters decrease with the itera-
tions which could be obtained from Fig. 9 by the narrowing of the uncertain zone. 
The mean value of the parameter in Fig. 9 which corresponds to the mean value of 
the trained results in Fig. 8 can be regarded as the optimal parameters for the FNN 
model.

In the Mexican Hat function case, the outputs and the corresponding parameters 
of four iterations are shown in Figs. 10 and 11, respectively. Similar to Figs. 8,  10 
shows the outputs of the models with grey area indicating uncertain zone, blue curve 
indicating Sine function, black curve indicating optimized outputs from GD, red 
curve indicating ensemble means of the outputs. The uncertain zone of the outputs 
for the first iteration is the largest because of the random generation of parameters 
(shown in Fig. 11). In iteration 2 and iteration 3, the uncertain zone of the outputs 
keeps narrowing down due to the parameters updating process of ESMDA. It should 
be noted that the uncertainties of parameters were larger when the gradient of Mexi-
can Hat function closing zero (i.e. around x =  ± 3, x =  ± 

√

3 and x = 0). The differ-
ences between the outputs of FNN and the Mexican Hat function are also relatively 
larger at these points. The reason may also lie in Eq. (7) as we described in Sect. 4.1. 

Table 5   RMSE and R2 values for the Gradient Decent and ESMDA methods in the Sine function case

Gradient Decent ESMDA

Iteration 1 Iteration 2 Iteration 3 Iteration 4

RMSE 0.0948 0.0972 0.0814 0.0805 0.0779
R2 0.9819 0.9810 0.9867 0.9870 0.9878

Fig. 10   Comparison of the results from FNN optimized by Gradient Descent (black curve) and ESMDA 
(Red curve for Ensemble mean and grey area for uncertain zone) in the Mexican Hat function case (color 
figure online)
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Fig. 11   Parameters trained by ESMDA and Gradient Decent in the Mexican Hat function case
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This phenomenon indicates the adjustment of parameters (shown in Fig. 11) accord-
ing to the observations which also demonstrates the effectiveness of updating pro-
cesses in ESMDA. It should also be noted that the variance of parameters is not 
enough to cover some points in the model outputs (i.e. ± 

√

3 in Fig. 10). This may 
be caused by the situation that only biases in the hidden layer are perturbed and 
updated. Involving more parameters (for instance, weights in Eq. (1) ~ (2)) for per-
turbation and optimization may solve this problem. Quantitative comparisons 
between the observations and simulations are conducted by calculating RMSE and 
R2 (Table 6). Table 6 shows that better results are obtained by ESMDA than those 
obtained by Gradient Decent. The evolution of parameters is shown in Fig. 11. In 
each figure, the histogram of the ensembles is used to indicate the distribution of 
the parameters. The red line indicates the ensemble mean of the updated parameters. 
The variances of parameters are lowered with the iterations which results in the nar-
rowing of uncertain zones in Fig. 10.

4.3 � Validation

The FNN trained by GD and ESMDA are then validated using the validation data 
generated in Sect. 3.3. The ensemble means of ESMDA parameters are used as opti-
mal parameters. The EnKF trained FNN is not validated due to two reasons. The first 
reason is that EnKF is used for real-time training (online learning) in the proposed 
training framework which would conduct continuous learning when the new obser-
vations available. The second reason is that EnKF optimizes the parameters based 
on the observations for a particular time step. The validation results for the Sine 
function case and the Mexican Hat function case are illustrated in Fig.  12 which 
shows considerable match in both cases. Table 7 shows the RMSE and R2 values 
for the Gradient Decent and ESMDA methods in validation stage which indicates a 
reasonable training by comparing with Tables 5 and  6. The generalization ability of 
GD and ESMDA is both acceptable. The performance of ESMDA is slightly better 
than GD.

4.4 � Uncertainty analysis

Uncertainty is inevitable in all kinds of prediction models including neural net-
works. Due to the nature of EnKF, the uncertainty of FNN parameters (i.e. biases) 
is quantified through the generation of ensembles for the parameters. There are 
many ways to describe parameters uncertainty via ensemble analysis, including his-
tograms, probability, ensemble means, standard deviations (STD) and correlations. 
Figures 9 and 11 are examples which show the changes of uncertainty of the param-
eters over different iterations by histograms. “Iteration 1” denotes the initial step of 
the ESMDA which randomly generates the parameters from a normal distribution. 
The ensemble spread of the parameters decreases after the first iteration and contin-
ues to be narrowed as the ESMDA executes. The narrowing of the range of uncer-
tainty is observed for many, but not all, of the parameters.
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A quantitative summary of the uncertainty is provided which summarizes 
the ensemble maximums, ensemble minimums, ensemble means and STDs for 
all the parameters in the Sine function case (Table 8) and Mexican Hat function 
case (Table 9). It should be noted that statistical values are used because of the 
existence of ensembles in ESMDA. Different parameters are listed in columns. 
The values of ensemble maximums, ensemble minimums, ensemble means and 
STDs in different iterations are demonstrated in different rows. In both cases, 
the ensemble STDs for all the parameters narrow along with the iterations which 
indicates a reduction in the uncertainty. However, different degrees of narrow-
ing are observed for different parameters. The narrowing for “Bias 5” in the Sine 
function case and “Bias 3 ~ Bias 8” in the Mexican Hat function case indicates 
a significant reduction in uncertainty and reveals that these particular param-
eters identifiable from the data (also shown in Figs.  9 and   11). For the other 

Table 6   RMSE and R2 values for the Gradient Decent and ESMDA methods in the Mexican Hat function 
case

Gradient Decent ESMDA

Iteration 1 Iteration 2 Iteration 3 Iteration 4

RMSE 0.0329 0.0260 0.0237 0.0229 0.0227
R2 0.9891 0.9932 0.9943 0.9947 0.9948

Fig. 12   The validation of the Gradient Decent and ESMDA trained FNN for: a the Sine function case; b 
The Mexican Hat function case

Table 7   RMSE and R.2 values 
for the Gradient Decent and 
ESMDA methods in validation 
stage

Sine function Mexican Hat function

Gradient Decent ESMDA Gradient Decent ESMDA

RMSE 0.0969 0.0777 0.0228 0.0226
R2 0.9812 0.9879 0.9946 0.9947
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parameters in the Sine function case and the Mexican Hat function case, the 
ensemble spreads narrow a little over the three iterations which indicates that the 
data contains relatively little information about the uncertain parameters and the 
parameters are less identifiable. Tables 8 and 9 indicate that for most parameters 
the largest uncertainty decrease happens with the first iteration (from “Iteration 
1” to “Iteration 2”). Corresponding to this phenomenon, the uncertain zone of 
outputs from FNN model narrows the most in the first iteration (shown in Figs. 8 
and 10). On the one hand, this suggests that the capability of ESMDA to update 
the parameters uncertainty. On the other hand, this also suggests that even though 
the nonlinearity exists, the overall relationship between the parameters and data 
is relatively linear. The ensemble means over different iterations in Tables 8 and 9 
indicate the capability of ESMDA to update the value of parameters. Comparing 
the ensemble means in the Sine function case (Table 8) with the ensemble means 
in the Mexican Hat function case, we can find that the degree of updating ensem-
ble means in the Sine function case is bigger in the Mexican Hat function case. 
The reason may be the relatively optimal parameters are obtained in the prior 
estimates in the Mexican Hat function case. This phenomenon is also revealed 
in the smaller degree of updating of STDs in the Sine function case than in the 
Mexican Hat function case.

Furthermore, a comparison of computation cost is conducted to approximately 
se the complexity of different training methods (GD, EnKF and ESMDA). Com-
putation times (Table  10) under the same software and hardware runtime envi-
ronment are recorded to indicate the computation cost. The computation cost of 
ESMDA is similar to GD. The EnKF is much more computational expensive than 
GD and ESMDA which indicates the fact that the major drawback of EnKF is 
computation cost. This drawback is reasonable given the fact that EnKF derived 
from the merge of Kalman Filter [30] and Monte Carlo estimation methods [31]. 
Therefore, EnKF restarts and executes FNN Ne (ensemble size) times at each time 
step when observations become available. In our synthetic cases, the number of 
time steps for observations (Nt) are 201 for the Sine function case and 200 for 
the Mexican Hat function case. The FNN is executed Ne × Nt times (50 × 201 or 
50 × 200 in the synthetic cases) in EnKF which may consume a lot computation 
time. However, in the proposed training framework, EnKF is used for real-time 
training (online learning) which means only Ne times executions of FNN are 
needed when the observations become available. This process involves new infor-
mation from observations and avoids the retraining of FNN.

Table 10   The computation time 
of different training methods 
(GD, EnKF, ESMDA) in the 
Sine function case and the 
Mexican Hat function case

The sine function case Mexican hat function 
case

GD EnKF ESMDA GD EnKF ESMDA

Training time (s) 6.38 41.80 6.33 6.59 42.96 6.28
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5 � Conclusion

In this paper, a new training framework for neural networks based on data assimi-
lation is proposed to avoid the calculation of gradient in the neural network train-
ing. The Feedforward Neural Networks (FNNs), Ensemble Kalman Filter (EnKF) 
and Ensemble Smoother with Multiple Data Assimilation (ESMDA) are used to 
validate the proposed framework. Synthetic cases with data generated from the 
Sine function and the Mexican Hat function are implemented to test the meth-
ods. EnKF updates the parameters when the observations available which can 
be regarded as real-time training (online learning). ESMDA updates the param-
eters using all the available observations with a predefined number of iterations 
for data assimilation which can be regarded as normal training (offline learning) 
compared to the conventional methods. The results from EnKF-optimized and 
ESMDA-optimized FNN model show higher accuracy than those from gradient-
decent-optimized FNN model. This indicates the effectiveness of the EnKF and 
ESMDA trained FNN. Furthermore, the uncertainty of the FNN model parame-
ters is quantified at the same time. The major advantages of the proposed training 
methods based on the data assimilation were (1) the avoidance of calculating gra-
dient, (2) the ability of real-time training when the observations available, (3) the 
uncertainty analysis for the parameters of neural networks. Although only FNN, 
EnKF and ESMDA were implemented as examples in this study, the potential 
of data assimilation algorithms on training neural networks is unlimited. Future 
works may include exploring new data assimilation algorithms (e.g. Particle Fil-
ter), exploring other kinds of neural networks (e.g. Recurrent Neural Network, 
Graph Neural Networks), involving more parameters of neural networks and vali-
dating the methods with real observation data.
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